Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

4-16-2018

A Dynamical System Approach for Resource-
Constrained Mobile Robotics

Tauhidul Alam
talam00S @fiu.edu

DOI: 10.25148/etd. FIDC006561
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

b Part of the Dynamics and Dynamical Systems Commons, and the Robotics Commons

Recommended Citation

Alam, Tauhidul, "A Dynamical System Approach for Resource-Constrained Mobile Robotics" (2018). FIU Electronic Theses and
Dissertations. 382S.
https://digitalcommons.fiu.edu/etd/3825

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.


https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/281?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3825?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A DYNAMICAL SYSTEM APPROACH FOR RESOURCE-CONSTRAINED
MOBILE ROBOTICS

A dissertation submitted in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY

in
COMPUTER SCIENCE
by
Tauhidul Alam

2018



To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Tauhidul Alam, and entitled A Dynamical System Ap-
proach for Resource-Constrained Mobile Robotics, having been approved in respect
to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

S. S. Iyengar

Bogdan Carbunar

Wei Zeng

Kemal Akkaya

Dylan A. Shell

Leonardo Bobadilla, Major Professor
Date of Defense: April 16, 2018

The dissertation of Tauhidul Alam is approved.

Dean John L. Volakis
College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2018

i



(© Copyright 2018 by Tauhidul Alam

All rights reserved.

1l



DEDICATION

To my family for their support and encouragement.

v



ACKNOWLEDGMENTS

I would like to praise Almighty God for his blessings of physical and mental
strength to finish my dissertation research. This dissertation would never have been
possible without the assistance and support of many people. First, I offer sincere
thanks to my advisor, Dr. Leonardo Bobadilla, who helped me complete the research
works presented in this dissertation through his continuous encouragement, support,
and technical suggestions along the way. He made me interested in doing research
on robotics and control theory.

I would like to express my sincere gratitude to all my dissertation committee
members: Dr. S. S. Iyengar, Dr. Bogdan Carbunar, Dr. Wei Zeng, and Dr. Kemal
Akkaya for their time and valuable feedback to improve my dissertation. My col-
laborator and committee member, Dr. Dylan Shell, has been an excellent mentor
for me. I learned a lot from various insightful discussions with him. He has given
many helpful comments on my research.

I shared my work environment with great PhD students: Mahbub, Sebastian,
and Greg. It was intellectually stimulating and enjoyable to work together with
these smart people who provided me with lots of constructive feedback about my
research papers and presentations. Hence, I am thankful to them. I am also thankful
to other graduate students: Franklin, Pedro, and Richard who helped me with the
experiments and others.

I would have never been able to accomplish anything in life without the uncon-
ditional support of my parents. I am always grateful for their love and guidance
over the years. Last but not the least, I would like to dedicate this work to my wife,

Saima, for her help, encouragement, understanding, and patience. Thank you.



Finally, I would like to acknowledge the financial support of a Florida Interna-
tional University Graduate School Dissertation Year Fellowship. This dissertation

was also supported in part by Army Research Office Grant 67736CSII.

vi



ABSTRACT OF THE DISSERTATION
A DYNAMICAL SYSTEM APPROACH FOR RESOURCE-CONSTRAINED
MOBILE ROBOTICS
by
Tauhidul Alam
Florida International University, 2018
Miami, Florida

Professor Leonardo Bobadilla, Major Professor

The revolution of autonomous vehicles has led to the development of robots
with abundant sensors, actuators with many degrees of freedom, high-performance
computing capabilities, and high-speed communication devices. These robots use a
large volume of information from sensors to solve diverse problems. However, this
usually leads to a significant modeling burden as well as excessive cost and compu-
tational requirements. Furthermore, in some scenarios, sophisticated sensors may
not work precisely, the real-time processing power of a robot may be inadequate, the
communication among robots may be impeded by natural or adversarial conditions,
or the actuation control in a robot may be insubstantial. In these cases, we have
to rely on simple robots with limited sensing and actuation, minimal onboard pro-
cessing, moderate communication, and insufficient memory capacity. This reality
motivates us to model simple robots such as bouncing and underactuated robots
making use of the dynamical system techniques. In this dissertation, we propose a
four-pronged approach for solving tasks in resource-constrained scenarios: 1) Com-
binatorial filters for bouncing robot localization; 2) Bouncing robot navigation and
coverage; 3) Stochastic multi-robot patrolling; and 4) Deployment and planning of

underactuated aquatic robots.

vii



First, we present a global localization method for a bouncing robot equipped
with only a clock and contact sensors. Space-efficient and finite automata-based
combinatorial filters are synthesized to solve the localization task by determining
the robot’s pose (position and orientation) in its environment.

Second, we propose a solution for navigation and coverage tasks using single or
multiple bouncing robots. The proposed solution finds a navigation plan for a single
bouncing robot from the robot’s initial pose to its goal pose with limited sensing.
Probabilistic paths from several policies of the robot are combined artfully so that
the actual coverage distribution can become as close as possible to a target coverage
distribution. A joint trajectory for multiple bouncing robots to visit all the locations
of an environment is incrementally generated.

Third, a scalable method is proposed to find stochastic strategies for multi-robot
patrolling under an adversarial and communication-constrained environment. Then,
we evaluate the vulnerability of our patrolling policies by finding the probability of
capturing an adversary for a location in our proposed patrolling scenarios.

Finally, a data-driven deployment and planning approach is presented for the
underactuated aquatic robots called drifters that creates the generalized flow pattern
of the water, develops a Markov-chain based motion model, and studies the long-
term behavior of a marine environment from a flow point-of-view.

In a broad summary, our dynamical system approach is a unique solution to
typical robotic tasks and opens a new paradigm for the modeling of simple robotics

systems.

viil



TABLE OF CONTENTS

CHAPTER PAGE
1. INTRODUCTION . . .. ..o [
1.1 Background . . . . . .. . ... [
1.2 Fundamental Challenges for Typical Robotic Tasks . . . . . . .. .. .. i
1.3 Motivation. . . . . . ... E
1.3.1 Dynamical System Methods . . . . . . . .. ... ... ... ...... ﬁl
1.4 Key Themes and Contributions . . . . . . ... .. ... ... ... ... 1]
1.4.1 Combinatorial Filters for Bouncing Robot Localization . . . . . . . .. 19
1.4.2  Bouncing Robot Navigation and Coverage . . . . . . . ... ... ... IE
1.4.3 Stochastic Multi-Robot Patrolling . . . . . . . ... ... .. ... ... 14
1.4.4 Deployment and Planning for Underactuated Aquatic Robots . . . . . 14
1.5 Organization of the Dissertation . . . . . . . .. ... ... ... ... .. 11

2. COMBINATORIAL FILTERS FOR BOUNCING ROBOT LOCALIZATION @
2.1 Motivation and Challenges . . . . . . . . ... ... ... ... ... ..

2.2 Related Work . . . . . . . . @
2.2.1 Robot Localization . . . . . . . . . . ... Iﬁ
2.2.2 Combinatorial Filters . . . . . . . . . . . ...
2.3 Model and Definitions . . . . . . . . ...
231 Robot Model . . . . . oo g
2.3.2 Simple Cell-to-Cell Mapping . . . . . . . . . . ... .. .. ... .... kg
2.3.3 Problem Formulation . . . . . . . . . . .. ... ... ... %

2.4 Method . . . . . .
2.4.1 Finding Periodic Groups and Transient Trajectories and Constructing

Periodic Group I-State Graphs . . . . . . . . ... ... ... bd
2.4.2  Creating Nondeterministic I-State Automaton . . . . . . . .. ... .. B3
2.4.3 Nondeterministic I-State Automaton to Deterministic I-State Automa-

ton Conversion . . . . . . . . . .. ... ﬂ
2.4.4  Filters for the Closed- and Open-World Problems . . . . . .. ... .. 34
2.5 Implementation . . . . . .. ... ﬁ
2.5.1 Simulation Results . . . . . . . . . ... L 39
2.5.2  From Simulation to Physical Implementation . . . .. .. .. ... .. 4]
2.6 Summary ... ... ld
3. BOUNCING ROBOT NAVIGATION AND COVERAGE . . ... .. .. 4d
3.1 Motivation and Challenges . . . . . . .. .. .. ... ... 4d
3.2 Related Work . . . . . . . .. E
3.2.1 Robot Navigation . . . . . . . . .. .. . 5d
3.2.2 Robot Coverage . . . . . . . . . .. 51
3.3 Preliminaries . . . . . . ... a
331 Robot Model . . . ... .. ... ... ... 53

X



3.3.2 System Model . . . . . . . ...
3.3.3  Uncertainty Model . . . . . . . .. ... oL
3.3.4 Problem Formulation . . . . . ... .. ... ... ... ... ...
3.4 Approach . . . ...
3.4.1 Finding Roadmap and Minimum Navigation Plan for a Single Robot

3.4.2  Generating All Minimum Navigation Plans for a Single Robot . . . . .
3.4.3 Finding Bouncing Policy Distribution for a Single Robot . . . . . . ..
3.4.4 Finding Joint Trajectory of Multiple Robots for Coverage . . . . . ..
3.5 Experimental Results . . . . . . ... .. ...
3.5.1 Minimal Navigation Plan Result for a Single Robot . . . . . . . .. ..
3.5.2  All Minimum Navigation Plans Generation Result for a Single Robot .
3.5.3 Result of Bouncing Policy Distribution for a Single Robot . . . . . ..
3.5.4 Result of Joint Trajectory of Multiple Robots for Coverage . . . . . . .
3.6 Summary ...

4. STOCHASTIC MULTI-ROBOT PATROLLING . .. ... ... .. ...
4.1 Motivation and Challenges . . . . . . . . ... .. ... ..
4.2 Related Work . . . . .. oo
4.3 Preliminaries . . . . . . ...
4.3.1 Workspace and Motion Model . . . . . . . ... .. ... ... .....
4.3.2 Problem Formulation . . . . . .. ... ... 000
4.4 Methodology . . . . . . . . .
4.4.1 Distributed Patrolling Strategies . . . . . . . . .. ... ... .. ...
4.4.2 Game Theoretical Approach . . . . . . . . . .. ... ... ... ...,
4.4.3 Finding the Limited Visibility Polygons for Patrolling . . . . . . . . ..
4.4.4 Finding Visibility-Based Distributed Patrolling Policies . . . . . . . ..
4.4.5 Finding Visibility-Based Centralized Patrolling Policies . . . . . . . . .
4.4.6  Vulnerability Evaluation of Patrolling Policies . . . . . . . .. ... ..
4.5 Experimental Evaluation . . . . . . . . ... 0000
4.5.1 Decentralized Patrolling Result . . . . .. .. ... .. ... ... ...
4.5.2  Game Theoretical Optimal Strategies Result . . . . . . . ... ... ..
4.5.3 Result of Visibility-Based Distributed Patrolling Policies . . . . . . . .
4.5.4 Result of Visibility-Based Centralized Patrolling Policies . . . . . . . .
4.5.5 Computation Time Estimation of Visibility-Based Patrolling Policies

4.5.6 Result of Vulnerability Evaluation of Patrolling Policies . . . . . . . ..
4.5.7 Hardware Implementation . . . . . .. .. ... ... ... ... ...
4.6 SUMMATY . . . . . o ot

5. DEPLOYMENT AND PLANNING FOR UNDERACTUATED AQUATIC

ROBOTS . . .
5.1 Motivation and Challenges . . . . . . . . . .. ... ... ... .....
5.2 Background . . . . ...
5.3 Preliminary Description . . . . . . . . ... 0oL




5.3.1 Environment and Motion Model . . . . . . . .. .. ... ... .....
5.3.2 Problem Formulation . . . . . . .. ... ... ... ... ... ... ..
5.4 Algorithm Description . . . . . . . . . . ...
5.4.1 Data Collection . . . . . . . . . ...
5.4.2  Generation of a Vector Field and Flow Lines . . . . . .. . .. ... ..
5.4.3 Finding the Long-term Behavior of the Water Flow . . . . . . . . . ..
5.4.4 Determining Deployment Locations of Drifters . . . . . . . .. ... ..
5.4.5 Locating the Visibility-Based Deployment Locations for Drifters . . . .
5.4.6 Calculating the Reachability of a Long-term Drifter Trajectory
5.4.7 Developing an Optimal Navigation Policy for a Drifter . . . . . . . ..
5.5 Results. . . . . . o
5.5.1 Software Simulation . . . . . . .. ... ...
5.6 Summary ...

6. DISCUSSION AND CONCLUSIONS . . . ... .. .. ... .. .....
6.1 Dissertation Summary . . . . . ...
6.2 Open Problems . . . . . .. ... ...
6.2.1 Design and Planning for Simple Robots . . . . . .. ... ... .. ..
6.2.2 Comparison with Analytical Solutions . . . . . . ... ... ... ...
6.2.3 Minimalist Communication Protocol . . . . . . .. . ... ... ....
6.3 Future Directions and Extensions . . . . . . .. ... .. ... ... ...

x1

EEEEEEEEEEEE

16:

elelkkkl

169




LIST OF TABLES

TABLE PAGE
2.1 No. of states and computation time comparison. . . . . . . . ... ... 44
2.2 Comparison of no. of localization configurations. . . . . .. .. ... .. 44
2.3 Comparison of different localization methods. . . . . . . . .. ... ... 41
3.1 Optimal bouncing policy distribution result . . . . . . ... .. ... .. &1

4.1 Comparison of average first hitting time of our approach, MAECT with
uniform and random robot placement and existing two methods

(DCP, DNCP) for 30 experiments . . . . . . ... ... .. ..... 112
4.2 Payoff matrices for a small graph . . . . .. ... ... ... ... .. 113
4.3  Optimal mixed strategy result for the small graph . . . . . ... .. .. 116
4.4  Running time of Algorithm (3 . . . . . . . . . ... ... ... 121

4.5 Computation time for determining visibility-based patrolling policies. . . [121]

4.6 Probability of capturing an adversary py through the visibility of pa-
trollers at the blue encircled cell of Figure [£.14] following two dis-
tributed and randomized patrolling policies of Figure[d.9l for different
required time steps of a successful attack. . . . . . ... ... . ...

4.7  Probability of capturing an adversary p,; at the blue encircled cell of

Figure .16l following three centralized and randomized patrolling
policies of Figure I3l . . . . . . . . .. .. ... 124

xii



LIST OF FIGURES

FIGURE PAGE

1.1  Examples of sensor-rich mobile robots: (a) The Google’s Waymo self-
driving car [sel]; (b) A Knightscope security robot [sra]; (¢) The
department of homeland security’s surveillance drone (UAV) ;
(d) The Toyota third generation humanoid robot T-HR3 : (e)
The TurtleBot 2 mobile robot [tur]; (f) The Willow Garage’s PR2
robot [pr2]; (g) The Kuka industrial robot ; (h) The YSI Ecomap-
per autonomous underwater vehicle (AUV) ; () A rendering of
the NASA’s Curiosity rover for Mars exploration [roval. . . ... ..

1.2 Simple household robots: (a) The iRobot Roomba vacuuming robot [irol;
(b) The RoboMop floor duster [rmo]. . . ... ... .. ... ....

1.3 Organization of this dissertation with arrows indicating dependencies.
2.1 An example of a simple bouncing robot. . . . . .. .. ...

2.2 Two cycle forming scenarios in the cell sequence: (a) Same initial and
ending cells; (b) Different initial and ending cells. . . . . . . .. ..

2.3 A periodic group I-state graph. . . . . . .. ... ...
2.4 A nondeterministic I-state automaton. . . . . . . .. ... ...
2.5 A filter for the closed-world localization problem. . . . . . . ... .. ..

2.6 A simple environment with three randomly placed obstacles (completely
interior) and one static obstacle (touching boundary). . . .. .. ..

2.7 A comparison of simulations for different environment types: (a) the
total number of the periodic groups r; (b) the length of the longest
transient trajectory. . . . . . ... Lo Lo

2.8 (a) The first lab environment and (b) the simulation result showing
the visualization of the periodic group for this environment and the
bouncing angle ¢ =45°. . . . ..o oo

2.9 (a) The second lab environment and (b) the simulation result showing
the visualization of all periodic groups for this environment and the

bouncing angle ¢ = 135°. . . . . . .. .. oL (42

2.10 Created nondeterministic I-state automaton for the environment and
the simulation result of Figure 28 . . . . . ... ... ... ... ..

