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Abstract

The electricity supply industry has been facing significant challenges in terms
of meeting the projected demand for energy, environmental issues, security,
reliability and integration of renewable energy. Currently, most of the power
grids are based on many decades old vertical hierarchical infrastructures
where the electric power flows in one direction from the power generators
to the consumer side and the grid monitoring information is handled only
at the operation side. It is generally believed that a fundamental evolu-
tion in electric power generation and supply system is required to make the
grids more reliable, secure and efficient. This is generally recognised as the
development of smart grids.

Demand management is the key to the operational efficiency and re-
liability of smart grids. Facilitated by the two-way information flow and
various optimization mechanisms, operators benefit from real time dynamic
load monitoring and control while consumers benefit from optimised use of
energy.

In this thesis, various mathematical optimization techniques and game
theoretic frameworks have been proposed for demand management in or-
der to achieve efficient home energy consumption scheduling and optimal
electric vehicle (EV) charging. A consumption scheduling technique is pro-
posed to minimise the peak consumption load. The proposed technique is
able to schedule the optimal operation time for appliances according to the
power consumption patterns of the individual appliances. A game theoretic
consumption optimization framework is proposed to manage the scheduling
of appliances of multiple residential consumers in a decentralised manner,
with the aim of achieving minimum cost of energy for consumers. The opti-
mization incorporates integration of locally generated and stored renewable
energy in order to minimise dependency on conventional energy. In addi-
tion to the appliance scheduling, a mean field game theoretic optimization
framework is proposed for electric vehicles to manage their charging. In par-
ticular, the optimization considers a charging station where a large number
of EVs are charged simultaneously during a flexible period of time. The pro-
posed technique provides the EVs an optimal charging strategy in order to
minimise the cost of charging. The performances of all these new proposed
techniques have been demonstrated using Matlab based simulation studies.
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Statement of Originality

The contributions of this thesis are mainly on the study of demand man-

agement in smart grids and its enabling information and communications

technology. Various mathematical optimization techniques and game the-

oretic frameworks for demand management are proposed. The following

aspects of this thesis are believed to be originals:

• There are significant challenges as well as great opportunities for re-

search at both policy and technology levels on the efficient use of en-

ergy. Based on the knowledge and the research on the topic of demand

management in smart grids, an overview of the features of demand

management with a particular focus on the necessary enabling wire-

less technologies is presented in Chapter 3. Various optimal demand

management mechanisms using these wireless technologies were also

reviewed. Co-authoring with the researchers from Toshiba Research

Europe Telecommunications Research Laboratory, a comprehensive

overview of the research perspectives, including communications and

information technologies infrastructure, demand management, secu-

rity, and standardization for smart grids has been completed with two

journal publications as listed at the end of this statement [1,2].

• In Chapter 4, a mixed integer linear programming based consumption

scheduling optimization technique is proposed to schedule the con-

sumption of different types of home appliances in a centralised man-

ner. The mechanism is able to optimise the consumption profile of the

household and schedule the energy consumption over the scheduling

period to reduce the peak load of the power grid. As electric vehicle

(EV) becomes popular, it will be increasingly important to shift the

power consumption of EVs from peak times since an EV may have the

potential to consume as much power as an average home and so could
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increase the peak load considerably. Furthermore, if integrated prop-

erly into the electrical grid, EV represents a huge opportunity, as they

can assume the role of a dispatchable energy resource. Hence, a siz-

able number of EVs are incorporated into the proposed optimization

framework [3,4].

• The improvement of proposed optimization technique has been com-

pleted by incorporating the scheduling of the use of locally generated

and stored energy in Chapter 5. The optimization framework is aimed

to minimise the consumption cost as well as the dependency on con-

ventional energy. In particular, a game theoretic modelling framework

is developed to schedule the consumption requirements for multiple

households in a decentralised manner. The scheduling game is played

sequentially by each consumer in a round robin process to manage their

consumption and to achieve lowest consumption cost. Given a pricing

plan for the group of consumers, the game theoretic algorithm has the

ability to converge to a stable point. This means the consumption

cost is able to achieve its minimum and therefore all the participat-

ing consumers form an effective consumption scheduling coordination.

Theoretical analysis of the game theoretic framework in terms of the

properties of Nash equilibrium and its convergence procedure based on

the concepts of potential games are presented. Numerical simulations

demonstrate the scheduling technique and show the effectiveness [5,6].

• In addition to home area consumption optimization techniques, in

Chapter 6, a dynamic game theoretic optimization framework is devel-

oped for modelling a scenario of multiple EVs charging simultaneously

in a charging station. The proposed technique provides every individ-

ual EV an optimal charging strategy to proactively control its charging

rate (speed) in order to minimise the charging costs. The optimization
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is based on a specific differential game theoretic modelling technique,

known as the stochastic mean field game. Theoretical analysis of the

game in terms of its formulation, solution, and the comparison of the

mean field game with the traditional game theoretic techniques are

provided. Numerical results are also presented to demonstrate the

proposed framework [7,8].

The novelty of the contributions is supported by the following interna-

tional journal and conference paper publications.
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Chapter 1

INTRODUCTION

1.1 The Evolution of Smart Grids

The electricity supply industry is facing significant challenges in terms of

meeting and addressing the demand for energy, environmental concerns, se-

curity, and reliability.

Currently, most of the power generation and delivery grids are based on

many decades old vertical hierarchical broadcast infrastructures (i.e. few-

to-many distribution), where a few central power generators (i.e. power

stations) provide all the electricity production in a country or region, and

dispatch this electricity to consumers via a large network of cables and trans-

formers. The electric power flows in one direction from the power generators

to the consumers and the monitoring information is handled only at the

operation side. Based on load forecasting models developed over time, the

utility providers generally over-provision for the demand (considering peak

load conditions). If the demand increases above the average, they may have

to turn on the peaker plants which use non-renewable sources of energy (e.g.

coal) to generate additional supply of energy to cope with the demand. The

provisioning for peak load approach is wasteful when the average demand

is much lower than the peak because electricity, once produced, has to be

consumed as energy storage is normally very expensive [1]. Moreover, set-

ting up and maintaining peaker plants are environmentally unfriendly. Also,

given the increasing and locally dynamic demand for energy, it may be diffi-

1
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cult, perhaps impossible in the longer run, to match the supply to this peak

demand.

It is attractive in such a situation to match the demand to the available

supply by using two way communications between the grid and the customers

and providing incentives (e.g. through variable pricing) to encourage the

consumers to shift (reschedule) the consumption load to off peak demand

period so as to improve utilization of the available capacity. This necessitates

the flow of metering information from the customer premises to the grid

to analyse the demand, and the flow of control information (e.g. pricing

information) in the opposite direction to encourage the customers to manage

their demand. The bi-directional flow of information will provide the utility

operators the full visibility of the grids and will help them making informed

decisions on the energy supply. It also provides opportunities for consumers

to participate in the energy demand management to reduce the cost of their

energy consumption. In particular, the utility operators and consumers can

communicate and cooperate in order to achieve bi-directional load control

and efficient consumption management.

Renewable energy sources offer a key solution to the environmental prob-

lem. However, their integration into existing power grids comes with a whole

new set of barriers, such as the intermittency of generation, the high level

of distribution of the energy sources and the lack of proven control algo-

rithms to manage such a highly distributed generation. In addition to the

seamlessly access of renewable energy, building a sustainable power network

for future generations also requires monitoring and control technology for

reducing central generation emission and transmission loss.

In order to support the aforementioned functionalities, it is believed that

a fundamental evolution in electric power generation and supply system, gen-

erally recognised as the Smart Grid, is needed. There are various definitions

and visions for smart grids. However, the core of such evolution is enabling
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Figure 1.1. A typical smart grid architecture.

the future generation electricity network smart and intelligent by integrating

bi-directional information and communication technology (ICT) with power

grids.

Figure 1.1 1 illustrates a possible overall smart grid architecture. It is

highly integrated and complex, yet flexible and reliable network with vari-

ous centralized and distributed energy sources. The power flow direction is

no longer just downhill from the bulk power plants to consumers. Instead,

dynamic flows can start from any generation sources and could end up any-

where in the grids. Distributed generation (DG) from solar, small wind

turbine, biomass and other renewable sources, mid/low voltage distribution

and storage systems will be integrated into the conventional centralised bulk

generation and high voltage transmission systems. Energy can be stored

and released back to the grids even at household level. DG enables local

electricity generation using all kinds of energy sources to get access to the

power grid, which can reduce the high demand for central fossil-fuel plants.

Besides, mobile energy storage devices, e.g. plug-in electric vehicles (EVs),

1Elements of this figure are from google images. http://www.google.co.uk/
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can easily access the grid as supportive power sources.

The integration of ICT enables real-time monitoring of the operational

conditions of every part of the grid. Based on the collected information, the

operation control center is able to detect, analyse and respond fast to emerg-

ing problems. The ICT infrastructure enables not only the grid operator to

make informed decisions and optimise the energy flow, but it also provides

opportunities for consumers to participate in the energy demand manage-

ment. Development of this complex new system requires national and even

international efforts in technology development, standards, and regulatory

activities.

National governments and various relevant stakeholders have already

launched massive investments on smart grid research projects and made

significant progress. The US Department of Energy (DoE) states that a

smart grid uses digital technology to improve reliability, security, and ef-

ficiency of the electricity system [2]. Smart grid is a vital component of

President Obama’s comprehensive energy plan: the American Recovery and

Investment Act includes 11 billion in investments to “jump start the trans-

formation to a bigger, better, smarter grid”. One of the key elements behind

the current intensive work program towards smart grid in the United States

is tightly linked with the need to modernize their power system. In par-

ticular, the lack of electricity distribution network reliability under stress

conditions was born out of under-investment in the infrastructure combined

with growing energy demand. This was emphasized in a series of major

supply disruption events (e.g. the North-East blackout), widely seen as a

wake-up call to address network stability by increasing inter-connectivity,

local and wide area control. There are growing expectations on the inte-

gration of a wide range of renewable energy sources with the power grid.

Therefore the US DoE Smart Grid Research and Development Program has

set the following performance targets for 2030: 20% reduction in the na-
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tion’s peak energy demand; 100% availability to serve all critical loads at all

times and a range of reliability services for other loads; 40% improvement in

system efficiency and asset utilization to achieve a load factor of 70%; 20%

of electricity capacity from distributed and renewable energy sources (200

GW) [2]. There are also a number of huge industrial research projects cur-

rently underway, for example, the IBM GridWise project [3] and the smart

grid trial in New Mexico [4].

Europe, by contrast, presents a highly interconnected, mesh distribution

network exhibiting more robustness than the US system. The main highlight

of the EU definition is that a smart grid is an electricity network that can

intelligently integrate the behaviour and actions of all users to ensure sus-

tainable, economic, and secure electricity supply [5]. The biggest challenge in

the Europe is the integration of renewable power generation to meet the 2020

targets for reduction of carbon emissions from fossil power generation. The

important role of smart grids is mentioned in the European Commission’s

2020 strategy document [6], in the EU Smart Grids Technology Platform [5],

and also highlighted in the new initiative on Future Internet research as a key

application [7]. The EU, through the technology development platform, has

established a carefully planned approach to the implementation of smart grid

technologies in the medium to long term. Establishing work on standard-

ization, research projects involving academia with industries (utilities and

manufacturers), and demonstration/pilot projects are the current priority.

1.2 Demand Management in Smart Grids

Demand management in the electricity industry mainly consists of load mon-

itoring, analysis and response. Facilitated by the two-way information flow

and various optimization mechanisms, operators benefit from real time dy-

namic load monitoring and control while consumers benefit from optimized
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use of energy. Effective demand management provides significant benefits to

the operational efficiency and reliability of smart grid. For example, it has

been reported in [8] that in Europe, five to eight percent of installed capacity

is used only one percent of the time. By deferring the peak demand to off

peak times, the capacity and transmission cost could be reduced up to 67

billion euros in Europe. The work in [9] states that even a conservative esti-

mate of potential saving due to grid modernization is 40 billion dollars per

year in the US. In addition to the direct savings, there are many important

economical and societal benefits such as reduction of carbon emissions, inte-

gration of renewable energy, elimination of regional blackouts and reduced

operational costs via for example automated meter readings.

A comprehensive overview of demand management in smart grids, in-

cluding its key features, enabling ICT and proposed approaches are provided

in Chapter 3.

1.3 Thesis Outline

The work in this thesis is mainly focused on developing optimization frame-

works for home consumption scheduling and electric vehicle charging using

mathematical optimization and game theoretic modeling approaches. The

contents of the thesis are outlined as follows.

Chapter 2 provides a literature review on mathematical optimization and

game theoretic modeling, with a focus on their utilizations in electrical and

electronic engineering, in particular for smart grids. These are the two main

approaches for the optimization frameworks proposed in this thesis.

The novel contributions of this thesis are in Chapters 3, 4, 5 and 6.

Chapter 3 presents a comprehensive overview of demand management with

a particular focus on the necessary enabling information and communication

technologies. Various mechanisms for the optimal demand management in
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smart grids using these wireless technologies are reviewed.

Chapter 4 studies the consumption optimization problem for home area

demand management. A consumption scheduling optimization technique

based on integer linear programming (ILP) is proposed. The aim of the pro-

posed scheduling is to minimise the peak hourly load in order to achieve an

optimal (balanced) daily load schedule. The proposed mechanism is able to

schedule the optimal operation time for each of the home appliances accord-

ing to their power consumption patterns. The penetration of EVs is also

considered in the optimization framework. Matlab based simulation results

on home and neighbourhood area consumption scheduling are presented to

demonstrate the effectiveness of the proposed technique.

The proposed optimization technique is further improved in Chapter 5.

Given the pricing information, the optimization framework is aimed to min-

imise dependency on conventional energy and the consumption cost of the

residential consumers. Considering that the consumers will have the flex-

ibility to consume energy from various sources and make the best use of

locally generated/stored energy in the smart grids, local energy is also in-

cluded in the formulation of the optimization framework. In particular, a

game theoretic model is proposed to coordinatively manage the scheduling

of appliances of the consumers. Theoretical analysis is presented to show

that the proposed game theoretic algorithm admits Nash equilibrium, which

means a stable solution to the optimization, exists. The scheduling opti-

mization converges to the equilibrium where all consumers can benefit from

participating in. Matlab based simulation results are presented to demon-

strate the proposed approach and the benefits of successful home demand

management.

Electric vehicle is considered to be an important component of dis-

tributed energy storage and supply devices in smart grids. In addition to

home area consumption optimizations, which have the ability to optimally
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schedule the use of EVs at home, Chapter 6 focuses on the topic of ag-

gregated EVs’ optimal charging. A dynamic game theoretic optimization

framework is proposed to formulate the EV charging problem. In particular,

the optimization considers a charging station where a large number of EVs

can be charged simultaneously during a specific but flexible period of time.

The proposed technique provides every individual EV an optimal charging

strategy to proactively control its charging rate (speed) in order to minimise

the cost of charging. The dynamic optimization is based on a specific dif-

ferential game theoretic modeling technique, known as the mean field game.

Theoretical analysis of the game in terms of its formulation and solution is

provided with a comparison of mean field game with the traditional game

theoretic techniques. Numerical results are presented to demonstrate the

performance of the proposed framework.

Conclusions are drawn in Chapter 7. A brief summary of possible po-

tential future directions are also outlined.



Chapter 2

MATHEMATICAL

OPTIMIZATION AND GAME

THEORETIC MODELING

TECHNIQUES

In this chapter, a comprehensive literature review of the basics of mathe-

matical optimization and game theory is presented. Their formulation or

modeling, as well as various approaches for obtaining optimal solutions are

discussed. Various combinations of these techniques are the main ingredi-

ents for the optimization frameworks proposed in this thesis, which promise

efficient solutions to the smart grid demand management.

2.1 Mathematical Optimization

Optimization is one of the most pervasive words for researchers who value

system performance, efficiency and cost effectiveness. Mathematical Op-

timization, also called as mathematical programming is the foundation of

the development of various mechanisms and algorithms. The use of math-

ematical optimization techniques plays a crucial role in communication en-

gineering and advanced signal processing [10]. Techniques such as the well

9
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known least squares and linear programming have been widely applied in real

world problems [11, 12]. Solving the optimization problems provide useful

solutions and references for the design of system parameters. Mathematical

optimizations are valuable and have been widely applied in research areas

such as automatic control systems, communication networks, economics and

finance [13–15].

2.1.1 Formulation of an optimization problem

The basic concept of mathematical optimization is to search for optimal so-

lutions for the optimization parameters under specific conditions, in order to

achieve certain criteria of satisfaction. It can hence be seen that the formu-

lation of particular optimization problem consists of three basic components,

namely optimization variable, objective function and constraint.

A basic and classic mathematical representation of an abstract optimiza-

tion problem has the following form [10]:

minimize
x

f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p (2.1.1)

where the vector x = [x0, ..., xn]T ∈ Rn is the optimization variable of the

problem. The function f0 : Rn 7→ R is the objective function or cost function

represents the cost of choosing x. It can also be considered that −f0(x)

represents the level of satisfaction, or utility, of choosing x. The functions

fi(x) : Rn 7→ R and hi(x) : Rn 7→ R are called the inequality and equality

constraints, which represent the requirements or specifications of choosing

x. Particular optimizations can be classified as unconstrained problems if

there is no constraint. The domain of the optimization problem denoted by

D is the set of points where the objective function and the constraints are
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defined,

D =
m⋂
i=0

domfi ∩
p⋂
i=1

domhi. (2.1.2)

The problem is feasible if there exists a subset of points x ∈ D which satisfies

all the constraints. The optimal solution of the optimization exists only when

the problem is feasible and is obtained at the point x? if and only if

f0(x?) ≤ f0(x) ∀x ∈ D. (2.1.3)

Problem (2.1.1) describes the process that minimises the value of f0 (ob-

tain minimum cost or maximum utility) by selecting the best possible choice

x subject to all the constraints. One practical interpretation of such formu-

lation can be be considered as a process of seeking the best way to invest

some capital in a set of assets, i.e., portfolio optimization [10]. The variable

x describes the portfolio allocation across the set of assets. Each element

in x represents the investment in a particular asset. The constraints might

consist of a limit on the budget, the requirement of minimum investments,

and a minimum acceptable value of expected return for the whole invest-

ment. The optimization objective could be the risk of investment. In this

case, the optimization (2.1.1) chooses a portfolio profile that minimises risk,

among all possible constrained allocations [10].

2.1.2 Optimal solutions

A solution method for a mathematical optimization problems is an algorithm

that computes a (global or local) optimal solution of the problem to some

given accuracy [10]. Significant efforts have been on developing algorithms

for solving various classes of optimizations. The effectiveness of these algo-

rithms, i.e., the ability to solve the optimization problems, depends on the

particular optimization problem. For example, the type of the objective and

constraint functions, the number of variables and constraints, and special
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structures.

A general optimization problem which has smooth objective and con-

straint functions, e.g., polynomials, and even small number of variables and

constraints, can still be difficult to solve. Solving some of the optimizations

might require very long computation time, or even has possibility of not be

able to obtain the solution. For example, problems requiring non-polynomial

computation time.

However, there are a few classes of optimization problems for which ef-

fective and reliable solutions exist, even when the size of the problem is

significantly large, with hundreds or thousands of variables and constraints.

Two classic and well investigated examples are least squares problems and

linear programs [11,12]. Convex optimization is another well known class of

optimization problems which has very effective and efficient solutions [10].

Various practical problems in communication engineering and signal process-

ing can be appropriately formulated into convex problems and hence reliable

solutions are guaranteed, as seen in [16] and [17]. In fact, linear program-

ming problems as discussed in the following section, falls into this class of

convex optimization.

