
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

4-16-2018

A Dynamical System Approach for Resource-
Constrained Mobile Robotics
Tauhidul Alam
talam005@fiu.edu

DOI: 10.25148/etd.FIDC006561
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Dynamics and Dynamical Systems Commons, and the Robotics Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Alam, Tauhidul, "A Dynamical System Approach for Resource-Constrained Mobile Robotics" (2018). FIU Electronic Theses and
Dissertations. 3825.
https://digitalcommons.fiu.edu/etd/3825

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/281?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3825?utm_source=digitalcommons.fiu.edu%2Fetd%2F3825&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A DYNAMICAL SYSTEM APPROACH FOR RESOURCE-CONSTRAINED

MOBILE ROBOTICS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Tauhidul Alam

2018



To: Dean John L. Volakis
College of Engineering and Computing

This dissertation, written by Tauhidul Alam, and entitled A Dynamical System Ap-
proach for Resource-Constrained Mobile Robotics, having been approved in respect
to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

S. S. Iyengar

Bogdan Carbunar

Wei Zeng

Kemal Akkaya

Dylan A. Shell

Leonardo Bobadilla, Major Professor

Date of Defense: April 16, 2018

The dissertation of Tauhidul Alam is approved.

Dean John L. Volakis

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2018

ii



c© Copyright 2018 by Tauhidul Alam

All rights reserved.

iii



DEDICATION

To my family for their support and encouragement.

iv



ACKNOWLEDGMENTS

I would like to praise Almighty God for his blessings of physical and mental

strength to finish my dissertation research. This dissertation would never have been

possible without the assistance and support of many people. First, I offer sincere

thanks to my advisor, Dr. Leonardo Bobadilla, who helped me complete the research

works presented in this dissertation through his continuous encouragement, support,

and technical suggestions along the way. He made me interested in doing research

on robotics and control theory.

I would like to express my sincere gratitude to all my dissertation committee

members: Dr. S. S. Iyengar, Dr. Bogdan Carbunar, Dr. Wei Zeng, and Dr. Kemal

Akkaya for their time and valuable feedback to improve my dissertation. My col-

laborator and committee member, Dr. Dylan Shell, has been an excellent mentor

for me. I learned a lot from various insightful discussions with him. He has given

many helpful comments on my research.

I shared my work environment with great PhD students: Mahbub, Sebastian,

and Greg. It was intellectually stimulating and enjoyable to work together with

these smart people who provided me with lots of constructive feedback about my

research papers and presentations. Hence, I am thankful to them. I am also thankful

to other graduate students: Franklin, Pedro, and Richard who helped me with the

experiments and others.

I would have never been able to accomplish anything in life without the uncon-

ditional support of my parents. I am always grateful for their love and guidance

over the years. Last but not the least, I would like to dedicate this work to my wife,

Saima, for her help, encouragement, understanding, and patience. Thank you.

v



Finally, I would like to acknowledge the financial support of a Florida Interna-

tional University Graduate School Dissertation Year Fellowship. This dissertation

was also supported in part by Army Research Office Grant 67736CSII.

vi



ABSTRACT OF THE DISSERTATION

A DYNAMICAL SYSTEM APPROACH FOR RESOURCE-CONSTRAINED

MOBILE ROBOTICS

by

Tauhidul Alam

Florida International University, 2018

Miami, Florida

Professor Leonardo Bobadilla, Major Professor

The revolution of autonomous vehicles has led to the development of robots

with abundant sensors, actuators with many degrees of freedom, high-performance

computing capabilities, and high-speed communication devices. These robots use a

large volume of information from sensors to solve diverse problems. However, this

usually leads to a significant modeling burden as well as excessive cost and compu-

tational requirements. Furthermore, in some scenarios, sophisticated sensors may

not work precisely, the real-time processing power of a robot may be inadequate, the

communication among robots may be impeded by natural or adversarial conditions,

or the actuation control in a robot may be insubstantial. In these cases, we have

to rely on simple robots with limited sensing and actuation, minimal onboard pro-

cessing, moderate communication, and insufficient memory capacity. This reality

motivates us to model simple robots such as bouncing and underactuated robots

making use of the dynamical system techniques. In this dissertation, we propose a

four-pronged approach for solving tasks in resource-constrained scenarios: 1) Com-

binatorial filters for bouncing robot localization; 2) Bouncing robot navigation and

coverage; 3) Stochastic multi-robot patrolling; and 4) Deployment and planning of

underactuated aquatic robots.
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First, we present a global localization method for a bouncing robot equipped

with only a clock and contact sensors. Space-efficient and finite automata-based

combinatorial filters are synthesized to solve the localization task by determining

the robot’s pose (position and orientation) in its environment.

Second, we propose a solution for navigation and coverage tasks using single or

multiple bouncing robots. The proposed solution finds a navigation plan for a single

bouncing robot from the robot’s initial pose to its goal pose with limited sensing.

Probabilistic paths from several policies of the robot are combined artfully so that

the actual coverage distribution can become as close as possible to a target coverage

distribution. A joint trajectory for multiple bouncing robots to visit all the locations

of an environment is incrementally generated.

Third, a scalable method is proposed to find stochastic strategies for multi-robot

patrolling under an adversarial and communication-constrained environment. Then,

we evaluate the vulnerability of our patrolling policies by finding the probability of

capturing an adversary for a location in our proposed patrolling scenarios.

Finally, a data-driven deployment and planning approach is presented for the

underactuated aquatic robots called drifters that creates the generalized flow pattern

of the water, develops a Markov-chain based motion model, and studies the long-

term behavior of a marine environment from a flow point-of-view.

In a broad summary, our dynamical system approach is a unique solution to

typical robotic tasks and opens a new paradigm for the modeling of simple robotics

systems.
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CHAPTER 1

INTRODUCTION

1.1 Background

Mobile robotics has had great success in the areas of manufacturing [CLC14], agri-

culture [LIWY09], healthcare [SG01], home automation [MVH14], military mis-

sions [WBL+99], transportation [MFK11], and surveillance systems [GKKP06]. Fur-

thermore, mobile robotics is evolving quickly due to the improvement of sensing

technology, computational power, mathematical models, and algorithmic techniques.

The proliferation of mobile robots is spreading into many facets of our daily lives.

As such, these are exciting times for the robotics research community, which further

motivate us to study the robotics systems. The commercial robotics industry and

government organizations are also encouraging new research ideas to be brought to

life through fundings and robotics competitions. Select examples include:

• Google self-driving car project “Waymo” began test-driving of fully self-driving

vehicles on public roads [sel]. It is expected that people will soon use these

vehicles in their daily lives. The technological development of these self-driving

vehicles started through the DARPA Grand Challenge1.

• National Institute of Standards and Technology (NIST) organized an Agile

Robotics for Industrial Automation Competition (ARIAC)2 to promote agility

in industrial robot systems by utilizing the latest advances in artificial intelli-

gence and robot planning. The goal is to enable industrial robots on the shop

1http://www.darpa.mil/grandchallenge/

2https://www.nist.gov/el/isdms/agile-robotics-industrial-automation-competition
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floors to be more productive, more autonomous, and more responsive to the

needs of the shop floor workers.

• The VEX Robotics Competition, presented by the Robotics Education and

Competition Foundation, is the largest and fastest growing global robotics

program for middle school and high school students3. Students, under the

guidance of their teachers and mentors, build innovative robots and compete

in an exciting engineering challenge.

Additionally, the robotics industry continues to develop sensor-rich mobile robots

(Figure 1.1) which increased the availability of autonomous robots in practice. As

evidence, Waymo leads in the race of developing self-driving cars (Figure 1.1(a)) and

autonomous miles driven by these cars [way18]. In California, they drove 352,545

autonomous miles with 63 total disengagements4, for a yearly average of 5,595 miles

per disengagement from December 2016 to November 2017. They are now expanding

their service to more cities across the United States.

Security robots are increasingly being used as guards [sro14]. And Knightscope,

Inc. is developing autonomous security robots (Figure 1.1(b)) having a long-term vi-

sion to predict and prevent crime by utilizing autonomous security robots, analytics

and engagement [sro]. Moreover, an unmanned aerial vehicle (UAV) or a drone is a

common robotic platform for numerous civilian, commercial, military, and aerospace

applications. For instance, the U.S. Department of Homeland Security built drones

(Figure 1.1(c)) that can detect civilians carrying guns and track their cell phones

using “signal interception” and “direction finding” technologies [drob]. Commer-

3https://www.roboticseducation.org/competition-teams/vex-robotics-competition/

4A disengagement is when the driver takes over the car due to technology failure or
the intervention for the safe operation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.1: Examples of sensor-rich mobile robots: (a) The Google’s Waymo self-
driving car [sel]; (b) A Knightscope security robot [sro]; (c) The department of
homeland security’s surveillance drone (UAV) [drob]; (d) The Toyota third genera-
tion humanoid robot T-HR3 [hr]; (e) The TurtleBot 2 mobile robot [tur]; (f) The
Willow Garage’s PR2 robot [pr2]; (g) The Kuka industrial robot [kuk]; (h) The
YSI Ecomapper autonomous underwater vehicle (AUV) [gli]; (i) A rendering of the
NASA’s Curiosity rover for Mars exploration [rova].
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cial uses of drones as data capturing devices are also on the rise [droa]. Among

the industries and fields where drone technology uses are thriving include security,

construction, agriculture, mining, and infrastructure inspections.

Humanoid robots have come a long way since Piero Fiorito unveiled the first

gigantic humanoid robot called Cygan in 1957. A modern third generation hu-

manoid robot example designed and developed by Toyota is shown in Figure 1.1(d)

that can coexist with humans and assist them in their daily lives like mobility

needs [hr]. An alternative platform for interacting with humans is a mobile ma-

nipulator (Figure 1.1(e)–(g)). The Turtlebot (Figure 1.1(e) and the PR2 manipu-

lator (Figure 1.1(f)) from Willow Garage combine the mobility to navigate human

environments and the dexterity to grasp and manipulate objects in those environ-

ments [tur, pr2]. Some industrial manipulators from Kuka (Figure 1.1(g)) have long

been used in assembly lines for improved efficiency and accuracy which perform

repetitive tasks such as spot welding and painting [kuk].

On the other hand, aquatic robots or underwater vehicles provide a means of col-

lecting data about aquatic ecosystems or monitoring a marine environment. One ex-

ample is the YSI EcoMapper autonomous underwater vehicle (AUV) (Figure 1.1(h))

which can collect bathymetry and water quality data [gli]. NASA’s Curiosity rover

(Figure 1.1(i)) is expected to drive autonomously to search for actual signs of past

Mars life by doing on-site measurements and collecting samples [rovb].

1.2 Fundamental Challenges for Typical Robotic Tasks

The advancement of autonomous vehicles has led to the development of robots

with abundant sensors, actuators with many degrees of freedom, high-performance

computing capabilities, and high-speed communication devices. These sensor-rich
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robots are utilized to solve diverse robotic tasks. Some typical tasks in mobile

robotics are as follows [LaV13]:

• Modeling: The modeling task aims to develop a mechanically stable sys-

tem and model the system using system identification [ÅE71]. Probabilistic

modeling has proved to be useful in taking noise and model uncertainties into

account that arise when using real sensors.

• Mapping: Once a robot has a system model, it needs a representation of

its environment. The mapping task constructs the representation of the en-

vironment accessible by the robot. This environment representation can be

occupancy grid maps, topological maps, and bitmaps. Robots can use several

sensors such as LIDARs or high-resolution cameras for mapping [TBF05].

• Localization: A robot needs to localize itself after having the representation

of the environment. Particularly, the localization task determines the robot’s

pose (position and orientation or the direction it is facing) relative to a given

environment taking information from GPS, laser range finder, compass, and

camera sensors. There is a subtle distinction between localizing a robot and

tracking a robot. In tracking a robot, the initial robot pose is known. In

localizing a robot globally, the initial pose of the robot is unknown which is

also called global localization.

• Navigation: Given the representation of the environment and a prescribed

location in the environment, this navigation task generates a trajectory for

a robot to reach its prescribed or goal location as efficiently and reliably as

possible. Then, the robot uses its sensor feedback for executing the naviga-

tion trajectory. The navigation task involves both path planning which is the

decision making of a robot about what to do over the long term to achieve its

5



goal and obstacle avoidance which is the modulation of the trajectory of the

robot to avoid collisions [SNS04].

• Coverage: The coverage task ensures that no regions of interest of the given

environment have been left unexplored by the robot. This task is computa-

tionally expensive for a single robot. The coverage time is very high for a

single robot as opposed to multiple robots. Thus, multi-robot coverage meth-

ods have been well studied [Cho01, GC13]. These approaches for solving the

coverage task are divided into offline methods, in which the map of the envi-

ronment is known, and online methods, in which the map of the environment

is unknown.

• Patrolling: The patrolling task is the activity of going around or through

an area at regular intervals for security purposes. Patrolling schemes are

further categorized into perimeter patrolling, which is the activity of going

through an area and area patrolling, which is the activity of going around an

area [PR11]. The patrolling task entails having periodic visits of locations of

interest whereas the coverage task requires just one pass. As with coverage,

the patrolling task can be performed by single or multiple mobile robots.

• Coordination: When multiple robots are involved in a task, their motions

need to be synchronized to avoid collisions and solve the task. A central-

ized controlling unit can work as a coordinator to communicate with multiple

robots while solving the task. Robots can also communicate with each other

to coordinate themselves.

For solving these typical tasks, the sensor-rich mobile robots use a large volume

of information from sensors. However, no real sensor can measure everything en-

tirely and accurately. In other words, perfect sensing is not possible in practice.
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Information loss and time delays are expected in processing the wealth of sensor

information. Only a hypersensor instantaneously measures everything, records it in

the storage, and responds immediately. The completeness, accuracy, and timeliness

of the information are critically dependent upon the hypersensor. Hence, solving a

task using a sensor-rich mobile robot usually leads to a significant modeling burden

as well as excessive cost, sensing, communication, memory, and computation require-

ments. Because of these issues, it is better for a robot to require less information

from sensors about the physical world.

Furthermore, some extrinsic sensors such as GPS may not work precisely in

indoor and underwater environments, and compass readings can be disturbed by

electromagnetic fields. In some cluttered environments, visual perception can be

ineffective and expensive in poorly illuminated conditions. In privacy-preserving en-

vironments, some sensors, e.g., a camera may be prevented from being used for data

collection. The real-time processing power of a robot may be inadequate and the

actuation control in a robot may be insubstantial. Natural or adversarial situations

can impede the communication among multiple robots in a congested environment.

For security reasons, the communication among robots may be kept at a minimum

level. In these scenarios, we can alternatively rely on simple robots. Therefore,

the planning and control of simple robots are required that will satisfy various ob-

jectives such as making the robot behavior unpredictable, minimizing the traveling

duration, sensing information, actuation control, communication, and computation,

or handling the limited visibility of the robot.
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(a) (b)

Figure 1.2: Simple household robots: (a) The iRobot Roomba vacuuming robot [iro];
(b) The RoboMop floor duster [rmo].

1.3 Motivation

The development of sensor-rich mobile robots often starts with the introduction of

simpler systems. The prevalence of sensors with lower costs and the trend of devel-

oping small mechanical, sensing, and computing components are making robots to

enter our homes. Consequently, some simple robots are being incorporated into our

household chores. The well-known Roomba vacuum cleaning robot (Figure 1.2(a))

lives in many households and uses zig-zag and wall following techniques for vacu-

uming. The Weaselball is a $4 toy that contains only a battery connected to an

oscillating motor. One of the simplest robot designs is the RoboMop, which is es-

sentially a Weaselball enclosed in a dusting ring (Figure 1.2(b)) and picks up dust

as it rolls. Experimental mobile robotics is the main inspiration for the concepts

presented in this dissertation. Considering the availability of simple robots, the

primary motivation of our work is to use simple and inexpensive robots in solving

fundamental robotic tasks.

More importantly, there are some stimulating reasons why we use simple or

resource-constrained robots.
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1. Simple robots have inexpensive actuators and sensors which make them suit-

able for long-term deployments, numerous applications, and research prototyp-

ing and verification. Moreover, simple robots can also reduce the engineering

costs associated with sensor calibration and manufacturing.

2. There are limitations of sensors in some environments as explained before,

e.g., GPS-denied, communication-challenged, cluttered, privacy-preserving,

and adversarial environments. Simple robots can overcome these limitations

using a minimal number of sensors.

3. Statistical assumptions about motion errors and sensor noise to model the

uncertainty are not always accurate. The minimal number of sensors in the

simple robots cause them to be less susceptible to failure and make them

robust against the sensing uncertainty of a lot of sensors.

4. Simple robots consume less energy because they can feed sensor outputs di-

rectly to actuators, e.g., motors, and they use some minimal amount of logic

circuitry to maintain sensor observations.

5. There is less sensed and transmitted information for a robot to solve a task

which in turn reduces the computation time, communication, and memory

requirements for the robot in addressing the task.

6. The code and models of these robots are more straightforward to verify since

a small code base and simple communication protocols are easily deployable

to real robots to evaluate the efficacy of the system.

7. The controlling techniques of simple robots can be used to enhance the ro-

bustness of sensor-rich robots by providing the solution to the intended task

even when some sensors do not work. Moreover, the complex tasks in in-
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dustrial settings can be carried out by simple robots reducing the associated

cost [CG94].

8. With the advent of wireless sensor networks [PK00], a group of simple micro-

robots offers an attractive and scalable architecture for large-scale collabora-

tive tasks.

The minimalist and resource-constrained approach, which we take throughout

this dissertation, has also been applied to solve several robotics problems. One in-

spiring example is the article of Mason [Mas93] which stated that robotic systems

must be less dependent on complicated sensors as they are subject to significant

errors. A planner for manipulating objects on a planar surface using minimal in-

formation was proposed in [EM88, AM98]. Canny and Goldberg [CG95] proposed

sensing and manipulation strategies for performing complex operations from simple

actuation and sensing elements. Yershova et al. proposed that simple robots can

solve complex tasks based on the concept of information spaces avoiding the need

for accurate state estimation [YTGL05]. This information space concept was the

motivation for the construction of minimalist combinatorial filters that maintain

minimally needed information to achieve a specified task [TCB+14, OS17]. Com-

binatorial filters are the minimalist counterpart to the popular recursive Bayesian

filters such as the Kalman filter [Kal60] and its extensions or particle filters [DGA00].

Bayesian filters are mostly applied in Robotics and Control to keep an estimate of

state variables such as position and velocity. These filters represent the state un-

certainty through probability distributions and update uncertainty using a state

transition model and an observation model. In contrast, combinatorial filters han-

dle uncertainty in discrete spaces that represent the essential information to solve a

task.
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1.3.1 Dynamical System Methods

The striking motivation for the approaches in this dissertation is the global analysis

of simple robotics systems. This global analysis of robotics systems leads us to use

a dynamical system method. The dynamical system we use here is the cell-to-cell

mapping methodology (originally introduced by Hsu in 1980) [Hsu80, Hsu13]. In

the cell-to-cell mapping, the state space is divided into small cells, where each cell

is considered a state entity. In our approaches, we utilize two cell-to-cell mapping

methods which are the simple cell-to-cell mapping (SCM) and the generalized cell-

to-cell mapping (GCM). In the SCM, each cell has only one image cell. In the

GCM, each cell has several image cells. The GCM is a generalization of the SCM.

The modeling of the deterministic behavior of robots leads to the application of the

SCM. The formulation of the nondeterministic behavior of robots in terms of the

GCM leads to a finite Markov chain.

The cell-to-cell mapping based method is uncommon in solving the robotic tasks.

Only the trajectory planning for manipulators utilized the cell mapping method

before [ZL90, WL94]. Therefore, our approaches in this dissertation create a unique

opportunity to apply the dynamical system method in solving diverse robotic tasks.

1.4 Key Themes and Contributions

In this dissertation, we propose a four-pronged approach for solving basic robotic

tasks in resource-constrained scenarios using simple robots with limited sensing and

actuation, minimal onboard processing, moderate communication, and limited mem-

ory capacity.
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1.4.1 Combinatorial Filters for Bouncing Robot Localiza-

tion

In the first technical contribution of the dissertation, we focus on a setup that

considers a polygonal environment with holes and a simple robot equipped only

with a clock and contact (or bump) sensors called a bouncing robot. We consider

that the bouncing robot has access to a map of its environment, but is initially

unaware of its position and orientation within that environment. This bouncing

robot is modeled in a predictable way: the robot moves in a straight line and then

bounces from the environment’s boundaries by rotating in place counterclockwise

through a bouncing angle. The problem of global robot localization is how the

robot deduces its pose (position and orientation) following its modeled behavior.

Can this bouncing robot be globally localized without even knowing its initial pose?

Different methods have been proposed to address this localization problem for robots

with limited sensing [OL07, EKOL08, EL13]. In this contribution, we synthesize

finite automata-based combinatorial filters for the global robot localization that

take less computation time and memory compared to traditional Bayesian filter-

based localization approaches [TFBD01, Fox03, LDW91].

The main overview of this contribution is presented as a sequence of steps:

• Geometry to Groups: An algorithm based on the SCM [Hsu80] is pro-

posed to find the periodic groups and their transient trajectories from the

environment.

• Groups to Information States: We construct information state (I-state)

graphs [LaV06] from the computed periodic groups and transient trajectories.
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• Information States to Filters: We introduce combinatorial filters that

are generated from I-state graphs and enable the robot to localize itself up to

some intrinsic uncertainty.