2.11 Converted deterministic I-state automaton from the nondeterministic

H

[-state automaton of Figure 2101 . . . . . . . . ... ... ... ... 44

xiil



2.12 Physical localization experiment in the environment of Figure 2.8|(a):

(a) The robot was placed initially in the top left part of the environ-
ment; (b) after moving forward and bouncing with ¢ = 45°, it was
localized up to 3 configurations in the periodic group visualized in

Figure 2. 8(b). . . . . . ..

2.13 Physical localization experiment in the environment of Figure 2Z0(a):

3.1

3.2
3.3

3.4

3.5

3.6

3.7

(a) The robot was placed initially in the top right part of the en-
vironment; (b) after moving forward and bouncing with ¢ = 135°
it was localized up to 1 configuration in one of the periodic groups
visualized in Figure Z9I(b). . . . . . . .. ... oo

Simple bouncing strategy: (a) The robot rotates counterclockwise by
the bouncing angle ¢ with respect to its current direction while it
bounces off of the boundary of the environment; (b) When two robots
collide with each other (only in the multi-robot coverage task), they
then turn counterclockwise with their bouncing angles ¢, ¢o from
their current moving orientations. . . . . . . . .. . ... ... L.

An example of a generated roadmap. . . . . . . ... ...

Trajectory generation and neighbor selection: a) a generated trajectory
Z from an initial configuration z; b) the best nearest neighbor £
(green square) among unprocessed neighbors of last cell b of the
trajectory ©. . . . . .. L Lo

A joint trajectory of the robots connecting through the new neighboring
cell B o o o

A laboratory environment: (a)an environment using floor and bricks
that includes one completely interior obstacle and one obstacle touch-
ing the boundary of the environment; (b) the configuration space of
the environment shown in (a). . . . ... .. ... ... . ... ...

Simulation results of two navigation plans in the environment of Fig-
ure 3.5t a) the blue arrowed path from the initial configuration
bottom right corner of FE, facing East) to the goal configuration
bottom left corner of E, facing East). b) the blue arrowed path
from the initial configuration (bottom left corner of the obstacle at-
tached to OF, facing North) to the goal configuration (bottom right
corner of E, facing East). . . . .. ... .. ... ...

Snapshots of different configurations of the robot executing the first
navigation plan of the simulation result of Figure B.0[a): a) the
initial configuration; 90° rotations are illustrated by the snapshot
transitions a—b, ¢c—d, f—g, and h—i; after snapshots b, d, e, and g, the
robot moves forward; i) the goal configuration. . . . .. .. .. ...

X1v



3.8  Snapshots of different configurations of the robot executing the second
navigation plan of the simulation result of Figure BG(b): a) the
initial configuration; 135° rotations are illustrated by the snapshot
transitions b—c, c¢—d, e-f, f-g; a 90° rotation is illustrated by the
snapshot transition h—i; after snapshots a, d, and g, the robot moves
forward; i) the goal configuration. . . . . . ... .. ... ... ...

3.9  Simulation results of two navigation plans in a complex environment be-
tween pairs of initial configurations (red circle locations of the envi-
ronment, facing East) and goal configurations (green circle locations
of the environment, facing East). . . . ... ... ... ... ...

3.10 Another navigation plan generated by our algorithm that represents the
blue arrowed path between the initial configuration (red circled loca-
tion facing South) and the goal configuration (green circle location
facing East) using all given bouncing angles 45°, 90°, and 135°.

3.11 Comparison of using each number of bouncing angles for generated min-
imum navigation plans in the environment depicted in Figure 3.5l

3.12 Comparison of using each number of bouncing angles for generated min-
imum navigation plans in the environment depicted in Figure 3.10.

3.13 Persistent groups visualization in E for different directions of S and
their corresponding heatmap of the limiting distribution for the bounc-
ing angle including the error, 30° +5°. . . . .. ... ... ...

3.14 Persistent groups visualization in E for different directions of S and
their corresponding heatmap of the limiting distribution for the bounc-
ing angle including the error, 75°+5°. . .. .. ... L.

3.15 Persistent groups visualization in E for different directions of S!' and
their corresponding heatmap of the limiting distribution for the bounc-
ing angle including the error, 315°£5°. . . . . . ... ... ... ..

3.16 From the simulation to the physical implementation: a) the given envi-
ronment to cover; b) a joint trajectory of the two robots generated
from our simulation is depicted with the paths of blue and green
arrows, the set of bouncing angles ® = {135°} and the initial config-
uration of the two robots (locations of the blue circle, facing West and
the green circle, facing East); there is only one robot-robot collision
in the middle of upper part of the environment; c)-f) four differ-
ent snapshots at different times of the hardware experiment of the
generated joint trajectory of two iRobot Create 2.0 robots controlled
with two Arduinos. . . . . . . ..o

3.17 Simulation results of the multi-robot coverage: a) the first simulation
environment; b) the comparison result of the number of steps re-
quired for the complete coverage of the first environment and the
number of robots used. . . .. ..o

XV



3.18 Simulation results of the multi-robot coverage: a) the second simula-
tion environment; b) the comparison result of the number of steps
required for the complete coverage of the second environment and
the number of robots used. . . . . . . ... ...

4.1  An illustration of a limited visibility polygon construction: (a) a blue
approximated polygon of the blue circle centered cell that covers all
the cells completely within a limited visibility range; (b) a limited
visibility polygon (light blue region) taking the intersecting region
between a visibility polygon of the infinite range (grey region) and
the approximated polygon (in dotted line) with the limited visibility

4.2 Base station placement and division of patrolling regions around the
base station in the environment. . . . . . . ...

4.3 A boundary region illustration: (a) the blue approximated visibility
polygon V' (x,) for a limited visibility range at a cell z; (b) the green
boundary region OV (x,) of V(x,). . ... ... ... L.

4.4 Comparison result of our MAECT method with uniform and random
robot placement as well as existing three methods (e.g., BMP, DCP,
DNCP) [AKKO0S] for patrolling. Each line represents the maximum,
minimum first hitting time and each box represents the median along
with the mean hitting time in the middle. . . . . . . ... .. ...

4.5  Different types of Graph for our MAECT method: a) Edge weight allo-
cation on a line graph of 20 vertices; b) Edge weight allocation on a
tree with 30 vertices; ¢) Edge weight allocation on a complete graph,
Kg; and d) Edge weight allocation on a randomly generated graph

with 50 vertices and 200 edges. . . . . . . . .. ...

4.6  Edge weight allocation for ten patrolling strategies of a small graph:
a)-h) Edge weight allocation for minimizing average commute time
towards vertex 1 to vertex 8 respectively; i) Edge weight allocation
for minimizing average commute time preferring a clique or subset
of vertices, {2,5,8}; and j) Edge weight allocation for minimizing
average commute time over all vertices. . . . . . .. ... ... ...

4.7  Limited visibility polygons (light blue region) for a minimum size subset
of cells (blue circles) that cover the whole environment. . . . . . ..

4.8  Limited visibility polygons (light blue region) for a minimum size subset
of cells (blue circles) that cover the whole environment. . . . . . . .

4.9  Distributed and randomized policies for two patrollers. . . . . . . . . ..
4.10 Limited visibility polygons (light blue region) for a subset of cells (blue
circles) covering the first region of the environment and a contact cell

blue circle) in the base station (green circle) communication region
CYAN TeGION). . . . o o i

Xvi



4.11

4.12

4.13
4.14

4.15

4.16

4.17

4.18

4.19

5.1

5.2

Limited visibility polygons (light blue region) for a subset of cells (blue
circles) covering the second region of the environment and a contact
cell (blue circle) in the base station (green circle) communication
region (Cyan region). . . . . ...

Limited visibility polygons (light blue region) for a subset of cells (blue
circles) covering the third region of the environment and a contact
cell (blue circle) in the base station (green circle) communication
region (Cyan region). . . . . . ...

Centralized and randomized policies for three patrollers. . . . . . . . ..

(a) The light blue limited visibility polygon for the target blue encircled
cell; (b) the boundary region of the limited visibility polygon con-
sisting of green cells that are first reachable from white cells in the
outside region of the limited visibility polygon. . . . . . . . .. ...

The histogram of the number of steps required (the hitting times) from
5000 Markov chain simulations for reaching the green boundary re-
gion of the limited visibility polygon starting from random white cells
in the outside region of the limited visibility polygon of Figure [4.14]
following two distributed patrolling policies of Figure and fitting
the maximum likelihood method of generalized lambda distribution
to the hitting times. . . . . . . . .. ... oL

(a) The light blue limited visibility polygon for the target blue encircled
cell and the cyan visibility region of a base station; (b) the boundary
region of the limited visibility polygon consisting of green cells that
are first reachable from white cells in the outside region of the limited
visibility polygon. . . . . . ... oo

The histogram of the number of steps required (the hitting times) from
5000 Markov chain simulations for reaching the green boundary re-
gion of the limited visibility polygon starting from random white
cells in the outside region of the limited visibility polygon of Fig-
ure following three centralized patrolling policies of Figure
and fitting the maximum likelihood method of generalized lambda
distribution to the hitting times. . . . . . .. .. ... ...

Two iRobot Create platforms along with added camera sensors and
Raspberry Pis as microcontrollers and an artificial lab environment

for patrolling with five different locations (A — E) to visit repeatedly.

Snapshots at different time steps of a distributed implementation of the
patrolling task using two iRobot create platforms. . . . . .. .. ..

Two examples of drifters observing the marine environments at partic-

24

[2d

ular depths [XLRI6L[pf]. . ... .. ... ... oL [13d

The area of interest in the Southern California Bight (SCB) region ob-
served by the Regional Ocean Modeling Systems (ROMS) [SMO05].

Xvil



9.3

5.4

5.5

5.6

5.7

5.8

9.9

An approximated 2-D visibility polygon (blue filled region) from the
water surface. . . . . . ..o

3-D workspace and action space: (a) A multiple current layered marine
environment and (b) Actions of a profiling drifter in three current
layers of the marine environment. . . . . . . . .. ... ... ... ..

A flow line from a location: (a) The flow line of the given 2-D vector
field for all time ¢; (b) The same flow line of the given 2-D vector
field for a small time step At. . . . .. ...

A Vector field and flow lines: (a) A 2-D Vector field for the water current
of ocean-surface; (b) Flow lines of one step-size from all locations of
ocean-surface. . . . ...

Simulation results of the long-term behavior of the water flow and the
long-term deployment strategy of drifters: (a) Two persistent groups
(the first one is composed of persistent cells in the green region and
the second one is composed of persistent cells in the red region) and
two single-domicile transient groups (the single-domicile transient
group of the first persistent group consists of transient cells in the
yellow region and the single-domicile transient group of the second
persistent group consists of transient cells in the blue region.). Also,
one multiple-domicile transient group of both persistent groups is
shown through the cyan region where both persistent groups are
the domiciles of transient cells in this region; (b) Initial deployment
locations or cells (filled in black circles) for regions of these persistent
and transient groups. . . . . ... ..o Lo

The expected absorption times for single- and multiple-domicile tran-
sient groups. . . ... .o

Simulation results of the long-term deployment policy for the visibility-
based coverage: (a) The minimum size subset of cells (in blue filled
circles) for the complete visibility (in the light blue region) of the
environment; (b) The reduced set of cells (in blue filled circles) as
the initial deployment locations or cells for drifters. . . . . . . . ..

5.10 Persistent behavior results after time ¢ = 1 hour: (a) Vector fields at

three water layers; (b) Persistent groups (blue and red regions) and
associated transient groups (the light blue region for the blue persis-
tent group, the light red region for the red persistent group, and the
purple region for both persistent groups) at the three current layers
as the long-term behavior of the water flow. . . . . . ... ... ..

5.11 Long-term reachability results after time ¢ = 1 hour: The light blue

reachable locations at three current layers in the long run from the
two green initial deployment locations of the drifter on the water
surface. . . .. L

xviil



5.12

5.13

5.14

5.15

5.16

6.1

Persistent behavior results after time ¢ = 12 hours: (a) Vector fields
at three water layers; (b) Persistent groups (blue and red regions)
and associated transient groups (the light blue region for the blue
persistent group, the light red region for the red persistent group,
and the purple region for both persistent groups) at the three current
layers as the long-term behavior of the water flow. . . . . . . . ..

Long-term reachability results after time ¢ = 12 hours: The light blue
reachable locations at three current layers in the long run from the
same green initial deployment locations of the drifter on the water
surface. . . .. L

Persistent behavior results after time ¢t = 24 hours: (a) Vector fields at
three water layers; (b) Persistent groups (blue regions) and associ-
ated transient groups (the light blue region for the blue persistent
group) at the three current layers as the long-term behavior of the
water flow. . . . ...

Long-term reachability results after time ¢ = 24 hours: The light blue
reachable locations at three current layers in the long run from the
same green initial deployment locations of the drifter on the water
surface. . . .. L

Optimal navigation policy result: (a) A 3-D environment with a red
goal location; (b) The optimal value function after the value itera-
tion convergence; (c¢) The optimal navigation policy showing active
vertical actions with blue arrows and passive horizontal drifts with
red arTOWs. . . . . ...

Different behaviors of bounce trajectories in a regular pentagon [NBLI7]. [168

XixX



CHAPTER 1
INTRODUCTION

1.1 Background

Mobile robotics has had great success in the areas of manufacturing [CLCI14], agri-
culture [LIWYQ9], healthcare [SGOI], home automation [MVHIZ4], military mis-
sions [WBLT99], transportation [MEFKI1], and surveillance systems [GKKPO6]. Fur-
thermore, mobile robotics is evolving quickly due to the improvement of sensing
technology, computational power, mathematical models, and algorithmic techniques.
The proliferation of mobile robots is spreading into many facets of our daily lives.
As such, these are exciting times for the robotics research community, which further
motivate us to study the robotics systems. The commercial robotics industry and
government organizations are also encouraging new research ideas to be brought to

life through fundings and robotics competitions. Select examples include:

e Google self-driving car project “Waymo” began test-driving of fully self-driving
vehicles on public roads [sel]. Tt is expected that people will soon use these

vehicles in their daily lives. The technological development of these self-driving

vehicles started through the DARPA Grand Challeng.

e National Institute of Standards and Technology (NIST) organized an Agile
Robotics for Industrial Automation Competition (ARIAC) to promote agility
in industrial robot systems by utilizing the latest advances in artificial intelli-

gence and robot planning. The goal is to enable industrial robots on the shop

thttp://www.darpa.mil/grandchallenge/

https://www.nist.gov /el /isdms /agile-robotics-industrial-automation-competition



floors to be more productive, more autonomous, and more responsive to the

needs of the shop floor workers.

e The VEX Robotics Competition, presented by the Robotics Education and
Competition Foundation, is the largest and fastest growing global robotics
program for middle school and high school studentﬂ. Students, under the

guidance of their teachers and mentors, build innovative robots and compete

in an exciting engineering challenge.

Additionally, the robotics industry continues to develop sensor-rich mobile robots
(Figure [[T)) which increased the availability of autonomous robots in practice. As
evidence, Waymo leads in the race of developing self-driving cars (Figure[Ia)) and

autonomous miles driven by these cars [wayl§]. In California, they drove 352,545

autonomous miles with 63 total disengagementj7 for a yearly average of 5,595 miles
per disengagement from December 2016 to November 2017. They are now expanding
their service to more cities across the United States.

Security robots are increasingly being used as guards [srol4]. And Knightscope,
Inc. is developing autonomous security robots (Figure[L.Il(b)) having a long-term vi-
sion to predict and prevent crime by utilizing autonomous security robots, analytics
and engagement [sro]. Moreover, an unmanned aerial vehicle (UAV) or a drone is a
common robotic platform for numerous civilian, commercial, military, and aerospace
applications. For instance, the U.S. Department of Homeland Security built drones
(Figure [[I(c)) that can detect civilians carrying guns and track their cell phones

using “signal interception” and “direction finding” technologies [drob]. Commer-

3https://www.roboticseducation.org/competition-teams/vex-robotics-competition /

4A disengagement is when the driver takes over the car due to technology failure or
the intervention for the safe operation.