2.1.3 Linear programming

Linear programming (LP) is an optimization problem where the objective

and all constraints are linear, as follows [10,11],

minimize
x

cTx + d

subject to Gx � h,

Ax = b, (2.1.4)

where the vectors c ∈ Rn,h ∈ Rm,b ∈ Rp, scalar d ∈ R and matrices

G ∈ Rm×n and A ∈ Rp×n, specify the objective and constraint functions.
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There is no standard analytical formula for obtaining the optimal solu-

tion for linear programming, however, various effective methods exist, such

as the Dantzig’s simplex method and the well known interior-point meth-

ods [18]. The interior-point algorithms cannot provide the exact number of

arithmetic operations required to solve a linear program, to a given accuracy,

however it can establish rigorous bounds on the computation time. In prac-

tice, the complexity of these algorithms has a order of n2(m+ p) (assuming

(m+ p) ≥ n) [10]. These algorithms are quite reliable and efficient. General

linear programs, with thousands of variables and constraints, can be solved

in seconds by using particular solvers embedded computer applications. For

example, the CVX toolbox for Matlab [19].

It is still a challenge to solve extremely large scale linear programming, or

when having real-time computing requirements. However, it can be consid-

ered that solving (most) linear programs is a mature technology. Using linear

programming, some applications lead directly to the form as in (2.1.4). In

many other cases, although the original optimization problems do not seem

to have a standard form, they can be transformed or reduced to equivalent

linear programs, and hence can be efficiently solved.

2.1.4 Quadratic programming

As an extension of LP, quadratic programming (QP) optimization problem

has a quadratic objective function and affine constraint functions. It has the

following standard form:

minimize
x

1

2
xTP0x + qT0 x + r0

subject to Gx � h,

Ax = b, (2.1.5)
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where P0 is a symmetric n× n full rank matrix and r0 ∈ R is a constant. A

QP falls into convex optimization when the objective is a convex quadratic

function, i.e., P0 is positive semidefinite. A convex quadratic programming

can also be solved efficiently. It can be seen in (2.1.5) that a QP can be

reduced to a LP by setting P0 = 0 in the objective function.

Another related class of optimization problems, quadratically constrained

quadratic programming (QCQP), can be introduced by adding quadratic

constraints in (2.1.5), as follows:

minimize
x

1

2
xTP0x + qT0 x + r0

subject to xTPix + qTi x + ri ≤ 0, i = 1, 2, . . . ,m,

Ax = b, (2.1.6)

where Pi is a symmetric full rank matrix and ri ∈ R, i = 1, 2, . . . ,m. A

QCQP is a convex problem when the objective function and all constraint

functions are convex. In (2.1.6), by setting Pi = 0, i = 0, . . . ,m, the prob-

lem reduced to an LP. Convex QP and QCQP are important in economics

and finical analysis because people usually mathematically model the cost

and revenue into convex quadratic forms, whose optimal solutions can be

efficiently obtained [14].

2.1.5 Integer programming

Apart from aforementioned optimizations defined for real-valued variables,

many practical optimization problems require the optimization parameters

to be integer or binary variables. Those optimizations are common in dis-

crete analysis and decision making. Such problems fall into a particular type

of optimization, namely integer programming (IP). Problems with real vari-

ables as well as integer variables are classified as mixed integer programming

(MIP) [12]. (Mixed) integer programming has a similar form as in (2.1.1),
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however the domain of the problem is no longer a continuous domain but an

intersection of integer domains (and real domains). Recall the formulation

of LP, one can easily transform a linear programming problem to an integer

linear programming (ILP) by setting the optimization variable as x ∈ Z.

Formulation of integer QP and integer QCQP can also be seen in various

discrete/binary problems as been discussed in [20].

Integer (and mixed integer) programming have very wide applications in

practice. For example, a warehouse location problem where a manager must

decide which of the n potential warehouses are needed to be built/operated

for meeting the demands of shipping goods to the m customers, with an

objective of minimum operational costs [21].

Scheduling is another important class of integer problems. Consider the

scheduling of students and classrooms, for example, the ith student is sched-

uled for the jth class during the kth time period or not. Such a variable is

either zero or one. There are constraints on the number and size of class-

rooms available at any one time, and the students’ preferences for particular

schedules [22,23]. These are applicable to communications research as well.

In [24], the problem of radio resource allocation in orthogonal frequency di-

vision multiple access (OFDMA) system is formulated as a MIP. MIP based

scheduling optimization is used in the proposed demand management tech-

niques later in this thesis.

Computing the global solution for a (mixed) integer programming prob-

lem is relatively more difficult than that of a continuous valued problem.

Because IP/MIP is generally non-convex, which means the reliable and effi-

cient solution algorithms designed for continuous valued convex optimization

are no longer valid. One may solve an IP by enumerating all of the possi-

ble solutions and choose the best one. This can actually work for problems

with very limited number of variables, however the computation effort grows

very rapidly (exponentially) and such method becomes unworkable for even
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Figure 2.1. A possible tree structure of the branch and bound method.

medium size problems with tens/hundreds of variables, let alone large scale

industrial problems [20].

Branch and bound algorithm is one of the well known effective methods

for solving non-convex optimization problems [25]. It is a basic technique

for solving integer and discrete problems. The method is based on the ob-

servation that the enumeration of integer solutions has a tree structure, as

illustrated in Figure 2.1. The main idea in branch and bound is to avoid

growing the whole tree as much as possible [25]. Instead it grows the tree in

stages, and grows only the most promising branch (solid lines in Figure 2.1).

It determines which node is the most promising by estimating a bound on

the best value of the objective function that can be obtained by growing that

node to later stages, while permanently discards (prunes) nodes and their

descendants which will never be neither feasible nor optimal (dotted lines

in Figure 2.1) [20]. It maintains an upper and lower bound on the (glob-

ally) optimal value and finally terminates with a certificate proving that the

suboptimal point found is ε-optimal [26].
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Branch and bound is a very general framework. It is necessary to develop

completed algorithms which include the policies of node selection, pruning,

and the specification of termination point. Computer toolbox for modeling

and solving integer problems based on the use of branch and bound are avail-

able [27]. It is worth to mention that these algorithms are not guaranteed

and often slow, in the worst case they require effort that grows exponen-

tially with problem size. However in majority of small-medium cases, they

converge to optimal solutions in a reasonable number of iterations.

2.2 Game Theoretic Modeling Techniques

Game theory is a powerful mechanism for understanding and modeling math-

ematically the interaction of various rational decision makers. Examples of

games in the real world include conventional games of strategy such as chess

and poker, as well as daily decision-making situations such as deciding what

movie to see with your family or friends. Game theoretic methods have

been widely applied in resource competing and social welfare optimization

scenarios [28].

2.2.1 Basis of game theory

Game theory provides tools for evaluating the outcome when agents (de-

cision makers, usually with conflicting interests) take certain actions in a

strategic situation, where the outcome of an agent taking a particular action

depends not only on the action itself but also the actions of all other agents.

Game theory can help these agents in making optimal decisions. The earliest

investigations of probability, games of chance, and even strategic choices in

warfare might be considered as game theory. The work by Cournot, Zermelo,

and Borel in the last two centuries built the foundation for modern game

theory, and proposed its applications mainly in economics [29]. Tremendous
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work on the development of both noncooperative (strategic) game and coop-

erative game theory was done by mathematician John Nash, in papers [30]

and [31]. The most important contribution was probably the proof of the

existence of equilibrium points in noncooperative games.

One classical game formulation of an interaction consists of three main

components, namely players, strategies and payoffs [32]. Every decision

maker is treated as a player of the game. In noncooperative games, play-

ers are usually a finite number of interacting individuals. However, groups

of decision makers (coalitions) with shareable value can be treated as one

player in cooperative games. The decisions of action are called the strategies

of the players. There are usually many possible actions for each player to

choose. All the possible action choices of a player form a strategy space.

Players are assumed to be rational. This means when given opportunity to

play the game (to make an action), every player will try to choose the best

strategy from its available strategy space. Based on the understanding of the

game status, the result of playing the selected strategy must maximise the

player’s own satisfaction. The game status is usually determined according

to the knowledge of the types of other players and their preferences (known

as information completeness), and the actions they have made (known as

information perfectness). However complete and perfect information are not

a promise in every game. Obtainable information depends on individual

settings. The level of satisfaction of choosing a particular strategy, under

certain game situation, is usually quantified by a payoff value. A payoff

function can be used to describe the relationships between different payoff

values and strategies. Detailed mathematical notations in relation to these

game components will be clearly defined in relevant parts later in this the-

sis. However, it is useful to firstly define two general game representations,

namely normal form game and extensive form game [29].

In game theory, a normal form (strategic form) is a way of describing a
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Figure 2.2. A normal form game representation.

game using a matrix [29]. For example, a normal form representation for a

simple two by two game scenario is depicted in Figure 2.2. The two players

are put on the row side and the column side of the matrix. Each strategy

they can make are marked (A and B) in different rows and columns. Players’

payoff values for particular strategy profiles occupy the corresponding cells

of the matrix, representing all the possible outcomes of the game. Such

representation allows us to quickly analyse each possible outcome of a game.

As seen in Figure 2.2, when both players choose A, the game results in the

top left cell, with player 1 getting a payoff of p1AA and player 2 getting a

payoff of p2AA.

The strategic form is usually the right description for simultaneous games,

where players choose their strategies simultaneously. The term ‘simultane-

ous’ is not in the sense of ‘time’ but ‘information’. If players make decisions

sequentially however without knowing what others have done, the game can

be treated as a simultaneous game. On the other hand, if a player knows

what its opponents are going to do, even all players are meant to make de-

cisions simultaneously, the game is already a sequential move game. There-

fore, by using the normal form, it is implied that the game has complete
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Figure 2.3. Prisoner’s dilemma game.

but imperfect information. A well-known example of simultaneous games

described using the strategic form is the prisoner’s dilemma, where two sep-

arated locked prisoners are asked to make a decision between confess and

defect. One prisoner does not know what the other would do however their

payoffs are known. Figure 2.3 shows a typical prisoner’s dilemma game.

While simultaneous games are usually described using the strategic form,

sequential move games are better described using the extensive form. The

extensive representation has a tree structure. It’s simply a diagram that

shows that all possible choices can be made by the players at different times

(corresponding to each tree node), with specific payoffs for all possible out-

comes (at the end nodes).

Figure 2.4 illustrates one possible extensive form game. As seen, player 1

plays first and then player 2 makes a decision after observing player 1’s move.

The game finishes with a payoff profile when both players have made their

moves. For example, if player 1 chooses strategy A and player 2 chooses

strategy B, the resulting payoffs are p1AB and p2AB. The extensive form

clearly shows the actions at different moments. In such representation, each
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Figure 2.4. An extensive form game representation.

player knows exactly what game status he/she is in and observes all the pre-

vious decisions made by all players so far. The detailed payoffs of the players

are also common knowledge. Therefore the extensive form is normally used

to describe games with complete and perfect information. A well known

example of such games is chess.

The above two representation forms are helpful for the proper design of

a game theoretic model. It is even sufficient for analysing the player’s be-

haviours and the properties of equilibrium outcomes in simple scenarios. For

games formulated having neither incomplete nor imperfect information, it is

valuable to reconstruct such a complex game as a number of simple games

and lay out their basic forms for more intuitive and better understanding.

2.2.2 Nash equilibrium: the solution concept

Having the basic structure of a game theoretic model, it is important to anal-

yse the players’ behaviours and the properties of all the possible outcomes of

the game. Nash equilibrium, named after its inventor John Nash, is probably

the most well known solution concept in (noncooperative) game theory [32].

It designates the ultimate way that the rational players should play the
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game. That is, by playing the Nash equilibrium strategy, no player has the

incentive to further deviate to any another strategy. Nash equilibrium is

critical to noncooperative games. Its existence and possibly uniqueness are

generally used to evaluate the effectiveness of a game theoretic model.

Before stating the definition of Nash equilibrium, it is useful to firstly

describe the basic logic of playing the game rationally, which leads the players

to the Nash equilibrium.

Best response

In a simultaneous game, a player typically does not know about the game

situation i.e., what the other players have done or intend to do. However, the

player can guess about the opponents’ strategy choices and then respond to

this guess rationally by playing the strategy that maximises his/her payoff.

This particular strategy (set) is defined as the best response:

Definition 2.2.1 (best response): The best response Bn(s−n) of player

n to the strategies s−n, where s−n = {s1, ..., sn−1, sn+1, ...} represents the

strategy choices of players other than n, is given by

Bn(s−n) = argmax
sn∈Sn

un(sn, s−n), (2.2.1)

where Sn here represents player n’s strategy space and un(sn, s−n) is the

payoff function for player n for choosing strategy sn when all other players

have chosen s−n.

It can be seen that, provided the other players do play the strategies

s−n, player n should choose a strategy from the set of best responses Sn to

maximise the payoff. However, suppose every player in the game has got the

correct guess of s−n and they all follow the method of playing best response.

In this case, no one would have any reason to do anything else even given

another chance to reconsider. It can be claimed that the game has resulted



Section 2.2. Game Theoretic Modeling Techniques 23

in a Nash equilibrium point.

Similar logic is also suitable for playing a sequential move game, however

given the perfect information of all players’ exact moves, every player has

the absolute confident of playing the best response without guessing when

it is his/her turn to play.

Nash equilibrium

Definition 2.2.2 (Nash equilibrium): The Nash equilibrium of an N -person

noncooperative game is a joint strategy profile where no player can achieve

further gain in payoff by unilaterally deviating. In pure strategies, that is

s∗ = {s∗1, s∗2, ..., s∗N}, s∗ ∈ S, and satisfies for all n,

un(s∗) ≥ un(sn, s
∗
−n),∀sn ∈ Sn, sn 6= s∗n, (2.2.2)

where S =
∏N
n=1 Sn is the joint strategy space of all players and s∗−n =

{s∗1, ..., s∗n−1, s
∗
n+1, ..., s

∗
N} represents the pure strategies (actual action choices)

of all players other than n which consistent with the equilibrium. It can be

observed in (2.2.2) that, given the equilibrium strategy choices of all other

players s∗−n, player n is able to gain a highest payoff by choosing the strat-

egy s∗n ∈ s∗. As the property is true for all players, it is claimed that no

player has any incentive to deviate to any another strategy from the joint

strategy profile s∗. Therefore, s∗ is the Nash equilibrium in pure strategy.

The relationship shown in (2.2.2) implies that players are indeed playing

their best responses to each other by choosing s∗. Nash equilibrium can

be alternatively defined as a set of best response strategies {s∗1, s∗2, ..., s∗N},

where

s∗n ∈ Bn(s∗−n),∀n. (2.2.3)

For example, it can be claimed that the strategy profile {defect, defect}

is the pure strategy Nash equilibrium of the prisoner’s dilemma game as
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Figure 2.5. Rock-Paper-Scissors game.

shown in Figure 2.3. This is because by choosing these actions, both players

best respond to each other and neither of them has any other deviation with

higher payoff.

2.2.3 Variations of Nash equilibrium

In addition to pure strategy scenarios, Nash equilibrium also exists in mixed

strategies where players play the game by mixing a number of available

actual actions, each assigned with certain probability. A mixed strategy is

defined as the probability distribution over the pure strategies [29]. Mixed

strategies are widely considered in games with no equilibrium solution in

pure strategies. For example, the simple two player ‘Rock-Paper-Scissors’

game, which is described in a strategic form in Figure 2.5.

As observed in Figure 2.5, playing pure strategies results in a ‘cycle’ of

best responses. That is, for any of the nine strategy profiles, one of the

players would have the incentive to deviate to another strategy. Hence, the

game admits no Nash equilibrium in pure strategies. However, it can be

considered that the mixed strategy profile {(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)},

i.e., both player randomise the three strategies with the probability distri-
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Figure 2.6. Traffic game.

bution (1/3, 1/3, 1/3) is the mixed strategy Nash equilibrium of this game.

In the equilibrium, the game reaches all of its nine possible results, each

with a probability of 1/9. The expected payoff for either player will hence

be 1/9× 1 + 1/9× 0 + 1/9× (−1) = 0.

A further relaxation of the concept of Nash equilibrium, namely cor-

related equilibrium was introduced in [33]. Consider the following ’traffic’

game. Two players drive their cars to the same intersection at the same time.

If both players choose to cross, the result is a crash, with a payoff of -100 for

each player. If one of them choose to cross while the other chooses to stop,

the player crossing successfully gets a payoff of 1. The game is illustrated

using a strategic form in Figure 2.6.

It can be claimed that the game has two Nash equilibria in pure strate-

gies, i.e., {cross, stop} and {stop, cross}, and one in mixed strategies, i.e.,

cross with a probability of 1/101 and both get the expected payoff of approx-

imately 0.00001. However, considering that players choose their strategies

independently and simultaneously, there is no guarantee that crash can be

avoided. Therefore it is useful to introduce a ‘third party’ who is considered

as a regulator to the game. The ‘third party’ announces a rule of game play
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for both players as a reference strategy. For this traffic game, the ‘third

party’ can be seen as ‘a set of traffic lights’, and the reference strategy can

be ‘cross when green light is given, stop when red light is given’. If both

players follow this rule, crash will be successfully avoided. Moreover, it can

be claimed that players are playing the best responses to each other. Nei-

ther of them would have an incentive to change from following the reference

because otherwise a crash will occur. This reference strategy given by the

‘third party’ is considered as the correlated Nash equilibrium of the game.

Various other extensions of Nash equilibrium for analysing different types

of games, for example subgame perfect equilibrium for games with perfect

information, as well as other types of game solutions, for example the concept

of core in cooperative games, are also discussed in [32].

2.2.4 Existence, uniqueness and efficiency of Nash equilibrium

It is crucial that a game admits a solution. However, the existence of Nash

equilibrium is not generally guaranteed in every game. Besides, games might

have sole or multiple equilibrium points, each of which yields a different

outcome in players’ payoffs. The consideration of whether the game has

unique equilibrium, as well as players’ preferences for a particular equilibria

will consequently arise. Therefore, for any game theoretic formulation, it

is necessary to discuss the existence, uniqueness and efficiency of the Nash

equilibrium.

It has been showen in [30] that every game with finite number of players

and finite strategy spaces admits at least one Nash equilibrium in mixed

strategies. This strong statement means that every interaction situation that

can be formulated as a finite game has a solution. The author of [34] further

studied the properties of Nash equilibrium for the class of concave games,

with continuous (infinite) and compact strategy space. These achievements

have laid out a firm foundation for the analysis of Nash equilibrium in games.
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Figure 2.7. Illustration of fixed points for a function.

In a broader sense, since the Nash equilibrium can be described as the

mutual information of the players’ best responses, showing the Nash equilib-

rium of a game is equivalent to determining the fixed points of the mathemat-

ical mapping of best responses [35]. Theory on fixed points is very useful for

analysing the property of Nash equilibrium in a widespread classes of games,

such as the dynamic game proposed in Chapter 6 in this thesis.

A fixed point of a function is an element of the function’s domain that is

mapped to itself by the function, i.e., the particular points of x ∈ domf(x)

which satisfy f(x) = x [36]. Figure 2.7 illustrates a typical function which

admits fixed points. This definition can be generalised to apply in game

theory. Consider a best response mapping B : S 7→ S such that for all the

joint strategy profiles s ∈ S,

B(s) = [Bn(s−n)]n∈N. (2.2.4)
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Figure 2.8. Illustration of a fixed point for a correspondence mapping.

A fixed point of the best response mapping s∗ satisfying s∗ = B(s∗) means

that s∗ is a best response to itself. This reflects the definition of Nash

equilibrium of everyone’s strategy is a best response to the others’. Figure

2.8 illustrates the fixed point property for the best response correspondence.

The fixed points of a function (mapping) f(x) can be located numerically

by adopting the fixed point iteration process. This process uses iterated

functions to obtain a sequence of {x0, x1, x2, . . . }, where

xn+1 = f(xn), n = 0, 1, 2, . . . . (2.2.5)

Starting with a random x0 in the domain of the function, the sequence

is to convergence at the fixed point of f(x), if one exists. This mechanism is

also useful for obtaining the fixed point of the best response mapping, i.e.,

the Nash equilibrium.