1.4.2 Bouncing Robot Navigation and Coverage

In the second contribution, we use the same bouncing robot model to investigate

both the navigation and coverage problems. The problem of navigation is finding a

path for a robot between an initial pose and a goal pose. The coverage problem of

the environment is visiting all locations of interest using one or more robots. How

could the simple behavior of the bouncing robot be useful in solving the common

robotic tasks, such as navigation and coverage, with limited linear and angular

sensing? In multi-robot settings, will many such bouncing robots be useful as well

to solve the coverage task? Our solution in this contribution has the following steps:

1) A directed graph is constructed from the environment geometry using the simple

bouncing policies. 2) The shortest path on the graph, for navigation, is generated

between either one given pair of initial and goal poses or all possible pairs of initial

and goal poses. 3) The optimal distribution of bouncing policies is computed so

that the actual coverage distribution is as close as possible to the target coverage

distribution. Our solution also finds a multi-robot (or joint) trajectory incrementally

for multiple robots to cover the given environment.

The contribution has the following steps:

• We propose an algorithm using the SCM to find the minimum navigation

plan for a minimalist robot between an initial and a goal configuration in the

environment.
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• All minimum navigation plans between all possible initial and goal configura-

tion pairs in the environment are generated.

• A method based on the GCM [Hsu80] is developed for finding a probability

distribution of bouncing policies for the best possible coverage of the environ-

ment with respect to a target coverage distribution.

• We also present an algorithm based on the SCM to find a joint trajectory of

multiple bouncing robots for covering a known environment.

1.4.3 Stochastic Multi-Robot Patrolling

In the third contribution, we investigate the problem of area patrolling in an ad-

versarial situation in which a number of robots as patrollers visit a group of loca-

tions of interest in an environment to detect the intrusion of an adversary. In a

communication-constrained and adversarial environment, it is a challenging prob-

lem for multiple robots to patrol the whole environment by sensing with their lim-

ited ability to see. In the multi-robot patrolling problem, what will be an efficient

method for robots to patrol an area under the adversarial scenario? How can we

remove the need for synchronization and coordination among the patrolling robots?

How can the robots with limited visibility be used to patrol an adversarial and

communication-constrained environment? Deterministic patrolling strategies could

also be learned by an adversary observing them over time. In this contribution, we

alternately use randomized patrolling strategies based on Markov chains for several

reasons: 1) These will make it harder for an adversary to successfully complete an

attack and evade its detection due to the unpredictability of the strategies. 2) A

randomized motion can be easily implemented in a mobile robot, since its communi-
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cation, sensing, and computation requirements are minimal. 3) Efficient algorithms

can calculate Markov chains with desired properties [GBS08].

This contribution is summarized as follows:

• We present algorithms that do not require communication, are based on con-

vex optimization, can scale well, and can also be applied to any type of envi-

ronment represented as a graph where the distribution of cost over locations

(vertices) is uniform for both patroller and adversary.

• A game theoretical framework is proposed for patrolling where the set of strate-

gies are Markov chains. We also calculate the payoffs of each strategy and

present approaches to generate the optimal mixed strategy for patrollers and

the optimal strategy for the adversary.

• We propose a method for finding distributed patrolling policies based on lim-

ited visibility regions and convex optimization, where each patroller monitors

the whole environment separately.

• We develop centralized and randomized patrolling policies using a central base

station and visibility-based communication, where each patroller patrols a

region of the environment and contacts the base station after a random period.

• The vulnerability of our patrolling policies is evaluated by finding the proba-

bility of capturing an adversary at a specific location of the environment when

patrollers follow our proposed policies.
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1.4.4 Deployment and Planning for Underactuated Aquatic

Robots

In the final contribution, we are interested in tackling the problem of deploying

multiple underactuated aquatic robots called drifters so that their desired long-term

trajectories can gather aquatic data visiting all locations on the surface of a marine

environment. We also tackle the problems of path planning and finding navigation

policy for a drifter. The drifters drift passively with ambient ocean currents. Vertical

actuation (buoyancy) enables them to alter their depth and achieve controllability

by the use of different current layers in the ocean. How can we model the behavior of

the drifter in a marine environment? In addition, the study of a marine environment

is a challenging task because of the spatiotemporal variations of ocean phenomena

and the disturbances caused by ocean currents. As such, we must collect data from

a marine environment over long periods of time to better assess and understand a

marine environment. The uncertainty of the drifter motion due to the disruption

of ocean currents and winds needs to be taken into account in our motion model of

the drifter. In this contribution, we present a data-driven, deployment and planning

approach for the drifters. We extract the generalized flow pattern within a given

region from ocean model predictions, develop a Markov chain-based motion model,

and analyze the long-term water flow behavior. Based on this long-term behavior of

the water flow, we find a minimum number of deployment locations for the drifters in

the marine environment. All possible reachable locations from an initial deployment

location of the drifter are determined as its planned, long-term drifter trajectory.

An optimal navigation policy is developed to demonstrate the best possible action

from any location to a goal location in the environment.
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The overview of this contribution is given as below:

• An algorithm is proposed to deploy a minimum number of drifters at their

starting locations on the water surface to cover an oceanic region over a given

(long) period of time.

• A deployment policy is developed for the visibility-based, total coverage prob-

lem that requires images of an entire seafloor environment through the long-

term and cumulative image collection.

• We compute the reachability set for a drifter, i.e., all possible reachable loca-

tions for the drifter over an extended period of time starting from its initial

deployment location.

• We propose an optimal navigation policy to find the best possible action from

any location to a goal location of the environment for drifting vehicles.

1.5 Organization of the Dissertation

We conclude this introductory chapter with a preview of the remainder of the disser-

tation. Chapters 2, 3, 4, and 5 contain original contributions. Concluding remarks,

open problems, and some potential avenues for future work appear in Chapter 6.

The structure and dependencies between chapters are shown in Figure 1.3. The

contributions of this dissertation are laid out in the following chapters as follows:

• Chapter 2: We describe the synthesis of combinatorial filters for a bounc-

ing robot localization based on the output of the modified SCM. Section 2.1

provides the motivation and challenges of the global robot localization with

limited sensing. Section 2.2 reviews the literature of robot localization and
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1. Background and Challenges

1. Key Themes and Contributions

6. Discussion and Conclusions

2. Combinatorial Filters for

Bouncing Robot Localization
3. Bouncing Robot 

Navigation and Coverage
4. Stochastic Multi-Robot 

Patrolling

5. Deployment and Planning for 

Underactuated Aquatic Robots

Figure 1.3: Organization of this dissertation with arrows indicating dependencies.

combinatorial filters. Section 2.3 defines the robot model, explains the con-

cepts of the SCM, and formulates the problems we solve. In Section 2.4, we

describe the methodology of our work in detail. Section 2.5 illustrates our sim-

ulation results and physical deployments of our filters on a real robot. Finally,

we conclude our first contribution with the discussion in Section 2.6.

• Chapter 3: We present our work of solving navigation and coverage prob-

lems using one or more bouncing robots based on the output of both the

SCM and the GCM. In Section 3.1, the problem statement and challenges in

solving these problems with limited linear and angular sensing are initially

explained. Section 3.2 discusses the related literature of the simple robot nav-

igation and coverage. In Section 3.3, we account for the robot model and

the fundamentals of cell-to-cell mapping, and then formulate the problems we

consider. Section 3.4 describes our proposed approach to solve problems as

formulated, in detail. Then, we outline the implementation of our approach

with simulation results and hardware experiments in Section 3.5. Section 3.6

explains the concluding remarks of the second contribution.
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• Chapter 4: A scalable method is described to find stochastic strategies for

multi-robot patrolling under an adversarial and communication-constrained

environment. In Section 4.1, we motivate the problem of patrolling in ad-

versarial settings with the limitations of the traditional methods. Section 4.2

reviews the literature on the multi-robot patrolling problem. Section 4.3 ex-

plains the preliminaries of our work and formulates the problems of our in-

terest. In Section 4.4, we outline the method of finding both distributed and

centralized patrolling policies and their vulnerability evaluation in detail. Sec-

tion 4.5 presents the simulation results and the physical implementation of our

proposed method. Finally, we summarize our work of the third contribution

in Section 4.6.

• Chapter 5: A data-driven deployment and planning approach for an under-

water vehicle is presented in this chapter. Section 5.1 introduces an underac-

tuated underwater vehicle called drifter and how we can use this simple vehicle

for the long-term assessment of an aquatic ecosystem. After this introduction,

Section 5.2 discusses some works related to the applications of underwater

vehicles for persistent monitoring. In Section 5.3, the preliminary description

of the environment and the motion model of drifters are explained. Also, our

problems of interest are formulated in the same section. Section 5.4 outlines

the proposed algorithm of our work. The simulation results of the algorithm

are presented in Section 5.5. Section 5.6 summarizes our work of the final

contribution.
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CHAPTER 2

COMBINATORIAL FILTERS FOR BOUNCING ROBOT

LOCALIZATION

In this chapter, we present a global localization method based on combinatorial

filters for a bouncing robot equipped with only a clock and contact sensors. This

work appeared in its current form in [ABS18].

2.1 Motivation and Challenges

Mobile robot localization is the problem of determining a robot’s pose or configura-

tion (position and orientation) in an environment, typically within a given map or

a similar representation [LaV06]. Localization is a fundamental problem in mobile

robotics, and is typically a prerequisite to solving tasks such as navigation, coverage,

mapping, searching, planning, and patrolling for applications in agriculture, secu-

rity, surveillance, and home robotics among many others. This work addresses the

problem of global robot localization [TFBD01, FBT99], where a robot has to find

its configuration in the entire environment without having any information about

its initial configuration. Most localization approaches rely on Bayesian filters such

as particle filters [TFBD01, Fox03] or Kalman filters [LDW91, JLV99], which, com-

pared with the focus of our study, are far more expensive in terms of computation

time and memory, and require sophisticated sensors and motion modeling. The

originality of our work is that we synthesize finite automata-based combinatorial

filters for solving the problem of localizing a robot in a particular environment that

is suitable for a device of meager computational ability, potentially even being re-

alized directly in a field programmable gate-array. This work fits within a broader

research program of hardware synthesis for robots.
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With few or very limited sensors, the localization problem is challenging to solve

and has consequently attracted considerable theoretical attention [OL05, OL07,

EKOL08, EL13]. The motivation of our work is to use a robot with limited linear

and angular sensing as a basis for investigating the intrinsic limits of the localization

problem. In particular, we wish to understand the strongest possible version of a

localization task that such a robot can solve, recognizing that the robot may be too

deficient, ultimately, to resolve its position down to a unique pose with certainty.

What is possible depends on the environment and parameters of the robot controller,

so we explore automated processes to uncover answers to these questions that are

given in a particular setting as input.

Continuing the growing vein of work exploring the properties of sensing-constrained

systems, we examine a robot equipped with a bump (or contact) sensor and a clock.

The robot inhabits a planar polygonal environment with holes and has behavior

parameterized by a single parameter, which, for reasons that will be obvious, we

call the bouncing angle. The robot moves on straight lines, and when it encounters

a wall it rotates through the bouncing angle (measured with respect to the direction

of its pre-collision motion).

Though the robot is too deficient to localize in the traditional metric sense, we

show that there is a relaxed instance of the localization problem that it is capable

of solving. The setting we study enables the construction of an estimator that still

suffices to localize with an accuracy that is compromised only by the symmetries

involved. In other words, we make the limits of localization accuracy precise by

establishing the fundamental limits imposed by symmetry as revealed by the robot’s

sensors. This contribution is also motivated by the concepts of limit cycles and

basins of attraction which we define here as periodic groups and transient trajectories

respectively and are often used in control theory [Hsu13] and control of robots with
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sophisticated dynamics [BRK99]. Consequently, we modify the simple cell-to-cell

mapping (SCM) to find periodic cycles and transient trajectories of the robot path

as it bounces within an environment filled with obstacles. Based on the cycles and

transient trajectories, space-efficient and automata-based combinatorial filters are

synthesized to solve localization problems modulo symmetries.

2.2 Related Work

2.2.1 Robot Localization

There are several antecedent works which have examined bouncing robots in related

contexts. In [LO13, EKOL08], the authors consider a robot whose bouncing angle

varies as a function of the number of prior bounces. In [EL13], the bouncing angle

of the robot is a constant angle relative to the normal of the impacted edge of the

environment irrespective of its angle of incidence. These contrast from the type of

bounce we study. The bounce we investigate ensures that the robot will end up in

a small bounded set of possible locations.

In [OL07], the authors study a robot equipped with a contact sensor and compass

or a robot equipped with linear and angular odometers, providing theoretical results

on localization for environments without holes using geometric reasoning. The robot

they study is more powerful than what we explore herein. Further, holes within the

environment pose no special challenge for the techniques we describe below. We

note that in [EKOL08], the authors considered a simple environment with holes for

localization with a robot having only a clock and a contact sensor. They presented

a probabilistic technique for finding a probability distribution over regions on the
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boundary of the environment. However, they assume that the robot knows its initial

orientation whereas in our work, no such assumption is needed.

2.2.2 Combinatorial Filters

Nearly sensorless robots called “weasel balls” that bump and bounce around the

environment were studied in [BSC+12]. Their bounce is not associated with a fixed

angle and thus require complete state estimation for solving various tasks. Since

doing so is difficult, an information space view was introduced in [TYOL05] to

avoid this onerous state estimation. The information space consists of all histories

of actions and sensing observations of a mobile robot for problems involving uncer-

tainty. A related perspective is adopted in the information state (I-state) formalism,

which led to the use of combinatorial filters to process information from sensors for

solving tasks such as manipulation [KS12], navigation [TMCL07], and target track-

ing [YL12]. In [OS13], the problem of filter reduction is introduced, which involves

finding the filter that uses the fewest information states for a given filtering task.

To the best of our knowledge, our work is the first to automate the process of com-

piling a geometric description of the environment into an I-state graph, which we

then explicitly turn into a filter to solve the localization task.

2.3 Model and Definitions

2.3.1 Robot Model

We start with a differential drive mobile robot equipped with only a contact sensor

and a clock. The robot moves in a planar and bounded polygonal two-dimensional

workspaceW ⊂ R
2. There is a set of polygonal obstacles represented as O ⊂ W. Let
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E = W \ O be free-space in which the robot can move freely and let ∂E represent

the boundary of the free space. We assume that the robot has a map of the environ-

ment E and knows its bouncing angle φ but does not know its initial configuration.

We also consider a noise-free model of the robot in terms of the translation and

the rotation. Certainly, generating perfect motions for any angle poses a problem,

especially for a low-cost differential drive robot. However, in practice, we found

that for some given φ, we are able to produce repeatable and reliable rotations (see

Section 2.5, where we describe our physical robot experiments).

The robot moves straight until touching the boundary of the environment ∂E

which is detected by the contact sensor. The robot measures the number of steps in

its straight-line motion by using its clock. Once it bounces at ∂E, the robot rotates

with the angle φ counterclockwise from its current orientation by commanding a

constant angular velocity and using a clock to rotate for some fixed period of time.

It then moves straight until contacting ∂E and repeats the behavior. This simple

behavior is illustrated in Figure 2.1.

Figure 2.1: An example of a simple bouncing robot.
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2.3.2 Simple Cell-to-Cell Mapping

Including the robot’s orientation, the physical state space of the robot is X = E×S1

where S1 = [0, 2π). Let x ∈ X denote the state of the robot where x = (xt, yt, θ),

(xt, yt) is its position, and θ is its orientation. Let R(x) ⊂ R
2 represent the robot.

The obstacle region Xobs in the state space is defined as

Xobs = {x ∈ X|R(x) ∩O 6= ∅} (2.1)

and Xfree = X \Xobs.

The subset of the state space where the robot is allowed to move is denoted by

Xfree. To apply the cell-to-cell mapping method [Hsu80, vcS94], we divide Xfree into

equally sized 3-dimensional box cells since the robot’s configuration has three degrees

of freedom. Let N be the total number of cells. We define N as N = NE × NS,

where NE is the discretization resolution of the 2-D free space E and NS is the

discretization resolution of S1. This discretized state space is called cell state space.

Each cell represents an indivisible state entity. The state of the system is described

by a cell index z ∈ {1, . . . , N}. Let Z = {1, . . . , N} denote the collection of cells.

The evolution of a system can be explained as a sequence of cells by investigating

its state at discrete times. Let e(i) denote the cell containing the state of the system

at t = i∆t, i = 0, 1, . . . with ∆t being the time between two state examinations,

and being large enough to support crossing a cell. The system evolution is then

governed by

e(i+ 1) = C(e(i)), (2.2)

where the mapping C : N→ N is called a simple cell-to-cell mapping (SCM). In this

model, Equation 2.2 implies that the next state of the system is determined entirely

by its current state and is explicitly independent of the mapping step i.
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For the sake of completeness, we summarize some important definitions of the

cell-to-cell mapping method. An extended treatment can be found in [Hsu13].

Definition 2.3.1 (Periodic Cell) A cell z satisfying z = Cm(z), for some m ∈

N is called a periodic cell with a period of m.

Definition 2.3.2 (Transient Cell) A cell that is not periodic is called a tran-

sient cell and it maps into a periodic cell in a finite number of steps.

Definition 2.3.3 (Periodic Group) A sequence of K distinct cells e(m), where

m = 1, 2, . . . , K − 1, that satisfies

e(m+ 1) = Cm(e(1)), m = 1, 2, . . . , K − 1

e(1) = CK(e(1)),
(2.3)

is called as a periodic group with a period K and each of the cells e(·) is said to be

a periodic cell with the period K. This periodic group is also called an attractor or

a limit cycle.

Definition 2.3.4 (Transient Trajectory) A transient trajectory is the set of

initial cells that are finally leading to a particular periodic group (attractor). The

collection of transient trajectories is called a basin of attraction.

2.3.3 Problem Formulation

As the robot moves in the environment E, it receives a sequence of observations from

an observation space Y = {0, 1}. Given some agreed upon resolution, the robot can

measure the distance by the number of steps between bounces up to some quantiza-

tion error. For example, the observation string that represents the stream of observa-

tions that the robot in Figure 2.1 is processing might be {0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0},
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where the ones represent a bump event, and the zeros otherwise. Depending on scale,

resolution, or both, there could be more than or less than three 0s between bumps.

It is also possible to observe multiple 1s in a row (for example, it may happen

when the robot bounces in a corner). This abstract symbolic representation can be

realized with various implementations:

• The robot measures the number of steps for linear distance traversed since

the last bump by a number of 0s. This measurement is quantized at some

resolution.

• The robot moves forward at a constant speed and keeps observing a sequence

of zeros. A bump event results in observing a 1 and resets the clock for the

next linear distance measurement. These observations are encoded as a string

of 0s, interspersed with 1s.

For a fixed bouncing angle φ, the cell-to-cell mapping method allows one to

track the motion of the robot from any initial location in E and to find periodic

groups, of which we assume there are r in total. Sometimes the robot’s motion

begins in a transient trajectory and sometimes it is already in a periodic group. It

will eventually converge to one of the r periodic groups.

We are interested in the following problems:

Problem 1. Closed-world localization:

Given an environment E, a bouncing angle φ, the fact that robot x can only be within

E, find the state of robot x as precisely as possible.

Problem 2. Open-world localization:

Given an environment E and a bouncing angle φ, find the state of robot x, deter-

mining whether the robot is within E and if so ascertain the state of the robot as

precisely as possible; otherwise indicate that the robot is not in E.
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2.4 Method

This section describes the sequence of steps that produce discrete filters for local-

ization. It consists of the following steps: 1) find the periodic groups and transient

trajectories and construct I-state graphs based on them; 2) create a nondeterministic

automaton combining I-state graphs and 3) convert the nondeterministic automaton

into a deterministic automaton to design filters that solve Closed- and Open-world

localization problems.

2.4.1 Finding Periodic Groups and Transient Trajectories

and Constructing Periodic Group I-State Graphs

In our method, we modify the simple cell-to-cell mapping to find all periodic groups

(attractors) and associated transient trajectories (basins of attraction) [vcS94] from

a cell state spaceXfree. We also borrow the definition of an I-state graph from [OS13],

though doing away with the starting vertex.

Definition 2.4.1 (I-State Graph) An I-state graph G = (V,E, ℓ : E → Y ) is

an edge-labeled directed graph where:

1. V is the finite set of vertices consisting of I-states.

2. E is the set of edges that represent transitions between vertices.

3. ℓ is the function that represents edges labeled by an observation in Y .

This I-state graph encodes the information state introduced by LaValle [LaV06],

integrating the history of observations made by a system during its execution. As

the number of cells is finite, we can construct an I-state graph for each periodic
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group along with its transient trajectories, which we term a periodic group I-state

graph.

In this step, Algorithm 2.1 receives as input the geometric description of the

environment E and a bouncing angle φ, finds all r periodic groups P , consisting of

periodic cells and transient trajectories T , consisting of transient cells, for these r

periodic groups, and constructs a set of r periodic group I-state graphs denoted by

G(V,E) as output.