Figure 1.1: Examples of sensor-rich mobile robots: (a) The Google’s Waymo self-
driving car [sel]; (b) A Knightscope security robot [sro]; (¢) The department of
homeland security’s surveillance drone (UAV) [drobl; (d) The Toyota third genera-
tion humanoid robot T-HR3 [hr]; (e) The TurtleBot 2 mobile robot [tur]; (f) The
Willow Garage’s PR2 robot [pr2]; (g) The Kuka industrial robot [kuk]; (h) The
YSI Ecomapper autonomous underwater vehicle (AUV) [gli]; (i) A rendering of the
NASA’s Curiosity rover for Mars exploration [rovaj.



cial uses of drones as data capturing devices are also on the rise [droa]. Among
the industries and fields where drone technology uses are thriving include security,
construction, agriculture, mining, and infrastructure inspections.

Humanoid robots have come a long way since Piero Fiorito unveiled the first
gigantic humanoid robot called Cygan in 1957. A modern third generation hu-
manoid robot example designed and developed by Toyota is shown in Figure [[LT|(d)
that can coexist with humans and assist them in their daily lives like mobility
needs [hr]. An alternative platform for interacting with humans is a mobile ma-
nipulator (Figure [[I(e)—(g)). The Turtlebot (Figure [[Ie) and the PR2 manipu-
lator (Figure [LIN(f)) from Willow Garage combine the mobility to navigate human
environments and the dexterity to grasp and manipulate objects in those environ-
ments [furl [pr2]. Some industrial manipulators from Kuka (Figure [ Ig)) have long
been used in assembly lines for improved efficiency and accuracy which perform
repetitive tasks such as spot welding and painting [kuk].

On the other hand, aquatic robots or underwater vehicles provide a means of col-
lecting data about aquatic ecosystems or monitoring a marine environment. One ex-
ample is the YSI EcoMapper autonomous underwater vehicle (AUV) (Figure[LI(h))
which can collect bathymetry and water quality data [gli]. NASA’s Curiosity rover
(Figure [[L1I(i)) is expected to drive autonomously to search for actual signs of past

Mars life by doing on-site measurements and collecting samples [rovh].

1.2 Fundamental Challenges for Typical Robotic Tasks

The advancement of autonomous vehicles has led to the development of robots
with abundant sensors, actuators with many degrees of freedom, high-performance

computing capabilities, and high-speed communication devices. These sensor-rich



robots are utilized to solve diverse robotic tasks. Some typical tasks in mobile

robotics are as follows [LaV13):

e Modeling: The modeling task aims to develop a mechanically stable sys-
tem and model the system using system identification ﬂm Probabilistic
modeling has proved to be useful in taking noise and model uncertainties into

account that arise when using real sensors.

e Mapping: Once a robot has a system model, it needs a representation of
its environment. The mapping task constructs the representation of the en-
vironment accessible by the robot. This environment representation can be
occupancy grid maps, topological maps, and bitmaps. Robots can use several

sensors such as LIDARs or high-resolution cameras for mapping [TBF05].

e Localization: A robot needs to localize itself after having the representation
of the environment. Particularly, the localization task determines the robot’s
pose (position and orientation or the direction it is facing) relative to a given
environment taking information from GPS, laser range finder, compass, and
camera sensors. There is a subtle distinction between [localizing a robot and
tracking a robot. In tracking a robot, the initial robot pose is known. In
localizing a robot globally, the initial pose of the robot is unknown which is

also called global localization.

e Navigation: Given the representation of the environment and a prescribed
location in the environment, this navigation task generates a trajectory for
a robot to reach its prescribed or goal location as efficiently and reliably as
possible. Then, the robot uses its sensor feedback for executing the naviga-
tion trajectory. The navigation task involves both path planning which is the

decision making of a robot about what to do over the long term to achieve its



goal and obstacle avoidance which is the modulation of the trajectory of the

robot to avoid collisions [SNS04].

e Coverage: The coverage task ensures that no regions of interest of the given
environment have been left unexplored by the robot. This task is computa-
tionally expensive for a single robot. The coverage time is very high for a
single robot as opposed to multiple robots. Thus, multi-robot coverage meth-
ods have been well studied [ChoO1l [GC13|]. These approaches for solving the
coverage task are divided into offline methods, in which the map of the envi-
ronment is known, and online methods, in which the map of the environment

is unknown.

e Patrolling: The patrolling task is the activity of going around or through
an area at regular intervals for security purposes. Patrolling schemes are
further categorized into perimeter patrolling, which is the activity of going
through an area and area patrolling, which is the activity of going around an
area [PR11I]. The patrolling task entails having periodic visits of locations of
interest whereas the coverage task requires just one pass. As with coverage,

the patrolling task can be performed by single or multiple mobile robots.

e Coordination: When multiple robots are involved in a task, their motions
need to be synchronized to avoid collisions and solve the task. A central-
ized controlling unit can work as a coordinator to communicate with multiple
robots while solving the task. Robots can also communicate with each other

to coordinate themselves.

For solving these typical tasks, the sensor-rich mobile robots use a large volume
of information from sensors. However, no real sensor can measure everything en-

tirely and accurately. In other words, perfect sensing is not possible in practice.



Information loss and time delays are expected in processing the wealth of sensor
information. Only a hypersensor instantaneously measures everything, records it in
the storage, and responds immediately. The completeness, accuracy, and timeliness
of the information are critically dependent upon the hypersensor. Hence, solving a
task using a sensor-rich mobile robot usually leads to a significant modeling burden
as well as excessive cost, sensing, communication, memory, and computation require-
ments. Because of these issues, it is better for a robot to require less information
from sensors about the physical world.

Furthermore, some extrinsic sensors such as GPS may not work precisely in
indoor and underwater environments, and compass readings can be disturbed by
electromagnetic fields. In some cluttered environments, visual perception can be
ineffective and expensive in poorly illuminated conditions. In privacy-preserving en-
vironments, some sensors, e.g., a camera may be prevented from being used for data
collection. The real-time processing power of a robot may be inadequate and the
actuation control in a robot may be insubstantial. Natural or adversarial situations
can impede the communication among multiple robots in a congested environment.
For security reasons, the communication among robots may be kept at a minimum
level. In these scenarios, we can alternatively rely on simple robots. Therefore,
the planning and control of simple robots are required that will satisfy various ob-
jectives such as making the robot behavior unpredictable, minimizing the traveling
duration, sensing information, actuation control, communication, and computation,

or handling the limited visibility of the robot.



Figure 1.2: Simple household robots: (a) The iRobot Roomba vacuuming robot [iro];
(b) The RoboMop floor duster [rmoj.

1.3 Motivation

The development of sensor-rich mobile robots often starts with the introduction of
simpler systems. The prevalence of sensors with lower costs and the trend of devel-
oping small mechanical, sensing, and computing components are making robots to
enter our homes. Consequently, some simple robots are being incorporated into our
household chores. The well-known Roomba vacuum cleaning robot (Figure [L2(a))
lives in many households and uses zig-zag and wall following techniques for vacu-
uming. The Weaselball is a $4 toy that contains only a battery connected to an
oscillating motor. One of the simplest robot designs is the RoboMop, which is es-
sentially a Weaselball enclosed in a dusting ring (Figure [L2b)) and picks up dust
as it rolls. Experimental mobile robotics is the main inspiration for the concepts
presented in this dissertation. Considering the availability of simple robots, the
primary motivation of our work is to use simple and inexpensive robots in solving
fundamental robotic tasks.

More importantly, there are some stimulating reasons why we use simple or

resource-constrained robots.



. Simple robots have inexpensive actuators and sensors which make them suit-
able for long-term deployments, numerous applications, and research prototyp-
ing and verification. Moreover, simple robots can also reduce the engineering

costs associated with sensor calibration and manufacturing.

. There are limitations of sensors in some environments as explained before,
e.g., GPS-denied, communication-challenged, cluttered, privacy-preserving,
and adversarial environments. Simple robots can overcome these limitations

using a minimal number of sensors.

. Statistical assumptions about motion errors and sensor noise to model the
uncertainty are not always accurate. The minimal number of sensors in the
simple robots cause them to be less susceptible to failure and make them

robust against the sensing uncertainty of a lot of sensors.

. Simple robots consume less energy because they can feed sensor outputs di-
rectly to actuators, e.g., motors, and they use some minimal amount of logic

circuitry to maintain sensor observations.

. There is less sensed and transmitted information for a robot to solve a task
which in turn reduces the computation time, communication, and memory

requirements for the robot in addressing the task.

. The code and models of these robots are more straightforward to verify since
a small code base and simple communication protocols are easily deployable

to real robots to evaluate the efficacy of the system.

. The controlling techniques of simple robots can be used to enhance the ro-
bustness of sensor-rich robots by providing the solution to the intended task

even when some sensors do not work. Moreover, the complex tasks in in-



dustrial settings can be carried out by simple robots reducing the associated
cost [CG94].

8. With the advent of wireless sensor networks [PK00], a group of simple micro-
robots offers an attractive and scalable architecture for large-scale collabora-

tive tasks.

The minimalist and resource-constrained approach, which we take throughout
this dissertation, has also been applied to solve several robotics problems. One in-
spiring example is the article of Mason [Mas93] which stated that robotic systems
must be less dependent on complicated sensors as they are subject to significant
errors. A planner for manipulating objects on a planar surface using minimal in-
formation was proposed in [EMS8S8, [AM98]. Canny and Goldberg [CG95| proposed
sensing and manipulation strategies for performing complex operations from simple
actuation and sensing elements. Yershova et al. proposed that simple robots can
solve complex tasks based on the concept of information spaces avoiding the need
for accurate state estimation [YTGLO05]. This information space concept was the
motivation for the construction of minimalist combinatorial filters that maintain
minimally needed information to achieve a specified task [TCB*14, [0S17]. Com-
binatorial filters are the minimalist counterpart to the popular recursive Bayesian
filters such as the Kalman filter [Kal60] and its extensions or particle filters [DGAQQ].
Bayesian filters are mostly applied in Robotics and Control to keep an estimate of
state variables such as position and velocity. These filters represent the state un-
certainty through probability distributions and update uncertainty using a state
transition model and an observation model. In contrast, combinatorial filters han-
dle uncertainty in discrete spaces that represent the essential information to solve a

task.

10



1.3.1 Dynamical System Methods

The striking motivation for the approaches in this dissertation is the global analysis
of simple robotics systems. This global analysis of robotics systems leads us to use
a dynamical system method. The dynamical system we use here is the cell-to-cell
mapping methodology (originally introduced by Hsu in 1980) [HsuR0, [HsuI3]. In
the cell-to-cell mapping, the state space is divided into small cells, where each cell
is considered a state entity. In our approaches, we utilize two cell-to-cell mapping
methods which are the simple cell-to-cell mapping (SCM) and the generalized cell-
to-cell mapping (GCM). In the SCM, each cell has only one image cell. In the
GCM, each cell has several image cells. The GCM is a generalization of the SCM.
The modeling of the deterministic behavior of robots leads to the application of the
SCM. The formulation of the nondeterministic behavior of robots in terms of the
GCM leads to a finite Markov chain.

The cell-to-cell mapping based method is uncommon in solving the robotic tasks.
Only the trajectory planning for manipulators utilized the cell mapping method
before [ZL90, WT.94]. Therefore, our approaches in this dissertation create a unique

opportunity to apply the dynamical system method in solving diverse robotic tasks.

1.4 Key Themes and Contributions

In this dissertation, we propose a four-pronged approach for solving basic robotic
tasks in resource-constrained scenarios using simple robots with limited sensing and
actuation, minimal onboard processing, moderate communication, and limited mem-

ory capacity.

11



1.4.1 Combinatorial Filters for Bouncing Robot Localiza-
tion

In the first technical contribution of the dissertation, we focus on a setup that
considers a polygonal environment with holes and a simple robot equipped only
with a clock and contact (or bump) sensors called a bouncing robot. We consider
that the bouncing robot has access to a map of its environment, but is initially
unaware of its position and orientation within that environment. This bouncing
robot is modeled in a predictable way: the robot moves in a straight line and then
bounces from the environment’s boundaries by rotating in place counterclockwise
through a bouncing angle. The problem of global robot localization is how the
robot deduces its pose (position and orientation) following its modeled behavior.
Can this bouncing robot be globally localized without even knowing its initial pose?
Different methods have been proposed to address this localization problem for robots
with limited sensing [OL07, [EKOLOS, [ELI3]. In this contribution, we synthesize
finite automata-based combinatorial filters for the global robot localization that
take less computation time and memory compared to traditional Bayesian filter-
based localization approaches [TFBDO1] [Fox03, [LDW9T].

The main overview of this contribution is presented as a sequence of steps:

e Geometry to Groups: An algorithm based on the SCM [Hsu80] is pro-
posed to find the periodic groups and their transient trajectories from the

environment.

e Groups to Information States: We construct information state (I-state)

graphs [LaV06] from the computed periodic groups and transient trajectories.

12



e Information States to Filters: We introduce combinatorial filters that
are generated from I-state graphs and enable the robot to localize itself up to

some intrinsic uncertainty.

1.4.2 Bouncing Robot Navigation and Coverage

In the second contribution, we use the same bouncing robot model to investigate
both the navigation and coverage problems. The problem of navigation is finding a
path for a robot between an initial pose and a goal pose. The coverage problem of
the environment is visiting all locations of interest using one or more robots. How
could the simple behavior of the bouncing robot be useful in solving the common
robotic tasks, such as navigation and coverage, with limited linear and angular
sensing? In multi-robot settings, will many such bouncing robots be useful as well
to solve the coverage task? Our solution in this contribution has the following steps:
1) A directed graph is constructed from the environment geometry using the simple
bouncing policies. 2) The shortest path on the graph, for navigation, is generated
between either one given pair of initial and goal poses or all possible pairs of initial
and goal poses. 3) The optimal distribution of bouncing policies is computed so
that the actual coverage distribution is as close as possible to the target coverage
distribution. Our solution also finds a multi-robot (or joint) trajectory incrementally
for multiple robots to cover the given environment.

The contribution has the following steps:

e We propose an algorithm using the SCM to find the minimum navigation
plan for a minimalist robot between an initial and a goal configuration in the

environment.

13



e All minimum navigation plans between all possible initial and goal configura-

tion pairs in the environment are generated.

e A method based on the GCM [Hsu80| is developed for finding a probability
distribution of bouncing policies for the best possible coverage of the environ-

ment with respect to a target coverage distribution.

e We also present an algorithm based on the SCM to find a joint trajectory of

multiple bouncing robots for covering a known environment.

1.4.3 Stochastic Multi-Robot Patrolling

In the third contribution, we investigate the problem of area patrolling in an ad-
versarial situation in which a number of robots as patrollers visit a group of loca-
tions of interest in an environment to detect the intrusion of an adversary. In a
communication-constrained and adversarial environment, it is a challenging prob-
lem for multiple robots to patrol the whole environment by sensing with their lim-
ited ability to see. In the multi-robot patrolling problem, what will be an efficient
method for robots to patrol an area under the adversarial scenario? How can we
remove the need for synchronization and coordination among the patrolling robots?
How can the robots with limited visibility be used to patrol an adversarial and
communication-constrained environment? Deterministic patrolling strategies could
also be learned by an adversary observing them over time. In this contribution, we
alternately use randomized patrolling strategies based on Markov chains for several
reasons: 1) These will make it harder for an adversary to successfully complete an
attack and evade its detection due to the unpredictability of the strategies. 2) A

randomized motion can be easily implemented in a mobile robot, since its communi-

14



cation, sensing, and computation requirements are minimal. 3) Efficient algorithms
can calculate Markov chains with desired properties [GBS0S].