It should be stated that playing the Nash equilibrium of the game does

not necessarily mean that the best result for everyone is obtained. The
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payoff corresponding to the Nash equilibrium can be low, even though it is

the result of rational play. The performance of Nash equilibrium in overall

payoffs allocation is recognised as its efficiency, also known as the Pareto

optimality [32]. At a Pareto optimal allocation, it is impossible for any

individual to gain higher payoff without making the payoff of at least one of

others’ lower. Therefore, a Pareto optimal outcome of the game is considered

as socially best for the players. Consider games with multiple equilibrium

points, each yields different payoff. It is natural players would prefer to

play the Pareto optimal equilibrium strategies to get highest payoff. In such

cases, game procedure should be more carefully designed to ensure the game

converges to the most efficient Nash equilibrium.

For games with unique equilibrium, as well as those games with multiple

equilibria however all yielding identical payoff, it is still valuable to consider

the issue of efficiency. This is because players might play the game under

consideration of coordination rather than playing the best responses. They

might be willing to choose non-equilibrium strategies, provided such strate-

gies result in a higher payoff for everyone. In particular, this situation can

happen when the game admits inefficient Nash equilibrium. For example, in

the prisoner’s dilemma game as shown in Figure 2.3, it can be observed that

the only Nash equilibrium is both player playing defect, which results in

a payoff of {−3,−3}. However, players could have achieved a better result

with a higher payoff of {−1,−1} by both playing confess. Therefore, it can

be claimed that the only NE of the game is inefficient, also known as being

Pareto dominated by the strategy of playing both confess [32].

Unfortunately, a Pareto efficient result may not be stable since it is

not necessarily a Nash equilibrium. In games such as prisoner’s dilemma,

achieving the efficient result requires certain agreement (e.g., a contract or

absolute trust) to force the player to coordinate. Otherwise, at least one of

the players would just deviate to its best response for highest payoff when



Section 2.2. Game Theoretic Modeling Techniques 30

given opportunity, which ultimately leads the game back to the stable point,

i.e., the Nash equilibrium. In brief, Pareto efficiency provides a view of

social performance of the outcomes of games. It also provides guidance for

the design of certain games, where games are desired to have a stable and

efficient solution.

2.2.5 Obtaining Nash equilibrium

Generally, the design of game procedure is based on the consideration of

playing the best responses. However, the development of algorithms for ob-

taining the Nash equilibrium can be much more difficult. This is true even

for games with limited number of players. Besides, it can be imagined that

any change of action by any of the players at any time before reaching the

equilibrium, has impact on all other players’ actions. They will have to be

acknowledged and responded accordingly. This results in significant com-

putational complexity, as well as information and communication overhead.

Therefore, the development of workable convergence process and algorithms

is crucial for effective game theoretic modeling. One of the widely applied

approaches is through iterative best response dynamic process [37]. Detailed

description of such process is presented in Chapter 5.

2.2.6 Game theoretic optimization for communications and smart

grids

Game theory has been widely applied in electrical and electronic engineering,

in particular in wireless communications and machine to machine communi-

cations. It provides an alternative, sometimes an even better understanding

of interactive optimization situations, for example see [38] for applications in

communication systems. In a wireless network, each distributed node could

make its own decisions on transmitting power, forwarding packets, back off
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timing etc., (possibly relying on information from other nodes). These de-

cisions may have constraints imposed by regulations or protocols. In some

cases, these nodes value the network as a whole and are willing to work coor-

dinatively. In other cases, nodes can be selfish and care only about their own

interests. Regardless of the types, these nodes can be seen as autonomous

players of a game. Game theory can help them to analyse the strategic sit-

uation and enable the nodes to make optimal actions in order to maximise

benefits.

There are various challenges for using game theory. The first and most

important one is the formulation of system parameters into abstract mathe-

matical models. The basic three components of a game, namely the players,

the strategies, and the payoffs must be clearly defined. The game must be

designed in correct form. Theoretical assumptions have to be considered

carefully. Various practical limitations in relations to the strategy choices

should be considered. In addition to the formulation, the effectiveness of the

game model, in terms of the properties of Nash equilibrium must be eval-

uated. Finally, workable algorithms for achieving the desirable equilibrium

must be developed.

Applying game theoretic formulation to various optimization problems

in communication and networks has become fashionable and very produc-

tive in recent years. Applications can be found in topics such as power

control, routing and distributed protocols for cellular networks and ad-hoc

networks [39–43]. The work in [41] studied the uplink power control prob-

lem where each mobile wants to maximise its throughput which depends

on the transmission powers of all mobiles. A finite number of choices of

power levels are available to each mobile but has a constraint on the average

power consumption. In [42], by defining the quality of service (QoS) of a

wireless terminal as the payoff, a distributed power control technique for

many interacting terminals has been proposed using a noncooperative game
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framework. The authors introduced pricing for transmission powers to alter

the behaviour of selfish players. This improves the Pareto efficiency of the

Nash equilibrium of the game.

In multiple input and multiple output (MIMO) systems, the work in [44]

proposed a strategic game where each greedy base station determines its op-

timal downlink beamformer in a distributed manner but without any coor-

dination between themselves. Compared to a fully coordinated design where

the optimal beamformers are jointly designed, the scheme in [44] provided

benefits in terms of system complexity.

The authors of [45] proposed an interference management technique

based on the theory of potential games in orthogonal frequency division mul-

tiple access (OFDMA) systems. The particular potential game formulation

guaranteed a pure strategy Nash equilibrium solution, and the convergence

via sequential best response dynamics. In [46], a coalitional game was suc-

cessfully formulated based on a mixed integer optimization framework for

artificial intelligence research. Dynamic differential game models, in which

players play the game continuously for a period of time, have also been con-

sidered in topics such as optimal control of system parameters in wireless

networks [37,47].

It is expected that the information and communication network for smart

grids will consist of both the wired and the wireless technologies [48–50]. The

aforementioned game theoretic techniques have the potential applications in

the communication layer of smart grids as well. A network formation game

was proposed in [51] for a multihop powerline communication (PLC) system.

Based on the consideration of capacity maximization in a low reliability

environment, a number of players (distributed data access points) were able

to determine the best formation of a network among themselves.

Game theory is also very suitable for analysing the interaction of con-

sumers and/or utility operators in energy demand management. Game the-
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oretic optimization framework has the potential to provide very efficient

consumer incentive based distributed consumption scheduling [52]. An en-

ergy scheduling game based on convex optimization technique was proposed

in [53] to schedule energy consumption of various appliances. Constraints

such as minimum standby power and maximum operating power of the appli-

ances were formulated using a convex optimization framework. The frame-

work has been extended to multiple household scenarios and a game was

formulated to enable consumers to distributively respond to energy price in-

formation. Based on the concave game settings, the participating users have

the potential to quickly move towards the Nash Equilibrium at which the

consumption cost can be optimized. In [54], a two-layer optimization frame-

work was established. At the lower level, appliances are scheduled for energy

consumption for each household. At the upper level, a dynamic differential

game was used to capture the interaction among different households in their

demand responses through the market price. The authors of [55] proposed

a leader-follower Stackelberg game between utility companies, who are seen

as the leaders, and the following end consumers to maximise the revenue

of each utility company and the payoff of consumers. A distributed algo-

rithm was developed which converged to the Nash equilibrium with only

local information available.

In the above discussed works, time-varying energy pricing has been con-

sidered as a method to provide economic incentives for consumers to partic-

ipate in demand management. In [56], a sequential game-theoretic approach

was proposed for making optimal pricing plans. It proposed models of costs

to utility companies arising from consumer demand fluctuations, and mod-

els of consumer satisfaction with the difference between the nominal demand

and the actual consumption. The Nash equilibrium and the optimal pricing

plan were obtained by using backward induction. The work in [57] pro-

posed a game theoretic technique by which optimal time-varying prices can
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be achieved. In particular, the pricing aligned individual optimality with

Pareto optimality, i.e., by using such pricing plans, households automati-

cally maximise the social welfare by selfishly optimise their own benefits.

Incorporating locally generated energy and the use of electric vehicle

(EV), the authors of [58] proposed a game theoretic mechanism for analysing

the energy demand of households with a photovoltaic (PV) power system and

weather forecast information. According to the availability of information to

predict the amount of PV power generation, differential game models were

used for decentralized optimal control of energy consumption. The work

in [59] also considered that the utility company is able to procure electricity

from both the traditional and the renewable energy sources. The residential

consumers have their plug-in EVs so that they could either consume power or

supply power to the grid through the battery storage. The retailer can decide

the amount of electricity purchased from the renewable and the traditional

energy sources, and the corresponding price. The consumers can respond

by adjusting their energy demand. The optimal solution of the game was

provided through finding the subgame perfect equilibrium (SPE) of all the

consumers using a backward induction method.

In [60], the problem of optimal energy distribution was studied using

cooperative game theory. The dynamically changing coalition consists of

one microgrid and several customers. The microgrid acts as one of the

players, determines the size of the coalition for utilising the generated energy

optimally which assures an efficient power distribution for consumers.

The original contributions presented from Chapter 3 to Chapter 6 in this

thesis have been built based on the use of mathematical optimization and

game theoretic modeling techniques explained in this chapter.



Chapter 3

OVERVIEW OF DEMAND

MANAGEMENT IN SMART

GRIDS AND ENABLING

WIRELESS

COMMUNICATION

TECHNOLOGIES

This chapter provides an overview of demand management with a particular

focus on the associated enabling wireless technologies. Various mechanisms

for the optimal demand management in smart grids using these wireless

technologies are also provided.

3.1 Introduction

There have been significant interests globally at technology level and policy

level on the efficient use of energy. More intelligent smart grids are required

as the demand for energy increases and more emphasizes are placed on the

supply of renewal energy. The main ingredient of smart grids is the integra-

35
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tion of information and communication technology (ICT) into the grids to

monitor and control power generation and demand.

In this chapter, the features of demand management in smart grid are

studied, followed by a discussion on its associated research challenges. Major

characteristics of various candidate wireless technologies required to facili-

tate demand management is then described. The features of demand man-

agement enabling mechanisms including consumption scheduling, real-time

response and load balancing are also presented.

3.2 Overview of Demand Management in Smart Grids

3.2.1 Features

Demand management mainly consists of load monitoring, analysis and re-

sponse. In conventional power grids, the two sides of the electricity demand

and supply system are basically disconnected, as such demand management

is performed exclusively by the utility operators using mainly the raw data

based local operation monitoring and state estimation. These approaches

have significant drawbacks in terms of high response time (delay) and inac-

curacy. The development of smart grid provides demand management with

advanced features to enable many new essential functions and applications

as follows:

Bi-directional coordination

In smart grid, demand management is expected to be a combination of cen-

tralized and distributed schemes. Monitoring and control activities will not

only be based at the operation centers but can also be distributed across the

whole network. Every node at the demand side of the network will be able to

manage its own demand and consumption optimally according to the current

supply condition. These activities will be acknowledged by the supply side
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utility operators via effective bi-directional information exchanges. Taking

advantage of the full visibility of the demand condition of the grids, oper-

ators can alter their supply policies such as price rates dynamically. Both

sides of the electricity market can participate in the demand management

and achieve a bi-directional coordination to fulfil the requirements of the

consumers while responding to the current circumstances of the grid. This

will reduce the management cost of the grid operators and will potentially

lead to a win-win situation for the utility operators and the consumers.

Data gathering and information processing

The advanced instrumentation technology enabled by real time sensing and

data communication will be the most important interface of the power grids

for monitoring the demand and supply. For this purpose, the advanced me-

tering infrastructures (AMI) have been proposed to gather and convey real

time raw measurement data. Advanced signal processing techniques span-

ning from data compression, data mining and optimizations will become

important tools to extract useful information from the raw data and to gen-

erate appropriate demand and supply control messages. Monitoring specific

performance parameters such as potential demand and local back-up supply

capability will enable grid operators to conduct more effective and accurate

demand management. The communication architecture will facilitate the

data processing and analysis to be performed either locally or distributively

to reduce the workload of transmission and central controls.

Real-time and online processing

Considering the highly dynamic nature of the energy supply from, for ex-

ample renewable resources, in the electricity grids and the huge impact that

can be caused by possible control delays, it is important to handle the dy-

namics of the supply and demand in a timely manner. As for bi-directional
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management in smart grid, effective communications is of paramount impor-

tance. Modern communication and Internet technologies will ensure prompt

and transparent exchange of information in the network. For example, after

detection of a potential outage, both the consumers and control authori-

ties in the impacting area will be notified immediately. Early actions can

be taken before further disturbances are spread. Local area data process-

ing and demand assessment is subject to a minor delay of seconds so that

associated control can respond effectively. These activities are expected to

be performed online using various user interfaces. Every participant of the

activities will be responded and acknowledged transparently.

Proactiveness

The success of the smart grid lies in the full participation of the consumers.

The smart grid should enable everyone to have access and participate in

demand management. Importantly, the consumers should be given incen-

tives for participating proactively and coordinating with the operators and

other stake holders in the grid. To achieve this, an efficient and transpar-

ent exchange of information system facilitated by advanced communication

architecture and attractive electricity consumption and price plans are re-

quired. Proactive participation of the demand side provides the operators

not only the opportunity to respond in real time to the supply and demand,

but also to predict the future demand more accurately and devise appropri-

ate actions on the generation and supply of energy.

3.2.2 Challenges

There are various perceived challenges spanning from policy level to technol-

ogy level including social and behavioral aspects. The policy level challenges

include capital investment, enforcement rules on grid operators to provide

considerable incentives to consumers, standardization of electrical appliances
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and third party engagement of consumer raw data. The social and behavioral

aspects include trust and engagement of consumers in the demand manage-

ment. The technological level challenge mainly spans the integration of high

quality and low delay two-way communication infrastructure with the power

grids. There are various state of the art communication technologies avail-

able, however, it is the choice of the most appropriate technology and the

integration of all the components of the smart grids that will form the im-

portant challenge. To balance the supply and demand, similar techniques

as used in communication networks for managing capacity of the network

and the resources can be used. For example, optimization techniques using

distributed strategies and game theory can be developed, as discussed in the

subsequent sections.

3.3 Wireless infrastructure

The information and communication network built in the smart grids is es-

sential to facilitate the aforementioned demand management. It consists

of a Home Area Network (HAN) which is formed by appliances and de-

vices within a home to support different distributed applications (e.g. smart

metering and energy scheduling in the consumer premises); a Neighbour-

hood Area Network (NAN) that collects data from multiple local HANs

and deliver the data to a data concentrator; and a Wide Area Network

(WAN), which can have a radius of tens of kilometers, is the data trans-

port network that carries metering data to central control centers. Suitable

technologies must be chosen to address various requirements in the differ-

ent parts of the network. High capacity systems (a few hundred Mbps to

a few Gbps) are required for WAN. Technologies such as the Long Term

Evolution (LTE) wireless network, fiber optic links and the power line com-

munications (PLC) built directly onto the power transmission network are
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Figure 3.1. AMI wireless communication architecture

the available solutions [61, 62]. The NANs and HANs of advanced metering

infrastructure (AMI) communications are particularly suitable for wireless

deployment, largely due to the ease and low cost of adopting wireless instead

of wired solutions. The backhaul network connecting the AMI headend and

the data aggregation points (DAPs) can either be wireless or wired. The

AMI communication architecture is illustrated in Figure 3.1.

The link between the DAPs and consumers requires NANs with a cover-

age in the range of thousands of meters. Each DAP can connect to hundreds

of smart meters (SMs). As a result, a key requirement of candidate wireless

solutions is coverage of wide area, which can also be achieved through a mesh

network architecture or relay stations. Additionally, the wireless network

must be able to provide a certain level of reliability as well as low enough la-

tency not only to satisfy demand side management (DSM) requirements but

also to serve all other AMI applications. According to communication re-

quirements from OpenSG [63], this translates to a minimum reliability figure

of 99.5% and a latency requirement of less than 1 second, which is a relatively
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relaxed figure as compared to the commercial broadband requirements.

On the other hand, HANs which facilitate energy management and plan-

ning within customer premises require a relatively smaller coverage area.

The requirements are also relatively less stringent as there are less control

messages and information exchange between the smart meter and smart ap-

pliances (and plug-in hybrid electric vehicle (PHEV)). In general, the HAN

requires a minimum reliability figure of 99.5% and a latency requirement of

less than 5 seconds [63].

3.3.1 Neighbourhood Area Networks

Candidate technologies for NAN have to provide coverage radius of over a

thousand meter. Reliability of communication channels between the DAP

and the smart meters dictates that the spectrum used will have to be exclu-

sive or interference free. Consequently, the most suitable candidates need to

be licensed or leased wireless solutions. A comparison of the characteristics

of different NAN technologies can be found in Table 3.1.

WiMAX

Implementations of IEEE’s 802.16 standard for metropolitan networks [64],

commonly referred to as WiMAX (worldwide interoperability for microwave

access), is a leading candidate for providing connectivity between DAPs

and SMs. WiMAX is based on orthogonal division multiplexing access

(OFDMA), which assigns slices of the frequency spectrum to different users [65],

avoiding interference among the users and increasing the spectral efficiency

of the system. Although WiMAX is not being widely adopted as a wireless

broadband platform, it does not diminish its chance of being a candidate as

some utilities are expected to set up dedicated DAPs. As a result, WiMAX

is more attractive in the sense that its structure is much less sophisticated

as compared to rival cellular standards such as 3GPP Release 8 (commonly
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known as Long Term Evolution (LTE)). Additionally, amendment j to the

standard added multihop relay capabilities [66], which can enlarge the cov-

erage area using low cost relay stations.

UMTS/LTE Cellular

Current cellular technologies such as UMTS and LTE [67] also provide at-

tractive solutions for providing NAN coverage. Relaying functionality had

also been incorporated in 3GPP Release 10 (commonly known as LTE Ad-

vanced) [68], which will allow extended coverage using relay/repeater sta-

tions. However, the utilities have to be willing to overlay DAP-SM communi-

cations over existing communication infrastructure. Although the advantage

of overlaying is a lower setup cost since the existing infrastructure can be

used, the utility operator will have to work with the telecommunication op-

erators to set up the network which can be contentious due to security and

privacy concerns.

IEEE 802.22

An alternative candidate to mainstream broadband wireless is the IEEE

802.22 wireless regional area network [69], which uses white spaces in the

television spectrum. The IEEE 802.22 standard proposes to use cognitive

radio technologies to exploit unused spectrum in the frequency spectrum

allocated to television broadcast. As the spectrum used is not dedicated, the

latency in data transmission could be higher as compared to other solutions

mentioned earlier.

3.3.2 Home Area Networks

Wireless solutions for HANs have a slightly different set of requirements,

which are not as stringent as those for NANs. In general, the message

arrival rate within a customer premise is not as high as that between SMs



Section 3.3. Wireless infrastructure 43

and DAPs. Additionally, the data volume is also much lower. A comparison

of various wireless candidate technologies for HAN is provided in Table 3.1.

Coverage Technology Range Latency Reliability Cost & Ease of Deployment

NAN

WiMAX 30km Low High Medium/Medium

UMTS/LTE 30km Low High Medium/Low

802.22 30km Medium Medium High/Medium

HAN

Wifi 200m Medium-High Low-Medium Low

ZigBee 100m Low-Medium Medium Low

Bluetooth 100m Low Medium Low

Table 3.1. Comparison of candidate NAN and HAN wireless technolo-
gies

Wifi

IEEE’s suite of standards for wireless local area networks, IEEE 802.11 or

Wifi, is the most commonly deployed wireless standard within homes. As

such, Wifi devices and chips are relatively cheap, making it an attractive

solution. Amendment s of the standard also incorporates mesh networking

capability.