In Algorithm 2.1, cells are assigned a group number and a step number. For

each cell z ∈ Z, the group number gz denotes the periodic group to which z belongs,

the step number sz denotes the number of mappings necessary for z to end up in

a periodic group, and the next mapped cell is denoted by cz. Initially, all cells are

identified as virgin cells by assigning their group number zero. Each virgin cell z ∈ Z

determines the location (centroid) and orientation of a cell (line 6). In lines 7–12, a

cell sequence z, C(z), C2(z), · · · , Ck(z) where k ∈ N and k ≤ N , is generated for each

virgin cell z ∈ Z and cells in the sequence are identified as cells under processing

by temporarily assigning to them their group number −1. The next mapped cell z′

represents the subsequent cell after z. Thus, z′ (line 9) is computed as:

x′ = x+ cos θ,

y′ = y + sin θ,

θ′ =















θ, if (x′, y′) ∈ E,

(θ + φ) mod 2π, otherwise.

(2.4)

where φ is the bouncing angle of the robot. The cell number of z′ is calculated

from the center location and orientation, (x′, y′, θ′), of z′ (line 10). Then, z′ is stored

in cz and z is updated with z′ (line 11). The generation of cell sequences is continued
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as long as z is a virgin cell, which also means it does not have the next mapped cell.

This sequence generation is terminated in one of the following two cases:

1. If z has appeared again in the same sequence then all the cells in the sequence

form a cycle. This case can be further subdivided into two scenarios, as il-

lustrated in Figure 2.2. In the first scenario of Figure 2.2(a), when the initial

and ending cells are the same, then all cells in the sequence are classified as

periodic cells. In the second scenario of Figure 2.2(b), when the initial and

ending cells are different, then the cells prior to the cell that forms the cycle

are classified as transient cells and the rest of the cells, which form the entire

cycle, are classified as periodic cells.

2. If z appeared in one of the previous sequences then all the cells in the sequence

are classified as transient cells.

(a) (b)

Figure 2.2: Two cycle forming scenarios in the cell sequence: (a) Same initial and
ending cells; (b) Different initial and ending cells.

All periodic cells in the j-th periodic group where j ∈ {1, . . . , r} are found with

the update of their group number j and step number as zero (lines 16–18, 23–25).

All transient cells in transient trajectories of the j-th periodic group are found with

the update of their group number j and corresponding mapping number to get to

the j-th periodic group as a step number (lines 20–22, 27–29).
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Algorithm 2.1: ModifiedSimpleCellMapping(E, φ)

Input: E, φ – Environment and bouncing angle
Output: G = {G1, · · · , Gr} – Set of periodic group I-state graphs

1 g[1, . . . , N ]← 0, s[1, . . . , N ]←∞, c[1, . . . , N ]← ⊥
2 r ← 0
3 for i← 1 to N do
4 if gi == 0 then
5 k ← 0, z ← i
6 x, y, θ← CellConfiguration(z)
7 while cz == ⊥ do
8 gz ← −1
9 x′, y′, θ′ ← NextCell(x, y, θ, φ)

10 z′ ← CellNumber(x′, y′, θ′)
11 cz ← z′, z ← z′ // save and update next cell

12 k ← k + 1

13 if gz == −1 then // new periodic group

14 r ← r + 1, Pr ← ∅, Tr ← ∅
15 if i == z then // same initial and ending cells

16 for j ← 0 to k − 1 do // add periodic group

17 gi ← r, Pr ← Pr ∪ {i}, si ← 0
18 i← ci

19 else // different initial and ending cells

20 for j ← 0 to d− 1 do // cycle at d-th index

21 gi ← r, Tr ← Tr ∪ {i}, si ← d− j
22 i← ci // add transient trajectory

23 for j ← d to k − 1 do // add periodic group

24 gi ← r, Pr ← Pr ∪ {i}, si ← 0
25 i← ci

26 else // cell appeared in one of the previous sequences

27 for j ← 0 to k − 1 do // add transient trajectory

28 gi ← gz, Tr ← Tr ∪ {i}, si ← sz + k − j
29 i← ci

30 G ← {BuildI-StateGraph(Pi, Ti) | i ∈ {1, . . . , r}}
31 return G
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For each periodic group and its associated transient trajectories, Algorithm 2.1

adds two consecutive cells to the vertex set, and their ordered pair to the edge

set of the corresponding periodic group I-state graph, using the function BuildI-

StateGraph (line 30). In this function, the absolute difference between orienta-

tions of these two consecutive cells, i.e., |θ − θ′| > 0 is checked. If the difference is

not greater than zero, which means the robot moves forward with the same orien-

tation, then the edge of this consecutive cell pair is labeled with 0. Otherwise, the

transition between vertices causes a ‘bump’ event at the boundary of the environ-

ment ∂E ⊂ E and the robot changes its orientation from θ to θ′, thus the edge of

this consecutive cell pair is labeled with 1. After construction, each periodic group

I-state graph forms an octopus-like structure.

We repeat the same procedure for all r periodic groups and union the disjoint

graphs. Thus, the set of r periodic group I-state graphs G is constructed. The

total number of vertices of the r periodic group I-state graphs G is |G.V | = N . We

denote the set of vertices in the periodic groups of G as G.VP where G.VP ⊂ G.V .

We illustrate one periodic group I-state graph in Figure 2.3. In the periodic group

I-state graph, vertices (cells) in a periodic group form a cycle and vertices (cells) in

a transient trajectory can terminate in one of two ways. It can terminate with its

last vertex (cell) being either coincident with a cell (vertex) in the periodic group or

coincident with a vertex (cell) in another transient trajectory which itself terminates

in the aforesaid periodic group.

Complexity of Algorithm

The running time of Algorithm 2.1 is O(N) where N is the total number of cells since

its complexity is dominated by line 3, which iterates over all the cells, processing

each cell exactly once.
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Figure 2.3: A periodic group I-state graph.

2.4.2 Creating Nondeterministic I-State Automaton

In the next step, we create a nondeterministic I-state automaton, A, amalgamating

the entire set of periodic group I-state graphs G and define a nondeterministic I-state

automaton [HH79] as follows:

Definition 2.4.2 (Nondeterministic I-State Automaton)

Let A , (Q,Σǫ, δ, q0, F ) be a nondeterministic automaton which accepts a stream of

discrete observations from Y in which:

1. Q = {q0} ∪ G.V is a finite set of states.

2. Σǫ = Y ∪ {ǫ} is a finite alphabet where Y = {0, 1}.

3. δ is the state transition function for any q ∈ Q and any input alphabet a ∈ Σǫ

as below:

δ(q, a) =































{q′} q ∈ Q \ {q0}, a = ℓ(q, q′)

and (q, q′) ∈ G.E,

Q \ {q0} q = q0 and a = ǫ,

and |δ(qj, 0)|+ |δ(qj, 1)| = 1, ∀j = 1, . . . , N .

4. q0 is the newly created initial state.

5. F = G.VP is the set of final states that represents the set of vertices in periodic

group I-state graphs.
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The states of A except the initial state q0 are essentially the same states (or vertices)

as the periodic group I-state graphs G. The number of states of A becomes N + 1.

A nondeterministic I-state automaton using only the periodic group I-state graph

of Figure 2.3 is illustrated in Figure 2.4.

Figure 2.4: A nondeterministic I-state automaton.

2.4.3 Nondeterministic I-State Automaton to Deterministic

I-State Automaton Conversion

Given the nondeterministic I-state automaton A, we construct a deterministic I-

State automaton A′, converting the ǫ-nondeterministic automaton into a determin-

istic one using lazy evaluation method as follows:

Definition 2.4.3 (Deterministic I-State Automaton)

Let A′ , (Q′, Y, δ′, q′0, F
′) be a deterministic automaton that also accepts the stream

of discrete observations from Y as [HH79] where:

1. Q′ =
{

S : S ⊆ Q and S = ǫ-Closure(S)
}

where ǫ-Closure(S) is the set that

contains S including all states reachable from any state in S following one or

more ǫ-transitions.
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2. Y = {0, 1}.

3. δ′(S, a) =
⋃
{

ǫ-Closure(p) : p ∈ δ(s, a) for

. some s ∈ S}.

4. q′0 = ǫ-Closure(q0).

5. F ′ =
{

S : S ∈ Q′ and S ∩ F 6= ∅
}

.

All transitions that are not defined lead to the ‘trap’ state implicitly. The con-

verted deterministic I-state automaton A′ produces a directed graph in which the

outdegree of each state is at most two and each state represents one or more vertices

of the periodic group I-state graphs G. The states of A′ that represent vertices in

the transient trajectories of G form a directed acyclic graph. The states that rep-

resent the last vertices of transient trajectories lead to simple cycles (e.g., closed

paths where no vertices and edges are repeated) in A′. We use the term knowledge

cycles for these cycles. The states in the knowledge cycles of A′ represent set of the

vertices of periodic groups, G.VP , of G. These knowledge cycles act like attractors;

once the robot reaches one via states in the transient trajectories, it cannot leave.

Proposition 2.4.4 The number of states in the deterministic I-state automaton

A′ is O(N2) with respect to the number of states N in the nondeterministic I-state

automaton A.

Proof. The only non-determinism in A is the ǫ-transitions from the initial state to

all other states. Moreover, there are no transitions in A that return back to the

initial state. Every transition, except the initial one, is deterministic as there is at

most one observation (either a ‘1’ or a ‘0’) from a state. There are no self-loops

in A because the translation or the rotation of the robot changes the underlying

state of the system. There are two parts in A′: the first part consists of states that
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represent set of states composed of both transient states and periodic states in A

and the second part consists of states that represent set of periodic states in A. Let

N = Nt + Np where Nt is the number of transients states in A, Np is the number

of periodic states in A. The states in the first part of A′ form a full binary tree in

the worst case because these states have two children, labeling two observations (0

and 1) on their transitions, and no child has more than one parent. In this part, the

number of transient states decreases or remains same from the root to the leaves of

the tree because applying the transition function δ′ on the root q′0 that represents Q,

for two observations creates two disjoint sets Q1 and Q2 such that |Q1|+ |Q2| ≤ |Q|

and subsequent states follow this inequality. Thus, it follows by induction that the

height of the binary tree is O(log(Nt)) and the total number of states in the first part

of A′ is O(2Nt − 1). This tree has at most Nt leaves that transition to knowledge

cycles, which is the second part of A′. Hence, the second part of A′ has at most Nt

knowledge cycles; one cycle for each leaf. The length of each knowledge cycle is at

most Np because in the worst case the states in the cycle can include all periodic

states Np and each state represents one periodic state (or singleton) of Np. Then,

the total number of states in the second part of A′ becomes O(NtNp). Therefore,

the number of states in A′ is O(NtNp) +O(2Nt − 1) or O(N2).

2.4.4 Filters for the Closed- and Open-World Problems

The final step produces filters to solve the two localization problems formulated in

Section 2.3. We follow the standard filter definition from [OS13]. The definitions of

localization filters for closed and open world problems are as follows:
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Definition 2.4.5 (Filter for the Closed-World) A localization filter for the

closed world problem is a tuple FC , (Q′, Y, δ′, q′0, c : Q′ → N), where function c

augments the deterministic I-state automaton by adding a color to its states.

The filter FC receives an observation string as input and reports a color as

output. There are no final states in FC . Instead, we assign color 1 to every state

that represents the transient trajectory vertices of G. We assign the different color

numbers to the states of different knowledge cycles ranging from 2 to one more than

the number of cycles in A′. The same color number is assigned to every state of

the same knowledge cycle. A filter for the closed world problem augmenting the

deterministic I-state automaton is depicted in Figure 2.5. Here, the states in two

knowledge cycles are assigned green and cyan colors, and the states that are not in

knowledge cycles are assigned the white color.

The filter FC is used for localization of a robot in the closed-world problem

case. When the robot enters into the colored knowledge cycle, it looks up the state

q′ ∈ Q′. Each state q′ in the knowledge cycle of A′ represents a set of states in

the A. The cardinality of this set of states in A determines the uncertainty level of

robot’s position for solving localization problem. These states of A are also indexed

by cell numbers. As these cell numbers indicate the configurations of the robot in

E, the robot localizes itself. Depending on the aforementioned number, the robot

may localize itself in one or more configurations in E. As an example, in Figure 2.5,

if the robot gets to a green knowledge cycle then it can localize up to a single

configuration as it has an uncertainty of 1. On the other hand, if the robot gets to

the cyan knowledge cycle then it can localize up to two configurations as it has an

uncertainty of 2. Thus, this filter solves the localization problem, and because it is

a deterministic automaton, captures all the state needed to localize explicitly.
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Figure 2.5: A filter for the closed-world localization problem.

Definition 2.4.6 (Filter for the Open-World)) A localization filter for the

open world problem is a tuple FO , (Q = Q′ ∪ {qt}, Y, δ′, q′0, c : Q → N). It

augments the deterministic I-state automaton adding a “trap” state qt along with

assigning colors to all states.

The filter FO also receives an observation string as input and reports a color as

output to indicate whether the robot is in E or not. In the filter FO, there is no

state transition for some states on a specific observation symbol. From these states

on the missing observation symbol, we add transitions to the “trap” state qt. We

assign a new color number to qt. Aside from this, we do the same process as FC
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for the construction of FO. The “trap” state acts as a reject state in FO. Once the

robot observes an observation string and if the evaluation of the observation string

using FO takes it to qt, the robot can report that it is not in the environment E.

Otherwise, FO gives an output color as FC which solves the closed world localization

problem.

If the robot needs to localize itself in one of the k environments, then FO can

solve this problem too. For example, the robot knows a set E of three possible envi-

ronments {E1, E2, E3} and some bouncing angle φ. Following the above method, we

create three filters FO for three environments. Then, we run them in parallel inside

the robot. The robot will be able to declare that it is in one of these environments

or not because of the “trap” state in the FO.

2.5 Implementation

2.5.1 Simulation Results

We implemented the proposed modified simple cell mapping presented in Algo-

rithm 2.1 in a simulation. The algorithm takes as an input the environment E and

a bouncing angle φ and models the robot as a point.

We set the size of the environment E of Figure 2.6 to 200 × 125 grid unit lengths,

excluding variable-size obstacles, S1 = [0, 2π). The cell size was set to 1 unit × 1

unit × 1◦. We executed a simulation of Algorithm 2.1 and changing the obstacle

region as follows:

• E1: Randomly placing a square obstacle of fixed size inside the environment.

• E2: Randomly placing a square and rectangular obstacles with fixed size inside

the environment.
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• E3: Randomly placing a square, a rectangular, and a rectilinear obstacle with

fixed size inside the environment.

• E4: Randomly placing a scaled square obstacle inside the environment.

We ran the simulation of Algorithm 2.1 100 times for each of the four environ-

ments (E1, E2, E3, E4), keeping the bouncing angle φ = 90◦. We recorded the total

number of periodic groups r and maximum transient trajectory length. Figure 2.7(a)

and (b) illustrate the values of r and maximum transient trajectories lengths. From

these results, we conclude that values of r increase with the addition of obstacles

and change with the scaling of an obstacle and also that the maximum transient

trajectory length varies with increasing numbers of obstacles and the modification of

the size of an obstacle. Some outliers are present in the plot of maximum transient

trajectory length in Figure 2.7(b) that are useful for the coverage problem [ABS17].

Figure 2.6: A simple environment with three randomly placed obstacles (completely
interior) and one static obstacle (touching boundary).
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(a) (b)

Figure 2.7: A comparison of simulations for different environment types: (a) the
total number of the periodic groups r; (b) the length of the longest transient tra-
jectory.

2.5.2 From Simulation to Physical Implementation

We tested our Algorithm 2.1 with a differential drive robot, the iRobot Create/Roomba,

in two environments using the bouncing angles φ = 45◦, 135◦. The Roomba is

equipped with many sensors but we only use the bump sensors and the clock. Since

the Roomba is a disk robot, rather than a point robot, we analytically calculate

the free configuration space Xfree of the robot for both environments. For both

environments, the free space which is also the cell state space Xfree is discretized

in N = 152 cells having 19 cells in each of 8 different orientations of S1 with 45◦

separation between each orientation.

We ran our first simulation test on the Xfree of the environment of Figure 2.8(a)

using the bouncing angle φ = 45◦ and our second simulation test on the Xfree of

the environment of Figure 2.9(a) using the bouncing angle φ = 135◦. We found

r = 1 periodic group including its corresponding transient trajectories from the first

simulation test and r = 2 periodic groups along with their corresponding transient

trajectories from the second simulation test. We visualize one periodic group of our

41



(a) (b)

Figure 2.8: (a) The first lab environment and (b) the simulation result showing
the visualization of the periodic group for this environment and the bouncing angle
φ = 45◦.

first simulation run in Figure 2.8(b) and rest of the configurations are the transient

trajectories part of the illustrated periodic group. We also show two periodic groups

of our second simulation run in Figure 2.9(b).

(a) (b)

Figure 2.9: (a) The second lab environment and (b) the simulation result showing
the visualization of all periodic groups for this environment and the bouncing angle
φ = 135◦.

From the periodic group and the transient trajectories of the first simulation

run, we constructed G = {G1}, the set of periodic group I-state graph. Based on G,

we created the nondeterministic I-state automaton A as shown in Figure 2.10. In A,
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we added a new initial state and ǫ-transitions to all other states from it and made

the states in the periodic group as final states. We made use of JFLAP [RF15] to

create A. The indices of the states of A except the newly added initial state are the

cell numbers in Xfree.

Figure 2.10: Created nondeterministic I-state automaton for the environment and
the simulation result of Figure 2.8.

Again using JFLAP, we converted the nondeterministic automaton A into deter-

ministic automaton A′ as illustrated in Figure 2.11. This deterministic automaton

has 3 knowledge cycles. One of the knowledge cycles has an uncertainty of 1, one

of them has an uncertainty of 3, and one has an uncertainty of 4. We created the

localization filter for solving Problem 1, adding 3 colors to the states of the deter-

ministic automaton. We colored the states outside of knowledge cycles white and

chose 3 distinct colors for the states of 3 knowledge cycles. Next, we produced a

filter for solving Problem 2 by adding a new “trap” state to the previous filter and

we assign 5 colors to it as a new color is required for the “trap” state.

We applied the same process to the periodic groups and the transient trajectories

of the second simulation run and created the localization filters. We present the
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Figure 2.11: Converted deterministic I-state automaton from the nondeterministic
I-state automaton of Figure 2.10.

empirical results of 1) the number of states in deterministic I-state automatonA after

converting from nondeterministic I-state automatonA′, and 2) the computation time

for this conversion in Table 2.1. This conversion was performed on a GNU/Linux

computer with Intel Core i7 3.6GHz processor and 16GB memory.

Table 2.1: No. of states and computation time comparison.

Input

No. of states No. of states

of non- of Computation

deterministic deterministic time (sec.)

I-state auto- I-state

E φ maton, N + 1 automaton

E of 45◦ 153 129 24

Figure 2.8(a) 135◦ 153 124 20

E of 45◦ 153 147 27

Figure 2.9(a) 135◦ 153 202 71

We deployed the created localization filters on a Roomba and performed 10

physical experiments using the environments of Figure 2.8(a) and Figure 2.9(a),
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(a) (b)

Figure 2.12: Physical localization experiment in the environment of Figure 2.8(a):
(a) The robot was placed initially in the top left part of the environment; (b) after
moving forward and bouncing with φ = 45◦, it was localized up to 3 configurations
in the periodic group visualized in Figure 2.8(b).

(a) (b)

Figure 2.13: Physical localization experiment in the environment of Figure 2.9(a):
(a) The robot was placed initially in the top right part of the environment; (b) after
moving forward and bouncing with φ = 135◦, it was localized up to 1 configuration
in one of the periodic groups visualized in Figure 2.9(b).

and the bouncing angles φ = 45◦, 135◦. Two of them are illustrated in Figure 2.12

and Figure 2.13. In these experiments, the robot was localized and stopped once

a knowledge cycle of the filter was reached starting from the initial state. Since

all states in each cycle represent the same cardinality of the set of configurations,

the maximum and the minimum number of configurations represented by the states

45



where the robot was able to localize, are tabulated in Table 2.2. Thus, the lo-

calization limits for an environment E and a bouncing angle φ are determined by

the minimum and the maximum number of configurations of the robot, and the

strongest possible localization is the minimum number of possible configurations of

the robot.

Table 2.2: Comparison of no. of localization configurations.
Input Number of localization configurations

E φ Minimum Maximum

E of Figure 2.8(a)
45◦ 1 4

135◦ 1 2

E of Figure 2.9(a)
45◦ 1 2

135◦ 1 1

2.6 Summary

In the first contribution, we presented a localization method for a robot equipped

with a contact sensor and a clock. Our method is based on finding periodic groups

and transient trajectories of the robot path as it bounces within an environment

filled with obstacles. Based on the periodic groups and transient trajectories, space-

efficient and automata-based combinatorial filters are synthesized to solve localiza-

tion problems modulo symmetries. Experimental results from multiple simulations

and from real robot demonstrations attest to the feasibility and practicability of our

method.

In practice, the online computation time of our localization filter is the time

required to evaluate an observation string, which is linear with respect to the length

of the observation string only. The offline construction of the filter is linear in terms

of the number of cells, and the conversion from the nondeterministic automaton
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to the deterministic automaton is quadratic in terms of the number of cells. We

adapted the comparison of different mobile robot localization methods from [TBF05]

(see Section 8.5) by adding our combinatorial filter (CF) based localization method

as illustrated in Table 2.3 to show the pros and cons of the proposed method. These

localization methods use stronger robot sensing models with cameras and range

sensors which make them more robust compared to our sensing model, having only

the clock and contact sensors.