This contribution is summarized as follows:

e We present algorithms that do not require communication, are based on con-
vex optimization, can scale well, and can also be applied to any type of envi-
ronment represented as a graph where the distribution of cost over locations

(vertices) is uniform for both patroller and adversary.

e A game theoretical framework is proposed for patrolling where the set of strate-
gies are Markov chains. We also calculate the payoffs of each strategy and
present approaches to generate the optimal mixed strategy for patrollers and

the optimal strategy for the adversary.

e We propose a method for finding distributed patrolling policies based on lim-
ited visibility regions and convex optimization, where each patroller monitors

the whole environment separately.

e We develop centralized and randomized patrolling policies using a central base
station and visibility-based communication, where each patroller patrols a

region of the environment and contacts the base station after a random period.

e The vulnerability of our patrolling policies is evaluated by finding the proba-
bility of capturing an adversary at a specific location of the environment when

patrollers follow our proposed policies.

15



1.4.4 Deployment and Planning for Underactuated Aquatic

Robots

In the final contribution, we are interested in tackling the problem of deploying
multiple underactuated aquatic robots called drifters so that their desired long-term
trajectories can gather aquatic data visiting all locations on the surface of a marine
environment. We also tackle the problems of path planning and finding navigation
policy for a drifter. The drifters drift passively with ambient ocean currents. Vertical
actuation (buoyancy) enables them to alter their depth and achieve controllability
by the use of different current layers in the ocean. How can we model the behavior of
the drifter in a marine environment? In addition, the study of a marine environment
is a challenging task because of the spatiotemporal variations of ocean phenomena
and the disturbances caused by ocean currents. As such, we must collect data from
a marine environment over long periods of time to better assess and understand a
marine environment. The uncertainty of the drifter motion due to the disruption
of ocean currents and winds needs to be taken into account in our motion model of
the drifter. In this contribution, we present a data-driven, deployment and planning
approach for the drifters. We extract the generalized flow pattern within a given
region from ocean model predictions, develop a Markov chain-based motion model,
and analyze the long-term water flow behavior. Based on this long-term behavior of
the water flow, we find a minimum number of deployment locations for the drifters in
the marine environment. All possible reachable locations from an initial deployment
location of the drifter are determined as its planned, long-term drifter trajectory.
An optimal navigation policy is developed to demonstrate the best possible action

from any location to a goal location in the environment.

16



The overview of this contribution is given as below:

e An algorithm is proposed to deploy a minimum number of drifters at their
starting locations on the water surface to cover an oceanic region over a given

(long) period of time.

e A deployment policy is developed for the visibility-based, total coverage prob-
lem that requires images of an entire seafloor environment through the long-

term and cumulative image collection.

e We compute the reachability set for a drifter, i.e., all possible reachable loca-
tions for the drifter over an extended period of time starting from its initial

deployment location.

e We propose an optimal navigation policy to find the best possible action from

any location to a goal location of the environment for drifting vehicles.

1.5 Organization of the Dissertation

We conclude this introductory chapter with a preview of the remainder of the disser-
tation. Chapters 2, Bl Ml and [ contain original contributions. Concluding remarks,
open problems, and some potential avenues for future work appear in Chapter [Gl
The structure and dependencies between chapters are shown in Figure The

contributions of this dissertation are laid out in the following chapters as follows:

e Chapter We describe the synthesis of combinatorial filters for a bounc-
ing robot localization based on the output of the modified SCM. Section 21
provides the motivation and challenges of the global robot localization with

limited sensing. Section reviews the literature of robot localization and

17



E. Background and Challengea

v

1 Key Themes and Contrlbutlons

/P(/ \\

2. Combinatorial Filters for 3. Bouncing Robot 4. Stochastic Multi-Robot | |5. Deployment and Planning for
Bouncing Robot Localization Navigation and Coverage Patrolling Underactuated Aquatic Robots

T~ 7

6 Discussion and Conclusmns

Figure 1.3: Organization of this dissertation with arrows indicating dependencies.

combinatorial filters. Section defines the robot model, explains the con-
cepts of the SCM, and formulates the problems we solve. In Section 2.4] we
describe the methodology of our work in detail. Section 2Z.5]illustrates our sim-
ulation results and physical deployments of our filters on a real robot. Finally,

we conclude our first contribution with the discussion in Section 2.6

Chapter [Bt We present our work of solving navigation and coverage prob-
lems using one or more bouncing robots based on the output of both the
SCM and the GCM. In Section B3] the problem statement and challenges in
solving these problems with limited linear and angular sensing are initially
explained. Section discusses the related literature of the simple robot nav-
igation and coverage. In Section B.3] we account for the robot model and
the fundamentals of cell-to-cell mapping, and then formulate the problems we
consider. Section B4 describes our proposed approach to solve problems as
formulated, in detail. Then, we outline the implementation of our approach
with simulation results and hardware experiments in Section 3.5 Section

explains the concluding remarks of the second contribution.

18



e Chapter [ A scalable method is described to find stochastic strategies for
multi-robot patrolling under an adversarial and communication-constrained
environment. In Section .1l we motivate the problem of patrolling in ad-
versarial settings with the limitations of the traditional methods. Section
reviews the literature on the multi-robot patrolling problem. Section ex-
plains the preliminaries of our work and formulates the problems of our in-
terest. In Section L4l we outline the method of finding both distributed and
centralized patrolling policies and their vulnerability evaluation in detail. Sec-
tion [0 presents the simulation results and the physical implementation of our
proposed method. Finally, we summarize our work of the third contribution

in Section

e Chapter B A data-driven deployment and planning approach for an under-
water vehicle is presented in this chapter. Section 5.1l introduces an underac-
tuated underwater vehicle called drifter and how we can use this simple vehicle
for the long-term assessment of an aquatic ecosystem. After this introduction,
Section discusses some works related to the applications of underwater
vehicles for persistent monitoring. In Section (.3l the preliminary description
of the environment and the motion model of drifters are explained. Also, our
problems of interest are formulated in the same section. Section [£.4] outlines
the proposed algorithm of our work. The simulation results of the algorithm
are presented in Section [0.5l Section summarizes our work of the final

contribution.

19



CHAPTER 2
COMBINATORIAL FILTERS FOR BOUNCING ROBOT
LOCALIZATION

In this chapter, we present a global localization method based on combinatorial
filters for a bouncing robot equipped with only a clock and contact sensors. This

work appeared in its current form in [ABS1S].
2.1 Motivation and Challenges

Mobile robot localization is the problem of determining a robot’s pose or configura-
tion (position and orientation) in an environment, typically within a given map or
a similar representation [LaV06]. Localization is a fundamental problem in mobile
robotics, and is typically a prerequisite to solving tasks such as navigation, coverage,
mapping, searching, planning, and patrolling for applications in agriculture, secu-
rity, surveillance, and home robotics among many others. This work addresses the
problem of global robot localization [TEBDOI1l, [FBT99], where a robot has to find
its configuration in the entire environment without having any information about
its initial configuration. Most localization approaches rely on Bayesian filters such
as particle filters [Fox03] or Kalman filters JIV99], which, com-
pared with the focus of our study, are far more expensive in terms of computation
time and memory, and require sophisticated sensors and motion modeling. The
originality of our work is that we synthesize finite automata-based combinatorial
filters for solving the problem of localizing a robot in a particular environment that
is suitable for a device of meager computational ability, potentially even being re-
alized directly in a field programmable gate-array. This work fits within a broader

research program of hardware synthesis for robots.

20



With few or very limited sensors, the localization problem is challenging to solve
and has consequently attracted considerable theoretical attention [OL05, [(OLOT,
[EL13]. The motivation of our work is to use a robot with limited linear
and angular sensing as a basis for investigating the intrinsic limits of the localization
problem. In particular, we wish to understand the strongest possible version of a
localization task that such a robot can solve, recognizing that the robot may be too
deficient, ultimately, to resolve its position down to a unique pose with certainty.
What is possible depends on the environment and parameters of the robot controller,
so we explore automated processes to uncover answers to these questions that are
given in a particular setting as input.

Continuing the growing vein of work exploring the properties of sensing-constrained
systems, we examine a robot equipped with a bump (or contact) sensor and a clock.
The robot inhabits a planar polygonal environment with holes and has behavior
parameterized by a single parameter, which, for reasons that will be obvious, we
call the bouncing angle. The robot moves on straight lines, and when it encounters
a wall it rotates through the bouncing angle (measured with respect to the direction
of its pre-collision motion).

Though the robot is too deficient to localize in the traditional metric sense, we
show that there is a relaxed instance of the localization problem that it is capable
of solving. The setting we study enables the construction of an estimator that still
suffices to localize with an accuracy that is compromised only by the symmetries
involved. In other words, we make the limits of localization accuracy precise by
establishing the fundamental limits imposed by symmetry as revealed by the robot’s
sensors. This contribution is also motivated by the concepts of limit cycles and
basins of attraction which we define here as periodic groups and transient trajectories

respectively and are often used in control theory [Hsul3] and control of robots with

21



sophisticated dynamics [BRK99]. Consequently, we modify the simple cell-to-cell
mapping (SCM) to find periodic cycles and transient trajectories of the robot path
as it bounces within an environment filled with obstacles. Based on the cycles and
transient trajectories, space-efficient and automata-based combinatorial filters are

synthesized to solve localization problems modulo symmetries.

2.2 Related Work

2.2.1 Robot Localization

There are several antecedent works which have examined bouncing robots in related
contexts. In [LOT3| [EKOL0S], the authors consider a robot whose bouncing angle
varies as a function of the number of prior bounces. In [EL13], the bouncing angle
of the robot is a constant angle relative to the normal of the impacted edge of the
environment irrespective of its angle of incidence. These contrast from the type of
bounce we study. The bounce we investigate ensures that the robot will end up in
a small bounded set of possible locations.

In [OLOT], the authors study a robot equipped with a contact sensor and compass
or a robot equipped with linear and angular odometers, providing theoretical results
on localization for environments without holes using geometric reasoning. The robot
they study is more powerful than what we explore herein. Further, holes within the
environment pose no special challenge for the techniques we describe below. We
note that in [EKOLOS]|, the authors considered a simple environment with holes for
localization with a robot having only a clock and a contact sensor. They presented

a probabilistic technique for finding a probability distribution over regions on the

22



boundary of the environment. However, they assume that the robot knows its initial

orientation whereas in our work, no such assumption is needed.

2.2.2 Combinatorial Filters

Nearly sensorless robots called “weasel balls” that bump and bounce around the
environment were studied in [BSCT12]. Their bounce is not associated with a fixed
angle and thus require complete state estimation for solving various tasks. Since
doing so is difficult, an information space view was introduced in [TYOL05] to
avoid this onerous state estimation. The information space consists of all histories
of actions and sensing observations of a mobile robot for problems involving uncer-
tainty. A related perspective is adopted in the information state (I-state) formalism,
which led to the use of combinatorial filters to process information from sensors for
solving tasks such as manipulation [KS12], navigation [TMCL07], and target track-
ing [YL12]. In [OS13], the problem of filter reduction is introduced, which involves
finding the filter that uses the fewest information states for a given filtering task.
To the best of our knowledge, our work is the first to automate the process of com-
piling a geometric description of the environment into an I-state graph, which we

then explicitly turn into a filter to solve the localization task.

2.3 Model and Definitions

2.3.1 Robot Model

We start with a differential drive mobile robot equipped with only a contact sensor
and a clock. The robot moves in a planar and bounded polygonal two-dimensional

workspace W C R2. There is a set of polygonal obstacles represented as O C W. Let

23



E =W\ O be free-space in which the robot can move freely and let OF represent
the boundary of the free space. We assume that the robot has a map of the environ-
ment £ and knows its bouncing angle ¢ but does not know its initial configuration.
We also consider a noise-free model of the robot in terms of the translation and
the rotation. Certainly, generating perfect motions for any angle poses a problem,
especially for a low-cost differential drive robot. However, in practice, we found
that for some given ¢, we are able to produce repeatable and reliable rotations (see
Section 2.5 where we describe our physical robot experiments).

The robot moves straight until touching the boundary of the environment 0F
which is detected by the contact sensor. The robot measures the number of steps in
its straight-line motion by using its clock. Once it bounces at JF, the robot rotates
with the angle ¢ counterclockwise from its current orientation by commanding a
constant angular velocity and using a clock to rotate for some fixed period of time.
It then moves straight until contacting 0F and repeats the behavior. This simple

behavior is illustrated in Figure 211

Figure 2.1: An example of a simple bouncing robot.

24



2.3.2 Simple Cell-to-Cell Mapping

Including the robot’s orientation, the physical state space of the robot is X = E x S*
where S' = [0,27). Let x € X denote the state of the robot where x = (x, y, 6),
(w4, ;) is its position, and 6 is its orientation. Let R(x) C R? represent the robot.

The obstacle region X, in the state space is defined as
Xobs = {2 € X|R(z)NO # 0} (2.1)

and Xpee = X\ Xobs-

The subset of the state space where the robot is allowed to move is denoted by
Xtreo- To apply the cell-to-cell mapping method [Hsu80, vcS94], we divide X, into
equally sized 3-dimensional box cells since the robot’s configuration has three degrees
of freedom. Let NN be the total number of cells. We define N as N = N x Ng,
where Np is the discretization resolution of the 2-D free space E and Ng is the
discretization resolution of S*. This discretized state space is called cell state space.
Each cell represents an indivisible state entity. The state of the system is described
by a cell index z € {1,...,N}. Let Z = {1,..., N} denote the collection of cells.

The evolution of a system can be explained as a sequence of cells by investigating
its state at discrete times. Let e(i) denote the cell containing the state of the system
at t = 1At, 1 = 0,1,... with At being the time between two state examinations,
and being large enough to support crossing a cell. The system evolution is then
governed by

e(i+ 1) =C(e(7)), (2.2)

where the mapping C : N — N is called a simple cell-to-cell mapping (SCM). In this
model, Equation implies that the next state of the system is determined entirely

by its current state and is explicitly independent of the mapping step 1.

25



For the sake of completeness, we summarize some important definitions of the

cell-to-cell mapping method. An extended treatment can be found in [Hsul3].

Definition 2.3.1 (Periodic Cell) A cell z satisfying z = C™(z), for some m €

N is called a periodic cell with a period of m.

Definition 2.3.2 (Transient Cell) A cell that is not periodic is called a tran-

sient cell and it maps into a periodic cell in a finite number of steps.

Definition 2.3.3 (Periodic Group) A sequence of K distinct cells e(m), where
m=1,2,..., K — 1, that satisfies
e(m+1)=C"(e(1)),m=1,2,... . K —1

e(1) = C"(e(1)),

(2.3)

is called as a periodic group with a period K and each of the cells e(-) is said to be
a periodic cell with the period K. This periodic group is also called an attractor or

a limit cycle.

Definition 2.3.4 (Transient Trajectory) A transient trajectory is the set of
initial cells that are finally leading to a particular periodic group (attractor). The

collection of transient trajectories is called a basin of attraction.

2.3.3 Problem Formulation

As the robot moves in the environment F, it receives a sequence of observations from
an observation space Y = {0, 1}. Given some agreed upon resolution, the robot can
measure the distance by the number of steps between bounces up to some quantiza-
tion error. For example, the observation string that represents the stream of observa-

tions that the robot in Figure2.1lis processing might be {0, 1,0,0,0,1,0,0,0,1,0,0,0,1,0},

26



where the ones represent a bump event, and the zeros otherwise. Depending on scale,
resolution, or both, there could be more than or less than three Os between bumps.
It is also possible to observe multiple 1s in a row (for example, it may happen
when the robot bounces in a corner). This abstract symbolic representation can be

realized with various implementations:

e The robot measures the number of steps for linear distance traversed since
the last bump by a number of 0s. This measurement is quantized at some

resolution.

e The robot moves forward at a constant speed and keeps observing a sequence
of zeros. A bump event results in observing a 1 and resets the clock for the
next linear distance measurement. These observations are encoded as a string

of Os, interspersed with 1s.

For a fixed bouncing angle ¢, the cell-to-cell mapping method allows one to
track the motion of the robot from any initial location in £ and to find periodic
groups, of which we assume there are r in total. Sometimes the robot’s motion
begins in a transient trajectory and sometimes it is already in a periodic group. It
will eventually converge to one of the r periodic groups.