Zigbee

Zigbee is one of the leading candidate technologies for networking of devices

in HANs. The specification builds upon the IEEE 802.15.4 standard, and

is tailored for mesh networking. Zigbee also has various profiles to support

different applications, such as Smart Energy. Zigbee Smart Energy 2.0 pro-

file, which adds many more features such as the support for PHEV, will be

ratified by the end of 2011.

Bluetooth

The Bluetooth specification was designed for personal area networks. The

specification supports functions such as mesh networking. Furthermore, the
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specification ensures less latency as compared to the two previously men-

tioned standards through the use of a time division multiple access (TDMA)

like medium access scheme. Both Wifi and Zigbee uses contention based

carrier sense multiple access (CSMA) which can result in large latency if

many devices are in operation.

3.4 Developments of Demand Management Approaches and Pro-

posed Mechanisms

The success of smart grid lies in the design of flexible and robust demand

management techniques underpinned by the deployment of ICT infrastruc-

ture mentioned earlier. Apart from improving the legacy load control ap-

proaches, the main contributions of recent research have been in the demand

side consumption scheduling, dynamic pricing and load balancing using dis-

tributed energy resources (DER).

3.4.1 Demand side consumption optimization

Demand side consumption optimization is an important feature to manage

the (peak) demand on the main grid and to maintain system reliability and

stability. It has been an active research topic for many years. For example,

some approaches in terms of peak clipping and flexible load shape shifting

and related management mechanisms have been outlined in [70]. However, it

is the recent advancement of communication technology that has facilitated

an entirely new set of approaches and methods to perform demand side man-

agement on a real time basis. The operators could apply direct response and

control mechanisms through local or remote control systems which directly

control the energy usage of different appliances in the customer premises

either coarsely by ON/OFF switching, or by changing operational param-

eters such as the temperature of hot water tank or heating system. For



Section 3.4. Developments of Demand Management Approaches and Proposed Mechanisms 45

indirect approaches, incentive based management and social interaction can

be adopted. The latter approach provides more management flexibility and

enables proactive consumption optimization by the distributed consumers,

which might turn out to be more cost-effective and efficient. It suits better for

managing real-time/daily consumption and reducing peak loads. However,

it has stricter requirements in terms of metering technologies (to support

local analysis and computation) and communication security. The central-

ized direct management schemes are more suitable for emergency response

to prevent outages.

As an analogy to the design of hierarchical topology based Internet rout-

ing, finding the most suitable system architecture of consumption manage-

ment system in smart grid is an important topic. For example, a three step

optimization methodology using a decision tree structure was considered

in [71]. A root node acts as a global planner which tries to achieve an over-

all control of the load profiles. The root node can be the control centers at

the utility side. It decomposes the profiles in subparts and assigns them over

its follower nodes in the hierarchical structure. Follower nodes will take the

responsibility to plan its part of the consumption using similar optimization

techniques as the root node and will further decompose the work into the

leaf nodes. The leaf nodes are directly linked to the controllers, e.g. smart

meters, located at the consumers’ terminals.

Communications between all the nodes are essential to support the net-

worked coordination. As shown in Figure 3.1, the AMI architecture suits

very well for the management structure. The cost-effective and short-range

Zigbee/Bluetooth based wireless sensor networks can be deployed at the de-

mand side to support exchange of information between the leaf nodes and

the appliances. In the middle level which represents NAN, the low latency

and high reliability 3G/4G wireless solutions can be adopted. High capacity

wired technologies are suitable to handle mass data flow at the top level
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between DAP and AMI headend. Besides, the hierarchical decomposition

supports scalability because the deployment of leaf nodes is reasonably in-

dependent of other components of the tree.

The tree structure was designed primarily for implementing global opti-

mization to regulate consumption. For decentralized and consumer oriented

mechanisms such as those based on game theory, a mesh structure is more

suitable. The utility operators will only responsible for issuing interactive

signals, such as dynamic pricing. It is the distributed nodes at the demand

side to take full control of their consumption accordingly. In this case, highly

interconnected AMI architecture especially in the NANs is desired, while also

challenging.

The scheduling of appliances may introduce discomfort to the consumers

mainly due to possible delays introduced by shifting the operation of the ap-

pliances. A successful scheduling should therefore ensure that the appliances

are scheduled according to certain user preference. User preference can be

formulated into the consumption optimization problem using additional con-

straints. Also, considering the discomfort as a cost of inconvenience, this can

be factored into the overall optimization cost. However for operator’s direct

global optimization, this increases the system complexity. Therefore, a bet-

ter strategy might be to provide incentives to the consumers and encourage

them to participate in the demand management.

3.4.2 Dynamic pricing

Generally, issuing dynamic pricing policies as user incentive is the most

effective way to achieve indirect demand management for the grid side oper-

ators and controllers. Dynamic pricing mainly consists of time-of-use (ToU)

pricing, critical peak pricing (CPP), time block based pricing (TBBP), and

real-time pricing (RTP), as listed in Table 3.2.

ToU and CPP rates have already been included in many utility con-
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tracts/tariffs in the current electricity markets for load control purposes.

In order to account for the dynamic demand in smart grid, pricing policies

should be updated frequently. It is believed that a combination of time block

based pricing and ToU/CPP rates could be a possible solution for the early

stage of smart grid development with limited ICT deployments. Some eco-

nomically driven consumption optimization algorithms, such as that in [53],

consider this kind of pricing schemes. However, the performance of such

pricing mechanism will highly depend on the accuracy of the demand esti-

mation/prediction and risk assessment. Self-learning algorithms can be used

for demand prediction. Various risk control mechanisms used in business re-

search can also be adopted in the design of pricing policies.

Pricing Characteristics Cost & ease of

policy deployment

Time-of-use One-off issuing rates depending on the time of use Load estimation

pricing Limited performance for dynamic demand control Low ICT requirements

Critical peak One-off issuing rates depending on particular events Hard to define critical events

pricing Critical rate for pre-defined peak times (or loads) Low ICT requirements

Limited performance for dynamic demand control

Time block based Monthly/weekly/daily updating rates Load prediction and risk control

pricing ToU rates or load-sensitive rates Non-real-time ICT required

Enhanced performance for dynamic demand control

Real-time (Near) real-time updating rates Advanced real-time ICT required

pricing Advanced performance for dynamic demand control High communications overhead

Table 3.2. Dynamic pricing schemes

RTP is believed to be robust in terms of responding to the dynamics even

when there is unpredictable energy demand in the grid. The main challenge

of implementing RTP is the expectation of a high quality communication

infrastructure for real-time monitoring purposes. Latency will be the pri-

mary concern in choosing the communications solution for RTP. In order to

support continuous and mass flow of data, the throughput of the communi-

cation network should also be very high. Finally, the power consumption of
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the communication infrastructure itself has to be managed optimally.

3.4.3 Distributed energy resource (DER) management

In addition to balancing the supply and demand, the smart grid when in-

tegrated with the distributed energy sources will enable the consumers to

choose different type of energy sources and suppliers as well as to optimally

use and sell back the locally generated and stored energy. The optimal use

of available energy at different times can help reducing the dependency on

the central supply. The grid side utilities can balance the load by choosing

the supply from different generation systems especially at peak demand pe-

riods. For example, the work in [72] discusses how various energy supplies

can be aggregated and dispatched. The idea of load-based services can bring

true benefit for the access of varying energy generation from green resources

(such as wind and solar) and smart charging of PHEVs. Residential DER

management based on instantaneous supply conditions (both from the cen-

tral energy source and the distributed energy sources) is also an important

research topic. For example, various households in a neighbourhood area can

share locally generated power and draw power from the central energy source

only when it is required. The authors of [73] developed a decision-support

algorithm using particle swarm optimization (PSO) to support this kind of

schemes. Accurate estimation of system frequency is a prerequisite for the

integration of distributed energy resource. In [74], approaches to adaptive

frequency estimation were introduced in a three-phase system with balanced

and unbalanced operational conditions. This work also proposed solutions

for system fault identification and also mismatched generation and load.
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3.5 Summary

One of the main functions of the smart grids is to perform demand man-

agement to reduce peak loads. This requires acquisition of real time data

from various points in the grid and optimization of the power supply and

demand. The smart meters and sensors will be deployed in various parts

of the grid, starting from the generation, through distribution, and all the

way to the household level. These will be interconnected through both wired

and wireless connections. Wireless solutions are preferred at the NAN and

HAN levels and wired connections could be used for backhaul networks.

In order for the demand management to be successful, consumers should

be given adequate incentives for full participation. This chapter covered

various candidate communication technologies and mechanisms to enable

demand management, in particular for home and neighbourhood areas. As

communication is an underpinning technology for the success of smart grid,

it can be envisaged that smart grids will be an exciting research area in

communication engineering.



Chapter 4

A MIXED INTEGER LINEAR

PROGRAMMING BASED

CONSUMPTION

SCHEDULING TECHNIQUE

In this chapter, a consumption scheduling technique for home area demand

management using mixed integer linear programming (MILP) is proposed.

The aim of the proposed scheduling is to minimise the peak hourly con-

sumption in order to achieve an optimal (balanced) daily load schedule.

The proposed mechanism is able to schedule the optimal operation time for

all appliances according to their power consumption patterns. Simulation

results based on home and neighbourhood scheduling scenarios are presented

to demonstrate the effectiveness of the proposed technique.

4.1 Introduction

Consumption scheduling is one of the important fundamental approaches for

grid operators to achieve centralised peak load control. Combined with a

home energy management unit, the smart meters not only provide power

to every household appliance but also serve to collect information on that

50
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appliance’s consumption pattern and globally optimize the total power con-

sumption. Recently researchers have explored the use of optimization al-

gorithms to achieve end-consumer energy management [75–77]. In [53], a

powerful convex optimization (linear programming) technique was proposed

to schedule the power of individual appliances. However, the optimization

framework in [53] might not be suitable for all appliances in practice. This

is because some appliances have a fixed power consumption pattern, which

means that once the appliance is scheduled for operation, it has to operate

according to its own power consumption pattern until the task is finished.

In this case, only the starting time can be optimised, but the power con-

sumption during the operation of the appliance is not under the control of

the optimizer, hence it is not an optimization parameter.

In this chapter, a consumption scheduling technique based on mixed in-

teger linear programming is proposed. The proposed technique will be able

to optimally schedule the daily operation of home appliances in order to min-

imise the peak hourly consumption and satisfy both the user preference and

specific requirements of all individual appliances. The optimization tech-

nique is also suitable for the scheduling of the energy consumption expected

from grid connected electric vehicles (EVs), known as grid to vehicle (G2V).

In addition, the situation of the connected EVs acting as energy resources

that provide power to the grid, known as vehicle to grid (V2G), is also

considered in the optimization.

The scheduling technique can be applied to home area energy manage-

ment. Figure 4.1 depicts the overall structure of a home energy management

system. It can be seen that the energy management unit (EMU) is the key

component. It connects with the user interface to collect the user’s own

power consumption plan and preference and display the scheduling informa-

tion. On the other side, it connects with all the home appliances, not only to

provide electricity for the appliances but also to determine the total require-
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Figure 4.1. System components.

ments and power consumption patterns of all individual appliances. Based

on all the collected information, the meter will globally optimize the hourly

consumption and schedule all appliances. For non-shiftable appliances, the

optimization will ensure the supply of power. The scheduling optimization

will be carried out mainly for the shiftable appliances for which the EMU

will be able to make an optimal scheduling.

The system can be further extended to scenarios in which many EMUs

are connected together and they agree to achieve a global scheduling. The

central control node will take the overall responsibility of scheduling the

whole network and assigning individual EMUs their corresponding tasks.

Effective communication networks are required for the system. Wireless

sensor networks (WSN) combines sensing and communications together, and

provides low-cost and low-power information gathering, processing and com-

munication with flexible self-organising network deployments [78,79]. WSN

will be one of the promising technologies for communications between appli-

ances and the EMU. For communications beyond the home environment, the

obvious candidates are wireless cellular technologies and various broadband

solutions as discussed in Chapter 3.
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The optimization framework can be further applied to distributed de-

mand management where individual consumers participate proactively in

consumption scheduling, as will be discussed in Chapter 5.

This rest of this chapter is organised as follows. The detailed mathe-

matical formulation of the home area appliances scheduling optimization is

presented, followed by a set of numerical simulations to demonstrate the

proposed approach. Conclusions are drawn at the end of this chapter.

4.2 MILP Based Home Consumption Scheduling Optimization

4.2.1 Classification of appliances

Home appliances are the objects of the scheduling optimization. They are

classified into two groups namely non-shiftable and shiftable appliances.

Non-shiftable appliances

Appliances for which scheduling is not possible are defined as non-shiftable

appliances. For example, a fridge normally operates continuously throughout

the day, and a central heating system needs to be in operation whenever it

is required by the consumer. The operations of these appliances are strictly

dominated by user comfort and convenience. Shifting operations of these ap-

pliances can bring considerable discomfort to consumers, hence not allowed.

Alternative approaches for managing user preferences and benefits can be

referred to [80] and [57].

Shiftable appliances

The second class of appliances is called as shiftable appliances whose oper-

ations can be scheduled during certain predefined periods. Appliances such

as washing machines, storage heating systems belong to this class. The use

of plug-in EVs can also be viewed as shiftable operation. The consumers can
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Figure 4.2. Illustration of different types of operations of appliances.

tolerate the shift (postponing) of the operations of these appliances as long

as the required operations will be finished within a preferred time period.

For certain shiftable appliances, the scheduling optimization should al-

locate power according to the appliance’s own power consumption pattern

during the operation period while ensuring the fulfilment of the daily con-

sumption requirement. To this extend, it is necessary to distinguish the

elastic and inelastic demands within the class of shiftable appliances. The

elastic demand means that there is a flexibility to change the power con-

sumption pattern of the appliances, for example, storage heating system,

and preemptive scheduling is possible for these appliances. Inelastic demand

means the power consumption pattern of the appliances cannot be changed

during the operation of the appliance, for example a washing machine can

be considered within this class and the scheduling for these appliances are

non-preemptive [81].

For appliances whose operation can be performed non-continuously as

in preemptive tasks, the whole operation time can be divided into several

non-continuous time slots. The power consumption for each slot can be in-
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dividually specified. For example, for a water tank boiler, the operation can

be broken into several heating tasks throughout the day and certain level

of power is required to complete each task. Mathematically, the schedul-

ing mechanism will treat every task as an individual appliance that can be

scheduled to operate at different times. However, some appliances, such as

washing machines or dish washers have inelastic demand, i.e. should have a

pre-programmed operation, which requires continuous and non-preemptive

power consumption. This means when the appliance starts its operation,

it will need to draw power according to its own consumption pattern and

cannot be changed until the operation is finished. In this case, the total op-

eration should be scheduled as a whole with the power supply according to

the appliance’s consumption patterns. Fig. 4.2 illustrates typical operations

and power consumptions of various classes of appliances.

4.2.2 The optimization formulation

The consumption scheduling mechanism can be described as a optimization

problem with a objective function as shown below

min
Γ,xn,a,t∈R

Γ

s.t.
∑
a∈An

xn,a,t ≤ Γ, ∀t ∈ {1, ..., T},

tn,a,f∑
t=tn,a,s

xn,a,t = ln,a, ∀a ∈ An.

Consider consumer n has a set of home appliances An. An appliance

a ∈ An has a total daily energy consumption requirement of ln,a. The vector

xn,a = [xn,a,1, xn,a,2, . . . , xn,a,T ]T is used to denote the scheduled energy con-

sumption over the day for the appliance a. The parameter xn,a,t denotes the

energy consumed by the appliance a of user n at time t. t is the time-of-use

parameter which is also the time slot indicator for the scheduling optimiza-
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tion. T accounts for the time resolution, for example, T = 24 and T = 1440

represent respectively the hourly and minute based scheduling. A time res-

olution of one hour for hourly scheduling is used in this thesis, hence xa

contains 24 elements. The variable Γ denotes the peak accumulated hourly

consumption which should be greater than or equal to the sum of the sched-

uled power for all appliances in an hour. Suppose the appliance a is required

to operate between the preferred time instants tn,a,s and tn,a,f , its total en-

ergy requirement should be ensured by the constraint
∑tn,a,f

t=tn,a,s
xn,a,t = ln,a.

The above optimization problem is aimed to minimise Γ, i.e., to minimise

the peak accumulated hourly consumption. It has the effect of suppressing

the peak consumption at a particular time to reduce peak load and balance

the consumption over time. For the complement of the scheduling optimiza-

tion, the next step is to formulate the requirements for all the individual

appliances and the user preferences as additional constraints to be included

into the optimization problem.

Scheduling constraints for appliances

The consumption requirements of various appliances are formulated as var-

ious constraints in the optimization problem. A shiftable appliance a ∈

An,s ⊂ An can have a predefined power consumption pattern which can be

written as pn,a = [pn,a,1, pn,a,2, . . . , pn,a,T ]T . In this case only the optimal

starting time can be scheduled. The scheduling result xn,a can be viewed as

one of the cyclic shifts of the pattern pn,a. All possible shifts for the vector

pn,a can be put together in a matrix form as

Pn,a =



pn,a,1 pn,a,T ... pn,a,3 pn,a,2

pn,a,2 pn,a,1 ... pn,a,4 pn,a,3
...

...
. . .

...
...

pn,a,T pn,a,T−1... pn,a,2 pn,a,1


, ∀a ∈ An,s. (4.2.1)



Section 4.2. MILP Based Home Consumption Scheduling Optimization 57

A binary integer vector sn,a = [sn,a,1, sn,a,2, . . . , sn,a,T ]T , sn,a,t ∈ {0, 1}

is defined as the switch control of the power consumption from the main

supply for the shiftable appliance a ∈ An,s. There is only one non-zero

element in the vector sn,a which is equal to one. Hence the vector sn,a is

an optimization parameter which chooses appropriate column from Pn,a to

optimise the energy consumption, i.e.,

xn,a = Pn,asn,a,
∑
t

sn,a,t = 1, ∀a ∈ An,s. (4.2.2)

For a non-shiftable appliance with a strictly inflexible operation require-

ment, the consumption scheduling should be fixed as required by the con-

sumer. Suppose there is a non-shiftable appliance a ∈ An,f , An,f ⊂ An, with

the power consumption pattern pn,a. Since both the value and the position

of the elements in pn,a cannot be changed, the scheduling constraint can be

written as

xn,a = pn,a, ∀a ∈ An,f . (4.2.3)

As discussed before, the proposed mechanism treats every part of a

breakable operation as an individual appliance operating in different time

slots. Suppose the operation of an appliance can be decomposed into Ka

scheduling tasks (appliances), Ka = {a1, ..., ak}. The total consumption

scheduling can be denoted as the sum of all individual tasks, i.e., xn,a =

xn,a1 + xn,a2 + · · · + xn,ak . Each task has its consumption requirement of

ln,ak and a power profile pn,ak which can be decomposed from those of the

original appliance. Switch variables also used to schedule each of the con-

sumption tasks xn,ak and formulate them into the following set of constraints
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as similar to (4.2.2),

xn,ak = Pn,aksn,ak ,
∑
t

sn,ak,t = 1, (4.2.4)

∑
k∈Ka

sn,ak ≤ 1,∀k ∈ Ka,∀a ∈ An,s. (4.2.5)

where constraint (4.2.5) ensures that the divided tasks are operating in differ-

ent time slots and 1 = [1, ..., 1]T . Actually, an appliance with non-breakable

operation can be viewed as a particular appliance with only one scheduleable

task.