Table 2.3: Comparison of different localization methods.

EKF MHT

Coarse Fine

MCL

CF

(topological) (metric) (our

grid grid method)

Measurements Landmarks Landmarks Landmarks

Time and

Raw Raw bump

measure- measure- measure-

ments ments ments

Measurement
Gaussian Gaussian Any Any Any None

noise

Posterior (on

Gaussian

Mixture

Histograms Histograms Particlesnew of Single

observation) Gaussian state

Efficiency
++ ++ + - + O(logN2)

(memory)

Efficiency
++ + + - + +++

1

(time)

Ease of
+ - + - ++ ++

2

implementation

Resolution ++ ++ - + + + 3

Robustness - + + ++ ++ - 4

Global
No No Yes Yes Yes Yes

localization

1Our filter takes constant time for the sensor update on a new observation.

2Ease of implementation of our filter is the same as MCL.

3The resolution of our method is similar to the fine (metric) grid method.

4Our method is not robust to the noise or erroneous output.
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CHAPTER 3

BOUNCING ROBOT NAVIGATION AND COVERAGE

This chapter provides the solutions to navigation and coverage tasks using sin-

gle or multiple bouncing robots. The preliminary version of this work appeared

in [ABS17].

3.1 Motivation and Challenges

The problem of navigation is finding a path between an initial pose and a goal pose.

The coverage problem of the environment is visiting all locations of interest using one

or more robots. These problems are important for many applications, such as search

and rescue, surveillance, map generation, oil spill cleanup, vacuum cleaning, lawn-

mowing, mine sweeping, exploration, automated farming, and painting. Moreover,

multiple robot systems have the potential to improve (or speed-up) performance

compared to single robots, especially in the coverage problem. The motivation of

our work is to find solutions to two robotic problems: (i) navigation and (ii) coverage

using one or more bouncing robots.

In both problems, single or multiple robots move in a known polygonal envi-

ronment, executing an elementary behavior: the robots move straight until they

discover walls by driving into them, or they collide with each other (in the multi-

robot case) while covering the environment; then they turn (with respect to their

current motion) counterclockwise by some angle. The motion is parameterized by

a set of angles, which we term bouncing angles. This motion model enables the

robots to navigate from one pose to another and cover the environment through the

trajectories of such robots.

These motions can be executed by simple robots equipped with cheap sensors,

and we are interested in solving navigation and offline coverage problems in known
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environments, possibly with obstacles, for such robots. Although sensors are avail-

able with lower costs now, but the overuse of sensors requires powerful computation

systems and abundant memory inside a sophisticated robot. Instead, we use a

simple robot that can feed minimal sensor outputs directly to motors. This re-

search also falls within the broader context of control and sensing with simple (or

even minimal) robots. Several researchers have examined minimal sensing robots

to solve several tasks such as localization [OL07, ABS18, SP12, EKOL08], navi-

gation [ABS17, LO10, MSZ09], and mapping [TGL04]. These works, along with

our own, eschew robots with an extensive sensory, computational, and memory ca-

pabilities, motivated both pragmatically—to reduce costs for the individual units,

and theoretically—to explore sufficient conditions for the task performance. The

approach in this work uses robots equipped with only a clock and contact sensors.

Furthermore, the navigation with limited linear and angular sensing is a chal-

lenging problem since the inadequate sensor information is available to a robot for

executing the desired path. We also emphasize that the coverage of an area is hard

as finding a path of optimal length for a given region is NP-hard (via reduction to

the Traveling Salesman Problem [Cho01]). Even the best zig-zag motion-based and

boustrophedon motion-based [CP98] coverage solutions typically require robots to

follow paths using feedbacks from powerful (and hence expensive) sensors.

In our first contribution, we use the SCM to synthesize combinatorial filters for

solving the localization task [ABS18]. In the second contribution, we use the same

SCM method for solving the navigation task using a single bouncing robot and

extend this SCM method to tackle the coverage task in multi-robot settings. Addi-

tionally, we apply a nondeterministic dynamical system method called generalized

cell-to-cell mapping (GCM) [Hsu80] to address the coverage problem for a single

bouncing robot after its localization.
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3.2 Related Work

3.2.1 Robot Navigation

Early works on landmark-based robot navigation include [LL95, RBFT99]. In these

works, authors consider that the robot goes from one landmark to another with

the explicit sensing of landmarks. However, in our work, we use the geometric

description of the environment for navigation instead of the explicit sensing of land-

marks. The dual-directional RFID antenna was proposed to enable autonomous

navigation for mobile robots in indoor environments by obtaining a distance to a

radio source [KC09]. Nonetheless, they need additional sensor data to be fused for

enhancing the navigation capability of the robot in a cluttered environment.

More recent works on the robot navigation are belief roadmaps [PR09], random-

ized belief space trees [AmCA12], and feedback-based information roadmaps [Hau10]

which consider the robot’s uncertainty in its navigation. In our work, we have

used a simpler robot model compared to those used in these other works. The

works [LO10, LO12, LO13] use a robot model which is much closer to ours. In these

works, authors use a robot equipped with a compass and contact sensors whereas

we use a robot equipped with a clock and contact sensors. In their work, the robot

can orient itself using the compass in the desired direction relative to a global ref-

erence frame which makes their robot stronger than our robot. Our robot instead

follows a simple bouncing behavior to get to the goal configuration from its initial

configuration. While they do not consider the weight of the navigation path, we

minimize it.
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3.2.2 Robot Coverage

The problem of coverage by a mobile robot has been investigated in different studies.

In one survey on coverage path planning [GC13] studied where the approaches are

evaluated based on whether they can be used online or offline and in the type of

environments they can handle. In [WM03], an online topological coverage algorithm

for mobile robots is presented that uses the detection of landmarks. Again, explicit

sensing of landmarks is required so that the area of the environment will remain

uncovered where no landmarks are available. Also, their method cannot find the

critical points of concave landmarks as obstacles. In [GDS04], a coverage solution

for mobile robots is presented which finds critical points of obstacles in unstructured

environments and gives the entry and exit critical points for each obstacle.

In [VKS13], the authors propose fast coverage of the environment based on

the unpredictable trajectory of a mobile robot with the use of a Logistic map and

provide a chaotic random bit generator for a time-ordered succession of future robot

locations. However, in their work, some parts of the environment stay uncovered. In

an adversarial setting, the probabilistic method can optimally cover the environment

and maximize the chances of detecting adversaries [AKK11]. Hence, in this work,

we are interested in finding the optimal distribution of the bouncing policies used

by a single robot to get our intended coverage of the environment or multiple robots

cover the boundary of a given area.

Gabriely and Rimon [GR01] proposed a spanning-tree based coverage algorithm

for a single robot. This work was extended for multi-robot coverage as a multi-robot

spanning-tree based coverage algorithm in [AHK08, HK08], and as a multi-robot

forest coverage algorithm in [ZJKK05]. These multi-robot coverage algorithms are

either centralized or require reliable communication between robots and depend on

extensive broadcast messages. The computational and memory complexities for
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handling the sensor information of this kind of system are very high. Our bouncing

robots do not communicate with each other for covering an area.

A recent offline spanning tree-based multi-robot coverage method presented by

Fazli et al. [FDPM10] deals with the case where the robots have a limited visibility

range. This approach is also shown to be complete and robust with regard to robot

failure. In [FDM13], the authors designed the multi-robot repeated area coverage

as the Multiple Traveling Salesman Problem and proposed three distributed cluster-

based algorithms. Fazli and Mackworth [FM12] also proposed the repeated coverage

of the boundaries of a target area and the structures inside it by multiple robots

with limited visual and communication range. We do not use any visual sensing or

communication medium in our robots. Instead, we address the coverage problem

using the simple bouncing behavior of multiple robots.

3.3 Preliminaries

3.3.1 Robot Model

We consider a 2D polygonal workspace W = R
2, and a collection of static obstacles

composing an obstacle region, O ⊂ W, where each element in O = {O1,O2, · · · ,Ok}

is modeled as a polygon. One or more differential drive mobile robots are modeled

which share the workspaceW. Each robot is equipped with only a clock and contact

sensors. The speed of each robot is fixed. The free workspace for each robot is

denoted by the environment E = W \ O. Let ∂E ⊂ E be the boundary of E.

We consider that each robot knows the map of the environment and its initial

configuration. If the initial configuration is unknown, the global robot localization

can be solved using our first contribution [ABS18]. Let the set of bouncing angles
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(a) (b)

Figure 3.1: Simple bouncing strategy: (a) The robot rotates counterclockwise by
the bouncing angle φ with respect to its current direction while it bounces off of the
boundary of the environment; (b) When two robots collide with each other (only in
the multi-robot coverage task), they then turn counterclockwise with their bouncing
angles φ1, φ2 from their current moving orientations.

for a robot be Φ by which it can rotate reliably. In the multi-robot case, the set of

bouncing angles for all robots is also denoted by Φ.

Each robot moves forward in the environment and records the number of steps

using the clock. It continues this forward motion until it bumps into the boundary

of the environment ∂E or collides with another robot (in solving the multi-robot

coverage task only), as illustrated in Figure 3.1. Once a robot’s contact sensors

detect a bump, it rotates counterclockwise with a specified bouncing angle φ ∈ Φ

from its current orientation by commanding a constant angular velocity and using

a clock to rotate for some fixed period. Thereafter, if it faces free space, it travels

forward again and repeats this simple behavior.

3.3.2 System Model

We consider that there are m robots, A1,A2, · · · ,Am, (m = 1 in the case of a single

robot). Each robot, Ai, has its associated configuration space X i = E × S1, where

S1 is the set of directions in the unit circle that represents the robot’s orientations.
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The configuration spaces of all robots have the same dimensions. Let xi ∈ X i

denote the configuration of each robot, in which xi = (xi
t, y

i
t, θ

i), where (xi
t, y

i
t) is the

corresponding robot’s position and θi is its orientation. A physical state space is

defined as the configurations of all robots simultaneously, X = X1×X2×· · ·×Xm.

A state x ∈ X specifies all robot configurations.

There are two sources of obstacle regions in the state space: 1) robot–obstacle

collisions and 2) robot–robot collisions [LaV06]. The robot-obstacle collision, X i
obs ∈

X , for each robot Ai, where 1 ≤ i ≤ m, that collides with the obstacle region O is

defined as:

X i
obs = {x ∈ X|Ai(xi) ∩ O 6= ∅}. (3.1)

The robot–robot collision, X ij
obs ∈ X , between each pair of robots Ai and Aj is

defined as:

X ij
obs = {x ∈ X|Ai(xi) ∩Aj(xj) 6= ∅}. (3.2)

Thus, the entire obstacle region in X is:

Xobs =

(

m
⋃

i=1

X i
obs

)

⋃

(

⋃

ij,i 6=j

X ij
obs

)

. (3.3)

The free state space Xfree = X \Xobs. Taking the configurations of all robots into

account, each state x ∈ Xfree is a 3m-dimensional vector and x = (x1
t , y

1
t , θ

1, · · · , xm
t , y

m
t , θ

m).

Hence, we discretize the free state space Xfree into N -dimensional cells. This dis-

cretized state space is called the cell state space. Let N be the total number of

cells. For a single robot (m = 1), we define N as N = NE × NS, where NE is

the discretization resolution of the 2-D free space E and NS is the discretization

resolution of S1. The free state space of the system Xfree is described by a cell index

z ∈ {1, . . . , N}. Let Z = {1, . . . , N} denote the collection of 3m-dimensional cells.

The system dynamics can be explained as a series of cells by finding the system’s

state at discrete times. Let e(k) be the cell describing the state of the system at
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t = k∆t, k = 0, 1, . . . with ∆t being the time between two state inspections. In the

deterministic case, the system dynamics of the cell-to-cell mapping are described as

e(k + 1) = C(e(k)). (3.4)

The above system evolution C : N → N is called a simple cell-to-cell mapping

(SCM) [Hsu13] in the cell state space. In this mapping, the next state of the system

is dependent on only its current state instead of the mapping step k.

The definitions of the periodic cell, the transient cell, the periodic group, and

the transient trajectory for the SCM method are explained in Section 2.3.2.

3.3.3 Uncertainty Model

We also consider the uncertainty in the angular motion in solving the coverage

problem using a single bouncing robot. After bumping off the boundary of the

environment, the robot rotates counterclockwise with a bouncing angle φ ∈ Φ in-

cluding an error range ǫ, from its current direction. We model this uncertainty of

the angular motion using a nondeterministic cell-to-cell mapping method. In the

nondeterministic case, the system dynamics of the cell-to-cell mapping are described

as below:

p(n+ 1) = Pp(n) or p(n) = Pnp(0). (3.5)

This dynamical system evolution is called the generalized cell-to-cell mapping

(GCM) that creates finite Markov chains where P is the one-step transition proba-

bility matrix and Pn is the n-step transition probability matrix, p(0) is the initial

probability distribution vector over the cell configuration space, and p(n) is the

n-step probability distribution vector over the same configuration space. Let p
(k)
ij

denote the k-step transition probability from cell i to cell j and be (i,j)-th element

of P(k). If it is possible through the mapping to go from cell i to cell j, we say that
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cell i leads to cell j, symbolically i =⇒ j. Analytically, cell i leads to cell j if and

only if there exists a positive integer k such that p
(k)
ij > 0. The cells i and j are said

to communicate if and only if i =⇒ j and j =⇒ i which is denoted by i⇐⇒ j.

We also define the following definitions of the GCMmethod [HX99, Hsu13]. More

definitions and descriptions of cell-to-cell mapping methods can be found in [HX99,

Hsu13, vcS94].

Definition 3.3.1 (Persistent Cell) A cell z is called a persistent cell if it has

the property that when the system is in z at a certain moment, it will return to z at

some time in the future.

Definition 3.3.2 (Probabilistic Transient Cell) A cell that is not persistent

is called a probabilistic transient cell. It leads to a persistent group in some number

of steps.

Definition 3.3.3 (Persistent Group) A set of cells that is closed under the

mapping is said to form a persistent group if and only if every cell in that set

communicates with every other cell. Each cell belonging to a persistent group is

called a persistent cell. A persistent group is also termed as an attractor or a limit

cycle in the probabilistic case.

3.3.4 Problem Formulation

We define a finite action space U , which is a set of all possible actions u ∈ U using

the sensors of a robot. The robot counts {0} if it moves forward, and records the

angle of rotation φ ∈ Φ if it bumps and then rotates. Therefore, the action space is

U = {0} ∪ Φ.

For finding a minimum navigation plan using a single robot, our robot measures

the linear distance traversed by the number of steps up to some quantization error
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based on the resolution and the clock time between two bumps. Thus, the robot

executes a string of 0s as a stream of actions. During a bump event, the robot

measures the bouncing angle φ using the clock time, resets the clock, and records

the value of φ as an action. Therefore, the sequence of actions of our robot for the

navigation, called the action string ũ, is encoded as a string of 0s interspersed by a

value of φ.

Let xI ∈ Xfree be the initial configuration of a single bouncing robot A (m = 1),

and xG ∈ Xfree be its desired goal configuration. We assume that A knows xI and

xG and rotates reliably by bouncing angles Φ. In this context, a single query (xI , xG)

navigation problem is formulated as follows:

Problem 1. Finding a minimum plan for a single robot:

Given an environment E, a set of bouncing angles Φ, an initial configuration xI,

and a goal configuration xG, find the action string ũ that represents the shortest path

involving the minimum number of bouncing angle changes along the path, if one or

more paths exist.

For answering multiple (xI , xG) navigation plan queries for the robot, we can

extend the single query navigation plan problem by finding all possible shortest

paths between the initial and goal configuration pairs using the given set of bouncing

angles. As such, the multiple queries navigation problem is formulated as:

Problem 2. Generating all minimum plans for a single robot:

Given an environment E, a set of bouncing angles Φ, generate all action strings that

represent all possible shortest paths for all (xI , xG) pairs in the Xfree, involving the

minimum number of bouncing angle changes along these paths.
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In the coverage problem scenario for a single bouncing robot, each bouncing

angle with an error range φ± ǫ represents a separate bouncing policy for the robot.

The robot has a target coverage probability distribution over E which is denoted by

b. To combine the bouncing policies of the robot for covering an environment, the

best solution is to find the optimal bouncing policy distribution of the robot based

on the long-term robot’s behavior resulting from the application of these policies.

Let α be the bouncing policy distribution of the robot. Thus, the coverage problem

for a single bouncing robot is formulated as:

Problem 3. Finding an optimal bouncing policy distribution for a single

robot:

Given an environment E, a set of bouncing angles Φ, an error range ǫ, and a target

coverage distribution b, find the optimal bouncing policy distribution α to get as close

coverage as possible to b.

For solving the coverage problem using multiple bouncing robots, we assume that

robots have their initial configurations. Let x0 ∈ Xfree be the initial configurations of

m robots where m ≥ 2. The initial configuration of m robots is the initial cell from

which we apply the cell-to-cell mapping. Then, the state of the system evolves over

time and creates a trajectory for the robots. Let T = [0,∞) be a time interval of the

execution of the system. We define a joint trajectory ofm robots as x̃ : [0, T ]→ Xfree

with x̃(0) = x0 and where x̃(t) represents the state of the system at time t. The

joint trajectory of the robots will end up in a cyclic trajectory according to the

properties of the system evolution of the simple cell-to-cell mapping [Hsu13].

Finally, we are interested in finding a joint trajectory of m robots that covers the

environment. This motivates us to define the coverage problem for multiple robots

as follows:
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Problem 4. Finding a joint trajectory of multiple robots for coverage:

Given an environment E, a set of bouncing angles Φ for m robots, and an initial

configuration of m robots x0, find the joint trajectory x̃ of m robots for covering the

given environment E.

3.4 Approach

In this section, we describe our approach for solving the problems formulated in

Section 3.3 in detail.

3.4.1 Finding Roadmap and Minimum Navigation Plan for

a Single Robot

Let a topological graph G = (V,E) be a weighted, directed graph and the weight

function w : E → N
+ assign the nonnegative edge weight. Each vertex v ∈ V

represents a configuration (cell) x ∈ Xfree and each edge (u, v) ∈ E where u, v ∈ V ,

represents a configuration transition from x ∈ Xfree to x′ ∈ Xfree. This topological

graph is also called a roadmap. If any path exists between the initial configuration xI

and the goal configuration xG on G, then it is more likely to have one or more paths

among (xI , xG) ordered pairs for the set of bouncing angles Φ. Let a shortest path of

the robot A be τ : [0, 1]→ Xfree such that τ(0) = xI , τ(1) = xG. After the robot’s

bump event, if the bouncing angle is preserved, the weight of the configuration

transition is w1 for the robot. Otherwise, if the bouncing angle changes, the weight

of the configuration transition is w2 for the robot.
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In our approach, we modify the simple cell-to-cell mapping (SCM) to find the

roadmap G and the minimum navigation plan between xI and xG in the cell config-

uration space Xfree.

To attain these, Algorithm 3.1 receives as input the geometric description of the

environment E, a set of bouncing angles Φ, the initial configuration xI , and the goal

configuration xG. It produces the roadmap G and the action string ũ, which is the

minimal navigation plan as output.

For each bouncing angle φi, where i ∈ {1, . . . , |Φ|}, Algorithm 3.1 computes the

configuration of each cell z ∈ Z that represents the location (centroid) and the

orientation of the cell (line 6). The next mapped cell z′ represents the subsequent

cell after z (line 7) which is calculated as:

xz′ = xz +
r

2
(ul + ur) cos θ,

yz′ = yz +
r

2
(ul + ur) sin θ,

θ′ =















θ, if (xz′, yz′) ∈ E,

(θ + φ) mod 2π, otherwise,

(3.6)

where (ul, ur) = (1, 1) specifies the left and right wheel velocities and r = 1 is the

wheel radius of the robot.

If the new orientation of the cell θ′ is equal to the previous orientation of the

cell θ, then the cell number of z′ is calculated from the new cell center location

and previous orientation, (xz′ , yz′, θ), of z
′ (line 9). Cells z, z′ are added to vertices

set and their ordered pair (z, z′) is added to edges set of the directed graph Gi and

weight of the corresponding edge is updated with w1 on Gi (lines 10–12). Otherwise,

Algorithm 3.1 calculates the set of possible bouncing cells with respect to the given

bouncing angle set Φ. For the processing bouncing angle, we compute the next

cell z′ using the new cell center location and orientation of the cell (xz′ , yz′, θ
′) (line
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Figure 3.2: An example of a generated roadmap.

16). Both cells, their ordered pair as an edge, and weight of their edge are added

to Gi as before (lines 17–19). For all other bouncing angles that represent the

change of bouncing angles, we compute the next cell z′ again from the previous cell

center location using Equation 3.6, the previous orientation, and the bouncing angle

(xz, yz, θ, φ) (line 21). Both cells and their ordered pair as an edge are added to Gi

but the weight of their edge is updated with w2 on Gi (lines 22–24).