We are interested in the following problems:

Problem 1. Closed-world localization:

Given an environment E, a bouncing angle ¢, the fact that robot x can only be within
E, find the state of robot x as precisely as possible.

Problem 2. Open-world localization:

Given an environment E and a bouncing angle ¢, find the state of robot x, deter-
mining whether the robot is within E and if so ascertain the state of the robot as

precisely as possible; otherwise indicate that the robot is not in E.

27



2.4 Method

This section describes the sequence of steps that produce discrete filters for local-
ization. It consists of the following steps: 1) find the periodic groups and transient
trajectories and construct I-state graphs based on them; 2) create a nondeterministic
automaton combining I-state graphs and 3) convert the nondeterministic automaton
into a deterministic automaton to design filters that solve Closed- and Open-world

localization problems.

2.4.1 Finding Periodic Groups and Transient Trajectories

and Constructing Periodic Group I-State Graphs

In our method, we modify the simple cell-to-cell mapping to find all periodic groups
(attractors) and associated transient trajectories (basins of attraction) from
a cell state space Xpeo. We also borrow the definition of an I-state graph from [OST13],

though doing away with the starting vertex.

Definition 2.4.1 (I-State Graph)  An [-state graph G = (V,E, {1 E —Y) is
an edge-labeled directed graph where:

1. 'V 1s the finite set of vertices consisting of I-states.

2. E is the set of edges that represent transitions between vertices.

3. L is the function that represents edges labeled by an observation in Y .

This I-state graph encodes the information state introduced by LaValle [LaV06],
integrating the history of observations made by a system during its execution. As

the number of cells is finite, we can construct an I-state graph for each periodic

28



group along with its transient trajectories, which we term a periodic group I-state
graph.

In this step, Algorithm 2.] receives as input the geometric description of the
environment E and a bouncing angle ¢, finds all r periodic groups P, consisting of
periodic cells and transient trajectories T, consisting of transient cells, for these r
periodic groups, and constructs a set of r periodic group I-state graphs denoted by
G(V, E) as output.

In Algorithm 2.1} cells are assigned a group number and a step number. For
each cell z € Z, the group number g, denotes the periodic group to which z belongs,
the step number s, denotes the number of mappings necessary for z to end up in
a periodic group, and the next mapped cell is denoted by c,. Initially, all cells are
identified as wvirgin cells by assigning their group number zero. Each virgin cell z € Z
determines the location (centroid) and orientation of a cell (line 6). In lines 7-12, a
cell sequence z, C(2), C%(z),--- ,C*(2) where k € Nand k < N, is generated for each
virgin cell z € Z and cells in the sequence are identified as cells under processing
by temporarily assigning to them their group number —1. The next mapped cell 2/

represents the subsequent cell after z. Thus, 2’ (line 9) is computed as:

2’ = x + cos b,

Yy =y +sinb,
(2.4)

0, if (',y) € K,
9 =

(0 +¢) mod 27, otherwise.

where ¢ is the bouncing angle of the robot. The cell number of 2’ is calculated
from the center location and orientation, (z’,y’,¢), of 2’ (line 10). Then, 2’ is stored

in ¢, and z is updated with 2’ (line 11). The generation of cell sequences is continued

29



as long as z is a virgin cell, which also means it does not have the next mapped cell.

This sequence generation is terminated in one of the following two cases:

1. If z has appeared again in the same sequence then all the cells in the sequence
form a cycle. This case can be further subdivided into two scenarios, as il-
lustrated in Figure 22 In the first scenario of Figure 2.2(a), when the initial
and ending cells are the same, then all cells in the sequence are classified as
periodic cells. In the second scenario of Figure 2:2(b), when the initial and
ending cells are different, then the cells prior to the cell that forms the cycle
are classified as transient cells and the rest of the cells, which form the entire

cycle, are classified as periodic cells.

2. If z appeared in one of the previous sequences then all the cells in the sequence

are classified as transient cells.

C(2) ngz) . Citl(z) Cj+:(z)
& i
L2 ) ot \
C@Ch(:) P & i --»@C (2 P ‘,'
Ck—l(z) Ck—2(z> Ck—l(z) Ck—2(z)

(a) (b)

Figure 2.2: Two cycle forming scenarios in the cell sequence: (a) Same initial and
ending cells; (b) Different initial and ending cells.

All periodic cells in the j-th periodic group where j € {1,...,r} are found with
the update of their group number j and step number as zero (lines 16-18, 23-25).
All transient cells in transient trajectories of the j-th periodic group are found with
the update of their group number j and corresponding mapping number to get to

the j-th periodic group as a step number (lines 20-22, 27-29).

30



Algorithm 2.1: MODIFIEDSIMPLECELLMAPPING(E, ¢)

Input: E, ¢ — Environment and bouncing angle
Output: G = {G;,---,G,.} — Set of periodic group I-state graphs

1 g[l,...,N] <0, s[l,....,N]<o0, c[l,...,N]«+ L

27+ 0

3 for i+ 1to N do

4 if g, == 0 then

5 k<0, z<1

6 x,y, 0 < CELLCONFIGURATION(2)

7 while ¢, == 1 do

8 g, +— —1

9 2y, 0 < NEXTCELL(x,y, 0, ¢)

10 2" <— CELLNUMBER(z', v/, )

11 c, 2, 2z« 7 // save and update next cell

12 k+—k+1

13 if g, == —1 then // new periodic group
14 r«r+1, P« 0 T, <0

15 if : == 2 then // same initial and ending cells
16 for j <~ 0tok—1do // add periodic group
17 gi <1, P P, U{i}, s; <0

18 14 ¢

19 else // different initial and ending cells
20 for j«~ 0tod—1do // cycle at d-th index
21 gir, T« T, U{i}, s;i<d—7j
22 L4 ¢ // add transient trajectory
23 for j < dtok—1do // add periodic group
24 gi <1, P+ P, U{i}, ;<0
25 14 ¢
26 else // cell appeared in one of the previous sequences
27 for j < 0tok—1do // add transient trajectory
28 gi o, T < T, U{i}, si s, +k—j
29 L 14 ¢

30 G < {BUILDI-STATEGRAPH(P,, T;) | i € {1,...,7r}}
31 return ¢

31



For each periodic group and its associated transient trajectories, Algorithm 2.1
adds two consecutive cells to the vertex set, and their ordered pair to the edge
set of the corresponding periodic group I-state graph, using the function BUILDI-
STATEGRAPH (line 30). In this function, the absolute difference between orienta-
tions of these two consecutive cells, i.e., | — 0’| > 0 is checked. If the difference is
not greater than zero, which means the robot moves forward with the same orien-
tation, then the edge of this consecutive cell pair is labeled with 0. Otherwise, the
transition between vertices causes a ‘bump’ event at the boundary of the environ-
ment 0F C E and the robot changes its orientation from 6 to ', thus the edge of
this consecutive cell pair is labeled with 1. After construction, each periodic group
[-state graph forms an octopus-like structure.

We repeat the same procedure for all r periodic groups and union the disjoint
graphs. Thus, the set of r periodic group I-state graphs G is constructed. The
total number of vertices of the r periodic group I-state graphs G is |G.V| = N. We
denote the set of vertices in the periodic groups of G as G.Vp where G.Vp C G.V.
We illustrate one periodic group I-state graph in Figure 2.3} In the periodic group
[-state graph, vertices (cells) in a periodic group form a cycle and vertices (cells) in
a transient trajectory can terminate in one of two ways. It can terminate with its
last vertex (cell) being either coincident with a cell (vertex) in the periodic group or
coincident with a vertex (cell) in another transient trajectory which itself terminates

in the aforesaid periodic group.

Complexity of Algorithm

The running time of Algorithm [2Tlis O(N) where N is the total number of cells since
its complexity is dominated by line 3, which iterates over all the cells, processing

each cell exactly once.

32



1 "TZ-

¥

e P s
'!—»-!—»-éﬁ—»‘{% /
k—f

Figure 2.3: A periodic group I-state graph.
2.4.2 Creating Nondeterministic I-State Automaton

In the next step, we create a nondeterministic I-state automaton, A, amalgamating
the entire set of periodic group I-state graphs G and define a nondeterministic I-state

automaton [HH79] as follows:

Definition 2.4.2 (Nondeterministic I-State Automaton)
Let A= (Q,%,0,q0, F) be a nondeterministic automaton which accepts a stream of

discrete observations from'Y in which:

1. Q@ ={q}UG.V is a finite set of states.
2. ¥, =Y U{e} is a finite alphabet where Y = {0, 1}.

3. 0 is the state transition function for any q € (Q and any input alphabet a € 3,

as below:
.

{d'} q € Q\{q}, a=1(q,q)

d(g,a) = and (¢,q') € G.E,

\Q\{qo} q=qo and a = €,
and 15(q5,0)] + |8(g;, D] = 1,¥j = 1,...., N,
4. qo 18 the newly created initial state.

5. F = G.Vp is the set of final states that represents the set of vertices in periodic

group I-state graphs.

33



The states of A except the initial state gy are essentially the same states (or vertices)
as the periodic group I-state graphs G. The number of states of A becomes N + 1.
A nondeterministic I-state automaton using only the periodic group I-state graph

of Figure 23 is illustrated in Figure 24

Figure 2.4: A nondeterministic I-state automaton.

2.4.3 Nondeterministic I-State Automaton to Deterministic

I-State Automaton Conversion

Given the nondeterministic I-state automaton A, we construct a deterministic I-
State automaton A’ converting the e-nondeterministic automaton into a determin-

istic one using lazy evaluation method as follows:

Definition 2.4.3 (Deterministic I-State Automaton)
Let A" 2 (Q',Y,8, ¢, F') be a deterministic automaton that also accepts the stream

of discrete observations from'Y as [HH79] where:

1. Q ={S:5CQ and S = e-Closure(S)} where e-Closure(S) is the set that
contains S including all states reachable from any state in S following one or

more e-transitions.

34



2. Y ={0,1}.

3. 6'(S,a) = U {e-Closure(p) : p € 6(s,a) for

some s € S}.
4. qy = e-Closure(qp).

5. F'={S:5€Q and SNF #0}.

All transitions that are not defined lead to the ‘trap’ state implicitly. The con-
verted deterministic I-state automaton A’ produces a directed graph in which the
outdegree of each state is at most two and each state represents one or more vertices
of the periodic group I-state graphs G. The states of A’ that represent vertices in
the transient trajectories of G form a directed acyclic graph. The states that rep-
resent the last vertices of transient trajectories lead to simple cycles (e.g., closed
paths where no vertices and edges are repeated) in A’. We use the term knowledge
cycles for these cycles. The states in the knowledge cycles of A’ represent set of the
vertices of periodic groups, G.Vp, of G. These knowledge cycles act like attractors;

once the robot reaches one via states in the transient trajectories, it cannot leave.

Proposition 2.4.4 The number of states in the deterministic I-state automaton
A’ is O(N?) with respect to the number of states N in the nondeterministic I-state

automaton A.

Proof. The only non-determinism in A is the e-transitions from the initial state to
all other states. Moreover, there are no transitions in A that return back to the
initial state. Every transition, except the initial one, is deterministic as there is at
most one observation (either a ‘1’ or a ‘0’) from a state. There are no self-loops
in A because the translation or the rotation of the robot changes the underlying

state of the system. There are two parts in A’: the first part consists of states that

35



represent set of states composed of both transient states and periodic states in A
and the second part consists of states that represent set of periodic states in A. Let
N = N, + N, where N, is the number of transients states in A, NN, is the number
of periodic states in A. The states in the first part of A" form a full binary tree in
the worst case because these states have two children, labeling two observations (0
and 1) on their transitions, and no child has more than one parent. In this part, the
number of transient states decreases or remains same from the root to the leaves of
the tree because applying the transition function ¢’ on the root ¢, that represents @),
for two observations creates two disjoint sets Q1 and Q5 such that |Q1] + Q2] < |Q)|
and subsequent states follow this inequality. Thus, it follows by induction that the
height of the binary tree is O(log(/N;)) and the total number of states in the first part
of A"is O(2N; — 1). This tree has at most NV, leaves that transition to knowledge
cycles, which is the second part of A’. Hence, the second part of A" has at most V,
knowledge cycles; one cycle for each leaf. The length of each knowledge cycle is at
most N, because in the worst case the states in the cycle can include all periodic
states IV, and each state represents one periodic state (or singleton) of N,. Then,
the total number of states in the second part of A" becomes O(N;N,). Therefore,

the number of states in A" is O(N;N,) + O(2N; — 1) or O(N?). O

2.4.4 Filters for the Closed- and Open-World Problems

The final step produces filters to solve the two localization problems formulated in
Section We follow the standard filter definition from [OS13]. The definitions of

localization filters for closed and open world problems are as follows:

36



Definition 2.4.5 (Filter for the Closed-World) A localization filter for the
closed world problem is a tuple Fo = (Q',Y, 8, qb,c : Q" — N), where function c

augments the deterministic I-state automaton by adding a color to its states.

The filter F¢ receives an observation string as input and reports a color as
output. There are no final states in F. Instead, we assign color 1 to every state
that represents the transient trajectory vertices of G. We assign the different color
numbers to the states of different knowledge cycles ranging from 2 to one more than
the number of cycles in A’. The same color number is assigned to every state of
the same knowledge cycle. A filter for the closed world problem augmenting the
deterministic I-state automaton is depicted in Figure Here, the states in two
knowledge cycles are assigned green and cyan colors, and the states that are not in
knowledge cycles are assigned the white color.

The filter F¢ is used for localization of a robot in the closed-world problem
case. When the robot enters into the colored knowledge cycle, it looks up the state
¢ € Q. Each state ¢’ in the knowledge cycle of A’ represents a set of states in
the A. The cardinality of this set of states in A determines the uncertainty level of
robot’s position for solving localization problem. These states of A are also indexed
by cell numbers. As these cell numbers indicate the configurations of the robot in
E the robot localizes itself. Depending on the aforementioned number, the robot
may localize itself in one or more configurations in £. As an example, in Figure 2.7]
if the robot gets to a green knowledge cycle then it can localize up to a single
configuration as it has an uncertainty of 1. On the other hand, if the robot gets to
the cyan knowledge cycle then it can localize up to two configurations as it has an
uncertainty of 2. Thus, this filter solves the localization problem, and because it is

a deterministic automaton, captures all the state needed to localize explicitly.

37



10.1,2,3,4576.7. 894011, 12
0 1

g @
1.376.8 1.2,374.5:8.9.10]
1v 0 1

qs 44

o N, o/

G

Figure 2.5: A filter for the closed-world localization problem.

Definition 2.4.6 (Filter for the Open-World)) A localization filter for the
open world problem is a tuple Fo = (Q = Q' U {¢:},Y,d,¢h,c : Q — N). It
augments the deterministic I-state automaton adding a “trap” state q; along with

assigning colors to all states.

The filter Fp also receives an observation string as input and reports a color as
output to indicate whether the robot is in F or not. In the filter Fp, there is no
state transition for some states on a specific observation symbol. From these states
on the missing observation symbol, we add transitions to the “trap” state ¢,. We

assign a new color number to ¢;. Aside from this, we do the same process as F¢

38



for the construction of Fp. The “trap” state acts as a reject state in Fp. Once the
robot observes an observation string and if the evaluation of the observation string
using Fo takes it to ¢, the robot can report that it is not in the environment F.
Otherwise, Fp gives an output color as F¢ which solves the closed world localization
problem.

If the robot needs to localize itself in one of the k£ environments, then Fy can
solve this problem too. For example, the robot knows a set £ of three possible envi-
ronments {F1, Ey, F3} and some bouncing angle ¢. Following the above method, we
create three filters Fo for three environments. Then, we run them in parallel inside
the robot. The robot will be able to declare that it is in one of these environments

or not because of the “trap” state in the Fo.

2.5 Implementation

2.5.1 Simulation Results

We implemented the proposed modified simple cell mapping presented in Algo-
rithm 2] in a simulation. The algorithm takes as an input the environment E and
a bouncing angle ¢ and models the robot as a point.