Based on the above formulations, the optimization problem for the indi-

vidual consumer n is modeled as a minimization of peak hourly load through

optimum scheduling of consumption, subject to the consumption require-

ments of all appliances, as follows:

min
Γ,xn,ak,t∈R+,

sn,ak
∈Z+T×1

Γ

s.t.
∑
a∈An

xn,a,t ≤ Γ, ∀t ∈ {1, ..., T},

∑
k∈Ka

tn,ak,f∑
t=tn,ak,s

xn,ak,t = ln,a, ∀a ∈ An,

xn,a = pn,a, ∀a ∈ An,f ,

xn,ak = Pn,aksn,ak ,
∑
t

sn,ak,t = 1,

∑
k∈Ka

sn,ak ≤ 1, ∀k ∈ Ka, ∀a ∈ An,s. (4.2.6)

The optimization problem above is a mixed integer linear programming

(MILP) which contains both integer variables and non-integer variables. It

can be solved using Branch and Bound method [12]. The method divides

the large problem into smaller ones based on the enumeration of the integer

solutions. It uses linear programming relaxation to estimate how good a
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solution it can get for each smaller subproblems by dividing the subproblem

further using a tree structure, until a problem with the optimal solution is

reached. Note that if there are more than one global optimal solution (with

equal cost value) to the problem, the method will provide one of them.

The mechanism can be applied to consumption optimization of individ-

ual household or centralised scheduling systems where all appliances of the

households are included in one optimization. However, due to the nature of

using Branch and Bound for integer problems, the computational complexity

can grow exponential with the problem size, i.e., the number of appliances.

4.3 Simulation Results

A set of system simulations have been carried out using Matlab to imple-

ment the proposed scheduling mechanism in a single home area scenario and

multiple household scenarios. Scheduling simulations incorporating the use

of EVs are also carried out in a neighbourhood setting, in order to illustrate

the effect of EV penetration in residential demand management.

4.3.1 Simulation parameters

In the simulation, a set of home appliances and their individual daily con-

sumption requirements are defined as listed in Table 4.1. The selection of

home appliances and their individual consumption patterns are according to

the guidance as can be found in [82] and [83].

Modeling electric vehicles

It is important that the scheduling of EV charging does not exacerbate the

peak load problem by creating additional peaks at times that previously

would have had weak demand. One strategy that reduces this possibility is

to charge the EV during lunch and nighttime and avoid time intervals that

has already experienced large peak loads [84].



Section 4.3. Simulation Results 60

Name Type User preference and

power requirement

1.Hob Non- Operating period:

and oven shiftable 7pm-8pm

Hourly consumption: 1kWh

2.Heater Non- Operating period:

shiftable 9pm-10pm, 3am-5am

Hourly consumption: 1kWh

3.Fridge Non- Operating 24hrs

and freezer shiftable Hourly consumption: 0.12kWh

4.Water boiler Shiftable Hourly consumption: 0-1.5kWh

preemptive Daily requirement: 3kWh

5.Electric vehicle Shiftable Plug-in period:

(15 miles daily preemptive 8pm-8am

driving [85]) Charging power: 0.1kW-3kW

Daily requirement: 5kWh

6.Washing Shiftable Operating 2hrs, once per day

machine non-preemptive 1kWh for the 1st hr

0.5kWh for the 2nd hr

7.Dish washer Shiftable Power: 0.8kWh for 1 hour

non-preemptive Daily requirement: 0.8kWh

Table 4.1. Appliances and power consumption patterns
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Figure 4.3. Hourly power consumption schedule.
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In addition, the process of charging and discharging battery power,

known as cycling, can considerably reduce the lifetime of EV batteries. This

cycling cost needs to be considered when embarking on a successful EV

scheduling [86]. A maximum of two cycles per day are allowed in the simu-

lations. Round-trip energy loss is another optimization parameter that needs

to be factored into any successful V2G strategy. This occurs when energy

from the grid is used to charge EV batteries or in the reverse case when EV

energy is used to power the grid. For instance, charging a battery from the

grid results in a 20% loss whilst sending energy from the battery to the grid,

which involves inverting DC power incurs an additional 10% loss [86].

4.3.2 Results and discussion

After incorporating all the corresponding power requirements and consump-

tion patterns as optimization constraints, optimal scheduling can be achieved

by solving the MILP problem in (4.2.6). Figure 4.3 depicts the scheduled

hourly load. It can be seen that the maximum hourly load of 1.22kWh ap-

pears during the hours of 3-5, 14 and 19-22. The minimum load of 0.3kWh

appears during the hours of 9-13 and 17-18. From the appliances consump-

tion requirement, it can seen that when the heater is turned on between

hours of 21 and 22, and considering the power of the fridge and the charging

of electric vehicle battery, the required load is 1+0.12+0.1=1.22 (kWh). For

any time of the day, the scheduled load is less than or equal to 1.22kWh.

Hence it can be claimed that the optimal hourly scheduling with a minimum

possible peak is achieved. When the number of appliances is increased, a

more balanced hourly power consumption schedule can be expected.

Figure 4.4 depicts the scheduling result for the individual appliances.

Clearly, it can be seen that during 9-10pm, the heater (app2) is consuming

fixed 1kWh and the fridge (app3) is consuming 0.12kWh. The water boiler

(app4) has been totally shut down and only 0.1kWh which is the minimum
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charging power requirement for the electric vehicle (app5) is provided. Time-

shiftable appliances were not scheduled to operate during the period. Indeed,

the washing machine (app6) and the dish washer (app7) are both scheduled

in the day time between hours of 14 and 17 where there is lower demand

from other appliances.

A simulation for the scenario of a small neighbourhood area with four

households is conducted. Assume the total daily consumption requirement

for the neighbourhood is 43 units. Each house has similar appliances as in

the previous case but with different consumer preferences and power patterns

for some of the appliances. All the required information is collected from the

EMU of each household. Now a centralised scheduling which will meet all the

requirements is achievable. Figure 4.5 depicts the overall scheduled hourly

load. As seen, the optimized hourly peak load is 2.14kWh which is just

around one unit higher than that of the previous case. Besides, the overall

load allocation is more balanced over the 24 hours. The peak to average load

ratio is 2.14/(43/24) = 1.19, which means the peak load is just 19% higher

than the daily average. It can be observed that the scheduling mechanism

is able to reduce the maximum load and improve the performance and the

reliability of the power grid due to reducing the peak to average load.

In order to understand how the consumption scheduling is affected by the

introduction of EV, simulations are conducted with respect to a neighbor-

hood of 30 households and with the number of EV varying from 0 up to 90.

The home appliances are assumed to be operated mainly in the latter half of

the day. For each simulation the appliances’ constraints are kept constant.

The use of EV is randomized to allow for natural variation in user driving

and parking habits, but still followed a general V2G/G2V profile. During the

early morning, majority of the EVs are charged to an upper limit in keeping

with battery requirements. Between approximately the hours of 6 and 9

the EVs are disconnected from the grid to simulate a typical work commute
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Figure 4.4. Optimal schedule for individual appliances.
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Figure 4.5. Hourly power consumption schedule for multiple house-
holds.
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Figure 4.6. Appliances’ total energy consumption profile when zero
EV present.

Figure 4.7. Appliance energy consumption when 30 EVs are modeled.

and parking schedule. When the EV returned home in the afternoon they

are forced into a charge cycle to ensure that they had adequate charge for

any potential evening journeys and/or to provide dispatchable energy to the

grid.

Figure 4.6 depicts the initial scheduling with zero EV penetration. As
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Figure 4.8. Appliance energy consumption when 90 EVs are modeled.

can be seen, home appliances create a consumption peak toward the latter

half of the day at approximately 56kWh. The peak to average ratio is

approximately 1.40. The optimization reduces the peak that would have

been created from the appliances between the hours of 18 and 22 by offsetting

their consumptions.

In Figure 4.7 and Figure 4.8, it is observed that the total energy con-

sumption has been balanced over 24 hours and reached a small peak to

average ratio of 1.02. As the number of EV is increased from 30 to 90 the

overall energy consumption also increases but the balanced load profile re-

mains. In both figures, it is observed that the EV energy consumption offsets

the shiftable devices. The use of V2G mode in the evening time reduces the

peak load that would have been created by the home appliances.

4.4 Summary

In this chapter, a mixed integer linear programming based consumption

scheduling optimization technique is proposed. The proposed mechanism is
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able to schedule the optimal operation time for appliances according to user

preference and the power consumption patterns of the individual appliances.

Appliances’ consumption requirements were classified into different groups

and formulated into the optimization. Simulation results of home and neigh-

bourhood demand management scenarios demonstrated the effectiveness of

the mechanism in terms of reducing the peak to average ratio. When multi-

ple households participate in the scheduling as well as EVs are intergraded,

a more balanced hourly load profile is achieved.



Chapter 5

A GAME THEORETIC

OPTIMIZATION

FRAMEWORK

INCORPORATING LOCALLY

GENERATED ENERGY

In addition to the proposed centralised consumption scheduling technique,

this chapter discusses the approach of consumer incentive based indirect de-

mand management. A game theoretic consumption scheduling optimization

framework is proposed with the aim of achieving minimum energy cost for

individual consumers. It is shown that the game theoretic algorithm con-

verges to an equilibrium where all consumers can benefit from participating

in. Simulation results are presented to demonstrate the proposed approach

and the benefits of home demand management.

5.1 Introduction

As micro level local renewable energy generation such as rooftop solar cells

and the use of hybrid electric vehicles become popular, electricity can be

67



Section 5.1. Introduction 68

generated and stored by consumers and can be released to the grid when

necessary [5]. In the future, consumers will have the flexibility to consume

energy from various sources and make the best use of locally generated en-

ergy. Demand management for smart grids needs to be efficient in terms of

optimizing energy demand and supply. Recent advances in information and

communication technologies (ICT) have enabled real time monitoring and

control of the grid’s operational conditions. In particular, the utility oper-

ators and consumers can communicate and cooperate in order to facilitate

bi-directional load control and consumption optimizations.

Indirect demand management system operates through incentives, such

as pricing, energy trading/brokering and even social interaction [87]. Issuing

attractive price plans containing changeable rates, for example block based

time-of-use (ToU) pricing for different times and dynamic/real-time pricing

schemes [88], provides consumers economic incentives to manage their energy

consumption efficiently and to reap financial benefits. Candidate models for

electricity market have been studied in [89–92]. Considering that households

are directly responsible for actual energy consumption and management of

local energy generation, consumer oriented proactive and distributed con-

sumption scheduling is very attractive. A number of households in a neigh-

bourhood area could participate locally to reduce the peak load based on

very minimum level of instruction from utility operators. Hence the indirect

demand management can benefit from low delay and low data traffic for

controlling the appliances.

The development of appropriate optimization algorithms for energy con-

sumption is essential for facilitating demand management. The optimization

technique proposed in the previous chapter is able to provide an optimal con-

sumption plan for individual appliances, with an objective of reducing the

peak load. In addition to the mathematical programming, game theoretic

modeling is very suitable in particular for consumer oriented consumption
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optimization, which is claimed to have the advantage of reduced computa-

tional complexity.

In this chapter, a decentralised consumption scheduling optimization

framework is proposed with the aim of achieving minimum energy cost for

individual consumers. The framework is based on the MIP optimization

technique proposed in the previous chapter and game theory. In particular,

the optimization incorporates the use of locally generated renewable energy

in order to minimise dependency on conventional energy and the consump-

tion cost.

This rest of this chapter is organised as follows. The detailed formu-

lation of the consumption optimization for individual consumers is firstly

proposed, followed by the formulation of the scheduling game among these

consumers. The existence of Nash equilibrium, which promises the game

a stable solution, the convergence algorithm and consumers’ behaviour will

be analysed. Numerical simulation results are presented to demonstrate the

proposed approach. Conclusions are drawn at the end of this chapter.

5.2 The MIP Scheduling Optimization Framework

Based on the design of the household level consumption scheduling optimiza-

tion as proposed in Chapter 4, an optimization technique for scheduling en-

ergy consumption of appliances with the aim of minimising the cost of energy

is proposed. In particular, it is considered that the household consumers are

able to draw power from both the main grid under a given pricing plan as

well as from locally generated renewable energy sources. The optimization

is also expected to maximise the usage of locally generated energy while

drawing energy from the main grids optimally whenever required.
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5.2.1 The optimization objective

Consider a daily pricing scenario where the cost of energy is determined

as a function of time and energy load generated by all subscribing users in

the billing area. The total cost of the energy consumption of all users is

represented by a vector C = [C1, C2, . . . , Ct, . . . , CT ]T , where t is the time-

of-use parameter. The cost of energy Ct at time t, is written as a function

of the accumulated load of all consumers Lt as follows,

Ct = ωtL
2
t + ωtLt + φt, (5.2.1)

where ωt is the basic unit rate which can take different values for differ-

ent time instances and φt is an independent standard charge at time t,

e.g., additional fees for critical peak events [93]. We denote the sched-

uled daily consumption result for individual consumer n ∈ N as Ln =

[Ln,1, Ln,2, . . . , Ln,T ]T ∈ RT×1, where Ln,t is the energy consumption of

consumer n at time t, and N denotes the set of N consumers. Hence

Lt =
∑

n∈N Ln,t. We also denote L =
∑

n∈N Ln ∈ RT×1 as the consumption

scheduling profile of the area considered in the optimization. The energy

consumption cost of the day can be calculated as

C(L) =
∑
t

Ct =
∑
t

(ωt(
∑
n∈N

Ln,t)
2 + ωt(

∑
n∈N

Ln,t) + φt). (5.2.2)

The pricing plan can be viewed as a continuous function approximat-

ing the existing stepwise (multi-step) pricing models adopted in the current

electricity market [94] and [95]. However, most of these models were de-

signed to charge individual consumers at different rates according to their

monthly/yearly accumulated energy consumption in a bid to encourage them

to save energy. These models have limited leverage on customers to reduce

the instantaneous peak load of the area at various times. By issuing ToU
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pricing, utility operators can benefit from reducing peak loads by enforcing

high basic rates during peak demand periods. The consumers will be mo-

tivated to shift their consumption as much as possible from the peak ToU

periods due to reduced cost. In particular, it can be observed in (5.2.2)

that the cost is not only proportional to the ToU rate ωt but also increases

quadratically with the total instantaneous load Lt. Therefore the actual cost

per unit of consumption (assumed φt = 0) at time t is Ct/Lt = ωtLt + ωt,

which is a function of both the basic ToU rates and the sum of the instan-

taneous loads. The cost of energy charged to the consumer n at time t

is

Cn,t = (ωtLt + ωt)Ln,t. (5.2.3)

This relationship implies that the consumption cost of every consumer de-

pends on the current total load dynamics and the consumer’s use of en-

ergy. Hence, consumers have incentive to participate in reducing the total

instantaneous load as this will in turn reduce individual energy cost. As

all consumers are assumed to be rational, constructive participation of con-

sumers to reduce overall peak load is possible. Utility operators also have

the flexibility to control the peak accumulated load at various times.

Having provided this type of pricing scheme, consumers are encouraged

to manage the demand to achieve low cost by shifting the consumption from

peak ToU periods. Consumers have the incentives to further reduce the

cost by shifting their consumptions in terms of balancing the load among

each other to avoid overlapping loads at various times. These activities are

modeled using a constrained game in the next section.

For a given aggregated load profile L̃n,t =
∑

i∈N,i 6=n Li,t of all consumers

other than n, the consumer n aims to optimise the following,

C(n)(L) =
∑
t

(ωt(Ln,t + L̃n,t)
2 + ωt(Ln,t + L̃n,t) + φt). (5.2.4)
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It is needed to highlight again that by reducing the total cost C in (5.2.2),

each consumer aims to reduce the cost of his/her energy use as in (5.2.3).

The subscript (n) is used to explicitly indicate consumer n’s contribution of

the optimization of cost.

In the proposed mechanism, it is assumed that the energy consumption

from locally generated sources and the storage elements results into zero cost

to the consumer’s electricity bill. Therefore the consumers will attempt to

make full use of local energy supply to minimise dependency on conventional

energy and to optimise the consumption cost charged by the utility operator.

Consumers will reserve any unused/surplus local energy for future use or may

be able to release it to the main grid and generate revenue [96]. However

this is not considered in the proposed optimization framework.

5.2.2 Constraints formulation

The classification of appliances and the methods of formulating constraints

for the appliances are consistent with those described in the previous chapter.

That is, for a non-shiftable appliance with a strictly inflexible operation

requirement, the scheduling constraint can be written as

xn,a = pn,a, ∀a ∈ An,f , (5.2.5)

Constraints for a shiftable appliance, which may be further decomposed

as multiple scheduling tasks, are formulated as

xn,ak = Pn,aksn,ak ,
∑
t

sn,ak,t = 1, (5.2.6)

∑
k∈Ka

sn,ak ≤ 1,∀k ∈ Ka,∀a ∈ An,s. (5.2.7)

In particular, for the scheduler to be able to incorporate local energy, i.e.,

draw power optimally from either the main grid or local energy sources for
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every appliance, a separate vector sln,a to indicate the switching parameter

for the local energy consumption for appliance a is introduced. Now the

appliance has two switching parameters to determine its operation time and

the source of energy. The scheduling constraints for a shiftable appliance

can be formulated as follows,

sn,ak + sln,ak ≤ 1, (5.2.8)

xn,ak = Pn,aksn,ak + Pn,aks
l
n,ak

, (5.2.9)∑
k∈Ka

sn,ak ≤ 1,
∑
k∈Ka

sln,ak ≤ 1, ∀k ∈ Ka, ∀a ∈ An,s. (5.2.10)

Considering that local energy resources, such as wind and solar, could be

intermittent, local energy should be scheduled only when its available capac-

ity is sufficient for supplying power during the appliance’s operation period.

Therefore, it is needed to ensure that the scheduled power consumption from

local energy supply for all appliances must not exceed the consumer’s local

generation and storage capacity yn, i.e.,

∑
a∈An

∑
k∈Ka

Pn,aks
l
n,ak
≤ yn. (5.2.11)

5.2.3 The local scheduling optimization problem

Based on the above formulations, the optimization problem for the individual

consumer n as minimization of utility cost as defined in (5.2.4) through op-

timum scheduling of consumption load, subject to the consumption require-

ments of all appliances and the capacity of local energy supply, is formulated
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as follows:

min
xn,ak,t∈R+,

sn,ak
,sln,ak

∈Z+T×1

C(n)

s.t.
∑
a∈An

∑
k∈Ka

xn,ak,t = Ln,t,

∑
k∈Ka

tn,ak,f∑
t=tn,ak,s

xn,ak,t = ln,a, ∀a ∈ An,

xn,a = pn,a, ∀a ∈ An,f ,

xn,ak = Pn,aksn,ak + Pn,aks
l
n,ak

,

sn,ak + sln,ak ≤ 1,
∑
t

sn,ak,t = 1,
∑
t

sln,ak,t = 1,

∑
k∈Ka

sn,ak ≤ 1,
∑
k∈Ka

sln,ak ≤ 1,

∑
a∈An

∑
k∈Ka

Pn,aks
l
n,ak
≤ yn, ∀k ∈ Ka, ∀a ∈ An,s. (5.2.12)

The mixed integer optimization in (5.2.12) can be solved using Branch

and Bound method [12]. Note the optimum scheduling requires L̃n,t which

are sent by other consumers within a neighbourhood area. Hence the op-

timization requires interaction among consumers. In this chapter, the con-

sumers’ scheduling actions is analysed as a strategic game.

5.3 Game Theoretic Scheduling Approach

5.3.1 Game components

In this section, a game theoretic model is presented for the optimal con-

sumption scheduling of various consumers under a pricing plan as described

in (5.2.2). In game theory, a non-cooperative game is defined as a strategic

interaction of rational players consisting of three main components, namely

players, strategies and payoffs [32]. The constrained consumption scheduling
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optimization game components are defined as follows:

Players: The set of N distributed energy consumers N in the same

billing area.

Strategies: The daily consumption scheduling plan that each player n

chooses to play the game, i.e., Ln ∈ Sn is used to represent the strategy

chosen by player n, where Sn denotes the strategy space of player n. The

strategy space of all players is defined as S =
∏
n∈N Sn.