For each bouncing angle, we get a set of periodic groups or limit cycles and

associated transient trajectories leading to the periodic groups as the output of the

SCM. We repeat the same process for all the bouncing angles in the given set Φ and

create the roadmap G from the geometry as illustrated in Figure 3.2. In line 26, we

use Dijkstra’s shortest path algorithm [CLRS01] to find the shortest path τ on the

roadmap G from all ordered pairs of initial configuration xI and goal configuration xG

for different bouncing angles in Φ. The function NavigationPlan finally returns

the action string ũ based on the shortest path τ (line 27). In this function, if the

consecutive cell distance in the shortest path τ is less than NE , it implies “forward

movement” and gives ‘0’ as one action. Otherwise, it implies the “bump” event and
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Algorithm 3.1: RoadmapandPlan(E,Φ, w1, w2, xI , xG)

Input: E,Φ, w1, w2, xI , xG – Environment, Set of bouncing angles, Weights,
Initial configuration, and Goal configuration

Output: G, ũ – Roadmap, Action String
1 G ← ∅
2 for i = 1 to |Φ| do
3 Gi.V ← ∅, Gi.E ← ∅
4 for j = 1 to N do
5 z ← j
6 xz, yz, θ← CellConfiguration(z)
7 xz′, yz′, θ

′ ← NextCell(xz, yz, θ, φi)
8 if θ == θ′ then
9 z′ ← Cellnumber(xz′ , yz′, θ)

10 Gi.V ← Gi.V ∪ {z, z′}
11 Gi.E ← Gi.E ∪ {(z, z′)}
12 w(z, z′)← w1

13 else
14 for k = 1 to |Φ| do
15 if k == i then
16 z′ ← Cellnumber(xz′, yz′, θ

′)
17 Gi.V ← Gi.V ∪ {z, z′}
18 Gi.E ← Gi.E ∪ {(z, z′)}
19 w(z, z′)← w1

20 else
21 z′ ←OtherCell(xz, yz, θ, φk)
22 Gi.V ← Gi.V ∪ {z, z′}
23 Gi.E ← Gi.E ∪ {(z, z

′)}
24 w(z, z′)← w2

25 G ← G ∪ Gi

26 τ ← ShortestPath(G, xI , xG)
27 ũ← NavigationPlan(τ)
28 return G, ũ
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gives the bouncing angle φ as another possible action. This action string ũ provides

the solution of a single (xI , xG) navigation query.

3.4.2 Generating All Minimum Navigation Plans for a Sin-

gle Robot

We generate all minimum navigation plans from all possible shortest paths among

all (xI , xG) pairs in the cell configuration space Xfree.

To obtain all possible shortest paths, Algorithm 3.2 takes the roadmap G con-

structed from Algorithm 3.1 as input and generates all minimum navigation plans

M from their shortest paths if one or more paths exist among ordered (xI , xG) pairs

and their path weights L as output.

Algorithm 3.2: AllPlanGeneration(G)

Input: G – Roadmap
Output: M,L – Navigation Plans, Path Weights

1 let M [1 . . . N, 1 . . .N ], L[1 . . . N, 1 . . .N ] be 2D lists
2 for i = 1 to N do
3 for i = 1 to N do
4 M [i][j]← NIL
5 L[i][j]← 0

6 for i = 1 to N do
7 for j = 1 to N do
8 if i 6= j then
9 τ, l ← ShortestPathandWeight(G, i, j)

10 if τ 6= NIL then
11 L[i][j]← −1

12 else
13 ũ← NavigationPlan(τ)
14 M [i][j]← ũ
15 L[i][j]← l

16 return M,L
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Algorithm 3.2 initializes M and L lists (lines 2–5). From xi ∈ Xfree on the

roadmap G to all other xj ∈ Xfree on G, we run Dijkstra’s algorithm to find the

shortest path τ and minimum weight l among the (xi, xj) ordered pairs for the set

of bouncing angles Φ on G (line 9). If τ is none, which means that there is no

path among the (xi, xj) pairs, Algorithm 3.2 assigns −1 to the (i, j)-th entry of L

(lines 10–11). Otherwise, it encodes the shortest path τ into an action string ũ as

a minimum navigation plan (line 13) and then assigns the plan ũ and minimum

path weight l to the (i, j)-th entry of M and L respectively (lines 14–15). We find

minimum navigation plans and path weights for all x ∈ Xfree. Finally, Algorithm 3.2

returns M and L lists. These minimum navigation plans and path weights can then

be used to answer multiple (xI , xG) navigation plan queries and their comparison.

Algorithm Analysis

The running time of the Algorithm 3.2 is O(N2logN) since it applies Dijkstra’s

shortest path algorithm to all (xI , xG) pairs for each x ∈ Xfree.

3.4.3 Finding Bouncing Policy Distribution for a Single Robot

We combine all bouncing policies represented by the set of bouncing angles Φ for the

given environment E to get the closest coverage to a target coverage distribution

b over E. Let the probability of reliable rotation of the robot be r. We apply

the generalized cell-to-cell mapping (GCM) that uses a bouncing angle set Φ, a

probability of reliable rotation r, and a nonzero error range ǫ. This method finds a

number of persistent groups starting from all transient cells for each bouncing angle

with an error range φ ± ǫ. Since the persistent groups are the long-term behavior

of the GCM, we consider the coverage distribution of these persistent groups of a
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bouncing policy as the coverage of the environment by that bouncing policy. So, the

transient cells are not considered for the coverage of the environment. A persistent

group is an irreducible Markov chain as all its cells form a single communicating

class. So, all persistent groups for a bouncing policy create a finite Markov chain

P. The limiting distribution π of P represents the coverage of E for each bouncing

policy. First, we find the limiting distribution set Π for all the bouncing policies

and then, using Π, we compute the bouncing policy distribution α of all bouncing

policies through optimization.

Algorithm 3.3: PolicyDistribution(E,Φ, ǫ, r)

Input: E,Φ, ǫ, r – Environment, Set of bouncing angles, Error range, and
Probability of reliable rotation

Output: Π = {π1, π2, · · · , π|Φ|} – Set of limiting distributions
1 for i = 1 to |Φ| do
2 G.V ← ∅, G.E ← ∅
3 for j = 1 to N do
4 z ← j
5 xz, yz, θ← CellConfiguration(z)
6 xz′, yz′, θ

′ ← NextCell(xz, yz, θ, φi)
7 if θ == θ′ then
8 z′ ← Cellnumber(xz′ , yz′, θ)
9 G.V ← G.V ∪ {z, z′}

10 G.E ← G.E ∪ {(z, z′)}

11 else
12 Z ′ ← CellSet(xz′, yz′, θ

′ ± ǫ)
13 G.V ← G.V ∪ Z ′ ∪ {z}
14 G.E ← G.E ∪ {(z, z′), z′ ∈ Z ′}

15 S ← StronglyConnectedComponent(G)
16 T ← TransitiveClosure(G)
17 P ←MCFromPersistentGroup(S, T, r)
18 πi ← NormalizedLimitingDistribution(P)
19 Π← Π ∪ πi

20 return Π
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In order to obtain the limiting distribution set Π, Algorithm 3.3 takes as input

the geometric description of the environment E, the set of bouncing angles Φ, the

error range ǫ, the probability of reliable rotation r. It returns Π as output.

In Algorithm 3.3, for each bouncing angle with error range φ ± ǫ from the set

of bouncing angle Φ, we create an unweighted directed graph G following the same

graph creation procedure of Algorithm 3.1 without adding weight to the edges of

G. Additionally, for each cell z ∈ Z when the new orientation of the cell θ′ is not

equal to the previous orientation of the cell θ, Algorithm 3.3 calculates the set of

possible bouncing cells Z ′ where Z ′ ⊂ Z, using the new orientation of the cell with

error range θ′ ± ǫ (line 12). All cells z, Z ′ are added to the vertices set and their

ordered pairs (z, z′), where z′ ∈ Z ′, are added the edges set of G for the processing

bouncing angle (lines 13–14).

Then, it finds the strongly connected component S fromG using Tarjan’s strongly

connected component algorithm [Tar72] (line 15). It also constructs the reachability

matrix T , finding the transitive closure from G (line 16). From S and T , Algo-

rithm 3.3 finds persistent groups using the function MCFromPersistentGroup

(line 17). In this function, if each vertex in a strongly connected component is reach-

able from all other vertices in the strongly connected component then this strongly

connected component is found as a persistent group and each cell of this persistent

group is classified as a persistent cell. If a vertex in a strongly connected component

is reachable from a subset of vertices in the strongly connected component then each

cell of this strongly connected component is classified as a transient cell.

Further, in MCFromPersistentGroup function, an adjacency list is created

from all persistent groups of the processing bouncing angle φ. Based on this ad-

jacency list and reliable rotation probability r, the function creates the one-step

transition probability matrix P. To obtain this, the function uses the probability
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pij = r for reliable rotation from cell zi to cell zj , pij =
(1−r)
2ǫ

for unreliable rotation

from cell zi to cell zj , and pij = 1 for forward movement from cell zi to cell zj . In

the last step, it calculates the limiting distribution π of P for the processing bounc-

ing angle with the error range φ ± ǫ, normalizes π, and adds it to Π (lines 18–19).

Finally, Algorithm 3.3 returns Π for all bouncing policies.

The probability distribution of choosing the bouncing policies for the robot can

be represented as a k-dimensional vector where k = |Φ|,

α = (α1, α2, · · · , αk). (3.7)

Equation 3.7 should satisfy: 1) αi ≥ 0 for all i ∈ {1, . . . , k}, and 2) α1+α2+· · ·+αk =

1. The value αi is the proportion of the robot choosing the i-th bouncing policy.

We obtain the optimal bouncing policy distribution α from the limiting distribu-

tion set Π to achieve as close coverage as possible to the target coverage distribution

b. We create the matrix A based on Π. We use the constrained least square [Gus11]

to compute the optimal bouncing policy distribution α which is given by the follow-

ing optimization equation:

minimize ‖Aα− b‖2

subject to Cα = d, α ≥ 0.

(3.8)

Here A is an n× k matrix, b is the n-vector where n = N , α is the k-vector, C

is a 1× k matrix.

The bouncing policy distribution α is optimal for obtaining the coverage closest

to the target coverage distribution b because it minimizes the norm of the residual

error ‖Aα− b‖ having the constraints of Equation 3.8. This bouncing policy distri-

bution α states the time-based switching among the bouncing policies to cover the

environment.
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3.4.4 Finding Joint Trajectory of Multiple Robots for Cov-

erage

In our approach, we find a joint trajectory x̃ of m robots starting from the initial

configuration (cell) x0 to cover the environment E. Them robots use their respective

bouncing angles from the given set of bouncing angles Φ once they collide with each

other, or against the boundary of the environment ∂E. In this case, we extend the

SCM method in the high dimensional state space of multiple robots.

Algorithm 3.4: MultiRobotCoverage (E, x0,Φ)

Input: E, x0,Φ – Environment, Initial configuration, and Set of bouncing
angles

Output: x̃ – Joint trajectory
1 pc← ∅
2 b← FindCellNumber(x0)
3 x̃.init(b)
4 for l =1 to F do
5 k ← 1 // Cell sequence generation

6 while pcb 6= ∅ do // Check unprocessed cell

7 pcb ← 1 // Identify processed cell

8 z ← CellConfiguration(b)
9 z′ ←MappedCellConfiguration(z,Φ)

10 cb ← NextCellNumber(z′)
11 x̃.add cell(cb) x̃.cell transition(b, cb)
12 b← cb z ← z′ k ← k + 1

13 if CompleteCoverage(E, x̃) then
14 break

15 else
16 βl ← BestUnprocessedNeighborCell(b)
17 x̃.add cell(βl) x̃.cell transition(b, βl)
18 b← βl

19 return x̃

To find the joint trajectory x̃, Algorithm 3.4 takes as input the environment

E, the initial configuration x0, and the set of bouncing angles Φ for m robots,
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and generates as output the joint trajectory x̃ that the robots follow to cover the

environment.

In Algorithm 3.4, all cells are initially unprocessed cells. First, a cell b is cal-

culated from the known initial configuration x0 and added to the trajectory x̃ as

the initial cell (lines 2–3). Then, we apply the SCM to create a cell sequence

that is the part of the trajectory. For l iterations, the cell sequence is iteratively

generated from the initial cell b in the high dimensional state space as explained

in Algorithm 3.1. In lines 6–12, during the cell sequence generation, all cells are

identified as processed cells by assigning the value 1 to these cells. The cell config-

uration z is calculated from the cell b, which represents the states of all m robots

x = (x1
z, y

1
z , θ

1
z , · · · , x

m
z , y

m
z , θ

m
z ) (line 8). In line 9, the next mapped cell configuration

of m robots z′ after z is calculated as below:

xi
z′ = xi

z + cos θiz,

yiz′ = yiz + sin θiz,

θiz′ =















θiz, if (xi
z′, y

i
z′) ∈ Xfree,

(θiz + φi
z) mod 2π, otherwise.

(3.9)

where i ∈ {1, . . . , m}. The calculation of the next mapped cell configuration z′

takes robot-obstacle collisions and robot-robot collisions into account.

This cell-to-cell mapping also finds the next mapped cell of each of the m robots.

The cell number of the next mapped cell, cb is computed from the center location

of each robot and their orientations (x1
z′ , y

1
z′, θ

1
z′ , · · · , x

m
z′ , y

m
z′ , θ

m
z′ ) of z

′ (line 10). We

add the next cell cb to the trajectory x̃ as a new cell and the cell transition from

b to cb is made in the trajectory x̃ as a connection (line 11). The next cell b is

updated with cb and the cell configuration z is updated with z′ (line 12). The cell

sequence generation continues as long as the next mapped cell b is an unprocessed

69



Figure 3.3: Trajectory generation and neighbor selection: a) a generated trajectory
x̃ from an initial configuration xI ; b) the best nearest neighbor βl (green square)
among unprocessed neighbors of last cell b of the trajectory x̃.

cell in each iteration. A generated trajectory x̃ from an initial configuration x0 as an

initial cell is illustrated symbolically in Figure 3.3(a) where each square represents

a 3m-dimensional cell of the cell state space Xfree. Some cells of x̃ form a cycle and

others lead to this cycle.

Let βl be the best unprocessed and nearest neighbor cell of the last cell of the

trajectory x̃ at the l-th iteration of the algorithm. After each iteration, we check the

coverage of the environment by the joint trajectory x̃ of m robots using the function

CompleteCoverage. If the trajectory covers the whole environment then we stop

the generation of the joint trajectory x̃. Otherwise, we select the best unprocessed

and nearest neighbor cell βl of the last cell b of the trajectory x̃ using the function

BestUnprocessedNeighborCell. In the function BestUnprocessedNeigh-

borCell, we take the neighbors of cell b by rotating m robots in both directions

and keeping the locations of the robots fixed. Let

∆xi = (0, · · · , 0,∆θ, 0, · · · , 0), (3.10)

in which the first 3i−1 components and the last 3m−3i components are 0, and

∆θ is the discretization resolution of the S1.

The neighborhood of cell b in the state space is defined as

N (xb) = {xb +∆x1, · · · , xb +∆x3m, xb −∆x1, · · · , xb −∆x3m}. (3.11)
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We find at most 2× 3m = 6m neighbors in the state space at the l-th iteration.

We simulate the cell sequences from these neighbors if the neighbors are not pro-

cessed yet. We select the best nearest neighbor βl based on the covered space of the

environment and the minimal number of robot-robot collisions. The collection of

unprocessed and neighbor cells of the cell b (the blue squares) and the selected best

nearest neighbor βl (the green square) are shown around the small circle of the cell

b in Figure 3.3(b). The newly selected neighbor cell βl is added to the trajectory x̃

as a new cell and the cell transition from b to βl is made in the trajectory x̃ (line

17). The new initial cell b is updated with βl (line 18).

Figure 3.4: A joint trajectory of the robots connecting through the new neighboring
cell βl.

A pictorial representation of the generated joint trajectory of m robots from

Algorithm 3.4 after F iterations is depicted in Figure 3.4, where each square also

represents a 3m-dimensional cell of the cell state space Xfree. For the best neighbor

cell βl as an initial cell, the cell sequence forms the different part of the trajectory.

The given initial configuration xI provides the starting cell of the trajectory x̃ and

creates the first part of x̃. After the first part of x̃, each subsequent part of x̃ is

connected through the best neighbor cell βl. This generated joint trajectory x̃ of m

robots covers the environment completely or as much as possible.
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Algorithm Analysis

The runtime of Algorithm 3.4 is O(FN), where F is the number of iterations and

N is the number of cells in the cell state space Xfree.

3.5 Experimental Results

3.5.1 Minimal Navigation Plan Result for a Single Robot

We tested Algorithm 3.1 for a single robot by developing a simulation and deploying

it on a physical robot platform in the hardware experiment. We used the iRobot

Create Roomba as a differential drive robot in an artificial laboratory environment

of Figure 3.5(a). The Roomba has many sensors but we utilized only the bump

and clock sensors. In the simulation, the configuration space of the laboratory

environment is computed analytically for the disk robot Roomba, as illustrated in

Figure 3.5(b). The cell configuration space Xfree is discretized into N = 384 cells.

In the simulation and experiment of navigation plans, we considered 8 different

orientations of S1 with 45◦ separation between each orientation.

We ran our simulation for the above discretized cell configuration space Xfree us-

ing the set of bouncing angles Φ = {45◦, 90◦, 135◦} for the robot. We set the weight of

using the same bouncing angle, w1 = 1 and the weight of changing the bouncing an-

gle, w2 = 100 in our simulation. The illustrations of the first navigation plan between

xI = 9 and xG = 1 and the second navigation plan between xI = 104 and xG = 9 are

shown in Figure 3.6 with blue arrows. In Figure 3.6(a), the first navigation plan of

the robot uses only one bouncing angle, 90◦, to navigate from the bottom right corner

of E, facing East, to the bottom left corner of E, facing East. In Figure 3.6(b), the

second navigation plan of the robot uses two bouncing angles, 90◦ and 135◦, to nav-
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igate from the bottom left corner of the obstacle that is touching ∂E, facing North

to the bottom right corner of E facing East. Our simulation gave two action strings

as output for two navigation plans; ũ1 =00000090◦000000000000090◦00000090◦ and

ũ2 =000000135◦135◦000000135◦135◦00000090◦.

(a) (b)

Figure 3.5: A laboratory environment: (a) an environment using floor and bricks
that includes one completely interior obstacle and one obstacle touching the bound-
ary of the environment; (b) the configuration space of the environment shown in
(a).

(a) (b)

Figure 3.6: Simulation results of two navigation plans in the environment of Fig-
ure 3.5: a) the blue arrowed path from the initial configuration (bottom right corner
of E, facing East) to the goal configuration (bottom left corner of E, facing East).
b) the blue arrowed path from the initial configuration (bottom left corner of the ob-
stacle attached to ∂E, facing North) to the goal configuration (bottom right corner
of E, facing East).
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Afterward, we deployed the two generated action strings ũ1 and ũ2 on the

Roomba to navigate in the environment depicted in Figure 3.5(a). A netbook pro-

cesses the sensor input from the robot and provides the output to the robot. We

show snapshots of the two hardware experiments of the corresponding simulated

navigation plans in Figure 3.7 and 3.8. In our first hardware experiment of Fig-

ure 3.7, we placed the Roomba in xI = 9 and it followed the action string ũ1 to get

to xG = 1. In our second hardware experiment (Figure 3.8), we also put the Roomba

in xI = 104 and it successfully reached to xG = 9. In these hardware experiments,

the Roomba uses its clock to measure the number of zeros as it moves forward and

the duration of rotation for different bouncing angles. It also uses bump sensors for

detecting the “bump event”.

To test Algorithm 3.1 in a more complex environment, the configuration space,

as illustrated in Figure 3.9, is discretized into N = 1464 cells considering 8 different

directions of S1 that are 45◦ apart of each other. For two pairs of initial and goal con-

figurations in the given cell configuration space, Algorithm 3.1 found two navigation

plans using the same set of bouncing angles Φ = {45◦, 90◦, 135◦}. In Figure 3.9(a),

the first navigation plan of the robot uses two bouncing angles, 45◦ and 135◦, to get

to the goal configuration xG from the initial configuration xI where locations of xG

and xI are illustrated with red and green circles respectively. They face Eastward,

and the navigation path is depicted with blue arrows. In Figure 3.9(b), the second

navigation plan of the robot uses all bouncing angles, 45◦,90◦, and 135◦, to complete

its navigation task from xI to xG where the navigation path and its initial and goal

configuration are illustrated the same way as before.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Snapshots of different configurations of the robot executing the first
navigation plan of the simulation result of Figure 3.6(a): a) the initial configuration;
90◦ rotations are illustrated by the snapshot transitions a–b, c–d, f–g, and h–i; after
snapshots b, d, e, and g, the robot moves forward; i) the goal configuration.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Snapshots of different configurations of the robot executing the second
navigation plan of the simulation result of Figure 3.6(b): a) the initial configuration;
135◦ rotations are illustrated by the snapshot transitions b–c, c–d, e–f, f–g; a 90◦

rotation is illustrated by the snapshot transition h–i; after snapshots a, d, and g,
the robot moves forward; i) the goal configuration.
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(a) (b)

Figure 3.9: Simulation results of two navigation plans in a complex environment
between pairs of initial configurations (red circle locations of the environment, fac-
ing East) and goal configurations (green circle locations of the environment, facing
East).

Figure 3.10: Another navigation plan generated by our algorithm that represents
the blue arrowed path between the initial configuration (red circled location facing
South) and the goal configuration (green circle location facing East) using all given
bouncing angles 45◦, 90◦, and 135◦.