We set the size of the environment F of Figure2.6/to 200 x 125 grid unit lengths,
excluding variable-size obstacles, S = [0,27). The cell size was set to 1 unit x 1
unit x 1°. We executed a simulation of Algorithm 2.1l and changing the obstacle

region as follows:

e F: Randomly placing a square obstacle of fixed size inside the environment.

e F5: Randomly placing a square and rectangular obstacles with fixed size inside

the environment.

39



e F53: Randomly placing a square, a rectangular, and a rectilinear obstacle with

fixed size inside the environment.

e F;: Randomly placing a scaled square obstacle inside the environment.

We ran the simulation of Algorithm [2.1] 100 times for each of the four environ-
ments (Ey, Fa, F3, E4), keeping the bouncing angle ¢ = 90°. We recorded the total
number of periodic groups r and maximum transient trajectory length. Figure2.7|(a)
and (b) illustrate the values of r and maximum transient trajectories lengths. From
these results, we conclude that values of r increase with the addition of obstacles
and change with the scaling of an obstacle and also that the maximum transient
trajectory length varies with increasing numbers of obstacles and the modification of

the size of an obstacle. Some outliers are present in the plot of maximum transient

trajectory length in Figure 2Z7(b) that are useful for the coverage problem [ABS17].

]

Figure 2.6: A simple environment with three randomly placed obstacles (completely
interior) and one static obstacle (touching boundary).

40



9000 3000

. = 8000 | ‘qc‘)’f, 2500
© 2 7000 - G e T - _
0> . 1 S .0 2000 : ! !
< gﬁooo - ] [ : ‘ . !
5 ‘ £ 51500 L
£ .2 5000 E 1 50 |
59 ‘ ! £.9.1000 ‘
- 4000 1 - = ©
= 83000 El - S s00f — —

2000 0 —

Different environment types Different environment types

(a) (b)

Figure 2.7: A comparison of simulations for different environment types: (a) the
total number of the periodic groups r; (b) the length of the longest transient tra-
jectory.

2.5.2 From Simulation to Physical Implementation

We tested our Algorithm 2.l with a differential drive robot, the iRobot Create/Roomba,
in two environments using the bouncing angles ¢ = 45°,135°. The Roomba is
equipped with many sensors but we only use the bump sensors and the clock. Since
the Roomba is a disk robot, rather than a point robot, we analytically calculate
the free configuration space X of the robot for both environments. For both
environments, the free space which is also the cell state space Xy is discretized
in N = 152 cells having 19 cells in each of 8 different orientations of S' with 45°
separation between each orientation.

We ran our first simulation test on the Xy of the environment of Figure 2.8|(a)
using the bouncing angle ¢ = 45° and our second simulation test on the Xg., of
the environment of Figure 2.9(a) using the bouncing angle ¢ = 135°. We found
r = 1 periodic group including its corresponding transient trajectories from the first
simulation test and r = 2 periodic groups along with their corresponding transient

trajectories from the second simulation test. We visualize one periodic group of our

41



A
A
N
A

(b)

Figure 2.8: (a) The first lab environment and (b) the simulation result showing
the visualization of the periodic group for this environment and the bouncing angle
¢ = 45°.

first simulation run in Figure Z8(b) and rest of the configurations are the transient

trajectories part of the illustrated periodic group. We also show two periodic groups

of our second simulation run in Figure 2.9(b).

1 /'\I/'.
< < PANZAN
@i

(b)

Figure 2.9: (a) The second lab environment and (b) the simulation result showing
the visualization of all periodic groups for this environment and the bouncing angle
¢ = 135°.

From the periodic group and the transient trajectories of the first simulation
run, we constructed G = {G; }, the set of periodic group I-state graph. Based on G,

we created the nondeterministic I-state automaton A as shown in Figure 210l In A,

42



we added a new initial state and e-transitions to all other states from it and made
the states in the periodic group as final states. We made use of JFLAP [RET1H] to
create A. The indices of the states of A except the newly added initial state are the

cell numbers in Xiee.

Figure 2.10: Created nondeterministic I-state automaton for the environment and
the simulation result of Figure

Again using JFLAP, we converted the nondeterministic automaton A into deter-
ministic automaton A’ as illustrated in Figure 211l This deterministic automaton
has 3 knowledge cycles. One of the knowledge cycles has an uncertainty of 1, one
of them has an uncertainty of 3, and one has an uncertainty of 4. We created the
localization filter for solving Problem 1, adding 3 colors to the states of the deter-
ministic automaton. We colored the states outside of knowledge cycles white and
chose 3 distinct colors for the states of 3 knowledge cycles. Next, we produced a
filter for solving Problem 2 by adding a new “trap” state to the previous filter and
we assign 5 colors to it as a new color is required for the “trap” state.

We applied the same process to the periodic groups and the transient trajectories

of the second simulation run and created the localization filters. We present the

43



Figure 2.11: Converted deterministic I-state automaton from the nondeterministic
[-state automaton of Figure P.10l

empirical results of 1) the number of states in deterministic I-state automaton A after
converting from nondeterministic I-state automaton A’, and 2) the computation time
for this conversion in Table 21l This conversion was performed on a GNU/Linux

computer with Intel Core i7 3.6GHz processor and 16GB memory.

Table 2.1: No. of states and computation time comparison.

No. of states | No. of states
of non- of Computation
Input . C .
deterministic | deterministic | time (sec.)
I-state auto- [-state
E ‘ 0] maton, N + 1 automaton
E of 45° 153 129 24
Figure 2.§(a) | 135° 153 124 20
E of 45° 153 147 27
Figure Z9(a) | 135° 153 202 71

We deployed the created localization filters on a Roomba and performed 10

physical experiments using the environments of Figure 2.8(a) and Figure 2.9(a),

44



Figure 2.12: Physical localization experiment in the environment of Figure 2.§|(a):
(a) The robot was placed initially in the top left part of the environment; (b) after
moving forward and bouncing with ¢ = 45°, it was localized up to 3 configurations
in the periodic group visualized in Figure 2.8|(b).

Figure 2.13: Physical localization experiment in the environment of Figure 2.9(a):
(a) The robot was placed initially in the top right part of the environment; (b) after
moving forward and bouncing with ¢ = 135°, it was localized up to 1 configuration
in one of the periodic groups visualized in Figure Z9(b).

and the bouncing angles ¢ = 45°,135°. Two of them are illustrated in Figure 2.12]
and Figure 2.3l In these experiments, the robot was localized and stopped once
a knowledge cycle of the filter was reached starting from the initial state. Since

all states in each cycle represent the same cardinality of the set of configurations,

the maximum and the minimum number of configurations represented by the states

45



where the robot was able to localize, are tabulated in Table 2.2l Thus, the lo-
calization limits for an environment E and a bouncing angle ¢ are determined by
the minimum and the maximum number of configurations of the robot, and the
strongest possible localization is the minimum number of possible configurations of

the robot.

Table 2.2: Comparison of no. of localization configurations.

Input Number of localization configurations
E ‘ [0) Minimum Maximum
E of Figure 28(a) 143550 1 ;l
E of Figure 2.9)(a) 143550 1 i

2.6 Summary

In the first contribution, we presented a localization method for a robot equipped
with a contact sensor and a clock. Our method is based on finding periodic groups
and transient trajectories of the robot path as it bounces within an environment
filled with obstacles. Based on the periodic groups and transient trajectories, space-
efficient and automata-based combinatorial filters are synthesized to solve localiza-
tion problems modulo symmetries. Experimental results from multiple simulations
and from real robot demonstrations attest to the feasibility and practicability of our
method.

In practice, the online computation time of our localization filter is the time
required to evaluate an observation string, which is linear with respect to the length
of the observation string only. The offline construction of the filter is linear in terms

of the number of cells, and the conversion from the nondeterministic automaton

46



to the deterministic automaton is quadratic in terms of the number of cells. We
adapted the comparison of different mobile robot localization methods from [TBF05]
(see Section 8.5) by adding our combinatorial filter (CF) based localization method
as illustrated in Table to show the pros and cons of the proposed method. These
localization methods use stronger robot sensing models with cameras and range
sensors which make them more robust compared to our sensing model, having only

the clock and contact sensors.

Table 2.3: Comparison of different localization methods.

Coarse Fine CF
EKF MHT (topological) (metric) MCL (our
grid grid method)
Time and
Raw Raw bump
Measurements Landmarks | Landmarks Landmarks measure- measure- | measure-
ments ments ments
Measurement . .
. Gaussian Gaussian Any Any Any None
noise
Posterior (on Mixture
new Gaussian of Histograms Histograms | Particles Single
observation) Gaussian state
Efficienc
” ++ ++ + . + Olog )
(memory)
Efficienc !
. ++ + + - + | -
(time)
Ease of 2
. _ + - - - ++ | -
implementation
Resolution +4 ++ - + + + 3
Robustness - + + +-+ ++ -4
Global
No No Yes Yes Yes Yes
localization

LOur filter takes constant time for the sensor update on a new observation.
2Ease of implementation of our filter is the same as MCL.
3The resolution of our method is similar to the fine (metric) grid method.

40ur method is not robust to the noise or erroneous output.

47



CHAPTER 3
BOUNCING ROBOT NAVIGATION AND COVERAGE

This chapter provides the solutions to navigation and coverage tasks using sin-

gle or multiple bouncing robots. The preliminary version of this work appeared

in [ABS17].
3.1 DMotivation and Challenges

The problem of navigation is finding a path between an initial pose and a goal pose.
The coverage problem of the environment is visiting all locations of interest using one
or more robots. These problems are important for many applications, such as search
and rescue, surveillance, map generation, oil spill cleanup, vacuum cleaning, lawn-
mowing, mine sweeping, exploration, automated farming, and painting. Moreover,
multiple robot systems have the potential to improve (or speed-up) performance
compared to single robots, especially in the coverage problem. The motivation of
our work is to find solutions to two robotic problems: (i) navigation and (ii) coverage
using one or more bouncing robots.

In both problems, single or multiple robots move in a known polygonal envi-
ronment, executing an elementary behavior: the robots move straight until they
discover walls by driving into them, or they collide with each other (in the multi-
robot case) while covering the environment; then they turn (with respect to their
current motion) counterclockwise by some angle. The motion is parameterized by
a set of angles, which we term bouncing angles. This motion model enables the
robots to navigate from one pose to another and cover the environment through the
trajectories of such robots.

These motions can be executed by simple robots equipped with cheap sensors,

and we are interested in solving navigation and offline coverage problems in known

48



environments, possibly with obstacles, for such robots. Although sensors are avail-
able with lower costs now, but the overuse of sensors requires powerful computation
systems and abundant memory inside a sophisticated robot. Instead, we use a
simple robot that can feed minimal sensor outputs directly to motors. This re-
search also falls within the broader context of control and sensing with simple (or
even minimal) robots. Several researchers have examined minimal sensing robots
to solve several tasks such as localization [OLOT, [ABSIS, SP12, [EKOLOg|, navi-
gation [ABSI7, [LO10, MSZ09], and mapping [TGL04]. These works, along with
our own, eschew robots with an extensive sensory, computational, and memory ca-
pabilities, motivated both pragmatically—to reduce costs for the individual units,
and theoretically—to explore sufficient conditions for the task performance. The
approach in this work uses robots equipped with only a clock and contact sensors.

Furthermore, the navigation with limited linear and angular sensing is a chal-
lenging problem since the inadequate sensor information is available to a robot for
executing the desired path. We also emphasize that the coverage of an area is hard
as finding a path of optimal length for a given region is N'P-hard (via reduction to
the Traveling Salesman Problem [Cho01]). Even the best zig-zag motion-based and
boustrophedon motion-based [CP98] coverage solutions typically require robots to
follow paths using feedbacks from powerful (and hence expensive) sensors.

In our first contribution, we use the SCM to synthesize combinatorial filters for
solving the localization task [ABSI18]. In the second contribution, we use the same
SCM method for solving the navigation task using a single bouncing robot and
extend this SCM method to tackle the coverage task in multi-robot settings. Addi-
tionally, we apply a nondeterministic dynamical system method called generalized
cell-to-cell mapping (GCM) [Hsu80] to address the coverage problem for a single

bouncing robot after its localization.

49



3.2 Related Work

3.2.1 Robot Navigation

Early works on landmark-based robot navigation include [LL95, [RBFT99]. In these
works, authors consider that the robot goes from one landmark to another with
the explicit sensing of landmarks. However, in our work, we use the geometric
description of the environment for navigation instead of the explicit sensing of land-
marks. The dual-directional RFID antenna was proposed to enable autonomous
navigation for mobile robots in indoor environments by obtaining a distance to a
radio source [KC09]. Nonetheless, they need additional sensor data to be fused for
enhancing the navigation capability of the robot in a cluttered environment.

More recent works on the robot navigation are belief roadmaps [PR09], random-
ized belief space trees [AmCA12], and feedback-based information roadmaps [Haul(]
which consider the robot’s uncertainty in its navigation. In our work, we have
used a simpler robot model compared to those used in these other works. The
works [LO10, [LO12, [LO13| use a robot model which is much closer to ours. In these
works, authors use a robot equipped with a compass and contact sensors whereas
we use a robot equipped with a clock and contact sensors. In their work, the robot
can orient itself using the compass in the desired direction relative to a global ref-
erence frame which makes their robot stronger than our robot. Our robot instead
follows a simple bouncing behavior to get to the goal configuration from its initial
configuration. While they do not consider the weight of the navigation path, we

minimize it.

20



3.2.2 Robot Coverage

The problem of coverage by a mobile robot has been investigated in different studies.
In one survey on coverage path planning [GC13] studied where the approaches are
evaluated based on whether they can be used online or offline and in the type of
environments they can handle. In [WMO03], an online topological coverage algorithm
for mobile robots is presented that uses the detection of landmarks. Again, explicit
sensing of landmarks is required so that the area of the environment will remain
uncovered where no landmarks are available. Also, their method cannot find the
critical points of concave landmarks as obstacles. In [GDS04], a coverage solution
for mobile robots is presented which finds critical points of obstacles in unstructured
environments and gives the entry and exit critical points for each obstacle.

In [VKSI3], the authors propose fast coverage of the environment based on
the unpredictable trajectory of a mobile robot with the use of a Logistic map and
provide a chaotic random bit generator for a time-ordered succession of future robot
locations. However, in their work, some parts of the environment stay uncovered. In
an adversarial setting, the probabilistic method can optimally cover the environment
and maximize the chances of detecting adversaries [AKKI11]. Hence, in this work,
we are interested in finding the optimal distribution of the bouncing policies used
by a single robot to get our intended coverage of the environment or multiple robots
cover the boundary of a given area.

Gabriely and Rimon [GRO1] proposed a spanning-tree based coverage algorithm
for a single robot. This work was extended for multi-robot coverage as a multi-robot
spanning-tree based coverage algorithm in [AHKOS, [HKO08], and as a multi-robot
forest coverage algorithm in [ZJKKO05]. These multi-robot coverage algorithms are
either centralized or require reliable communication between robots and depend on

extensive broadcast messages. The computational and memory complexities for

o1



handling the sensor information of this kind of system are very high. Our bouncing
robots do not communicate with each other for covering an area.

A recent offline spanning tree-based multi-robot coverage method presented by
Fazli et al. [FDPM10] deals with the case where the robots have a limited visibility
range. This approach is also shown to be complete and robust with regard to robot
failure. In [FDMI13], the authors designed the multi-robot repeated area coverage
as the Multiple Traveling Salesman Problem and proposed three distributed cluster-
based algorithms. Fazli and Mackworth also proposed the repeated coverage
of the boundaries of a target area and the structures inside it by multiple robots
with limited visual and communication range. We do not use any visual sensing or
communication medium in our robots. Instead, we address the coverage problem

using the simple bouncing behavior of multiple robots.