Payoffs: The payoff of each player is the negative of the energy consump-

tion cost charged by the utility company. The function un(Ln,L−n), un : S 7→

R is used to represent the payoff for a chosen strategy of player n, given the

strategy choices L−n ∈ S−n of all other players (i.e., the load profiles of all

other consumers), where S−n =
∏
i∈N,i 6=n Si.

Every consumer will want to minimise only his/her energy cost and will

be tempted to select a consumption schedule that maximises his/her payoff

un as the best strategy in response to the price plan and other players’ cho-

sen strategies. Since the consumption charge has been designed to depend

on the total load of all consumers, consumers may not be able to achieve

the lowest possible cost (i.e., maximal payoff) unless they participate in the

game to distribute the load as much as possible. Suppose all players sched-

ule operation of appliances in isolation to respond to the price, then it will

lead all players scheduling their consumption of energy when the ToU rate

is low. This will increase the chances of all consumers operate the appli-

ances at the same time and will result into high instantaneous accumulated

load. This will in turn increase the cost of energy to every consumer as

the price increases quadratically with the peak load as shown in (5.2.2).

Hence, consumers will attempt to schedule their consumption to minimise

the total group cost C using the optimization framework in (5.2.12). Indi-

vidual’s optimal scheduling is achieved when the cost of all consumers has

reached its minimal. However, each consumer will need to pay only their
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share of the cost, as in (5.2.3), and the total cost is used only for the purpose

of defining the utility for the optimization. This is an analogy to network

utility maximization situation where individuals benefit the most when the

whole network is optimised [97]. In this case, the payoff function for all play-

ers can be represented by the consumption cost as defined in (5.2.4), i.e.,

un(Ln,L−n) = −C(n),∀n ∈ N. The game is expected to provide a more bal-

anced scheduling result and reduced cost, as demonstrated in the simulation

section.

Note that in the scheduling game defined above, players must solve con-

strained optimizations to obtain their optimal payoffs and strategies. There-

fore, it is necessary to define Tn as the set of constraints in the optimization

(5.2.12) for player n, and T = {Tn,∀n}. Players’ optimal strategies and

the payoff values should therefore be T-feasible solutions of the optimization

problem [46].

5.3.2 Equilibrium solution

The Nash equilibrium of the proposed consumption scheduling game can

be defined as a joint strategy profile L∗ = {L∗1,L∗2, ...,L∗N}, L∗ ∈ S, where

un(L∗n,L
∗
−n) ≥ un(Ln,L

∗
−n),∀Ln ∈ Sn, ∀n ∈ N, i.e., given the equilibrium

strategy choices of other players L∗−n, player n has no incentive to change

his/her own strategy from L∗n unilaterally [32]. Nash equilibrium is critical

to the non-cooperative game theoretic modeling because, if it exists, it guar-

antees a stable solution where every player plays the best response to the

strategic choices of all others and the players have no incentive to deviate

from this equilibrium.

As for the particular game involving constrained consumption optimiza-

tion, the Nash equilibrium will be the strategy profile which has the above

property and also T-feasible. Its existence will ensure that the schedul-

ing process will be able to provide every consumer an optimal consumption
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scheduling. Different from the constrained games as discussed in [34] which

will always guarantee a Nash equilibrium in pure strategies, the constrained

solution is no longer in a continuous space due to the integer nature of the

optimization of the payoff function. It is useful to adopt potential game

approach to establish Nash equilibrium solution for the scheduling game.

5.3.3 Potential game

For a game with a set of players N, feasible strategy space S and payoff

functions un(Ln,L−n), a function U : S → R is called an exact potential

function, if the following holds:

un(Ln,L−n)− un(L′n,L−n) = U(Ln,L−n)− U(L′n,L−n),

∀n ∈ N,∀Ln,L′n ∈ Sn,∀L−n ∈ S−n,Ln 6= L′n. (5.3.1)

If a game admits an exact potential function which reflects the changes

in the strategy chosen by any of the players, it falls into a specific class

of strategic games called exact potential games [98]. It is observed that in

the proposed scheduling game, although individual players are responsible

for optimising only their own consumptions, the goal for all players is the

minimization of the total cost. Any changes in the scheduling Ln will result

in a change in the total cost, i.e.,

un(Ln,L−n)− un(L′n,L−n) = −(C(L)− C(L′)),

∀n ∈ N,∀Ln,L′n ∈ Sn, ∀L−n ∈ S−n,Ln 6= L′n, (5.3.2)

where C(L) and C(L′) are the costs for the load profiles (Ln,L−n) and

(L′n,L−n) respectively. Therefore U = −C(L) is used as the exact potential

function and the scheduling game is an exact potential game.

The theorem proposed in [98], which is very important for establishing
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Nash equilibrium for potential games, states that the potential game admits

a pure strategy Nash equilibrium L∗ if and only if L∗ is a maximiser of

the potential function. In other words, establishing Nash equilibrium of the

scheduling game is equivalent to determining the solution of the constrained

maximization of the potential function. The maximum is derived through

an iterative best response convergence process.

5.3.4 Game procedure and iterative convergence

A best response iterative process is a dynamic process that players up-

date their actions by choosing the strategies that maximise their payoffs,

given other players’ current strategies remain fixed [99]. The best response

Bm
n (Lm−n) of player n to the strategies Lm−n, where m is the game iteration

indicator starting from 0, is given by

Bm
n (Lm−n) = argmax

Ln∈Sn
un(Ln,L

m
−n). (5.3.3)

Player n will update its strategy to a new strategy Lm+1
n ∈ Bm

n if and

only if the new strategy gains an improvement to the payoff, i.e.,

un(Lm+1
n ,Lm−n) > un(Lmn ,L

m
−n). (5.3.4)

For the scheduling potential game, players will be able to carry out this

process in a round robin manner. At each play, the player will have the

opportunity to revise his/her scheduling with the aim of reducing the con-

sumption cost, which is equivalent to increasing the potential payoff. If the

revised payoff is higher than the payoff obtained from the previous play, the

player will play the revised new strategy, otherwise, the old strategy will

be retained. Observing this move, the player at the next turn will optimise

his/her strategy with the aim of further increasing the potential payoff. At
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every game iteration, the value of the potential function satisfies

U(Lm+1) ≥ U(Lm). (5.3.5)

As the players keep optimising their strategies, the best response dy-

namics will result into a non-decreasing sequence of changes in the potential

payoff {U(L0),U(L1),U(L2), ...}. This is called ‘improvement path’ which

will finish at a point where no player will see any improvement in the payoff.

At this point, the potential function U will have converged to the maximum,

which is the Nash equilibrium of the game. Since the consumption cost is

bounded above zero, i.e., it is non-negative, and its value will be changing

non-increasingly within the game process, the convergence of the sequential

game is guaranteed. In conclusion, the consumption scheduling game admits

a T-feasible Nash equilibrium in pure strategies.

The scheduling game is expected to start every time a new pricing plan

is issued. In order to play the best strategy Ln and to obtain maximal pay-

off, a player needs information which informs the player the current game

status and the chosen strategies of other players L−n (i.e., their load pro-

files). A home energy management unit is responsible for collecting and

scheduling the consumption requirements. It serves as a data access point

for scheduling information exchange during the game process. ICT infras-

tructure as in neighborhood area networks (NAN) and local area networks

(LAN) can be used in smart grids to enable efficient and reliable communica-

tions among players. Candidate solutions include wireless 3G/LTE cellular

and the emerging IEEE 802.22 which uses cognitive radio technologies in

the white spaces of the television spectrum. At the beginning of the game,

every player should initialize a consumption schedule according to his/her

own preference and announce it through the communication network. Ac-

knowledging this information, the players will start to adjust their energy
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consumption plan using the best response process. The game theoretic al-

gorithm for scheduling has been summarised in Algorithm 5.1.

Algorithm 5.1: Game procedure

Initialization: Each player generates its intended consumption

schedule according to its preferences as initial strategy and

broadcasts it to other players.

On detection of a new pricing signal, execute:

For n = 1 : N

Player n solves optimization in (6.2.6) and obtains the

consumption cost C(n)(L) and scheduling Ln.

If the optimised scheduling Ln is different from theprevious

scheduling strategy

Broadcast the new strategy Ln to other players.

else

Remain silent, i.e., no need for broadcasting Ln.

End If

End For

Repeat For until no further improvement to all players.

5.3.5 Efficiency, complexity and privacy

The efficiency of the equilibrium solution of the game theoretic algorithm is

often measured by Pareto optimality. Particularly for this game, a weaker

version called constrained Pareto optimality is considered, because all out-

comes must be T-feasible [100]. It can be claimed that the outcome of Al-

gorithm 5.1 is automatically constrained Pareto optimal since it maximises

the potential payoff which reflects the payoff for every player.
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One of the important benefits of the proposed distributed approaches is

that the computational complexity can be distributed among various home

energy management units by decomposing the large scale centralised opti-

mization using a decentralised game theoretic method. In terms of exchange

of information, the distributed algorithms can also be efficient as compared

to centralised algorithms. For example the distributed design approach in

wireless networks enables coordinated beamforming without the need of ex-

plicit inter-base-station information exchange as in [101], and the game the-

oretic approach as in [44]. For the demand management to be performed

centrally, each household needs to inform the centralised scheduling proces-

sor the type of each appliance, its power consumption pattern, consumer’s

preferred time of use, the use of electric vehicle and the availability of local

energy, etc. This may require extensive amount of explicit data exchange

between households and the centralised processor. For the proposed game

theoretic approach, details on individual appliances are not required to be

exchanged. As can be observed in Algorithm 5.1, the optimizations of de-

tailed appliance consumption are done locally at every iteration, only the

overall consumption profile Ln is required to be exchanged among players.

This significantly reduces the amount of information exchange. In addition,

the distributed approach has the benefit of enhanced privacy because the

exact details of appliances and the information of individual household’s lo-

cally generated energy are not exchanged. Only the aggregated use of energy

is exchanged which has relatively lower private information. However, such

information needs to be communicated among all players repeatedly during

the iterative updating process. This may turn out to increase the commu-

nications overhead, especially for large number of consumers. Moreover,

a centralised processor may possibly have more computational capacity to

perform complex optimizations, hence centralised processer may be advan-

tageous if there is any limitations on the computation and communication
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capability of the distributed EMUs. These tradeoffs need to be considered

carefully in the choice between centralised and decentralised optimization

approaches.

5.3.6 Behaviour of players and their participation in the game

The capacity of local energy supply is critical to the players in order to decide

whether to participate in the scheduling game or not. Consider a particular

consumer whose local capacity exceeds his daily consumption requirement.

The consumer has the ability to self-supply his own energy demand and

will achieve zero energy cost charged by the utility company even without

any scheduling. In this case, as there is no impact in terms of pricing, this

consumer has no incentive to participate in the scheduling game until there

is a need to draw power from the main grid again. It can be considered

that these players need not to play the game because scheduling does not

provide any benefit to them. By observing the capacity of local energy

supply, consumers should be able to decide whether to participate in the

game immediately.

In non-cooperative games, there is a possibility that certain players may

be untruthful during the game process by providing false information to the

scheduling results (Ln). This will make the optimizations invalid and unable

to reach the optimal result. Since the consumption optimization promises

a lowest group cost and an optimal scheduling at the Nash equilibrium for

every player in the game, there should be no incentive for players to cheat.

However cheating could still occur when there are malicious players who

always cheat intentionally to hurt others. Considering that the demand

management activities will be carried out repeatedly on a daily basis, cheat-

ing players can be punished in future plays using various mechanisms as

proposed for repeated games as in [32]. Developing workable mechanisms

for detecting and preventing untruthful players is an open research topic.
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A possible direction is based on the work of [102] where cheating detection

algorithms have been proposed for client-server information revealing.

5.4 Simulations and Performance Evaluation

5.4.1 System set up

This section presents an illustrative simulation for the daily consumption

scheduling optimization using the proposed game theoretic approach. Con-

sider a small residential area consisting of N = 10 individual households.

Each household has a set of appliances such as a 24 hour operational fridge &

freezer (hourly consumption of 0.12kWh) and electric heating (daily require-

ment of 4kWh) with multiple non-shiftable operations, washing machine

with one shiftable operation program (daily requirement of 1.2kWh) and

a water tank boiler (daily consumption of 1.6kWh) with multiple shiftable

tasks over the day. The consumption requirements for these appliances have

been obtained from [82] and [83]. Assume that the size of each household

is different. The consumption requirements of the appliances and the total

daily demands could vary. The daily demand of the 10 households is set at

256kWh. User preferences for particular appliances also vary individually.

In order to study the performance of the proposed consumption scheduling,

the capacity of the local energy supply is assumed to be a small fraction cho-

sen randomly between 15 percent and 25 percent of the daily requirement

of each consumer so that every one will have incentive to participate in the

game.

The pricing plan used in the simulation is based on a basic hourly ToU

rate, hence the scheduling time resolution is one hour (T = 24). The unit

rate ωt is assumed to have the lowest value of one pence during the night

period while the daytime rate is two pence and the peak rate of five pence

appears in the morning between 9am and 10am and in the evening between



Section 5.4. Simulations and Performance Evaluation 84

0 5 10 15 20 25 30 35 40
3200

3600

4000

4400

4800

5200

5600

6000

6400

6800

Game play iterations

C
on

su
m

pt
io

n 
co

st
 (

pe
nc

e)

 

 

cost

Figure 5.1. Convergence of the scheduling game (played sequentially
by each player), e.g., iteration 20 means each player played twice.

6pm and 8pm. Assume there was zero standard admission charge φt.

5.4.2 Performance evaluation

The convergence of the consumption cost against iteration of the game pro-

cess is shown in Figure 5.1. It is observed that the consumption cost has

dropped considerably fast during the first 10 iterations, i.e., when all the

players finished their moves in the first round. The cost continued to re-

duce gradually and then became steady at 3374 pence after 20 plays. As

the game went on for another two rounds, no player was able to reduce the

cost further (improve the payoff). Therefore, after 30 iterations of individual

consumers’ scheduling of daily consumption, the game process is considered

as finished and reached the Nash equilibrium point. Compared to rather

high initial cost of 6586 pence, the proposed mechanism offered a significant

reduction of nearly 50 percent of the total cost. As seen, the convergence of

the scheduling game is reasonably fast. As for this simulation scenario, it
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can be claimed that only three rounds of play per player is adequate for the

game to reach stable NE point.

In order to evaluate the benefits for individual consumers, the actual con-

sumption cost for each consumer has been provided in Table 5.1. Compared

to the cost without scheduling, every consumer gains a cost reduction of

around 50 percent by participating in the optimization game, which is fairly

identical to the overall cost reduction. In other words, the overall benefits

have been fairly distributed to all players who participated in the game.

Without Game Isolated
scheduling result scheduling

Consumer 1 433.80 227.83 258.03

Consumer 2 595.57 258.01 294.83

Consumer 3 609.21 307.26 323.70

Consumer 4 689.55 342.26 375.44

Consumer 5 515.02 283.71 305.93

Consumer 6 694.08 412.96 444.00

Consumer 7 839.80 389.16 445.40

Consumer 8 780.08 400.42 461.41

Consumer 9 879.62 499.94 502.80

Consumer 10 548.25 253.05 292.32

Total 6584.96 3374.60 3703.85

Table 5.1. Comparison of the consumption cost of consumers (pence)

Table 5.1 compares the cost with the result of an isolated scheduling

scheme where players are assumed to have the same appliances and user

preferences as in the game above, however they schedule their consumption

independently according to the price plan, without knowing others’ schedul-

ing information. As seen, an average cost reduction of 35 pence has been

achieved for each game participant. Therefore, the proposed game theoretic

framework has the ability to reduce the cost by encouraging consumers to

participate. The difference in performance is expected to become consider-

ably high when a large number of subscribers are involved.

Figure 5.2 depicts the scheduled optimal consumption for all the partic-

ipating households after the game has converged. It is observed that the
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consumptions remain reasonably low during the day time and the majority

of the demand has been shifted to the night time corresponding to lower

price. Most of the local energies were drawn to further reduce the potential

high demand, in particular at peak times in the morning and in the evening.

The consumption optimization performed effectively in both integrating lo-

cal power supply optimally and also scheduling possible consumption away

from the peak ToU periods. It should be noted that even though the ter-

minology of balanced scheduling is used, it is not expected to achieve equal

load distribution throughout the day. This is because the aim is not to dis-

tribute the load equally, but to fit it to the expectation of the utility operator

according to the price profile, i.e., to move most of energy consumptions to

off peak period as seen in Figure 5.2. The reason for this is that the demand

might be high, for example due to industrial use of electricity in the day

time, and the aim of utility operator is to balance the overall load consisting

of both the industrial loads and the household loads, by issuing appropri-

ate pricing plans. The game theoretic method proposed helps to ensure the

consumers do not operate all the appliances at the same time, but distribute

over the time as much as possible, as seen in the results.

Table 5.2 lists the usage of local energy for each player. The majority

of local capacity has been scheduled to be used. However, it appears that

there is still a small portion of energy that was not utilised. This is because

this energy was not being able to be served to any of the appliance on the

current date of scheduling. This unused energy can be stored for future use.

Usage Usage

Consumer 1 87% Consumer 6 96%

Consumer 2 96% Consumer 7 85%

Consumer 3 87% Consumer 8 90%

Consumer 4 93% Consumer 9 86%

Consumer 5 90% Consumer 10 95%

Table 5.2. Local energy usage of the consumers



Section 5.4. Simulations and Performance Evaluation 87

0 5 10 15 20 25
0

5

10

15

20

25

Time (hour)

P
ow

er
 c

on
su

m
pt

io
n 

(k
W

h)

 

 

Local energy consumption
Main grid consumption

Figure 5.2. Scheduled accumulated consumption load over the day.
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Figure 5.3. Comparison of scheduled consumption for five players.
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Figure 5.4. Scheduled consumption from local and main supply for
five players.

Figure 5.3 compares the consumption schedules of five individual con-

sumers. As seen, the peak energy consumption of consumers occurs at dif-

ferent time slots. This implies the shiftable operations of the appliances have

been well distributed with minimal overlapping with each other. However,

considerable overlapping still appeares, e.g., in the hours between 7pm and

8pm. This is caused due to the non-shiftable requirements during the peak

hours in the evening. As depicted in Figure 5.4, the local energy supplies

were mainly scheduled at these periods in order to reduce the dependency

on the main grid to prevent high accumulated load and cost. The chargeable

consumption has decreased by approximately 70 percent between the hours

of 7pm and 8pm, i.e., the effect of overlapping was signigicantly reduced.

In summary, through the scheduling game, consumers are able to optimally

manage their daily consumption and integrate local generated/stored energy.

It is worth to point out that the detailed system parameters, such as the

pricing plan and the capacity of local generation used in the above simula-
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tions are artificial. The simulations have demonstrated the effectiveness of

the proposed optimization framework. However, the performance in terms

of peak consumption reduction and cost reduction may require further jus-

tification when considering more realistic settings. Statistics and analysis of

real consumption data of the consumers have indicated similar benefits of

performing residential demand management based on the understanding and

scheduling of consumption incorporating locally generated energy [8], [103].

5.5 Summary

This chapter presented a game theoretic consumption scheduling framework

based on the MILP optimization technique to schedule the energy consump-

tion at household level. The framework has the ability to achieve minimum

energy cost for the consumers. In addition, locally generated renewable en-

ergy has been integrated into the consumption scheduling optimization to

further reduce the demand on conventional energy. The proposed game ad-

mits a Nash equilibrium where the scheduling optimization process finds

a stable solution at which every consumer benefits from low consumption

cost. The simulations demonstrated the convergence of the algorithm and

the benefits to the consumers and the grid operators in terms of the cost of

energy and load balancing.