3.5.2 All Minimum Navigation Plans Generation Result for

a Single Robot

We generated all feasible minimum navigation plans for all (xI , xG) pairs in the

cell configuration space Xfree of the environment depicted in Figure 3.5 from the
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simulation of Algorithm 3.2. All minimum navigation plans and path weights on

Xfree using Φ were stored. We used all of these navigation plans to answer multiple

(xI , xG) navigation plan queries. Then, we compared the total number of minimum

navigation plans using different numbers of bouncing angles. The comparison result

is shown in Figure 3.11. This result suggests that most of the minimum navigation

plans use only one bouncing angle, three bouncing angles are used less than two

bouncing angles, and few of them use no bouncing angle, i.e., it does not bounce to

get to the goal configuration.
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Figure 3.11: Comparison of using each number of bouncing angles for generated
minimum navigation plans in the environment depicted in Figure 3.5.

We demonstrate another generated navigation plan from Algorithm 3.1 between

the red circled initial configuration xI and the green circled goal configuration xG

in the environment, as illustrated in Figure 3.10. We also generated all feasible

minimum navigation plans for all pairs (xI , xG) in Xfree of the environment depicted

in Figure 3.10 from Algorithm 3.2. In this simulation, Xfree had N = 432 cells

considering the same 8 directions of S1 with 45◦ separation between them and the set

of bouncing angles Φ = {45◦, 90◦, 135◦}. Again, we recorded all minimum navigation

plans and path weights, and compared the total number of navigation plans based
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on the number of bouncing angles. The comparison result is shown in Figure 3.12.

The result shows that most of its navigation plans use three bouncing angles. Fewer

plans use two, one, or no bouncing angle. So, both comparison results show that

the number of bouncing angles for all feasible navigation plans depends on the type

of the environment and its complexity.

0 1 2 3
Number of bouncing angles

0

20000

40000

60000

80000

To
ta

l n
um

be
r o

f m
in

im
um

 n
av

ig
at

io
n 

pl
an

s

Figure 3.12: Comparison of using each number of bouncing angles for generated
minimum navigation plans in the environment depicted in Figure 3.10.

In our simulation results, we do not have navigation paths for all pairs of (xI , xG)

because for some of (xI , xG) pairs, there is no path on the roadmap G. However, the

inclusion of more reliable bouncing angles in the set, Φ, will guarantee the navigation

path for all pairs of (xI , xG).

3.5.3 Result of Bouncing Policy Distribution for a Single

Robot

We used the same complex environment E of Figure 3.9 for finding the bouncing

policy distribution α to get as close to the uniform target coverage distribution b.

The configuration space of the given environment Xfree is discretized into N = 65880
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cells considering S1 = [0, 2π). We ran the simulation of Algorithm 3.3 on Xfree for

the bouncing angle set Φ = {30◦, 75◦, 315◦} as three bouncing policies, the rotation

error range ǫ = ±5◦, and the probability of reliable rotation r = 0.8. Based on the

output from Algorithm 3.3, the visualizations of persistent groups in E for different

directions of S1 and their corresponding heatmaps of the limiting distribution set Π

for bouncing angles including the error 30◦±5◦, 75◦±5◦, 315◦±5◦ are demonstrated

in Figure 3.13, 3.14, and 3.15 respectively. The heatmaps show the probability of

visiting different locations in the environment over time by a robot starting from

any location.

(a) (b)

Figure 3.13: Persistent groups visualization in E for different directions of S1 and
their corresponding heatmap of the limiting distribution for the bouncing angle
including the error, 30◦ ± 5◦.

We applied the constrained least square method of Equation 3.8 using the result

of the limiting distribution set Π and the uniform target coverage distribution b. As

a result, the optimal probability distribution α of all bouncing policies is computed,

and is tabulated in Table 3.1. This result implies that the robot has to use the

bouncing policy of angle 315◦ about 50% of the time, and either the bouncing

policy of angle 75◦ or the bouncing policy of angle 30◦ around 25% of the time.
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(a) (b)

Figure 3.14: Persistent groups visualization in E for different directions of S1 and
their corresponding heatmap of the limiting distribution for the bouncing angle
including the error, 75◦ ± 5◦.

(a) (b)

Figure 3.15: Persistent groups visualization in E for different directions of S1 and
their corresponding heatmap of the limiting distribution for the bouncing angle
including the error, 315◦ ± 5◦.

Table 3.1: Optimal bouncing policy distribution result
Bouncing policies, Φ Proportion of choosing bouncing policies α

30◦ 0.22138172
75◦ 0.28005791
315◦ 0.49856037
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: From the simulation to the physical implementation: a) the given
environment to cover; b) a joint trajectory of the two robots generated from our
simulation is depicted with the paths of blue and green arrows, the set of bouncing
angles Φ = {135◦} and the initial configuration of the two robots (locations of
the blue circle, facing West and the green circle, facing East); there is only one
robot-robot collision in the middle of upper part of the environment; c)–f) four
different snapshots at different times of the hardware experiment of the generated
joint trajectory of two iRobot Create 2.0 robots controlled with two Arduinos.
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3.5.4 Result of Joint Trajectory of Multiple Robots for Cov-

erage

We also implemented our multi-robot coverage Algorithm 3.4 in the simulation.

We used the laboratory environment and the associated configuration space Xfree

of Figure 3.16(a) for the iRobot Create Roomba. We verified our Algorithm 3.4

on Xfree and a set of bouncing angles Φ = {135◦} for two robots, where both

used the same bouncing angle and speed, and have identical sensing. The blue

and green circles of Figure 3.16(b) represent the initial locations of the two robots

facing West and East respectively. A joint trajectory generated from the simulation

that covers Xfree is depicted by blue and green arrows as paths of blue and green

robots in Figure 3.16(b). To validate the simulated joint trajectory using a hardware

experiment, we used two iRobot Create 2.0 robots and two Arduino Uno micro-

controllers to drive them. As mentioned before, the iRobot Create 2.0 utilizes

only the contact sensors and the clock. The same C++ program runs on both

Arduinos that allows the robots to move forward in the free space at a fixed speed and

rotate 135◦ after bumping at the boundary of the environment or with each another.

Figure 3.9(c)–(f) shows four different snapshots of the hardware experiment.

We validated our Algorithm 3.4 again in the simulation for two environments of

Figure 3.17(a) and Figure 3.18(a) considering multiple point robots and the bounc-

ing angle φ = 135◦ for all of them. The first environment is a 10×10 grid containing

obstacles in it and the second environment is a 15×15 grid having obstacles inside of

it. We used different numbers of robots (e.g., m = 2, 3, 4, 5) and different initial con-

figurations for all robots in various simulation runs. We ran 20 simulation tests for

both environments and demonstrated the plots in Figure 3.17(b) and Figure 3.18(b),

comparing the result of the number of steps required for the complete coverage of the
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(a) (b)

Figure 3.17: Simulation results of the multi-robot coverage: a) the first simulation
environment; b) the comparison result of the number of steps required for the
complete coverage of the first environment and the number of robots used.
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Figure 3.18: Simulation results of the multi-robot coverage: a) the second simula-
tion environment; b) the comparison result of the number of steps required for the
complete coverage of the second environment and the number of robots used.

environments and the number of robots used. This plot implies that the number of

steps required for covering the whole environment decreases with the increase in the

number of robots. In a complex environment, the increase in the number of robots

does not guarantee the decrease in the number of steps required for the coverage

of the whole environment due to the robot-robot collisions and the intricacy of the

environment itself. An example of that is illustrated in Figure 3.18(b) where the
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number of steps required for the complete coverage of the given environment with 5

robots is larger than the number of steps required for the complete coverage of the

same environment with 4 robots.

3.6 Summary

In the second contribution, we proposed navigation and coverage methods using one

or more robots equipped with a clock and contact sensors in a given environment.

We constructed a directed graph from the environment using a set of bouncing poli-

cies. We found the minimum navigation plans on the graph between either one given

pair of initial and goal configurations or all possible pairs of initial and goal configu-

rations. The optimal bouncing policy distribution is calculated from the given set of

bouncing policies to get the best possible coverage of the environment with respect

to a target coverage distribution. We also constructed a joint trajectory for multiple

bouncing robots incrementally until they covered the environment completely. We

presented hardware experiments and simulation results of our methods, which shows

the practical utility of our methods.
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CHAPTER 4

STOCHASTIC MULTI-ROBOT PATROLLING

This chapter presents a scalable method to find stochastic strategies for multi-

robot patrolling under an adversarial and communication-constrained environment.

This chapter includes some of the content from our previous publications [AEBS15,

ARBR17, Ala16] 1.

4.1 Motivation and Challenges

Patrolling is the problem of repeatedly visiting a group of locations of interest in an

environment. This problem has applications in different areas such as environmen-

tal monitoring, infrastructure surveillance, and border security. In its multi-agent

version, the action of patrolling is carried out by multiple robots as patrollers work-

ing together to ensure the safety of the area under surveillance. In its adversar-

ial setup, one or more adversaries always try to penetrate the environment being

patrolled by observing patroller’s strategies and patrollers do not know where ad-

versaries are going to attack. This problem can also become interesting when the

action of patrolling is carried out by multiple patrollers with limited visibility in

a communication-constrained environment. The communication based on visibility

among patrollers in a congested environment may be impeded by various obsta-

cles. In this context, autonomous robots can patrol the environment either in a

distributed fashion where no communication among the robots is required or in a

centralized manner, where each robot contacts a base location at a random time

interval.

1The author acknowledges the help of Pedro Carrillo on the physical experiment pre-
sented in Section 4.5.7. Matthew Edwards and Md. Mahbubur Rahman provided help
with the initial simulation codes.
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Motivated by the presence of adversaries and the need for unpredictability, Ag-

mon et al. [AKK08] presents perimeter patrolling strategies based on Markov chain

models that maximize the probability of detecting an adversary [AKK08, Agm10,

AKK11]. In this stream of research, only circular environments were considered, and

the robots have to be synchronized and coordinated, which may prevent practical

deployments of these strategies. Furthermore, all robots have to be placed in known

locations and with equal distance apart in the environment. In our work, we do

not require the robots to start from known locations nor to be synchronized in an

environment. Instead, the robots share information by uploading and downloading

data using a static node which is known as data muling [BTI11]. The robots in our

solution will share information using visibility to the static node rather than mere

proximity to it.

The problem of patrolling in the presence of adversaries can also be formulated

as a Bayesian Stackelberg Game. In this game theoretical setting, the patroller first

commits to an optimal mixed strategy generated through DOBSS (Decomposed

Optimal Bayesian Stackelberg Solver) [PPM+08] where each strategy is a path in

a fully connected graph. Once the patroller has decided its mixed strategy, the

adversary uses the knowledge of the mixed strategy to choose a location to attack.

One of the potential drawbacks of this approach is that the set of strategies (paths)

should be chosen a priori from a large set of possible paths and the particular

connectivity of the graph is not studied in detailed.

Moreover, we consider that the autonomous robots move in a two-dimensional

environment with polygonal obstacles and observe locations within their limited vis-

ibility region. They follow randomized patrolling paths that monitor the environ-

ment. The problem of finding a path for optimally patrolling the entire environment

is related to an optimal watchman route [CJN99] which is an NP-hard problem for
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a polygonal environment with obstacles [CN88]. The difference between the opti-

mal watchman route and our problem is that we have not considered the robot’s

visibility range to be infinite and we have added the adversary to the surveillance

system of multiple robots.

Our work uses randomized patrolling policies in the form of Markov chains, tak-

ing inspiration from the problem of finding edge weights that minimize the effective

resistance of a graph through convex optimization [GBS08, Boy06]. This problem is

akin to the minimization of the average expected commute time for all pairs of ver-

tices of the graph in the associated Markov chain. The purpose of this contribution

is fourfold. First, we would like to extend current ideas into a more general class of

graphs. The previous perimeter ideas can be extended to general graphs but this will

need first finding a Hamiltonian cycle which is an NP-complete problem. Second,

we would like to remove the need for communication, synchronization, and known

initial placement of the randomized patrolling strategies. This will allow patrolling

algorithms to be implemented with simple robots, in a decentralized fashion, and in

communication denied environments. Third, we would like to adapt the game theo-

retical setup [PPM+08] to use Markov chains instead of deterministic strategies and

to be applied to different sets of graphs. Fourth, we would also like to extend this

optimization problem by modifying the minimization of average expected commute

time for a subset of vertices that cover all or part of the environment with their

visibility rather than using all the vertices of the graph.

4.2 Related Work

Multi-robot patrolling has been investigated in many different studies. Initial re-

search [CSR04, AS06, EAK07] proposed deterministic approaches based on the op-
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timization of the frequency of visits to the locations in the environment. Portugal

et al. presented a multi-level partitioning algorithm (MSP) that assigns different lo-

cations to each patroller agent [PR10]. The performance of this approach is slightly

better, but still deterministic. A survey of multi-agent patrolling strategies can be

found in [PR11] where strategies are evaluated based on robot perception, commu-

nication, coordination, and decision-making capabilities. However, an adversary can

easily penetrate the perimeter or area if a deterministic patrolling is used. For ex-

ample, if a patrolling strategy ensures that a location around a perimeter is visited

every 20 seconds and it takes an adversary 15 seconds to break in, then the adver-

sary is guaranteed success if it attacks just after the location is visited [AKK08].

Nevertheless, with a nondeterministic strategy, patrolling robots would move more

randomly around the environment, making it much more difficult for the adversary

to effectively choose where to penetrate the perimeter environment.

In more recent works, Nicola et al. proposed the optimal strategy for patroller

for patrolling the arbitrary environment like a set of connected cells, using single

patroller or the smallest no. of patrollers required and based on several coordina-

tion dimensions among the robots [BGA09, NNF10, BGA12]. They have considered

different penetration time for different cells of the environment and different target

preferences among those cells for an intruder. They have formulated bilinear math-

ematical programming problem to find the optimal patroller’s strategy. They have

used Markovian property that maximizes the expected intruder-capture utility for

patrollers. Nicola and Carpin again proposed probabilistic intrusions and a vari-

able resolution sensing model that naturally applies to the domain of UAVs [BC12].

However, they have not used inherent Markov chain property to patrol the envi-

ronment with optimal mixed strategy or fastest mixing strategy which is the best

response from patroller against an intruder. Vorobaychik et al. presented a general
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model of infinite-horizon discounted adversarial patrolling games [VATS14]. Here

they assume payoffs for target locations are static over time.

Our visibility-based patrolling is related to the visibility-based pursuit-evasion

solution for a single pursuer using optimal [SO12] and randomized [IKK05] and

complete multiple pursuers [SO14] methods with only theoretical complexity where

pursuers systematically search the environment to locate one or more evaders re-

gardless of their motion. These works used a simple polygonal environment instead

of the polygonal environment with holes which we have used in our work and the

solution to the multi-pursuers problem is also computationally expensive. This prob-

lem is also different from the multi-robot coverage task [FDPM10] where a team of

robots is used to jointly sweep an environment with their visibility sensors. The

solution to this problem ensures the repeatedly visiting the locations of interest in

the environment instead of going over all the locations once.

4.3 Preliminaries

4.3.1 Workspace and Motion Model

We consider m autonomous robots B1,B2, · · · ,Bm that patrol in a 2D polygonal

environment W = R
2. Let O be the set of obstacles that block the visibility and are

modeled as polygons. The free space in the environment is defined as F = W \ O.

We model each patroller as a point robot without considering any orientation of it.

As such, the configuration space of each robot is X i = F . Let xi ∈ X i define a

configuration of a robot Bi where xi = (xi
t, y

i
t) represents the robot’s coordinate in

the plane. We define the configuration space of the whole system as X = X1 ×

X2 × · · · × Xm. Let Xobs = {x ∈ X : x ∩ O 6= ∅ where O ∈ O} be the obstacle
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region of the whole state space. The collision-free state space is the remaining state

space which is denoted as Xfree = X \Xobs. We discretize the free state space Xfree

into a finite number of the fixed-size 2-dimensional square-shaped cell. Let n be the

number of cells in Xfree and the navigable locations in the system are indexed by

z ∈ {1, . . . , n}. Accordingly, we define the collection of free cells as Z = {1, . . . , n}

which is the set of all cells in Xfree.

We consider each patroller as point robot that can translate in any direction

and has an omnidirectional sensor or camera with a limited visibility range. In this

case, a fixed 360◦ camera is considered for the robot which can also be achieved

using multiple unidirectional cameras with a combined 360◦ view. Let the range

of the visibility sensor for a robot be l ∈ R
≥0. Here, the visibility sensor output

is characterized as a limited visibility polygon in a circular region of radius l. Let

xz ∈ F be the center point of a cell z. The limited visibility polygon V (xz) with a

visibility range l centered at the point xz is defined as [EGA81]:

V (xz) = {xr|xr ∈ F, xzxr ∩ F = xzxr, |xzxr| ≤ l}, (4.1)

where xzxr is the line segment between two points xr and xz and |xzxr| is the

distance between these two points. This limited visibility polygon V (xi
z), for a

robot Bi with its current state xi
z ∈ Xfree corresponds to the visible region of the

environment while the robot Bi stays on the center point xz of cell z ∈ Z.

4.3.2 Problem Formulation

We define the patrolling environment as an undirected graph, G = (V,E) with

|V | = n, |E| = q. Each vertex (v ∈ V ) corresponds to a location, and each edge

(e ∈ E) corresponds to a connection between two locations in the environment.
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Next, a discrete time Markov chain M is defined on the graph G where Mij denotes

the probability of transitioning between vertex i and vertex j in one step. In this

form, the patrollers need to know which node they are at in the graph when they

arrive there to use the right weighting for outgoing edges. Once the robot has

determined that it is at vertex i, it selects the i-th column from M , and uses this

to weight its random choice of next vertex to visit. This is weaker than having

to know your (x, y) locations at all times: indeed, given an initial location, a way

of distinguishing the outgoing edges (e.g., in clockwise order), and a sensor which

indicates to a robot that it has arrived at a vertex, no other localization information

is required.

We assume that the patrolling mission is conducted in an adversarial setup where

the adversary knows the information of the environment. We consider that the

patrollers do not know the initial positions (vertices) of others in the environment

(graph) and patrol the whole environment in a distributed manner. In this case, it is

better to find a strategy for patrollers that minimizes the average expected commute

time between every pair of vertices. The hitting time Hij over a pair of vertices is

the random time required for reaching vertex j for the first time when starting

from vertex i in a Markov chain. The commute time, Cij over a pair of vertices is

the random time it takes to return to the vertex i for the first time starting from

vertex i and passing through the vertex j using a Markov chain which is defined

as Cij = Hij + Hji. The average expected hitting time, H , and average expected

commute time, C, for a Markov chain in the graph G are the expected hitting and

commute time respectively, averaged over all pairs of vertices. In this context, the

distributed patrolling problem will be defined as:
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Problem 1. Finding distributed patrolling strategies:

Given the graph, G = (V,E), find distributed strategies that minimize the average

expected commute time (C) : 1) for all vertices in V ; 2) for a clique v1, · · · , vd ∈ V ,

d ≤ n; and 3) to a particular vertex v ∈ V .

We explicitly model an adversary who (1) knows all possible strategies that a

patroller can choose, (2) has full knowledge of the environment, and (3) is able

to optimally choose the vertex to attack in graph G. This scenario is known as a

Bayesian Stackelberg Game where the two players of the game are the patroller and

the adversary. In our proposed game theoretical setup, each patroller’s strategy is

a Markov Chain. The adversary also has a set of strategies to attack in any of the

n vertices. The game is formulated as follows:

• A nonempty, finite set called the set of patrolling strategiesM = {M1, · · · ,Mk}

where k is the number of Markov chains.

• A nonempty, finite set called the set of adversary strategies V . Each v ∈ V is

a vertex in the graph.

• A function P :M×V −→ R∪{∞} called the payoff matrix for the patroller.

• A function Q :M×V −→ R∪{∞} called the payoff matrix for the adversary.

In order to calculate both payoff matrices, we need the following values:

• dpati : value of goods in location i to the patroller.

• dadvi : value of goods in location i to the adversary.

• cpati : reward to the patroller of catching the adversary in the i-th location.

• cadvi : cost to the adversary of getting caught in the i-th location.
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• pi : the probability that the patroller will catch the adversary at the i-th

location of the environment.

A patroller’s reward must consider the factor cpati for capturing the adversary

(with probability pi) and the reward value gets reduced when the adversary is not

captured (probability 1− pi). Conversely, the adversary pays cost cadvi (with prob-

ability pi) but gains c
adv
i (with probability 1− pi). Additionally, pi also depends on

the i-th hitting time of the Markov chain for each patrolling strategy. Given these

definitions, we are interested in the following problem:

Problem 2. Generating the optimal strategies:

Given the payoff matrices, P and Q, the set of patroller strategies, M, the set of

strategies for an adversary, V , find the optimal mixed strategy for the patroller and

the optimal strategy for the adversary.

