314 research outputs found

    A Coverage Monitoring algorithm based on Learning Automata for Wireless Sensor Networks

    Full text link
    To cover a set of targets with known locations within an area with limited or prohibited ground access using a wireless sensor network, one approach is to deploy the sensors remotely, from an aircraft. In this approach, the lack of precise sensor placement is compensated by redundant de-ployment of sensor nodes. This redundancy can also be used for extending the lifetime of the network, if a proper scheduling mechanism is available for scheduling the active and sleep times of sensor nodes in such a way that each node is in active mode only if it is required to. In this pa-per, we propose an efficient scheduling method based on learning automata and we called it LAML, in which each node is equipped with a learning automaton, which helps the node to select its proper state (active or sleep), at any given time. To study the performance of the proposed method, computer simulations are conducted. Results of these simulations show that the pro-posed scheduling method can better prolong the lifetime of the network in comparison to similar existing method

    D4.2 Intelligent D-Band wireless systems and networks initial designs

    Get PDF
    This deliverable gives the results of the ARIADNE project's Task 4.2: Machine Learning based network intelligence. It presents the work conducted on various aspects of network management to deliver system level, qualitative solutions that leverage diverse machine learning techniques. The different chapters present system level, simulation and algorithmic models based on multi-agent reinforcement learning, deep reinforcement learning, learning automata for complex event forecasting, system level model for proactive handovers and resource allocation, model-driven deep learning-based channel estimation and feedbacks as well as strategies for deployment of machine learning based solutions. In short, the D4.2 provides results on promising AI and ML based methods along with their limitations and potentials that have been investigated in the ARIADNE project

    Model-Based Runtime Adaptation of Resource Constrained Devices

    Get PDF
    Dynamic Software Product Line (DSPL) engineering represents a promising approach for planning and applying runtime reconfiguration scenarios to self-adaptive software systems. Reconfigurations at runtime allow those systems to continuously adapt themselves to ever changing contextual requirements. With a systematic engineering approach such as DSPLs, a self-adaptive software system becomes more reliable and predictable. However, applying DSPLs in the vital domain of highly context-aware systems, e.g., mobile devices such as smartphones or tablets, is obstructed by the inherently limited resources. Therefore, mobile devices are not capable to handle large, constrained (re-)configuration spaces of complex self-adaptive software systems. The reconfiguration behavior of a DSPL is specified via so called feature models. However, the derivation of a reconfiguration based on a feature model (i) induces computational costs and (ii) utilizes the available memory. To tackle these drawbacks, I propose a model-based approach for designing DSPLs in a way that allows for a trade-off between pre-computation of reconfiguration scenarios at development time and on-demand evolution at runtime. In this regard, I intend to shift computational complexity from runtime to development time. Therefore, I propose the following three techniques for (1) enriching feature models with context information to reason about potential contextual changes, (2) reducing a DSPL specification w.r.t. the individual characteristics of a mobile device, and (3) specifying a context-aware reconfiguration process on the basis of a scalable transition system incorporating state space abstractions and incremental refinements at runtime. In addition to these optimization steps executed prior to runtime, I introduce a concept for (4) reducing the operational costs utilized by a reconfiguration at runtime on a long-term basis w.r.t. the DSPL transition system deployed on the device. To realize this concept, the DSPL transition system is enriched with non-functional properties, e.g., costs of a reconfiguration, and behavioral properties, e.g., the probability of a change within the contextual situation of a device. This provides the possibility to determine reconfigurations with minimum costs w.r.t. estimated long-term changes in the context of a device. The concepts and techniques contributed in this thesis are illustrated by means of a mobile device case study. Further, implementation strategies are presented and evaluated considering different trade-off metrics to provide detailed insights into benefits and drawbacks

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Bio-inspired network security for 5G-enabled IoT applications

    Get PDF
    Every IPv6-enabled device connected and communicating over the Internet forms the Internet of things (IoT) that is prevalent in society and is used in daily life. This IoT platform will quickly grow to be populated with billions or more objects by making every electrical appliance, car, and even items of furniture smart and connected. The 5th generation (5G) and beyond networks will further boost these IoT systems. The massive utilization of these systems over gigabits per second generates numerous issues. Owing to the huge complexity in large-scale deployment of IoT, data privacy and security are the most prominent challenges, especially for critical applications such as Industry 4.0, e-healthcare, and military. Threat agents persistently strive to find new vulnerabilities and exploit them. Therefore, including promising security measures to support the running systems, not to harm or collapse them, is essential. Nature-inspired algorithms have the capability to provide autonomous and sustainable defense and healing mechanisms. This paper first surveys the 5G network layer security for IoT applications and lists the network layer security vulnerabilities and requirements in wireless sensor networks, IoT, and 5G-enabled IoT. Second, a detailed literature review is conducted with the current network layer security methods and the bio-inspired techniques for IoT applications exchanging data packets over 5G. Finally, the bio-inspired algorithms are analyzed in the context of providing a secure network layer for IoT applications connected over 5G and beyond networks

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    A Dynamical System Approach for Resource-Constrained Mobile Robotics

    Get PDF
    The revolution of autonomous vehicles has led to the development of robots with abundant sensors, actuators with many degrees of freedom, high-performance computing capabilities, and high-speed communication devices. These robots use a large volume of information from sensors to solve diverse problems. However, this usually leads to a significant modeling burden as well as excessive cost and computational requirements. Furthermore, in some scenarios, sophisticated sensors may not work precisely, the real-time processing power of a robot may be inadequate, the communication among robots may be impeded by natural or adversarial conditions, or the actuation control in a robot may be insubstantial. In these cases, we have to rely on simple robots with limited sensing and actuation, minimal onboard processing, moderate communication, and insufficient memory capacity. This reality motivates us to model simple robots such as bouncing and underactuated robots making use of the dynamical system techniques. In this dissertation, we propose a four-pronged approach for solving tasks in resource-constrained scenarios: 1) Combinatorial filters for bouncing robot localization; 2) Bouncing robot navigation and coverage; 3) Stochastic multi-robot patrolling; and 4) Deployment and planning of underactuated aquatic robots. First, we present a global localization method for a bouncing robot equipped with only a clock and contact sensors. Space-efficient and finite automata-based combinatorial filters are synthesized to solve the localization task by determining the robot’s pose (position and orientation) in its environment. Second, we propose a solution for navigation and coverage tasks using single or multiple bouncing robots. The proposed solution finds a navigation plan for a single bouncing robot from the robot’s initial pose to its goal pose with limited sensing. Probabilistic paths from several policies of the robot are combined artfully so that the actual coverage distribution can become as close as possible to a target coverage distribution. A joint trajectory for multiple bouncing robots to visit all the locations of an environment is incrementally generated. Third, a scalable method is proposed to find stochastic strategies for multi-robot patrolling under an adversarial and communication-constrained environment. Then, we evaluate the vulnerability of our patrolling policies by finding the probability of capturing an adversary for a location in our proposed patrolling scenarios. Finally, a data-driven deployment and planning approach is presented for the underactuated aquatic robots called drifters that creates the generalized flow pattern of the water, develops a Markov-chain based motion model, and studies the long- term behavior of a marine environment from a flow point-of-view. In a broad summary, our dynamical system approach is a unique solution to typical robotic tasks and opens a new paradigm for the modeling of simple robotics system
    • …
    corecore