3.3 Preliminaries

3.3.1 Robot Model

We consider a 2D polygonal workspace VW = R?, and a collection of static obstacles
composing an obstacle region, O C W, where each element in O = {Oy, Oy, - - - , O}
is modeled as a polygon. One or more differential drive mobile robots are modeled
which share the workspace WW. Each robot is equipped with only a clock and contact
sensors. The speed of each robot is fixed. The free workspace for each robot is
denoted by the environment £ = W\ O. Let OE C E be the boundary of E.
We consider that each robot knows the map of the environment and its initial
configuration. If the initial configuration is unknown, the global robot localization

can be solved using our first contribution [ABSI§|. Let the set of bouncing angles

52



(a) (b)

Figure 3.1: Simple bouncing strategy: (a) The robot rotates counterclockwise by
the bouncing angle ¢ with respect to its current direction while it bounces off of the
boundary of the environment; (b) When two robots collide with each other (only in
the multi-robot coverage task), they then turn counterclockwise with their bouncing
angles ¢1, ¢o from their current moving orientations.

for a robot be ® by which it can rotate reliably. In the multi-robot case, the set of
bouncing angles for all robots is also denoted by .

Each robot moves forward in the environment and records the number of steps
using the clock. It continues this forward motion until it bumps into the boundary
of the environment JF or collides with another robot (in solving the multi-robot
coverage task only), as illustrated in Figure Bl Once a robot’s contact sensors
detect a bump, it rotates counterclockwise with a specified bouncing angle ¢ € ®
from its current orientation by commanding a constant angular velocity and using

a clock to rotate for some fixed period. Thereafter, if it faces free space, it travels

forward again and repeats this simple behavior.

3.3.2 System Model

We consider that there are m robots, A, A% -+ A™, (m =1 in the case of a single
robot). Each robot, A’, has its associated configuration space X* = E x S, where

S1is the set of directions in the unit circle that represents the robot’s orientations.

23



The configuration spaces of all robots have the same dimensions. Let 2! € X°
denote the configuration of each robot, in which z* = (z,y;,6"), where (z!,y!) is the
corresponding robot’s position and 6’ is its orientation. A physical state space is
defined as the configurations of all robots simultaneously, X = X! x X% x .. x X™.
A state x € X specifies all robot configurations.

There are two sources of obstacle regions in the state space: 1) robot-obstacle
collisions and 2) robot-robot collisions [LaV06]. The robot-obstacle collision, X/, €
X, for each robot A?, where 1 < i < m, that collides with the obstacle region O is
defined as:

e = {z € X|A(2") N O £ 0. (3.1)

obs

The robot—robot collision, X é{;s € X, between each pair of robots A* and A’ is
defined as:
Xy

obs

= {x € X|A" (") N A (27) # 0}. (3.2)

Thus, the entire obstacle region in X is:
Xobs = (U Xébs> U ( U Xé%;s) . (3:3)
i=1 ij,ij

The free state space Xgee = X \ Xops. Taking the configurations of all robots into
account, each state # € X ... is a 3m-dimensional vector and z = (z},y}, 0, -+, 2", y", 0™).
Hence, we discretize the free state space X into N-dimensional cells. This dis-
cretized state space is called the cell state space. Let N be the total number of
cells. For a single robot (m = 1), we define N as N = Ng x Ng, where Ng is
the discretization resolution of the 2-D free space E and Ng is the discretization
resolution of S*. The free state space of the system Xp.. is described by a cell index
ze{l,...,N}. Let Z={1,..., N} denote the collection of 3m-dimensional cells.

The system dynamics can be explained as a series of cells by finding the system’s

state at discrete times. Let e(k) be the cell describing the state of the system at

o4



t=kAt, k=0,1,... with At being the time between two state inspections. In the

deterministic case, the system dynamics of the cell-to-cell mapping are described as
e(k+1) =C(e(k)). (3.4)

The above system evolution C : N — N is called a simple cell-to-cell mapping
(SCM) [Hsul3] in the cell state space. In this mapping, the next state of the system
is dependent on only its current state instead of the mapping step k.

The definitions of the periodic cell, the transient cell, the periodic group, and

the transient trajectory for the SCM method are explained in Section 2.3.2

3.3.3 Uncertainty Model

We also consider the uncertainty in the angular motion in solving the coverage
problem using a single bouncing robot. After bumping off the boundary of the
environment, the robot rotates counterclockwise with a bouncing angle ¢ € ® in-
cluding an error range ¢, from its current direction. We model this uncertainty of
the angular motion using a nondeterministic cell-to-cell mapping method. In the
nondeterministic case, the system dynamics of the cell-to-cell mapping are described

as below:
p(n+1) = Pp(n) or p(n) = P"p(0). (3.5)

This dynamical system evolution is called the generalized cell-to-cell mapping
(GCM) that creates finite Markov chains where P is the one-step transition proba-
bility matrix and P" is the n-step transition probability matrix, p(0) is the initial

probability distribution vector over the cell configuration space, and p(n) is the

n-step probability distribution vector over the same configuration space. Let pl(-f)
denote the k-step transition probability from cell i to cell j and be (i,j)-th element

of P If it is possible through the mapping to go from cell i to cell j, we say that

25



cell i leads to cell 7, symbolically i = j. Analytically, cell ¢ leads to cell j if and

only if there exists a positive integer k£ such that pl(-f) > (. The cells 7 and j are said
to communicate if and only if ¢ = j and j = ¢ which is denoted by i <= j.

We also define the following definitions of the GCM method [HX99] [Hsul3]. More
definitions and descriptions of cell-to-cell mapping methods can be found in [HX99,

Hsul3, veS9d).

Definition 3.3.1 (Persistent Cell) A cell z is called a persistent cell if it has
the property that when the system is in z at a certain moment, it will return to z at

some time in the future.

Definition 3.3.2 (Probabilistic Transient Cell) A cell that is not persistent
1s called a probabilistic transient cell. [t leads to a persistent group in some number

of steps.

Definition 3.3.3 (Persistent Group) A set of cells that is closed under the
mapping 1s said to form a persistent group if and only if every cell in that set
communicates with every other cell. FEach cell belonging to a persistent group is
called a persistent cell. A persistent group is also termed as an attractor or a limit

cycle in the probabilistic case.

3.3.4 Problem Formulation

We define a finite action space U, which is a set of all possible actions v € U using
the sensors of a robot. The robot counts {0} if it moves forward, and records the
angle of rotation ¢ € ® if it bumps and then rotates. Therefore, the action space is
U={0}Ua.

For finding a minimum navigation plan using a single robot, our robot measures

the linear distance traversed by the number of steps up to some quantization error

o6



based on the resolution and the clock time between two bumps. Thus, the robot
executes a string of Os as a stream of actions. During a bump event, the robot
measures the bouncing angle ¢ using the clock time, resets the clock, and records
the value of ¢ as an action. Therefore, the sequence of actions of our robot for the
navigation, called the action string u, is encoded as a string of Os interspersed by a
value of ¢.

Let ;7 € Xgee be the initial configuration of a single bouncing robot A (m = 1),
and rg € Xpee be its desired goal configuration. We assume that A knows z; and
x¢ and rotates reliably by bouncing angles ®. In this context, a single query (z;, z¢)

navigation problem is formulated as follows:

Problem 1. Finding a minimum plan for a single robot:

Given an environment E, a set of bouncing angles ®, an initial configuration x,
and a goal configuration x ¢, find the action string u that represents the shortest path
inwvolving the minimum number of bouncing angle changes along the path, if one or

more paths exist.

For answering multiple (x,zg) navigation plan queries for the robot, we can
extend the single query navigation plan problem by finding all possible shortest
paths between the initial and goal configuration pairs using the given set of bouncing

angles. As such, the multiple queries navigation problem is formulated as:

Problem 2. Generating all minimum plans for a single robot:

Given an environment E, a set of bouncing angles ®, generate all action strings that
represent all possible shortest paths for all (xr,xc) pairs in the X, involving the

minimum number of bouncing angle changes along these paths.

57



In the coverage problem scenario for a single bouncing robot, each bouncing
angle with an error range ¢ + € represents a separate bouncing policy for the robot.
The robot has a target coverage probability distribution over FE which is denoted by
b. To combine the bouncing policies of the robot for covering an environment, the
best solution is to find the optimal bouncing policy distribution of the robot based
on the long-term robot’s behavior resulting from the application of these policies.
Let a be the bouncing policy distribution of the robot. Thus, the coverage problem

for a single bouncing robot is formulated as:

Problem 3. Finding an optimal bouncing policy distribution for a single

robot:

Given an environment E, a set of bouncing angles ®, an error range €, and a target
coverage distribution b, find the optimal bouncing policy distribution « to get as close

coverage as possible to b.

For solving the coverage problem using multiple bouncing robots, we assume that
robots have their initial configurations. Let xy € Xy be the initial configurations of
m robots where m > 2. The initial configuration of m robots is the initial cell from
which we apply the cell-to-cell mapping. Then, the state of the system evolves over
time and creates a trajectory for the robots. Let 7' = [0, 00) be a time interval of the
execution of the system. We define a joint trajectory of m robots as Z : [0, 7] = Xfree
with Z(0) = xo and where Z(¢) represents the state of the system at time ¢. The
joint trajectory of the robots will end up in a cyclic trajectory according to the
properties of the system evolution of the simple cell-to-cell mapping [Hsul3].

Finally, we are interested in finding a joint trajectory of m robots that covers the
environment. This motivates us to define the coverage problem for multiple robots

as follows:

o8



Problem 4. Finding a joint trajectory of multiple robots for coverage:

Given an environment E, a set of bouncing angles ® for m robots, and an initial
configuration of m robots xq, find the joint trajectory T of m robots for covering the

given environment F.

3.4 Approach

In this section, we describe our approach for solving the problems formulated in

Section in detail.

3.4.1 Finding Roadmap and Minimum Navigation Plan for

a Single Robot

Let a topological graph G = (V, E) be a weighted, directed graph and the weight
function w : E — NT assign the nonnegative edge weight. Each vertex v € V
represents a configuration (cell) z € X and each edge (u,v) € E where u,v € V,
represents a configuration transition from z € Xpee to 2’ € Xpee. This topological
graph is also called a roadmap. If any path exists between the initial configuration x;
and the goal configuration zs on G, then it is more likely to have one or more paths
among (xy, x¢) ordered pairs for the set of bouncing angles ®. Let a shortest path of
the robot A be 7 : [0, 1] = Xpee such that 7(0) = x;, 7(1) = z¢. After the robot’s
bump event, if the bouncing angle is preserved, the weight of the configuration
transition is w; for the robot. Otherwise, if the bouncing angle changes, the weight

of the configuration transition is wy for the robot.

29



In our approach, we modify the simple cell-to-cell mapping (SCM) to find the
roadmap G and the minimum navigation plan between z; and x in the cell config-
uration space Xfree.

To attain these, Algorithm B.I] receives as input the geometric description of the
environment E, a set of bouncing angles ®, the initial configuration x;, and the goal
configuration xg. It produces the roadmap G and the action string u, which is the
minimal navigation plan as output.

For each bouncing angle ¢;, where i € {1,...,|®|}, Algorithm B.I] computes the
configuration of each cell z € Z that represents the location (centroid) and the
orientation of the cell (line 6). The next mapped cell 2’ represents the subsequent

cell after z (line 7) which is calculated as:

Ty = T, + g(ul + u,.) cos ),

r .
Yo = Y, + §(ul + u,)sin 0,

b 0, if (z,,y.) € F,
(0 4+ ¢) mod 2w, otherwise,
where (u;,u,) = (1,1) specifies the left and right wheel velocities and r = 1 is the
wheel radius of the robot.

If the new orientation of the cell # is equal to the previous orientation of the
cell A, then the cell number of 2’ is calculated from the new cell center location
and previous orientation, (x,/,y.:,0), of 2/ (line 9). Cells z, 2’ are added to vertices
set and their ordered pair (z, 2') is added to edges set of the directed graph G; and
weight of the corresponding edge is updated with w; on G; (lines 10-12). Otherwise,
Algorithm [B.1] calculates the set of possible bouncing cells with respect to the given
bouncing angle set ®. For the processing bouncing angle, we compute the next

cell 2’ using the new cell center location and orientation of the cell (z./,y./,6") (line

60



Figure 3.2: An example of a generated roadmap.

16). Both cells, their ordered pair as an edge, and weight of their edge are added
to G; as before (lines 17-19). For all other bouncing angles that represent the
change of bouncing angles, we compute the next cell 2’ again from the previous cell
center location using Equation 3.6l the previous orientation, and the bouncing angle
(,,9,,0,6) (line 21). Both cells and their ordered pair as an edge are added to G;
but the weight of their edge is updated with wy on G; (lines 22-24).

For each bouncing angle, we get a set of periodic groups or limit cycles and
associated transient trajectories leading to the periodic groups as the output of the
SCM. We repeat the same process for all the bouncing angles in the given set ® and
create the roadmap G from the geometry as illustrated in Figure In line 26, we
use Dijkstra’s shortest path algorithm [CLRS01] to find the shortest path 7 on the
roadmap G from all ordered pairs of initial configuration z; and goal configuration x¢
for different bouncing angles in . The function NAVIGATIONPLAN finally returns
the action string @ based on the shortest path 7 (line 27). In this function, if the
consecutive cell distance in the shortest path 7 is less than N, it implies “forward

movement” and gives ‘0’ as one action. Otherwise, it implies the “bump” event and

61



Algorithm 3.1: ROADMAPANDPLAN(E, ®, wq, we, 1, 2¢g)

Input: E, & wy,ws, r;, x¢ — Environment, Set of bouncing angles, Weights,
Initial configuration, and Goal configuration
Output: G, 4 — Roadmap, Action String

© 00 N O ok W N

- e
N = O

13
14
15
16
17
18
19

20
21
22
23
24

25

26
27
28

G0
for i =1 to |®| do
for j =1to N do
Z4 g
T.,Y,0 < CELLCONFIGURATION(Z)
Ty, Yy, 0 — NEXTCELL(2,, Y., 0, ¢;)
if 0 == ¢ then
2" <~ CELLNUMBER(Z ./, Y./, 0)
G.V <+ G.Vu{z~2}
G.FE+ G.EU{(z,2)}
w(z,2') < wy
else
for k=1 to |®| do
if Kk == then
2 <= CELLNUMBER(Z/, Y., ')
GV + G.VU {Z, Zl}
G.FE+ G.EU{(z2)}
w(z,2')  wy
else
2" <~ OTHERCELL(z,, y., 0, ¢r)
GV« G.VuU{z~2}
G.FE+ G.EU{(z2)}
w(z, 2') « we
| G« Gug

T <— SHORTESTPATH(G, 1, x¢)
@ < NAVIGATIONPLAN(T)
return G, u

62



gives the bouncing angle ¢ as another possible action. This action string @ provides

the solution of a single (z, z¢) navigation query.

3.4.2 Generating All Minimum Navigation Plans for a Sin-

gle Robot

We generate all minimum navigation plans from all possible shortest paths among
all (z7,x¢) pairs in the cell configuration space Xpee.

To obtain all possible shortest paths, Algorithm takes the roadmap G con-
structed from Algorithm B.] as input and generates all minimum navigation plans
M from their shortest paths if one or more paths exist among ordered (z;, z¢) pairs

and their path weights L as output.

Algorithm 3.2: ALLPLANGENERATION(G)

Input: G — Roadmap
Output: M, L — Navigation Plans, Path Weights

1let M[1...N,1...N],L[1...N,1...N] be 2D lists
2 for:=1to N do

3 for:=1to N do

4 MTi][j] < NIL

5 L L[i][j] «+ 0

6 for i =1to N do

7 for j =1to N do

8 if ¢ # j then

9 7,1 < SHORTESTPATHANDWEIGHT(G, 7, j)
10 if 7 # NIL then

11 | L[] « -1

12 else

13 @ < NAVIGATIONPLAN(7)

14 MTillj] « @

15 Lli]lj] « 1

16 return M, L

63



Algorithm initializes M and L lists (lines 2-5). From z; € Xjge on the
roadmap G to all other z; € Xpee on G, we run Dijkstra’s algorithm to find the
shortest path 7 and minimum weight | among the (x;, ;) ordered pairs for the set
of bouncing angles ® on G (line 9). If 7 is none, which means that there is no
path among the (z;,z;) pairs, Algorithm assigns —1 to the (i, 7)-th entry of L
(lines 10-11). Otherwise, it encodes the shortest path 7 into an action string @ as
a minimum navigation plan (line 13) and then assigns the plan @ and minimum
path weight [ to the (i, j)-th entry of M and L respectively (lines 14-15). We find
minimum navigation plans and path weights for all € Xy.... Finally, Algorithm B.2]
returns M and L lists. These minimum navigation plans and path weights can then

be used to answer multiple (x;, x¢) navigation plan queries and their comparison.