Chapter 6

A MEAN FIELD GAME

THEORETIC APPROACH

FOR ELECTRIC VEHICLES

CHARGING

Smart grid demand management should consider carefully the inclusion of

EVs. One critical challenge in the consumption optimization for EVs is

the management of battery charging. This chapter proposes a dynamic

game theoretic optimization framework to formulate the optimal charging

problem. The framework considers a charging station where a large number

of EVs can be charged simultaneously during the flexible permitted charging

time. The optimization will provide every individual EV an optimal charging

strategy to proactively control their charging speed in order to minimise the

cost of charging. The optimization is based on stochastic mean field game

theory. Numerical results are presented to demonstrate the performance of

the proposed framework.

90
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6.1 Introduction

Electric vehicles (EVs) are expected to be one of the main components of

distributed energy consumption, storage and supply system in smart grids.

EVs can serve as a distributed mobile energy resource in the electricity mar-

ket. Enabled by the advanced information and communications technologies

(ICT), EVs can be optimally scheduled and dispatched to meet the dynamic

demand on energy and to respond fast to emergency situations [104]. The

storage and transportation of energy from one geographical area to another

as supportive supply enhances the overall flexibility of the grid [105]. As EVs

will eventually be employed at household level, as alternative to traditional

petrol cars, they should be included in home electricity demand management

and consumption optimization [106].

EV is a major electricity consumer and draws significant amount of power

in order to retain sufficient battery capacity. For the grid operators, such

high loads attached to the grid will have to be managed carefully. EV owners

should consider the best charging times and charging rates (speed) to reduce

the cost of energy consumption. Optimal charging becomes one of the criti-

cal challenges in the attachment of EVs in smart grids. Recent research on

developing scheduling optimization algorithms for EV charging in both the

centralised and the distributed manners can be found in [107], [108], [109]

and [110]. In the centralised approach, a scheduling agent is responsible

for handling all EVs connected to the grid and to optimise the charging

schedules globally. Optimal charging can also be achieved via distributed al-

gorithms where each EV schedules its own charging according to the current

demand and operational information, such as the pricing signal of the grids.

Consumer oriented fast response and near real-time consumption scheduling

can be achieved.

It is useful to apply game theoretic methods for EV consumption opti-
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mizations. In [110], a mean field game theoretic framework was developed

to minimise the consumption cost for the EVs within a predefined period of

time. The energy consumption behaviour of a large number (tends to in-

finity) of EVs, including charging power from the grid (grid to vehicle) and

releasing power to the grid (vehicle to grid), was modeled as a stochastic op-

timization. Individual player (EV) chooses its optimal strategy (the amount

of energy charging/discharging at any particular time) according to the sta-

tistical behaviour of the total group of players, which is known as the mean

filed. The mean field game is a novel differential game theoretic modeling

mechanism which was first proposed in [111]. It provides a powerful mathe-

matical modeling based on the formulation of two coupled backward-forward

partial differential equations (PDE) for problems with a large number of in-

distinguishable players. The optimal game solution, which is claimed as the

Nash-mean field equilibrium (Nash-MFE) is derived by solving the coupled

equations [111]. Successful applications of mean field game theory can also

be found in other research areas such as control engineering [112].

In this chapter, a stochastic mean field game theoretic framework is pro-

posed for a charging scenario where individual EVs manage their charging at

an aggregated charging station. The EV charging station has the capability

of charging a large number of EVs during a period of time. This specific

period of time is determined in advance according to the general demand

management of the electricity operator to prevent undesired peak load on

the grid. However, there is a degree of flexibility assumed in terms of the

finishing time. Acknowledging this charging time, recharging EVs should

arrive to the station on time and charge their battery within the defined

charging period. The optimization framework enables the EVs to have the

ability to proactively control their charging in order to minimise the cost of

charging.

The rest of this chapter is organised as follows. The dynamic game the-
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Figure 6.1. System model: aggregated EV charging at a station.

oretic optimization framework is formulated in Section 6.2, followed by a

detailed discussion on the issue of Nash-mean field equilibrium and method-

ology for obtaining the optimal solution. Numerical simulation results are

presented in the subsequent section to demonstrate the performance of the

proposed method. Conclusions are drawn at the end of the chapter.

6.2 The Game Theoretic Optimization Framework

The system consists of a charging station where a large number of EVs

can be charged simultaneously. The EVs are aggregated at the station and

recharge their batteries in a predefined period of time. This period of time

can be modestly extended, i.e., the charging station can tolerate certain

delays after the scheduled finishing time. The actual time of completing the
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charging will depend on the dynamics of the charging EVs, e.g., at the point

when a certain quorum of fully charged EVs is reached. Compared to fixed

schedules, this setting provides a practical flexibility.

The station charges an EV according to its instant power consumption,

i.e., the EV’s charging rate (speed), and the charging time. Detailed de-

scription of cost of charging is provided in the subsequent section. Given

the pricing information, individual EV is encouraged to optimise and con-

trol its charging in order to minimise the cost of charging. Due to the

non-deterministic charging time, it is necessary to formulate the charging

optimization framework as a dynamic control process, based on the knowl-

edge of the current charging status of all EVs in the station. The proposed

optimization framework aims to provide an optimal control strategy that

minimises the cost of charging for every individual EV, i.e., a profile that

defines the dynamics of the charging rates for the whole charging duration.

The system is illustrated in Figure 6.11.

6.2.1 Optimization costs

The minimization of cost of charging is the objective of the optimization for

the EVs. The cost consists of the energy consumption cost during charging

and the endpoint costs that are related to the finishing time of charging.

Consider a finite set of aggregated charging EVs K = {1, ...,K}. The charg-

ing station’s pricing policy for any EV k is defined as a continuous function

u
(k)
t of the charging speed a

(k)
t , i.e., its instantaneous energy consumption at

time t,

u
(k)
t =

1

2
(a

(k)
t )2. (6.2.1)

This pricing uses a simplified quadratic representation which is widely

used in the area of economics to formulate both the production cost function

1Elements of this figure are from google images. http://www.google.co.uk/
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and the revenue function [113]. This pricing policy implies that in order to

achieve low cost anytime during the whole charging duration, an EV should

maintain slow charging. Such pricing benefits the grid in terms of reducing

the accumulated instant peak load when considering multiple EVs charging

at the same time.

The issue of charging time is now described. Denote the station’s sched-

uled operation period as [0, t̂], t̂ > 0. All connected EVs are expected to start

their charging at time 0. They should be willing to maintain lowest possi-

ble charging rates until their batteries are fully charged at time t̂, when the

station is scheduled to terminate its charging service. However in reality the

actual charging duration of any particular EV can vary from the expected

time. This variation is mainly due to charging efficiency (loss), degree of

degradation of individual battery. Denote an EV’s actual finishing time as

τ (k). As mentioned above, the charging station will tolerate a modest delay

in terms of the finishing time, up to a maximum of tmax. The actual charging

finishing time, denoted by T , between [t̂, tmax] will depend on the dynamics

{τ (k),∀k} of all EVs.

In the following, several endpoint costs are defined as functions of the

charging finishing times t̂, τ and T . Firstly, a punctuality cost is set. It can

be viewed as a price paid for lateness, payable to the charging station, for

the charging EV k:

c
(k)
1 (t̂, τ (k)) = f1([τ (k) − t̂]+). (6.2.2)

The charging station can issue such lateness penalty to regulate the punctu-

ality behaviour of charging EVs. The selection of this cost function f1(·) will

have influence on the result of charging optimization directly, as discussed

in Section IV.

Secondly, a cost of the lateness is defined in terms of the actual finish-
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ing time of charging. This reflects the loss of incomplete battery recharge

because the charging station will have to stop power supply after this time:

c
(k)
2 (T, τ (k)) = f2([τ (k) − T ]+). (6.2.3)

This represents the cost of inefficiency for the charging EV. Although

not actual financial cost, it is included in the optimization. There is a

possibility that some EVs may opt for fast charging. The priority for them

is charging time rather than financial costs. However this type of charging

is not considered in this chapter.

Finally, C
(k)
T = c

(k)
1 + c

(k)
2 is used to represent the cost at the finishing

time of the charging. Individual EV would want to minimise this cost along

with the charging expense during the whole charging duration. Assume that

all these cost functions are continuous and twice differentiable. The total

cost function J (k) : a(k) 7→ R of the optimal charging is therefore

J (k) =

∫ τ (k)

0
u(k)(t)dt+ C

(k)
T (t̂, τ (k), T ). (6.2.4)

6.2.2 Dynamic EV charging process

Let us suppose that an EV’s charging is represented by its battery capacity

X(k) ∈ [0, 1] moving from an initial state X
(k)
0 > 0 (battery capacity when

charging starts) towards the fully charged point of 1. This movement is de-

scribed using a dynamic process, written as a stochastic differential equation

dX
(k)
t = η(k)a

(k)
t dt+ σtdW

(k)
t + dN

(k)
t , (6.2.5)

where the charging rate a
(k)
t is a controlled drift at time t in return for a cost

as defined in (6.2.1) and η(k) represents the measurable charger efficiency

for the EV, which is assumed to be 1 for simplicity. W
(k)
t is an independent
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Brownian motion (Wiener process) with a diffusion coefficient σt. It’s dif-

ferentiation should follow the rules of Itō calculus [114]. The choice of W
(k)
t

represents the adjustment (uncertainty in power loss) added to the charging

which indicates that the charging process is independent among the EVs at

different times, due to different battery characteristics and individual EV’s

minor operational consumption during the charging time. The term N
(k)
t is

a reflective noise which ensures that the value of X(k) remains in (0, 1]. The

reader is referred to [115] for more details on Brownian motion.

At any particular point in time during the charging process, the EV

will be able to obtain the information of the charging status, i.e., the cur-

rent battery capacity {X(1)
t , ..., X

(K)
t } and the instantaneous charging rates

{a(1)
t , ..., a

(K)
t } of all charging EVs via communications through the ICT in-

frastructure. An estimation of actual finishing time T is obtained based on

this gathered information. Mechanisms for the estimation of T can vary de-

pending on the particular algorithms. This chapter considers the mean field

game theoretic method. Due to the dynamic nature of the optimization,

such information must be exchanged continuously and in real-time during

the charging period. However for each EV, the amount of data overhead re-

quired for exchanging information at any time is limited. Considering that

the EVs are aggregated in the station, data communications take place at a

short distance through wireless sensor networks embedded in the EVs.

Having included the information of estimated T into the cost function,

the EV is able to optimise its own charging process. The optimization is

described as a stochastic control:

min
a(t)(k)

E

[
1

2

∫ τ (k)

0
a2(t)(k)dt+ C

(k)
T (t̂, τ (k), T )

]
, (6.2.6)

subject to the dynamic dX(k) = a(t)(k)dt + σdW (k) + dN (k) and an initial

state X
(k)
0 . The optimization will aim to find an optimal law γ∗(t,X(k)∗)
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which defines the optimal charging strategy of the control trajectory a(t)(k)∗

and hence the movement of X(k)∗ for the particular EV. Note that in prac-

tice, the charging rate of an EV is usually valued in a range of [amin, amax].

This should be included as an additional constraint in the optimization prob-

lem.

6.2.3 K-person game theoretic formulation

Based on the above formulation for a single EV, the optimization of the

total K EVs at the charging station is now formulated as a game theoretic

framework.

One classical formulation is the K-person dynamic differential game

where every EV is treated as an individual player, hence K represents set of

players. They are assumed to be rational meaning that they will play the

best strategies, i.e., at every time instant t, player k optimises its instanta-

neous charging control a
(k)
t based on the understanding of the game situation

in order to maximise its own utility. The situation of the game at time t is de-

termined by the charging status of every individual EV in the station. Here

Ω
(k)
t = (X

(1)
t , ..., X

(K)
t , a

(1)
t , ..., a

(K)
t ) denotes the set of information available

to the player k at time t. It is assumed that players are memoryless as they

do not have this status information of previous time instants. The level of

satisfaction (utility) under certain game situation is represented by a payoff.

In this particular optimal charging game, a player’s payoff can apparently

be measured by its cost of charging. Therefore, the objective of every player

is to determine a dynamic trajectory of charging rates a(t)(k) that maximise

its payoff, i.e., achieving minimum cost by conducting the optimization as

defined in (6.2.6).

Define a mapping B
(k)
t : Ω

(k)
t 7→ S(k)

t , to represent the choice of strategy

for player k at time t, with S(k)
t the set of all possible controls a

(k)
t for the

player. In particular, B
(k)
t yields a best response control that maximises



Section 6.2. The Game Theoretic Optimization Framework 99

the payoff. The optimal charging action of player k at time t is therefore a

(own-state) feedback strategy determined by

a
(k)
t = B(k)(Ω

(k)
t ), 0 ≤ t ≤ T. (6.2.7)

Referring to the game theoretic interpretations, a
(−k)
t ∈ S(−k)

t , where S(−k)
t =∏

i∈K,i 6=k S
(i)
t , denotes the joint strategy choices of all players other than k

at time t. For player k, the choice of strategy a
(k)
t is a best response to the

current game status and the strategies chosen by all the players (a
(k)
t ,a

(−k)
t ).

The formulation is completed by defining the strategy set over the total

charging period for player k as S(k) = {S(k)
t , 0 ≤ t ≤ T}, and the overall

strategy space for all players as S =
∏
k∈K S(k). Having the above formula-

tion, the game can be viewed as a dynamic optimization process where every

individual player (EV k) chooses best strategy (optimal charging rate a(t)(k))

to maximise its payoff (minimise cost J (k)), for the whole charging duration.

The solution of the game is considered as a feedback Nash equilibrium (NE),

as defined below:

Definition 1: The feedback Nash equilibrium of the K-person charging

optimization game is a joint strategy profile a∗ = {a(1)∗, a(2)∗, ..., a(K)∗}, a∗ ∈

S, where a(k)∗ = {a(k)∗
t = B(k)(Ω

(k)∗
t ), 0 ≤ t ≤ T}, and satisfies for all k ∈ K,

J (k)(a∗) ≤ J (k)(a(k),a(−k)∗), ∀a(k) ∈ S(k), a(k) 6= a(k)∗. (6.2.8)

This definition states that given the equilibrium strategy choices of other

players a(−k)∗, player k has no incentive to change its own strategy from a(k)∗

unilaterally. Nash equilibrium is critical because, if exists, it guarantees a

stable game situation where every player plays the best strategy responding

to the strategic choices of all other players. For the particular charging game,

obtaining the NE point is equivalent to achieving an optimal charging result

for every EV in the system.
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Analysing the NE in terms of showing its existence and uniqueness is

never obvious [32, 34]. Even if NE does exist, it may be difficult to de-

velop convergence algorithms to exploit. This is more complex in the case of

K-person games, where K can be considerably large. Various mechanisms

for analysing multi-player differential games can be found in [54] and [47].

Nevertheless, it can be claimed that under the proposed game formulation,

any change of any player at any time, i.e., changes in Ωt, has impact on all

players’ payoffs. They will have to be acknowledged and respond accord-

ingly. This results in significant computation complexity and increased ICT

overhead. In order to resolve these potential issues, it is necessary to modify

the formulation and propose the following mean field game approach.

6.2.4 Mean field game representation

Mean field game theory is powerful in modeling and analysing games with

numerous players. For the simultaneous charging scenario involving a large

number of EVs, it is possible to formulate a statistical performance of the

whole population to represent the mean field, and every player optimises its

charging strategy accordingly.

In order to model the above discussed charging optimization scenario as

a mean field game, two additional assumptions in relation to the players are

required. Firstly, the total number of players is very large so that they can

be viewed as a continuum instead of individuals. In other words, we now

consider the charging of infinite EVs. Having this assumption in place, we

are able to analyse the charging status based on a statistical distribution of

the population, without the need of detailed observation of individual EVs.

This condition is justified later. The second assumption is that the players

are indistinguishable. This implies that all EVs have similar type of bat-

teries and charging control abilities (however still their initial battery states

and the efficiency loss, etc., may vary). They are modeled mathematically
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identical.

Now the notations k and X used in the classical formulation can be

removed. The charging process can be analysed using a state variable

xt ∈ [0, 1] representing the battery status of the continuum at time t ∈ [0, T ],

according to a continuous statistical distribution m(t, x(t)). The distribu-

tion is described using the limiting distribution of an empirical distribution

function, defined as

m(t, xt) = lim
K→∞

1

K

K∑
k=1

1(X
(k)
t = xt), (6.2.9)

where 1 is an indicator function which has a value of 1 only when X
(k)
t =

xt, otherwise 0. The distribution is defined in the compact domain of

[0, T ] × [0, 1] and has a compact support. The charging of the continuum

moves from initial state m(0, x0) = m0 towards m(·, 1) indicating the state

of fully charged (if time permits). The movement of xt is indicated using a

differential equation

dxt = atdt+ σtdWt + dNt, (6.2.10)

which is similar to the one in (6.2.5) however without the player index k.

The choice of Wt now represents the added uncertainty to indicate the in-

dependency of xt at different times.

In this context, the time when the dynamic flow reaching 1, can be seen

as t̃ 7→ ∂xm(t̃, 1). The cumulative distribution function (CDF) F of finishing

times can be defined by

F (t̃) =

∫ t̃

0
∂xm(s, 1)ds. (6.2.11)

The actual finishing time T of the charging can be defined by this infor-

mation of the dynamics of EVs. For example, T is fixed by a quorum rule of
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θ = 85%, which means 85 percent of the EVs have finished their charging,

T =


t̂, if F−1(θ) ≤ t̂

tmax, if F (tmax) ≤ θ

F−1(θ), otherwise

(6.2.12)

Under the above formulation, the charging optimization game is played

from the viewpoint of an ‘average’ player. The player minimises his cost of

charging with the optimal control a(t, x) ∈ S̄ for the trajectory of the battery

state x according to the statistical behaviour m which defines T . S̄ denotes

the space of all controls for the state dynamics. The actual players (the

individual EVs) will be argued into the optimal strategy a. This means that

the EV which is at the state of X
(k)
t = xt will choose the optimal strategy

according to a(t, xt). Having the participation of all the EVs, their strategy

repartition will lead to the trajectory of distribution m, which is claimed to

be the optimal behaviour of the continuum. This will in return feeds back to

the cost optimization to determine the optimal charging strategy. The game

can be considered as a coupled system of cost minimization and the optimal

behaviour of the statistical trajectory. Solving the dynamic optimization

system will naturally lead to the optimal solution of the game [116]. In this

way, the optimization of the cost of charging no longer requires information

Ωt of all individuals however it knows the status mt. System complexity and

communications overhead are therefore reduced.

6.3 Analysis of the Mean Field Game

The solution of the mean field game theoretic optimal charging framework,

known as the Nash-mean field equilibrium (Nash-MFE) [111], is discussed.

As the mean field game is transformed from a classical K-person game, the

definition of feedback Nash-MFE is stated based on Definition 1, as follows.
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Definition 2: The Nash-mean field equilibrium in feedback strategies

of the charging optimization game is a control a∗ ∈ S̄, consistent with the

distribution m∗ of the charging dynamics for a given initial state of m0, and

satisfies

J(a∗,m∗) ≤ J(a,m∗), ∀a ∈ S̄, a 6= a∗. (6.3.1)

Having followed the equilibrium strategy of a∗, individual players of the

game (EVs) have no incentive to deviate from a∗. Hence the dynamics of

battery states will be according to m∗. Therefore it is claimed that their op-

timal charging processes with an actual finishing time of T ∗ are determined.

6.3.1 The coupled stochastic partial differential equations

Based on the work in [111], a mathematical scheme is formulated using

coupled stochastic partial differential equations (SPDE) in order to obtain

cost minimization and the optimal behaviour of the statistical trajectory,

and to generate the MFE of the game.