We also convert the 2D patrolling environment into an equivalent undirected

graph G = (V,E). Each vertex v ∈ V represents a cell z in Xfree and each edge

e ∈ E represents the connectivity between two cells of the environment. Each vertex

(cell) can be connected to 8-neighboring vertices (cells) from Z and the total number

of edges in the graph G is q. Again, we consider that the patrollers patrol the whole

environment (graph) through the visibility in a distributed manner. In this case, we

find a visibility-based randomized strategy suitable for a patroller that minimizes

the average expected commute time among a set of vertices (cells) permitting it to

patrol the entire environment by itself. The patrollers will not be allowed to interact

with each other and must act independently in a distributed fashion. Hence, we

formulate the distributed patrolling policies as follows:
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Problem 3. Finding visibility-based distributed patrolling policies:

Given an environment F and m autonomous robots as patrollers with limited visi-

bility range l, find m visibility-based distributed patrolling policies where the policy

of each patroller observes the whole environment from a subset of vertices indepen-

dently, minimizing the average expected commute time C for the subset of vertices

v1, · · · , vd ∈ V , d ≤ n.

In contrast to the above problem, we can allow the robots to communicate with a

central base station. We assume that the robots do not communicate with each other

because they are in motion. The base station has two purposes: 1) collect informa-

tion from the patrolling robots; 2) check whether a patrolling robot is functioning

or not. The communication between the central base station and each patroller is

established through the line of sight or the visible light. Thus, the communication

range of the base station will depend on its visibility range.

Let b be the location of a base station placed on one of the cells in Z. The base

station has a limited communication range (or the visibility range) r and does not

move. We allocate m regions of the environment to m patrollers for patrolling. We

assume that each patroller communicates with others by uploading and downloading

data about its surveillance and availability to the base station after a random period

of time. When a patroller fails or is disabled by the adversary, the base station makes

that determination after some time and notifies other patrollers about it. In this

scenario, we formulate the centralized patrolling policies of different patrollers as

below:

Problem 4. Finding visibility-based centralized patrolling policies:

Given the environment F , a base station b, and m autonomous robots as patrollers,

find the placement of the base station, m partitioned regions of the environment, and
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m randomized policies that monitor these regions and also contact the base station

through the limited visibility of patrollers.

We define an adversary as D who can hide and attack at any location of the

environment at any time. The time of patrolling is enumerated based on the number

of time steps used in a Markov chain simulation. At the first time step, t = 0, the

robots are placed in some random locations of the environment. At each time

step, the robots will move simulating the Markov chain. Let ta be the time steps

required for the adversary to complete an attack at a location successfully and pd

be the probability of capturing the adversary. We assume that the adversary D

attacks at a random location x ∈ F and takes ta time steps at the location x for

completing the attack. It is considered that a robot can see the target location x

from any boundary location of the limited visibility polygon V (xz) centered at the

corresponding target cell z. Let the boundary region of the limited visibility polygon

of the cell z be ∂V (xz). In this case, the probability of capturing the adversary at

the location of cell z is calculated pd = p[Hkz = ta] for a random location of cell or

vertex k ∈ V in the outside region of the limited visibility polygon V (xz). In other

words, it refers to the hitting time between a random vertex in the outside region

of the limited visibility polygon V (xz) and a vertex inside the boundary region

of the limited visibility polygon ∂V (xz). To evaluate the vulnerability of patrolling

policies, we find the probability of detecting the adversary at a given location. Thus,

we formulate the vulnerability evaluation problem below:

Problem 5. Vulnerability evaluation of patrolling policies:

Given the environment F , a set of Markov chainsM as patrolling policies, a target

location (cell) i ∈ F , time steps of a successful attack for an adversary ta, find the
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probability of capturing the adversary pd at the location (cell) i following the given

patrolling policies.

4.4 Methodology

This section presents a game theoretical approach based on the distributed patrolling

to obtain the optimal strategies and a method for finding both visibility-based dis-

tributed and centralized patrolling policies and their vulnerability evaluation.

4.4.1 Distributed Patrolling Strategies

As mentioned before, we consider patrolling strategies in a graph as a set of Markov

chainsM. We define edge weights of the graph G as w = (w1, · · · , wq) ∈ R
≥0. An

edge e ∼ (i, j) connects vertices i,j and so the incidence matrix A of the graph G is

defined as:

Aie =































1 edge e enters vertex i

−1 edge e leaves vertex i

0 otherwise.

Therefore, the incidence matrix A is an n× q matrix where |V | = n and |E| = q.

Now, the weighted Laplacian is the n× n matrix calculated as:

L = A diag(w)AT , (4.2)

where diag(w) is the q×q diagonal matrix constructed from w. Since the weights

are non-negative, L is positive semidefinite and it has the smallest eigenvalue 0

corresponding to the eigenvector 1.
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We denote the eigenvalues of the Laplacian matrix L as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Here, the average expected commute time C which is the expected commute

time averaged over all pairs of vertices is formulated as [GBS08],

C =
1

n2

n
∑

i,j=1

E [Cij] =
2

(n− 1)

n
∑

i=2

1

λi

, (4.3)

where E denotes the expected value.

In distributed patrolling scenarios, an environment with a small average expected

commute time corresponds to a Markov chain with small expected commute times

between vertices, and a large average expected commute time corresponds to a

Markov chain with large expected commute times between at least some pairs of

vertices. In [GBS08], a convex optimization method is proposed for minimizing the

total effective resistance of the graph by allocating a fixed total conductance among

the edges. Similarly, our first patrolling strategy of minimization of average expected

commute time (MAECT) on a graph over all pairs of vertices is also the same convex

optimization problem as follows:

minimize C

subject to 1Tw = 1, w ≥ 0.

(4.4)

The optimization variable is w ∈ Rq which is the vector of edge weights. This

MAECT patrolling strategy is equivalent to the problem of selecting weights on

edges to minimize the expected commute time between vertices. Once C is con-

sidered as distances among the vertices, the MAECT is the problem of allocating

the edge weights to a graph to make the graph small in terms of average distance

between vertices.
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In the second patrolling strategy, we have extended the MAECT problem for a

subset of vertices or clique. This extension ensures a higher probability of traveling

along the edges within the subset of vertices while still allowing for travel to the re-

maining vertices of the graph. For example, the edges set g = {ShortestPath(i, j),

ShortestPath(j, k), ShortestPath(k, i)}, where g ⊂ E, is given priority for the

subset of vertices {i, j, k}. This means that the edges along this shortest cycle will

be optimized such that the edge weights will consist of the majority of the sum of all

edge weights. We have formulated the convex optimization of minimizing average

expected commute time (MAECT) problem for a subset of vertices as follows:

minimize C

subject to 1Tw = 1, w ≥ 0

e = ShortestCycle(Q),

∑

e

we ≥ h.

(4.5)

In this optimization, the variable e represents an edge along the shortest cycle

between the vertices in the subset of vertices Q ⊂ V . The condition
∑

e we ≥ h

ensures that the sum of the edge weights of we ∈ w, where e ∈ g, will be greater than

or equal to a threshold h that represents the percentage of edge weights allocated

to the cycle.

Let B be a coordinate matrix, 2 × n, for x and y coordinates of n vertices of

the graph G. We present an algorithm for finding MAECT strategies towards each

vertex.

Algorithm 4.1 generates a set of nMarkov chains,M, that minimizes the average

expected commute time towards every vertex v ∈ V for the graph G. For every

Markov chain, the k shortest paths from vj to the target vertex vi are found (line
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Algorithm 4.1: MAECTtowardsVertices(A,B)

Input: A,B – Incidence and coordinate matrices of the graph
Output: M = {M1, · · · ,Mn} – Markov chains for each vertex

1 M← 0
2 for i← 1 to n do
3 M(n× n)← 0
4 for j ← 1 to n do
5 if j == i then
6 for all edges ejb ∈ A do
7 Mjb ←Mjb + 1

8 continue

9 k ← K-ShortestPaths(B, j, i)
10 for all edges eab ∈ k do
11 Mab ←Mab + 1

12 normalize M
13 M←M∪M

14 returnM

9). The k shortest paths are found using Yen’s algorithm [Yen71], which has a worst

case runtime of O(n2). After the k shortest paths are found, every edge transition

found within the k paths is incremented in the Markov chain that is being generated

(lines 10–11). When vj = vi, all possible edge transitions from the target vertex vj

to adjacent vertices are incremented (lines 5–7). After all paths have been explored

for a Markov chain, M is normalized and is added to the set of Markov chainsM.

4.4.2 Game Theoretical Approach

The game theoretical approach has two stages; the first stage is the payoff matrices

calculation and the second stage is the optimal strategies generation.
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Payoff Matrices Calculation

The payoff matrices for patroller and adversary, P and Q, are calculated from the

set of Markov chains, M. We calculate n Markov chains from Algorithm 4.1 and

we also have two other Markov chains from MAECT for all vertices and MAECT

for a subset of vertices or clique. Now, we have n + 2 Markov chains in the set of

Markov chains,M.

In Algorithm 4.2, we present a procedure to calculate the payoff matrices. The

algorithm assigns uniform values of goods (dpati , dadvi ) in each vertex for both the

patroller and the adversary. It calculates the hitting time matrix, H , (line 4) for

each Markov chain. The mean hitting time vector (lines 6–7), h̄, is calculated using

the function HTofPreferredVertices. This function takes the vertices involved

in the Markov chain optimization as follows: 1) In the case of MAECT strategy, it

calculates the mean of the hitting times for all vertices; 2) In the case of MAECT

for a subset of vertices or clique, it takes mean hitting time for the subset of vertices;

and 3) In the case of MAECT towards each vertex, it takes the hitting time towards

that particular vertex. In lines 11–17, it assigns the values to the variables needed to

calculate the payoff matrices. In lines 18–20, it calculates the payoff matrices using

these variables. Finally, it returns the payoff matrices P and Q for the patroller and

the adversary respectively.

Optimal Strategies Generation:

The probability distribution of choosing the strategies for the patroller can be rep-

resented as a q-dimensional vector,

α = (α1, α2, · · · , αq). (4.6)
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Algorithm 4.2: PayoffMatrixCalculation(M)

Input: M = {M1, · · · ,Mn+2} – Markov chains for all patrolling strategies
Output: P,Q – Payoff matrices for patroller and adversary

1 for i = 1 to n do
2 dpati ← 1/n dadvi ← 1/n

3 for i = 1 to |M| do
4 H ← HittingTimes(Mi)
5 h̄← 0
6 for j = 1 to n do
7 h̄j ← HTofPreferredVertices(H)

8 asc← SortAscending(h̄)
9 desc← SortDescending(h̄)

10 cpat ← 1 cadv ← 1 j ← n
11 for k = 1 to n do
12 cpatasck

← cpatasck
j

13 cadvdesck
← cadvdesck

j

14 j ← j − 1

15 p← 1
16 for k = 2 to n do
17 pk ← 1/2k−2

18 for k = 1 to n do
19 Pik ← pkc

pat
k + (1− pk)d

pat
k

20 Qik ← pkc
adv
k + (1− pk)d

adv
k

21 return P,Q

Equation 4.6 should satisfy: 1) αi ≥ 0 for all i ∈ {1, . . . , q}, and 2) α1+α2+· · ·+αq =

1. The value αi is the proportion of the patroller choosing strategy αi.

Similarly, u represents all the possible strategies for the adversary as an n-

dimensional vector,

u = (u1, u2, · · · , un). (4.7)

Equation 4.7 should satisfy: 1) ui ∈ {0, 1} for all i ∈ {1, . . . , n}, and 2) u1+u2+· · ·+

un = 1. Since the adversary can attack any location n ∈ |V | in the environment,

the adversary’s strategies, ui, are strategies for attacking each location separately,

and only one strategy can be chosen.
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DOBSS generates the optimal mixed strategy for the patroller while considering

an optimal adversarial response for all patrolling strategies [PPM+08]. It considers

reward-maximizing strategies for patroller and cost-minimizing strategy for adver-

sary.

4.4.3 Finding the Limited Visibility Polygons for Patrolling

To patrol the whole environment, we find a subset of cells for the limited visibility

polygons that cover the whole environment.

In order to find the limited visibility polygons for patrolling, Algorithm 4.3 takes

the environment F and the visibility range l as input and provides the set of mini-

mum size subsets of cells that cover the environment completely through visibility

for m patrollers separately as output. First, we initialize a set of visible cells Y that

will contain the set of cells observed by all limited visibility polygons (line 1). In

Algorithm 4.3, the function VisibleCells makes use of a visibility library [OC08]

to compute a planar visibility polygon with infinite range for a point in the polygo-

nal environment. Then, this function calculates a limited visibility polygon for the

center point of a cell by taking the intersection of a visibility polygon with infinite

visibility range and an approximated polygon with a limited visibility range. Thus,

the limited visibility polygon V (xz) for every cell z ∈ Z is calculated. An example

of this calculation of the limited visibility polygon is illustrated in Figure 4.1(a)–(b).

Once a robot is placed in the center of a cell, then it is possible for the robot to

observe a subset of cells completely determined by its limited visibility polygon.

Therefore, the function VisibleCells finds the subset of cells that are com-

pletely visible by each limited visibility polygon V (xz). We add this subset of cells

to Y (lines 2–3). So, the set of visible cells Y is a collection of subsets of Z such
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(a) (b)

Figure 4.1: An illustration of a limited visibility polygon construction: (a) a
blue approximated polygon of the blue circle centered cell that covers all the cells
completely within a limited visibility range; (b) a limited visibility polygon (light
blue region) taking the intersecting region between a visibility polygon of the infinite
range (grey region) and the approximated polygon (in dotted line) with the limited
visibility range.

that every element of Z belongs to at least one subset of Y :

Z =
⋃

S∈Y

S. (4.8)

If we have one robot as patroller then it is an optimal solution to find the

minimum size subset of cells Q ⊆ Y , whose elements represented by limited visibility

polygons (they can be overlapping) cover all the elements of Z.

Z =
⋃

S∈Q

S. (4.9)

However, the problem of finding the minimum size subset of cells Q is an instance

of the set-covering problem which is NP-hard [CLRS01]. Hence, our problem is

similar to the set-covering problem and it does not have an optimal solution using

a polynomial time algorithm.

Therefore, we apply a greedy approximation set cover algorithm, and the best

feasible solution we get is an O(logn) approximation solution [Chv79]. Let P be

the set of minimum size subsets of cells for limited visibility polygons that cover the
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Algorithm 4.3: CompleteVisibility(F, l)

Input: F, l – Environment, Visibility range
Output: P – Set of minimum size subsets of cells that cover the complete

visibility
1 Y ← ∅ // Set of all subsets of visible cells

2 for z = 1 to n do
3 Y ← Y ∪ {VisibleCells(V (xz))} // Calculate a subset of visible

cells and add to Y

4 P ← ∅
5 for i = 1 to m do
6 U ← Z // Set of uncovered cells

7 Q← ∅ // Empty covered cells

8 while U 6= ∅ do // Check uncovered cells empty

9 select an S that maximizes |S ∩ U | in i-th order
10 U ← U \ S // Remove covered cells

11 Q← Q ∪ {S} // Add covered cells

12 P ← P ∪ {Q}

13 return P

environment completely by m patrollers independently. It is empty initially (line 4).

For each patroller, all the cells in Z are initially uncovered, and the covered set of

cells Q is empty in the beginning. At each iteration of minimum size subset of cells

generation, it selects a subset S ∈ Y that covers the i-th maximum number of cells

not yet covered where i ∈ {1, . . . , m} (line 9) (For example, for the second patroller,

the algorithm finds the second maximum number of cells not yet covered.). Let U

maintain the set of remaining uncovered cells and Q keep track of the collection

of subsets of cells selected from Y . At each iteration, we remove the covered cells

by selected subset S from U and add the subset to Q (lines 10–11). We continue

this process until the set of uncovered cells becomes empty through the visibility of

minimum size subset of cells. This minimum size subset of cells Q is added to P

(line 12). We generate m minimum size subsets of cells for m patrollers. Finally,
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Algorithm 4.3 returns the set of minimum size subsets of cells P in which the

visibility of each minimum size subset of cells covers the environment completely.

4.4.4 Finding Visibility-Based Distributed Patrolling Poli-

cies

The visibility-based distributed patrolling policies for m robots are presented as

a set of Markov chains M = {M1, · · · ,Mm} on the graph G. We minimize the

average expected commute time for each minimum size subset of vertices in the

graph applying the convex optimization of Equation 4.5. Then, we get m distributed

and randomized patrolling policies for each minimum size subset of cells that cover

the environment completely using their limited visibility polygons.

4.4.5 Finding Visibility-Based Centralized Patrolling Poli-

cies

To find the centralized patrolling policies, we place the central base station in the

center of a cell based on two criteria. First, the placement of the base station is

approximately at the center of the polygonal environment geometrically because it

will be effective and convenient for the base station to coordinate other patrollers

from the central location of the environment. Second, the visibility polygon for the

center of a cell should have a large number of free cells covered by it so that the base

station can communicate with other patrollers through its visibility rather than its

proximity. To find the location of the base station, we find an initial set of cells

around the center of the environment. Based on the two criteria mentioned above,

we select a cell b ∈ Z for placing the base station. We find the visibility polygon for
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the center of cell b using the visibility range r as the communication range of the

base station. One base station placement in a given environment and its visibility

with the range r are shown in Figure 4.2(a).

(a) (b)

Figure 4.2: Base station placement and division of patrolling regions around the
base station in the environment.

Next, we divide the environment F considering the location of the base station

as the center or origin. We partition the environment F into m regions for assigning

them to m patrolling robots. Since the exact partitioning of a polygon with holes

is NP-hard [LA06], so we apply a heuristic method where this partition is carried

out by dividing the angular regions around the center of the cell location of the base

station. To find the region for each cell location, we calculate the angular distance

between the center location of the base station and the center of each cell. Based

on the angular measurement, we assign each cell to respective regions. Each region

has some overlapping cells with the visibility of the base station so that each robot

can come within the visibility of the base station for communication purposes. An

environment is partitioned into 4 regions around the base station for 4 patrollers

according to 4 angular regions as illustrated in Figure 4.2(b). This partition also

provides the overlapping (intersecting part between the visibility of the base station
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and each sky blue region of the environment) and non-overlapping part (cyan region)

of the visibility region of the base station.

Then, we apply the same approximated set cover algorithm for covering each

region completely. We obtain a minimum size subset of cells that need to be patrolled

in each region and a contact cell from the overlapping cells with the base station

visibility region. We generate a random patrolling policy for each patroller using

the same convex optimization of Equation 4.5, minimizing the average expected

commute time over the minimum size subset of cells and a contact cell for the

corresponding region. Finally, we construct randomized patrolling policies for m

patrollers monitoring m regions of the environment such that they can contact the

base station via visibility-based communication. As the non-overlapped visibility of

the based station is monitored by the base station at all times, this free area of the

environment is not patrolled by any patroller.

4.4.6 Vulnerability Evaluation of Patrolling Policies

To evaluate the vulnerability of patrolling policies, we find the limited visibility

polygon V (xz) as explained before for the center point of the given location of cell z

in the environment F . We define the set of cells or vertices in V (xz) as T ⊂ V . Then,

we calculate the boundary region ∂V (xz) from the limited visibility polygon V (xz)

as illustrated in Figure 4.3. The boundary region ∂V (xz) of the limited visibility

polygon consists of cells that are first reachable cells from the outside region of the

limited visibility polygon V (xz). The target cell z is visible from the cells on the

boundary region ∂V (xz) of V (xz). The set of cells or vertices in the outside region

of the limited visibility polygon V (xz) in the environment is denoted as T ′ = V \ T .

For the evaluation of patrolling policies, we simulate the given set of Markov chains
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M starting from random states (cells) from T ′ until the simulation of one of the

Markov chains reaches to one of the states (cells) on the boundary region ∂V (xz)

of V (xz). We enumerate the hitting time for the simulation of the Markov chain to

reach one of the states (cells) on the boundary region ∂V (xz) from the outside region

of the limited visibility polygon V (xz). We repeat this process for no observations

to obtain a distribution of hitting times. Since the hitting times are different due to

the geometry and the characteristics of patrolling policies, it is hard to find a closed

form of the distribution of hitting times analytically. Thus, we propose a numerical

solution using the Freimer, Mudholkar, Kollia, and Lin (FMKL) generalized lambda

distribution (GλD) [FKML88]. Then, we fit the generalized lambda distribution to

the empirical distribution of hitting times.

(a) (b)

Figure 4.3: A boundary region illustration: (a) the blue approximated visibility
polygon V (xz) for a limited visibility range at a cell z; (b) the green boundary region
∂V (xz) of V (xz).

The distribution is defined by its quantile function, the inverse of the distribution

function in FMKL GλD as below:

F−1(p) = λ1 +

pλ3−1
λ3
− (1−p)λ4−1

λ4

λ2

, (4.10)
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where p is the probability, p ∈ [0, 1], λ1 is the location parameter, λ2 is the scale

parameter, and λ3, λ4 are shape parameters jointly related to the strengths of the

lower and upper tails, respectively. The advantage of the FMKL GλD is that the

distribution is defined over all λ3 and λ4. The only restriction on the FMKL GλD

is λ2 > 0. Also, the maximum likelihood estimation is usually the preferred method

for providing definite fits to a data set using the GλD [Su07]. Thus, we estimate

the parameters of the GλD using the maximum likelihood method. Using the four

parameters λ1 , λ2, λ3, λ4 of the generalized lambda distribution, we calculate

the probability of detecting an adversary D for different time steps required for

completing the attack ta from the probability density function f(F−1(p)) of GλD.

The probability density function f(F−1(p)) of GλD does not exist in closed form.