Algorithm Analysis

The running time of the Algorithm is O(N?logN) since it applies Dijkstra’s

shortest path algorithm to all (x;, xg) pairs for each © € Xjee.

3.4.3 Finding Bouncing Policy Distribution for a Single Robot

We combine all bouncing policies represented by the set of bouncing angles ® for the
given environment F to get the closest coverage to a target coverage distribution
b over E. Let the probability of reliable rotation of the robot be r. We apply
the generalized cell-to-cell mapping (GCM) that uses a bouncing angle set ®, a
probability of reliable rotation r, and a nonzero error range e. This method finds a
number of persistent groups starting from all transient cells for each bouncing angle
with an error range ¢ 4 €. Since the persistent groups are the long-term behavior

of the GCM, we consider the coverage distribution of these persistent groups of a

64



bouncing policy as the coverage of the environment by that bouncing policy. So, the
transient cells are not considered for the coverage of the environment. A persistent
group is an irreducible Markov chain as all its cells form a single communicating
class. So, all persistent groups for a bouncing policy create a finite Markov chain
P. The limiting distribution 7 of P represents the coverage of E for each bouncing
policy. First, we find the limiting distribution set II for all the bouncing policies
and then, using I, we compute the bouncing policy distribution « of all bouncing

policies through optimization.

Algorithm 3.3: PolicyDistribution(E, ®, €, )
Input: E, @, e, r — Environment, Set of bouncing angles, Error range, and
Probability of reliable rotation
Output: II = {m, 7, -+, Mg} — Set of limiting distributions

1 fori =1 to |®| do

2 GV <+, GE<+ 0

3 for j =1to N do

4 Z 43

5 T, Y, 0 < CELLCONFIGURATION(2)

6 T, Yy, 0 < NEXTCELL(Z,, Y., 0, ¢;)

7 if 6 == 6’ then

8 2" <~ CELLNUMBER(z,/, 4./, 0)

9 GV «— GV U{z 7}
10 G.E+ G.EU{(z7)}
11 else
12 7' + CELLSET(z,/,y.,0 £ ¢)
13 GV« GVUZ uU{z}
14 G.E+— GEU{(z,7),2 €2}
15 S < STRONGLY CONNECTEDCOMPONENT(G)
16 T < TRANSITIVECLOSURE(G)
17 P < MCFROMPERSISTENTGROUP(S, T, 1)
18 | m; < NORMALIZEDLIMITINGDISTRIBUTION(P)
19 I+ ITUm

20 return II

65



In order to obtain the limiting distribution set II, Algorithm takes as input
the geometric description of the environment E, the set of bouncing angles @, the
error range €, the probability of reliable rotation r. It returns II as output.

In Algorithm B3], for each bouncing angle with error range ¢ + € from the set
of bouncing angle ®, we create an unweighted directed graph G following the same
graph creation procedure of Algorithm [B.J] without adding weight to the edges of
G. Additionally, for each cell z € Z when the new orientation of the cell §' is not
equal to the previous orientation of the cell #, Algorithm calculates the set of
possible bouncing cells Z" where Z' C Z, using the new orientation of the cell with
error range ¢’ + € (line 12). All cells z, Z" are added to the vertices set and their
ordered pairs (z, z'), where 2/ € Z’) are added the edges set of G for the processing
bouncing angle (lines 13-14).

Then, it finds the strongly connected component S from G using Tarjan’s strongly
connected component algorithm (line 15). It also constructs the reachability
matrix 7, finding the transitive closure from G (line 16). From S and T, Algo-
rithm finds persistent groups using the function MCFROMPERSISTENTGROUP
(line 17). In this function, if each vertex in a strongly connected component is reach-
able from all other vertices in the strongly connected component then this strongly
connected component is found as a persistent group and each cell of this persistent
group is classified as a persistent cell. If a vertex in a strongly connected component
is reachable from a subset of vertices in the strongly connected component then each
cell of this strongly connected component is classified as a transient cell.

Further, in MCFROMPERSISTENTGROUP function, an adjacency list is created
from all persistent groups of the processing bouncing angle ¢. Based on this ad-
jacency list and reliable rotation probability r, the function creates the one-step

transition probability matrix P. To obtain this, the function uses the probability

66



1

—~

_:) for unreliable rotation

pij = r for reliable rotation from cell z; to cell z;, p;; =

from cell z; to cell z;, and p;; = 1 for forward movement from cell z; to cell z;. In
the last step, it calculates the limiting distribution 7 of P for the processing bounc-
ing angle with the error range ¢ + ¢, normalizes 7, and adds it to II (lines 18-19).
Finally, Algorithm returns II for all bouncing policies.

The probability distribution of choosing the bouncing policies for the robot can

be represented as a k-dimensional vector where k = |®],

a = (Oél,OéQ, tee ,Oék). (37)

Equation B 7should satisfy: 1) o > 0 foralli € {1,...,k}, and 2) oy +as+- - -+ay =
1. The value «; is the proportion of the robot choosing the i-th bouncing policy.
We obtain the optimal bouncing policy distribution « from the limiting distribu-
tion set II to achieve as close coverage as possible to the target coverage distribution
b. We create the matrix A based on II. We use the constrained least square [Gusl]]
to compute the optimal bouncing policy distribution o which is given by the follow-

ing optimization equation:

minimize  ||Aa — b|)”
(3.8)
subject to Ca =d,a > 0.

Here A is an n x k matrix, b is the n-vector where n = N, « is the k-vector, C
is a 1 X k matrix.

The bouncing policy distribution « is optimal for obtaining the coverage closest
to the target coverage distribution b because it minimizes the norm of the residual
error ||Aav — b|| having the constraints of Equation B8 This bouncing policy distri-
bution « states the time-based switching among the bouncing policies to cover the

environment.

67



3.4.4 Finding Joint Trajectory of Multiple Robots for Cov-

erage

In our approach, we find a joint trajectory & of m robots starting from the initial
configuration (cell) zq to cover the environment E. The m robots use their respective
bouncing angles from the given set of bouncing angles ® once they collide with each
other, or against the boundary of the environment 0F. In this case, we extend the

SCM method in the high dimensional state space of multiple robots.

Algorithm 3.4: MultiRobotCoverage (F, g, D)
Input: E, xy, ® — Environment, Initial configuration, and Set of bouncing

angles
Output: z — Joint trajectory

1 pc 0

2 b < FINDCELLNUMBER(x)

3 Z.init(b)

4 for [ =1 to F' do

5 k<1 // Cell sequence generation
6 while pc, # () do // Check unprocessed cell
7 pep +— 1 // Identify processed cell
8 z <— CELLCONFIGURATION (b)

9 2" <~ MAPPEDCELLCONFIGURATION(z, ®)
10 ¢y < NEXTCELLNUMBER(2')
11 Z.add_cell(cp) z.cell transition(b, ¢;,)
12 b <« ¢ z <+ 7 k< k+1
13 if CoMPLETECOVERAGE(E, ) then
14 L break
15 else
16 B < BESTUNPROCESSEDNEIGHBORCELL(b)
17 Z.add_cell(5) z.cell_transition(b, ;)
18 b+ 5l

19 return

To find the joint trajectory Z, Algorithm [3.4] takes as input the environment

E the initial configuration zy, and the set of bouncing angles ® for m robots,

68



and generates as output the joint trajectory & that the robots follow to cover the
environment.

In Algorithm [B.4] all cells are initially unprocessed cells. First, a cell b is cal-
culated from the known initial configuration z, and added to the trajectory z as
the initial cell (lines 2-3). Then, we apply the SCM to create a cell sequence
that is the part of the trajectory. For [ iterations, the cell sequence is iteratively
generated from the initial cell b in the high dimensional state space as explained
in Algorithm B.Il In lines 6-12, during the cell sequence generation, all cells are
identified as processed cells by assigning the value 1 to these cells. The cell config-
uration z is calculated from the cell b, which represents the states of all m robots
r=(xl,yl 0! - 2™ y™ ™) (line 8). In line 9, the next mapped cell configuration

of m robots 2’ after z is calculated as below:
x, = x, + cos b,

Yl =y’ +sind’,

(3.9)
. 9;, lf (xi/, y;/) E Xfreo;
elzl =
(0! + ¢') mod 2w, otherwise.
where ¢ € {1,...,m}. The calculation of the next mapped cell configuration 2’

takes robot-obstacle collisions and robot-robot collisions into account.

This cell-to-cell mapping also finds the next mapped cell of each of the m robots.
The cell number of the next mapped cell, ¢, is computed from the center location
of each robot and their orientations (x!,,yl, 0L -+ 2 y™ 07) of 2/ (line 10). We
add the next cell ¢, to the trajectory Z as a new cell and the cell transition from
b to ¢ is made in the trajectory & as a connection (line 11). The next cell b is

updated with ¢, and the cell configuration z is updated with 2’ (line 12). The cell

sequence generation continues as long as the next mapped cell b is an unprocessed

69



o \ iy
mE—R--—>H) )

Figure 3.3: Trajectory generation and neighbor selection: a) a generated trajectory
Z from an initial configuration x;; b) the best nearest neighbor [, (green square)
among unprocessed neighbors of last cell b of the trajectory .

cell in each iteration. A generated trajectory x from an initial configuration zy as an
initial cell is illustrated symbolically in Figure B.3(a) where each square represents
a 3m-dimensional cell of the cell state space X.o. Some cells of  form a cycle and
others lead to this cycle.

Let ; be the best unprocessed and nearest neighbor cell of the last cell of the
trajectory Z at the [-th iteration of the algorithm. After each iteration, we check the
coverage of the environment by the joint trajectory Z of m robots using the function
COMPLETECOVERAGE. If the trajectory covers the whole environment then we stop
the generation of the joint trajectory Z. Otherwise, we select the best unprocessed
and nearest neighbor cell j; of the last cell b of the trajectory & using the function
BESTUNPROCESSEDNEIGHBORCELL. In the function BESTUNPROCESSEDNEIGH-
BORCELL, we take the neighbors of cell b by rotating m robots in both directions

and keeping the locations of the robots fixed. Let
Az; = (0,---,0,A0,0,---,0), (3.10)

in which the first 3i — 1 components and the last 3m — 3i components are 0, and
A0 is the discretization resolution of the S!.

The neighborhood of cell b in the state space is defined as

N () = {zp + Az, -+, 2+ Ay, 5 — Ay, -+, 2 — Az, ). (3.11)

70



We find at most 2 x 3m = 6m neighbors in the state space at the [-th iteration.
We simulate the cell sequences from these neighbors if the neighbors are not pro-
cessed yet. We select the best nearest neighbor [3; based on the covered space of the
environment and the minimal number of robot-robot collisions. The collection of
unprocessed and neighbor cells of the cell b (the blue squares) and the selected best
nearest neighbor (5, (the green square) are shown around the small circle of the cell
b in Figure B3|(b). The newly selected neighbor cell f; is added to the trajectory

as a new cell and the cell transition from b to f; is made in the trajectory # (line

17). The new initial cell b is updated with 3, (line 18).

Figure 3.4: A joint trajectory of the robots connecting through the new neighboring
cell 5.

A pictorial representation of the generated joint trajectory of m robots from
Algorithm B4 after F' iterations is depicted in Figure B.4] where each square also
represents a 3m-dimensional cell of the cell state space Xp.e.. For the best neighbor
cell £; as an initial cell, the cell sequence forms the different part of the trajectory.
The given initial configuration x; provides the starting cell of the trajectory z and
creates the first part of . After the first part of Z, each subsequent part of Z is
connected through the best neighbor cell §;. This generated joint trajectory & of m

robots covers the environment completely or as much as possible.

71



Algorithm Analysis

The runtime of Algorithm B:4lis O(F'N), where F is the number of iterations and

N is the number of cells in the cell state space Xiee.

3.5 Experimental Results

3.5.1 Minimal Navigation Plan Result for a Single Robot

We tested Algorithm B.]for a single robot by developing a simulation and deploying
it on a physical robot platform in the hardware experiment. We used the iRobot
Create Roomba as a differential drive robot in an artificial laboratory environment
of Figure B5(a). The Roomba has many sensors but we utilized only the bump
and clock sensors. In the simulation, the configuration space of the laboratory
environment is computed analytically for the disk robot Roomba, as illustrated in
Figure B3(b). The cell configuration space Xp.. is discretized into N = 384 cells.
In the simulation and experiment of navigation plans, we considered 8 different
orientations of S with 45° separation between each orientation.

We ran our simulation for the above discretized cell configuration space Xjee us-
ing the set of bouncing angles ® = {45°,90°, 135°} for the robot. We set the weight of
using the same bouncing angle, w; = 1 and the weight of changing the bouncing an-
gle, wo = 100 in our simulation. The illustrations of the first navigation plan between
rr = 9 and x¢ = 1 and the second navigation plan between x; = 104 and x¢ = 9 are
shown in Figure with blue arrows. In Figure B.0)(a), the first navigation plan of
the robot uses only one bouncing angle, 90°, to navigate from the bottom right corner
of E, facing East, to the bottom left corner of E, facing East. In Figure B.6l(b), the

second navigation plan of the robot uses two bouncing angles, 90° and 135°, to nav-

72



igate from the bottom left corner of the obstacle that is touching OF, facing North
to the bottom right corner of E facing East. Our simulation gave two action strings
as output for two navigation plans; u; =00000090°000000000000090°00000090° and
uy =000000135°135°000000135°135°00000090°.

(b)

Figure 3.5: A laboratory environment: (a)an environment using floor and bricks
that includes one completely interior obstacle and one obstacle touching the bound-
ary of the environment; (b) the configuration space of the environment shown in

(a).

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

4 —d—d d d
44—«
NN
»— >
> 5 » 5 »
»— —— >

Ebwl le

Figure 3.6: Simulation results of two navigation plans in the environment of Fig-
ure a) the blue arrowed path from the initial configuration (bottom right corner
of E, facing East) to the goal configuration (bottom left corner of F, facing East).
b) the blue arrowed path from the initial configuration (bottom left corner of the ob-
stacle attached to OF, facing North) to the goal configuration (bottom right corner
of E, facing East).

73



Afterward, we deployed the two generated action strings #; and s on the
Roomba to navigate in the environment depicted in Figure B5a). A netbook pro-
cesses the sensor input from the robot and provides the output to the robot. We
show snapshots of the two hardware experiments of the corresponding simulated
navigation plans in Figure B.7 and In our first hardware experiment of Fig-
ure B.7] we placed the Roomba in z; = 9 and it followed the action string u; to get
to zg = 1. In our second hardware experiment (Figure[3.8]), we also put the Roomba
in x7 = 104 and it successfully reached to x¢ = 9. In these hardware experiments,
the Roomba uses its clock to measure the number of zeros as it moves forward and
the duration of rotation for different bouncing angles. It also uses bump sensors for
detecting the “bump event”.

To test Algorithm Bl in a more complex environment, the configuration space,
as illustrated in Figure 3.9 is discretized into N = 1464 cells considering 8 different
directions of S! that are 45° apart of each other. For two pairs of initial and goal con-
figurations in the given cell configuration space, Algorithm Bl found two navigation
plans using the same set of bouncing angles ® = {45°,90°,135°}. In Figure B.9(a),
the first navigation plan of the robot uses two bouncing angles, 45° and 135°, to get
to the goal configuration z¢ from the initial configuration x; where locations of x4
and x; are illustrated with red and green circles respectively. They face Eastward,
and the navigation path is depicted with blue arrows. In Figure B9(b), the second
navigation plan of the robot uses all bouncing angles, 45°,90°, and 135°, to complete
its navigation task from x; to x5 where the navigation path and its initial and goal

configuration are illustrated the same way as before.

74



Figure 3.7: Snapshots of different configurations of the robot executing the first
navigation plan of the simulation result of Figure[3.6((a): a) the initial configurat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>