Firstly, consider the cost minimization problem which has the objective

as in (6.2.6), however without the index k as now only the mean field ‘av-

erage’ player is considered. At any particular time t, the player will obtain

a T fixed by the observation of mt, and the agent is looking for the opti-

mal control a∗ for the minimum cost-to-go. The cost-to-go value function

U(t, x) : [0, τ ]× [0, 1] 7→ R has the following form:

U(t, x) = min
a(t′),t≤t′≤τ

(
1

2

∫ τ

t
a2(t)dt+ CT (t̂, τ, T )

)
, (6.3.2)

subject to the dynamics of x as defined in (6.2.10).

The optimal solution of the cost minimization is the value function U

which satisfies the backward Hamilton-Jacobi-Bellman (HJB) equation:

∂tU + min
a

(
1

2
a2 + a∂xU

)
+
σ2

2
∂2
xxU = 0. (6.3.3)
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Solving the minimization part by using the optimal control term a∗ =

−∂xU , this equation is formulated as:

∂tU −
1

2
(∂xU)2 +

σ2

2
∂2
xxU = 0, (6.3.4)

with the boundary conditions U(τ, 1) = CT (t̂, τ, T ) corresponding to the

endpoint cost when fully charged, and U(tmax, x) = CT (t̂, tmax, tmax) cor-

responding to the endpoint cost defined in terms of the maximum allowed

charging delay time. Provided an optimal m∗t , the HJB equation will deter-

mine the function U and hence indicate the optimal a∗(t) of the player.

The optimal movement of m∗t , for a given m0, is determined by the

following forward Fokker-Planck-Kolmogorov (FPK) equation,

∂tm+ ∂x(a∗m)− σ2

2
∂2
xxm = 0, (6.3.5)

with the compact boundary conditions of m(·, 0) = 0 and m(·, 1) = 0. It is

observed in the FPK equation that a∗ is exactly the optimal control strat-

egy results from the HJB equation. Solving the two coupled SPDEs will

determine the MFE solution, if exists.

6.3.2 Existence and uniqueness of the MFE

The justification of the above mathematical scheme stems from proving the

existence and uniqueness of a MFE solution. Similar to classical games,

Brouwer fixed point theorem is used for establishing the equilibrium point

from the best responses mapping. For the proposed optimal charging mean

field game, the mapping is between the optimal control a∗ and m∗ consisting

all players’ controls. It is discovered that, one chooses best strategy a∗ by

solving the HJB equation corresponding to a given T . T is determined by

the dynamics of flow m∗ which is given by the FPK equation. Hence it is

useful to investigate the time T coherent with the rational behaviours of the



Section 6.3. Analysis of the Mean Field Game 105

players. The MFE is eventually a matter of locating the fixed point of the

mapping T 7→ T .

Consider the following representation of the coupled SPDE scheme:

T 7→ CT 7→ U 7→ −∂xU 7→ m 7→ ∂xm(·, 1) 7→ T, (6.3.6)

It can be seen that the scheme is from [t̂, tmax] to [t̂, tmax] itself. In order

to obtain a fixed point result for the mapping, it is needed only to show the

scheme is continuous [35].

The first part of the scheme, CT (t̂, τ, T ) is assumed to be a C2 continuous

function. Following the second part, it can be observed that function U is

continuous in CT . It is further stated that the HJB equation provides a

solution of U ∈ C2 with −∂xU is Lipschitz continuous according to [116].

Also, the solution m of the FPK equation is C1 continuous and ∂xm(·, 1) ∈

C0 admits a positive lower bound for any T ∈ [t̂, tmax] [116]. Now the

final mapping of the scheme is considered, which is Γ : ∂xm(·, 1) 7→ T .

Define γ1 and γ2 to represent the two different flows of dynamics reaching

1. They are both bounded by a common ε. Assuming T1 = Γ(γ1) and

T2 = Γ(γ2), t̂ ≤ T1 < T2 ≤ tmax, it has

∫ T2

0
γ2 ≤

∫ T1

0
γ1 ⇒

∫ T2

T1

γ2 ≤
∫ T1

0
(γ1 − γ2). (6.3.7)

The left term
∫ T2

T1
γ2 is bounded by ε(T2−T1) while the value of

∫ T1

0 (γ1−γ2)

is below tmax(||γ1 − γ2||∞). Thus,

(T2 − T1) ≤ tmax
ε

(||γ1 − γ2||∞), (6.3.8)

which satisfies the Lipschitz condition. Therefore the mapping Γ is C0 con-

tinuous. The overall scheme is a continuous mapping of T 7→ T , which

admits a fixed point T ∗ coherent with the behaviours a∗ and m∗. Hence,
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the existence of a MFE solution for the charging optimization game is es-

tablished.

In terms of the uniqueness of the MFE solution, it is stated in [117] that,

in order to produce a unique MFE, the game theoretic formulation requires

additional monotonicity conditions in relation to the cost optimization in

the HJB equation. It can be argued that these conditions are subject to

individual game modeling, and they are not necessarily general premises in

EV charging scenarios.

6.3.3 Mean field game versus K-person game

The formulation of mean field game introduces a generalization approach by

which the interaction among large populations can be analysed, based on

the assumptions that players are treated indistinguishable and continuum.

The settings of mean field players have advantages in the sense of increased

computational efficiency [111]. By formulating players into a continuum, it

enables the use of powerful differential calculus and statistics for analysing

the optimal behaviours of the players. As they take actions based only

on the statistical state of the total mass, information exchange in terms

of their exact game play can be omitted. This reduces the system ICT

overhead while enhancing privacy. Moreover, comparing to K-person game

where players are sensitive to the changes of the others, changes of particular

players in a mean field game has little impact on the performance of the total

mass. Therefore the optimal strategy choice of every player can remain.

This enhances the efficiency and the stability of the optimization system.

However, the mean field players result in less sophisticated than that of K-

person games, because players are able to observe and respond to the exact

moves of all others in a K-person game.

In addition, the mean field solutions can be considered as the limit ap-

proximation of K-person games as K → ∞. It is claimed that a corrective
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term in the order of 1/K is sufficient to describe the precision of the approx-

imation [116]. Thus, the efficient mean field game approach can be applied

to a wider range of practical applications including those with limited di-

mension (small K), for example in oil production, and in the case of EV

charging.

6.4 Numerical Results and Performance Evaluation

6.4.1 System set up

Consider a charging station with the total ability of charging 100 EVs simul-

taneously. The scheduled time length of charging is t̂ = 40 minutes, with

the allowed maximum extension to tmax = 60 minutes. A quorum rule of

θ = 85% is used to determine T . The station’s pricing policy has been de-

fined as in (6.2.1). Two terminal costs for all EVs will be determined by the

following linear functions: c1(t̂, τ) = 4([τ − t̂]+), and c2(T, τ) = 4([τ − T ]+).

The battery capacity of the EVs, as well as the charging status parame-

ter x, are represented by percentage values in between 0 and 100. Assume

that each EV has a full battery capacity of 5kWh. However they have been

assigned with different initial charging states, i.e., a battery capacity value

randomly chosen between 10 and 15 percent of its full capacity. The mini-

mum charging rate of the EVs is assumed to be amin = 1 percent per minute

while the maximum is amax = 4 percent per minute.

6.4.2 Performance evaluation

First, the dynamic charging optimization is demonstrated for a single EV

scenario. Consider 100 EVs are charging in the station however only one EV

is optimising its charging according to the charging status of all other EVs.

In this scenario, it is assumed that all the other EVs randomly change their

charging rates without optimization.
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Figure 6.2. Optimal charging rates for a single EV (T = 55).

Figure 6.2 depicts the dynamics of the optimal charging rate over time

for the single EV considered. The trajectories of the charging battery ca-

pacity and the cost-to-go function are depicted in Figure 6.3 and Figure 6.4

respectively. As seen, the EV uses different charging speed with an average

of two percent per minute during its charging. The charging finishes with

100 percent battery capacity at the elapse of 55 minutes, which is exactly

T , the actual finishing time of this charging event for the 100 EVs. In this

way, the lateness cost at the endpoint has been successfully minimised. The

cost-to-go during the charging process is generally decreasing with a final

cost of 60 which is only due to the penalty as defined in c1. Therefore it can

be claimed that the optimization has efficiently made the full utilization of

the permitted time and obtained the optimal strategy for the EV.

Now it is considered that all charging EVs are participating in the pro-

posed mean field game to optimise their cost of charging. Figure 6.5, Figure

6.6 and Figure 6.7 depict the results in terms of charging rates, battery ca-
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Figure 6.3. Optimal trajectory of the charging battery capacity for a
single EV (T = 55).
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Figure 6.4. Optimal trajectory of the cost-to-go value for a single EV
(T = 55).
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Figure 6.5. Optimal charging rates for one particular EV in a mean
field game theoretic scenario (T ∗ = 59).
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Figure 6.6. Optimal trajectory of the charging battery capacity for
one particular EV in a mean field game theoretic scenario (T ∗ = 59).
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Figure 6.7. Optimal trajectory of the cost-to-go value for one partic-
ular EV in a mean field game theoretic scenario (T ∗ = 59).

pacities and the costs for a randomly chosen EV (index=8) from the 100

participants. Similar to the discussion in the above scenario, the EV is able

to finish its charging at time τ = 58 that is the closest possible time to the

actual finishing time T ∗ = 59 which is determined by the MFE. The aver-

age of charging rates is similar to the previous case, however less dynamics

appear. This reflects the fact that the the players in a mean field game set-

ting have less clear vision of the charging system and they only take average

actions which result in less dynamics in time. Also, it can be deduced that

their charging behaviours will potentially be coincident due to the similarity

and rationality of the players. Such reduced variation of the participants re-

sults into a more stable charging trajectory for every EV, which is beneficial

to the demand management of the charging station and the batteries of the

EVs themselves.

Figure 6.8 depicts the dynamics of optimal battery capacity for all 100
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Figure 6.8. Optimal battery capacity dynamics (T ∗ = 59).
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Figure 6.9. Distributions of battery capacity over charging duration.
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EVs during the charging period. It can be observed that all EVs indeed

behaved reasonably similar in terms of the trajectories of battery capacity.

The distributions of battery capacity value of the EVs, over the charging

period, have a fairly low standard deviation that is between 0.8 and 2.3.

Detailed distributions of the battery capacity of all the EVs over the

charging period is depicted in Figure 6.9. The distributions are shown in

10 different time instants from the start of charging towards the finish, with

15 minutes intervals during the first 45 minutes and one minute intervals in

the final period from 55 to 60 minutes. As seen, the variation of batteries

capacity remains in a range of approximately 10 percent of full capacity. As

the charging moved near to the finish point, the variation became smaller.

Majority of the EVs finish their charging after 55 minutes. At time T ∗ =

59 when the charging really stopped, 14 EVs did not obtain full recharge.

This reflects the setting of the quorum rule. However, considering their

batteries have already reached 97 percent of full capacity, the results should

be acceptable by these EVs.

From the demand management perspective, the charging is optimised in

the sense of balancing the consumption over time to avoid accumulated peak

loads at the charging station. Figure 6.10 depicts the accumulated consump-

tion of the station over the charging time. The consumption profile seems

fairly flat without any high peaks. A total of 100 charging EVs consume

an average of 10kWh of electricity per minute. Such consumption can be

claimed to be reasonably low while also stable, which is beneficial to the

reliability of the grid. However such result may have limitations in terms

of realistic requirements. For example, the energy required for recharging

can be higher than 5kWh. Certain types of EV batteries cannot maintain

normal operation at low capacity level, therefore a starting point of 15 per-

cent is not tolerant. Besides, the charging station may not have sufficient

capacity to support full charge within 60 minutes.
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Figure 6.10. Total energy consumption of 100 EVs (T ∗ = 59).
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EVs (T ∗ = 47).
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Finally, the effectiveness in terms of the punctuality regulation is evalu-

ated by changing the endpoint costs in the game. In the previous scenario,

the charging finished with a 19 minute delay to the scheduled finishing time.

Although it is tolerable according to the settings of the charging station, such

delay can still reduce the accuracy of load planning and hence the reliabil-

ity of demand management. The station can issue more critical punctuality

costs to regulate the charging EVs and urge them to finish sooner. Figure

6.11 shows the dynamics of all EVs with a slightly increased terminal cost

of c1(t̂, τ) = 5([τ − t̂]+), while other settings remain the same. As seen, the

charging of the batteries became quicker. The charging finished at T ∗ = 47,

which is an improvement by 12 minutes compared to the previous scenario.

6.5 Summary

This chapter proposed a dynamic game theoretic optimization framework

based on stochastic mean field game approach for charging electric vehicles

in smart grids. It is designed for an optimal charging scenarios where a large

number of EVs charge simultaneously in an aggregated charging station.

Given the pricing policy of the charging station and the statistical charging

status of all EVs, the game theoretic framework provides an optimal solution

for for every individual EV to proactively control their charging rate in order

to minimise the cost of charging. Numerical results have been presented to

demonstrate the performance of the proposed framework.



Chapter 7

CONCLUSIONS AND

FUTURE WORK

The thesis has four contributing chapters and each chapter is summarised

below, followed by a discussion on future works.

7.1 Conclusions

This thesis has investigated demand management in smart grids, with a focus

on the development of various mathematical optimization techniques and

game theoretic frameworks for home consumption scheduling and electric

vehicle charging.

Chapter 3 provided an overview of demand management with a par-

ticular focus on the associated enabling wireless technologies. In order to

perform demand management to reduce peak loads in the smart grid, the

acquisition of real time data from various points in the grid and optimization

of the power supply and demand are required. The smart meters and sensors

will be deployed in various parts of the grid, starting from the generation,

through distribution, and all the way to the household level. These will be

interconnected through both wired and wireless connections. Wireless solu-

tions are preferred at the NAN and HAN levels and wired connections could

be used for backhaul networks. This chapter covered various candidate com-

munication technologies and mechanisms to enable demand management, in

116
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particular for home and neighbourhood areas. As communication is an un-

derpinning technology for the success of smart grid, it is envisaged that smart

grids will be an exciting research area for communication engineers. In ad-

dition, potential approaches for the optimal demand management in smart

grids using these wireless technologies were reviewed in this chapter. Di-

rect and indirect demand management mechanisms including consumption

scheduling optimization, dynamic pricing have been discussed. Distributed

energy resource, such as locally generated and stored energy, should also

be carefully considered. In particular, for the demand management to be

successful and efficient, consumers should be given adequate incentives for

full participation.

Chapter 4 studied the consumption optimization problem for home area

demand management. A consumption scheduling mechanism for residen-

tial demand management using mixed integer linear programming (MILP)

technique was proposed. The aim of the proposed scheduling was to min-

imise the peak hourly load in order to achieve an optimal (balanced) daily

load schedule. The proposed technique was able to schedule the optimal

operation time for appliances according to the power consumption patterns

of the individual appliances. The penetration of EVs was considered in

the optimization framework. Matlab based simulation results of home and

neighbourhood area consumption scheduling scenarios have been presented

to demonstrate the effectiveness of the proposed technique in terms of re-

ducing the peak to average consumption ratio. When multiple households

participate in the scheduling as well as EVs are intergraded, a more balanced

hourly load profile was achieved.

In addition to the centralised consumption scheduling optimization tech-

nique, Chapter 5 discussed the approach of consumer incentive based indirect

demand management. Given the pricing information, a decentralised con-

sumption scheduling optimization framework was designed to coordinatively



Section 7.1. Conclusions 118

manage the scheduling of appliances of multiple residential consumers with

the aim of achieving minimum energy cost. The framework was based on the

MILP optimization technique proposed in the previous chapter and game

theory. In particular, the optimization incorporates integration of locally

generated and stored renewable energy in order to minimise the dependency

on conventional energy. One of the important benefits of the proposed ap-

proach was that the computational complexity can be distributed among

the individual home demand management units by decomposing the large

scale centralised optimization using a decentralised game theoretic method.

Theoretical analysis was presented to show that the proposed game the-

oretic algorithm admits Nash equilibrium, i.e., the stable solution of the

optimization framework. Also, the scheduling optimization converged to the

equilibrium where all consumers can benefit from participating in. Simula-

tion results were presented to demonstrate the proposed approach and the

benefits of home demand management in terms of reduced energy cost and

more balanced consumption profile over the scheduling period.

Electric vehicle is considered to be an important component of demand

management in smart grids. In addition to home area consumption opti-

mizations, which could already have the ability to optimally schedule the

use of limited number of EVs at home areas, Chapter 6 focused on the topic

of optimal charging for aggregated and numerous EVs. This chapter pro-

posed a dynamic mean field game theoretic optimization framework for the

players, i.e., the EVs, to manage their charging according to the statistical

performance of all the players. In particular, the optimization considered

a charging station where a large number of EVs can be charged simultane-

ously during a flexible permitted period of time. The proposed technique

provides every individual EV an optimal charging strategy to proactively

and dynamically control its charging rates in order to minimise the charging

costs. Theoretical analysis of the game in terms of its formulation, solu-
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tion, and a comparison of mean field game with the traditional game theo-

retic techniques were provided. The mean field game theoretic formulation

benefited from reduced computational complexity, information and commu-

nications overhead, and enhanced privacy. However, players in the mean

field games were considered to be less sophisticated than that of classical

K-person games, because players are not able to observe and respond to the

exact actions taken by all the other players in a mean field game. Numerical

results demonstrated the performance of the proposed framework.

All the mathematical optimization techniques proposed in the thesis fa-

cilitate optimal use of energy. They have the merits in terms of reducing the

peak consumption load and the consumers’ energy costs.

7.2 Future Work

The potential directions for future research are outlined as follows.

For integer programming based algorithms, the complexity increases ex-

ponentially with the problem size. Therefore, complexity reduction for the

technique proposed in Chapter 4 needs to be investigated. One possibility is

to consider the formulation of the consumption optimization in continuous

time domain, so that the problem can be solved using convex algorithms.

However, various manipulations may be required to the formulation so that

the solution is approximately equivalent to the optimal solution. In addi-

tion to the cycling effect and round-trip loss of the EVs as considered in

the proposed framework, the efficiency of energy consumption for various

appliances can also be included.

The scheduling optimization is based on the idea of advanced consump-

tion planning. It is useful to extend the optimization framework to (near)

real time scheduling scenarios where operators and consumers have more

flexibility to respond to the dynamic demand conditions. The successful
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deployment of such scheduling optimization requires the availability of real

time pricing and the sophisticated ICT solutions.

The game theoretic optimization framework proposed in Chapter 5 for

appliances’ consumption scheduling was formulated based on consumers’ co-

ordination. A further research can be directed under the consideration of

competitive situations, where consumers are able to sell back their locally

generated energy to the grid in order to generate additional profits in a

competitive pricing manner. Bayesian games with imperfect and incom-

plete information of consumers’ consumption behaviour can be included.

Investigation on how user privacy impacts on the effectiveness of demand

management is also required.

Mean field game is a novel research topic in game theory. The perfec-

tion of its theoretical basis and its potential applications are currently open

research topics. The study of EV charging optimization in Chapter 6 can

be extended to include practical conditions such as reasonable selection of

pricing functions and justification of Brownian motion representation. The

efficiency of the optimal MFE solution should be investigated.

Finally, the application of the powerful mathematical optimization tech-

niques, in particular game theoretic modeling is not limited to appliances’

consumption scheduling and EV charging scenarios. Applications such as au-

tonomous systems and self configuring and learning systems based on game

theoretic methods can be used in both the smart grid communications and

demand management. The development of games at the regulation level of

the demand-supply chain, such as robust auction games against cheating are

also important. Although the roadmap of worldwide smart grid deployment

is still indeterminate, it is almost certain that the future intelligent energy

network will bring substantial benefits and fundamental changes in way sim-

ilar to the Internet. Surely the smart grids is an exciting research area for

electrical and electronic engineers for many years to come.
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[114] K. Itō, “Multiple wiener integral,” J. Math. Soc. Japan, vol. 3, no. 1,

pp. 157–169, 1951.

[115] I. Gihman and A. Skorohod, Stochastic Differential Equations. Springer,

Berlin, 1972.
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