Hence, the probability density function f(F−1(p)) is calculated from a numerical

solution to Equation 4.10, using the Newton-Raphson method.

4.5 Experimental Evaluation

4.5.1 Decentralized Patrolling Result

We have compared our MAECT method with the three patrolling methods proposed

by Agmon et al. [AKK08].In our approach, we place patrollers on the graph either

randomly or an equal distance from each other (uniform) around the graph; Agmon

et al’s three methods, BMP, DCP, DNCP, all require that patrollers are placed

an equal distance from each other on the graph. The patrollers are mobile robots

such as UAVs or wheeled robots. In Figure 4.4, we show the mean first hitting

time of MAECT with both uniform and random placement of patrollers compared

to their three methods on a graph of 64 vertices and 2016 edges, (K64 : 2016).
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Since their methods require a cycle graph to be tested on, we have tested their

methods on a cycle graph of 64 vertices, (C64), which is assumed to be equivalent

to the Hamiltonian cycle of our original graph, K64. In our test, we have simulated

four patrollers so the distance between two consecutive robots, d, is 16. We also

consider the number of state transitions it takes to penetrate the environment, t, as

12 units. Though our approach does not use synchronization and communication

among robots, it still surpasses the mean hitting time of one of their methods and

performance does not degrade much compared to the other two.
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Figure 4.4: Comparison result of our MAECT method with uniform and ran-
dom robot placement as well as existing three methods (e.g., BMP, DCP,
DNCP) [AKK08] for patrolling. Each line represents the maximum, minimum first
hitting time and each box represents the median along with the mean hitting time
in the middle.

We compare more closely our MAECT method with DCP and DNCP methods

using the varying number of patrollers on the graphs mentioned above (K64 and

C64). The result of this comparison is shown in Table 4.1. It shows that the more
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patrollers are present on the graph, the closer the first hitting times of DCP and

DNCP’s methods approach the data from our approach.

Table 4.1: Comparison of average first hitting time of our approach, MAECT with
uniform and random robot placement and existing two methods (DCP, DNCP) for
30 experiments

No. of Patrollers Uniform MAECT Random MAECT DCP DNCP

2 (d=32, t=24) 30.35 30.58 17.29 20.85

4 (d=16, t=12) 14.22 14.70 9.26 11.74

8 (d=8, t=6) 7.11 7.30 5.90 6.90

16 (d=4, t=3) 3.21 3.40 3.1 3.16

We have also tested our methods on different types of graphs, including line,

tree, mesh, complete, and randomly generated graphs. Figure 4.5 shows the edge

weight allocation on different graphs [GBY08] for our MAECT method. In each

graph, the thickness of each edge corresponds to the optimal edge weight value, or

the probability of that edge being chosen by a patroller. For example, a wider edge

connection between two vertices represents a high probability of that edge being

chosen for travel, and vice versa.

4.5.2 Game Theoretical Optimal Strategies Result

We have tested DOBSS with a small graph [GBY08] consisting of eight vertices and

thirteen edges. The patroller has ten patrolling strategies available: eight which

minimize the average commute time towards each of eight vertices, one that mini-

mizes the average commute time towards a subset of vertices or clique, and one that

minimizes the average commute time over all vertices. The resulting graphs for all

ten patrolling strategies are shown in Figure 4.6.
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(a) (b)

(c) (d)

Figure 4.5: Different types of Graph for our MAECT method: a) Edge weight
allocation on a line graph of 20 vertices; b) Edge weight allocation on a tree with
30 vertices; c) Edge weight allocation on a complete graph, K8; and d) Edge weight
allocation on a randomly generated graph with 50 vertices and 200 edges.

As an illustration, payoff matrices of a small graph are shown in Table 4.2,

where the values of the payoff matrices for patroller and adversary, P and Q, for

ten patrolling strategies are calculated using Algorithm 4.2.

DOBSS produces the optimal mixed strategy as shown in Table 4.3. The pa-

troller will patrol the graph with an optimal mixed strategy consisting of strategies

7 and 9. Here the cost-minimizing strategy for the adversary generates an optimal

response for attacking vertex 7 (i.e., u7 = 1, ui = 0, i 6= 7 for all i ∈ {1, . . . , n}).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.6: Edge weight allocation for ten patrolling strategies of a small graph:
a)-h) Edge weight allocation for minimizing average commute time towards vertex 1
to vertex 8 respectively; i) Edge weight allocation for minimizing average commute
time preferring a clique or subset of vertices, {2, 5, 8}; and j) Edge weight allocation
for minimizing average commute time over all vertices.
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Table 4.2: Payoff matrices for a small graph

v1 v2 v3 v4 v5 v6 v7 v8

P1 8.0000 1.5938 0.1543 0.1318 3.5625 0.3672 0.7344 0.2148

Q1 1.0000 0.8438 0.2324 0.1865 1.0625 0.4297 0.6094 0.3086

P2 0.2148 8.0000 1.5938 0.7344 0.1543 0.1318 0.3672 3.5625

Q2 0.3086 1.0000 0.8438 0.6094 0.2324 0.1865 0.4297 1.0625

P3 0.2148 1.5938 8.0000 3.5625 0.1543 0.1318 0.7344 0.3672

Q3 0.3086 0.8438 1.0000 1.0625 0.2324 0.1865 0.6094 0.4297

P4 0.3672 0.7344 3.5625 8.0000 0.1543 0.1318 0.2148 1.5938

Q4 0.4297 0.6094 1.0625 1.0000 0.2324 0.1865 0.3086 0.8438

P5 0.7344 0.3672 0.1543 0.1318 8.0000 3.5625 1.5938 0.2148

Q5 0.6094 0.4297 0.2324 0.1865 1.0000 1.0625 0.8438 0.3086

P6 0.3672 0.1543 0.7344 0.1318 3.5625 8.0000 1.5938 0.2148

Q6 0.4297 0.2324 0.6094 0.1865 1.0625 1.0000 0.8438 0.3086

P7 0.1318 1.5938 0.7344 0.1543 0.2148 0.3672 8.0000 3.5625

Q7 0.1865 0.8438 0.6094 0.2324 0.3086 0.4297 1.0000 1.0625

P8 0.2148 1.5938 0.3672 3.5625 0.1318 0.1543 0.7344 8.0000

Q8 0.3086 0.8438 0.4297 1.0625 0.1865 0.2324 0.6094 1.0000

PMAECT 0.2148 3.5625 0.7344 0.1543 1.5938 0.1318 8.0000 0.3672

QMAECT 0.3086 1.0625 0.6094 0.2324 0.8438 0.1865 1.0000 0.4297

PClique 0.7344 3.5625 0.1318 0.2148 1.5938 0.1543 0.3672 8.0000

QClique 0.6094 1.0625 0.1865 0.3086 0.8438 0.2324 0.4297 1.0000

4.5.3 Result of Visibility-Based Distributed Patrolling Poli-

cies

We implemented our Algorithm 4.3 in a simulation using Python. We take a 2-D

environment which is discretized into a 15 unit × 15 unit grid including obstacles.

The free space of the environment has n=188 cells. We consider the limited visibility

range l = 6 cell units for m = 2 autonomous robots. We utilized a C++ library for

visibility computations [OC08] to find the infinite visibility polygon and modified

it to find the limited visibility polygon for each of the 188 cells of the environment.

We found a set of limited visibility polygons for a minimum size subset of cells in
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Table 4.3: Optimal mixed strategy result for the small graph

Patrolling Strategy No., Mi Proportion of using Strategy αi

1 0

2 0

3 0

4 0

5 0

6 0

7 0.9012

8 0

9 0.0988

10 0

the environment for the first robot that covers the whole environment as illustrated

in Figure 4.7(a)–(i). It calculates the highest number of covered cells by a limited

visibility polygon of a cell center. For the second robot, it calculates the second

highest number of covered cells by a limited visibility polygon of a cell center. Thus,

we found a set of limited visibility polygons for another minimum size subset of cells

in the environment for the second robot that also covers the whole environment

as shown in Figure 4.8(a)–(i). Since the limited visibility polygons that cover the

highest and the second highest number of cells in the environment are close to

each other, these limited visibility polygons look similar but cover the environment

separately.

We extended the convex optimization method implemented in Matlab [GBY08].

As an illustration, we computed two visibility-based distributed and randomized

patrolling policies for two autonomous robots. The randomized patrolling policy

for the first robot is shown in Figure 4.9(a), based on prioritizing the minimum

size subset of vertices (cells) for the visibility polygons of Figure 4.7 and the second

randomized patrolling policy for the second robot is shown in Figure 4.9(b), based

on prioritizing the minimum size subset of vertices (cells) for the visibility polygons
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.7: Limited visibility polygons (light blue region) for a minimum size subset
of cells (blue circles) that cover the whole environment.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.8: Limited visibility polygons (light blue region) for a minimum size subset
of cells (blue circles) that cover the whole environment.

of Figure 4.8. In these graphs, we have n = 188 vertices and p = 1046 edges. In

Figure 4.9, the width and color saturation of edges are proportional to the optimal

edge weight value or the probability of that edge being chosen by a patroller. In

other words, the optimal edge weight is larger on edges with more paths passing

through them than edges near the leaves, which have fewer paths passing through
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them. Therefore, the probability of choosing the shortest path among the minimum

size subset of vertices for each robot is very high in both patrolling policies and these

policies also choose other paths with low probabilities, to deceive the adversary.

(a) (b)

Figure 4.9: Distributed and randomized policies for two patrollers.

4.5.4 Result of Visibility-Based Centralized Patrolling Poli-

cies

For finding the visibility-based centralized patrolling policies, we take another 2-D

environment discretized into an 18 unit × 16 unit grid with obstacles. We also

provide the communication range r = 6 cell units for the central base station and

the limited visibility range l = 6 cell units for m = 3 autonomous robots. Initially,

there are 253 free cells in the environment. We found the limited visibility polygons

with the communication range r in the same way as before, around the center of the

environment. We placed the base station in the green circle (circle in the middle

of the cyan region) of Figure 4.10– 4.12. In these figures, the communication or

visibility region of the base station cell is shown in cyan color, and it covers the

highest number of free cells. We partitioned the environment into 3 the angular

regions (0◦ ≤ θ < 120◦, 120◦ ≤ θ < 240◦, 240◦ ≤ θ < 360◦) based on the angular
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distance between the center of base station cell and the center of other free cells.

After removing the non-overlapping free cells of the communication region as they

are visible from the base station, the number of free cells for patrolling in 3 regions

is n = 188 cells. We found a minimum size subset of cells for the limited visibility

polygons in each of three regions, covering each region completely using the same

approximate set cover Algorithm 4.3. The sets of limited visibility polygons for

minimum size subsets of cells (blue circles) in three regions are shown in Figure 4.10–

4.12 respectively. The contact cells (blue circles) for each region are illustrated by

the final picture in each of those figures.

(a) (b) (c) (d) (e)

Figure 4.10: Limited visibility polygons (light blue region) for a subset of cells (blue
circles) covering the first region of the environment and a contact cell (blue circle)
in the base station (green circle) communication region (cyan region).

(a) (b) (c) (d) (e) (f)

Figure 4.11: Limited visibility polygons (light blue region) for a subset of cells (blue
circles) covering the second region of the environment and a contact cell (blue circle)
in the base station (green circle) communication region (cyan region).

We computed three visibility-based centralized patrolling policies, again using

the MAECT method in Matlab, for the respective minimum size subset of vertices
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(a) (b) (c) (d)

Figure 4.12: Limited visibility polygons (light blue region) for a subset of cells (blue
circles) covering the third region of the environment and a contact cell (blue circle)
in the base station (green circle) communication region (cyan region).

(cells) and the contact vertex (cell) of the corresponding region. In these graphs, we

have n = 188 vertices and p = 989 edges. Centralized and randomized patrolling

policies for three autonomous robots are illustrated in Figure 4.13, with the robots

contacting the base station to communicate. The number of paths along the edges

of the shortest cycle of the minimum size subset of vertices and the contact vertex

of each region of the environment is much higher than the number of paths on any

other edge.

(a) (b) (c)

Figure 4.13: Centralized and randomized policies for three patrollers.
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4.5.5 Computation Time Estimation of Visibility-Based Pa-

trolling Policies

We ran our simulation experiments on a GNU/Linux computer with Intel Core i7 3.6

GHz processor and 16 GB memory. The running time (averaged over 10 repetitions)

of Algorithm 4.3 for finding the minimum size subset of cells in our simulation runs is

shown in Table 4.4. In Table 4.5, we provide the computation time (averaged over 10

repetitions) for determining randomized policies in both visibility-based distributed

and centralized patrolling.

Table 4.4: Running time of Algorithm 4.3.

No. of cells Time (milisec.)

n Mean Std. dev.

Algorithm 4.3 for Figure 4.7 188 2.7928 0.0634

Algorithm 4.3 for Figure 4.8 188 2.8072 0.0452

Algorithm 4.3 for Figure 4.10 188 2.7715 0.0845

Algorithm 4.3 for Figure 4.11 188 2.9198 0.0674

Algorithm 4.3 for Figure 4.12 188 2.8001 0.0855

Table 4.5: Computation time for determining visibility-based patrolling policies.

No. of vertices Time (sec.)

n Mean Std. dev.

Distributed policy of Figure 4.9(a) 188 733.2722 22.3968

Distributed policy of Figure 4.9(b) 188 676.6925 12.1284

Centralized policy of Figure 4.13(a) 188 779.4053 9.6480

Centralized policy of Figure 4.13(b) 188 744.9866 10.0691

Centralized policy of Figure 4.13(c) 188 752.8397 14.4261
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4.5.6 Result of Vulnerability Evaluation of Patrolling Poli-

cies

For evaluating the distributed patrolling policies, we found a limited visibility poly-

gon as illustrated in Figure 4.14(a) for the target blue encircled cell with the visibility

range l = 6 cells. The boundary region of the limited visibility polygon is shown in

Figure 4.14(b). This boundary region consists of green cells that are first reachable

from the outside region of the limited visibility polygon. We simulated two Markov

chain based distributed patrolling policies of Figure 4.9 starting from two random

states (cells) in the outside region of the limited visibility polygon. We recorded

the number steps required (hitting time) for one of the Markov chains that reached

the boundary region of the limited visibility polygon from its starting state. This

simulation of Markov chains was repeated for no = 5000 times, and we found the

distribution of hitting times. We used the maximum likelihood method of the gld

package in R [KDK16] to fit the distribution of hitting times. The histogram of

recorded number steps required or the distribution of hitting times for 5000 Markov

chain simulations and the result of fitting the maximum likelihood method of gener-

alized lambda distribution to the hitting times are illustrated in Figure 4.15. Based

on the result of the generalized lambda distribution, we calculated the probability

of capturing an adversary pd through the visibility of patrollers at the blue encircled

cell of Figure 4.14 following two distributed patrolling policies of Figure 4.9 for dif-

ferent required time steps of a successful attack ta. The result of the probability of

capturing an adversary pd through the visibility of patrollers is shown in Table 4.6.

For evaluating the centralized patrolling policies, we found a limited visibility

polygon as illustrated in Figure 4.16(a) for the target blue encircled cell in one of

three regions as described before with the visibility range l = 6 cells. The boundary
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(a) (b)

Figure 4.14: (a) The light blue limited visibility polygon for the target blue encircled
cell; (b) the boundary region of the limited visibility polygon consisting of green cells
that are first reachable from white cells in the outside region of the limited visibility
polygon.
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Figure 4.15: The histogram of the number of steps required (the hitting times)
from 5000 Markov chain simulations for reaching the green boundary region of the
limited visibility polygon starting from random white cells in the outside region
of the limited visibility polygon of Figure 4.14 following two distributed patrolling
policies of Figure 4.9 and fitting the maximum likelihood method of generalized
lambda distribution to the hitting times.

Table 4.6: Probability of capturing an adversary pd through the visibility of pa-
trollers at the blue encircled cell of Figure 4.14 following two distributed and ran-
domized patrolling policies of Figure 4.9 for different required time steps of a suc-
cessful attack.

ta = 20 ta = 30 ta = 40 ta = 50 ta = 100 ta = 500

pd 0.5139118 0.642008 0.726392 0.7844395 0.9109307 0.9926246
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region of the limited visibility polygon is shown in Figure 4.16(b). This boundary

region consists of green cells that are first reachable from the outside region of

the limited visibility polygon. We simulated three Markov chain based centralized

patrolling policies of Figure 4.13 starting from three random states (cells) in the

outside region of the limited visibility polygon in three allocated regions of patrollers.

Again, we recorded the number steps required (hitting time) for one of the Markov

chains that reached the boundary region of the limited visibility polygon from its

starting state. This simulation of Markov chains was also repeated for no = 5000

times, and we found the distribution of hitting times which is fitted again by the

generalized lambda distribution. The histogram of recorded number steps required

or the hitting times for 5000 Markov chain simulations and the result of fitting the

maximum likelihood method of generalized lambda distribution to the distribution of

the hitting time are illustrated in Figure 4.17. Based on the result of the generalized

lambda distribution, we calculated the probability of capturing an adversary pd

through the visibility of patrollers at the blue encircled cell of Figure 4.16 following

three centralized patrolling policies of Figure 4.13 for different required time steps

of a successful attack ta. The result of the probability of capturing an adversary pd

through the visibility of patrollers is shown in Table 4.7.

Table 4.7: Probability of capturing an adversary pd at the blue encircled cell of
Figure 4.16 following three centralized and randomized patrolling policies of Fig-
ure 4.13.

ta = 20 ta = 30 ta = 40 ta = 50 ta = 100 ta = 500

pd 0.1902747 0.2696536 0.3383983 0.3988624 0.6166325 0.9656368
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(a) (b)

Figure 4.16: (a) The light blue limited visibility polygon for the target blue encircled
cell and the cyan visibility region of a base station; (b) the boundary region of the
limited visibility polygon consisting of green cells that are first reachable from white
cells in the outside region of the limited visibility polygon.
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Figure 4.17: The histogram of the number of steps required (the hitting times)
from 5000 Markov chain simulations for reaching the green boundary region of the
limited visibility polygon starting from random white cells in the outside region of
the limited visibility polygon of Figure 4.16 following three centralized patrolling
policies of Figure 4.13 and fitting the maximum likelihood method of generalized
lambda distribution to the hitting times.

4.5.7 Hardware Implementation

To demonstrate the applicability of our method, we validated it through the phys-

ical implementation using two iRobot Create differential drive platforms as shown

in Figure 4.18(a)–(b). We added two Raspberry Pi 3 for the motion control of the

robots along with two separate rechargeable battery power sources and two unidi-

rectional camera modules to these robots for taking their visibility into account.
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The internal clock and a particular linear velocity of iRobot Create robots are used

for their forward movements. The robots rotate with an angle from their current

orientation by commanding a constant angular velocity and using the same clock to

rotate for some fixed period of time. We used an indoor environment as a 6×6 grid

environment including obstacles as illustrated in Figure 4.18(c) and the robots had

to repeatedly visit five different locations (A−E) in the environment. The visibility

length of robots l = 2 cells in the grid environment was considered. In the physical

experiment, a cross (×) marker was used to be detected by a patroller as a dummy

adversary. The wave routing algorithm [Lee61] was implemented for path planning

and avoiding obstacles. The software component of the robot is a Python program

which is running on the Raspberry Pi to execute the randomly generated path for

the robot, record the video of its patrolling, and detect the adversary (× sign). Two

robots patrol the whole grid environment independently in the distributed fashion

and do not communicate with each other. The snapshots at different time steps

of the physical implementation of distributed patrolling policies using two iRobot

create platforms are shown in Figure 4.19(a)–(d). The video of the experiment can

be found at https://youtu.be/wSw9oBat6fE.

(a) (b) (c)

Figure 4.18: Two iRobot Create platforms along with added camera sensors and
Raspberry Pis as microcontrollers and an artificial lab environment for patrolling
with five different locations (A−E) to visit repeatedly.
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(a) t = 0 steps (b) t= 8 steps (c) t = 19 steps (d) t= 26 steps

Figure 4.19: Snapshots at different time steps of a distributed implementation of
the patrolling task using two iRobot create platforms.

4.6 Summary

In this contribution, we introduced methods for finding distributed patrolling strate-

gies for multiple robots based on Markov chains which minimize the average com-

mute time towards (1) a specific vertex, (2) a subset of vertices, and (3) the average

commute time for all pairs of vertices in the graph. Methods (1) and (2) use convex

optimization and method (3) seek the shortest path in graphs. Even though we

have used simple Markov chain based strategies for patrollers, one surprising result

of our work seems to indicate that the performance does not degrade despite the

lack of communication and synchronization.

We also presented both visibility-based distributed and centralized patrolling

policies to monitor an adversarial environment with limited visibility and communi-

cation constraints. We found the limited visibility polygons for a subset of locations

that cover the whole environment or a region of the environment. In distributed

patrolling policies, every robot patrols the whole environment separately with a

randomized patrolling policy. In centralized patrolling policies, each robot patrols

a region of the whole environment and contacts a central base station also us-

ing a nondeterministic approach. We evaluated the vulnerability of our proposed

visibility-based patrolling policies determining the capturing probability of an adver-

sary at a given location of the environment. Our experimental results of stochastic
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distributed and centralized patrolling policies for autonomous robots show that they

have different probabilities on the edges of their patrolling paths, making the policies

difficult for an adversary to predict.

The offline computation time of estimating visibility-based patrolling policies for

large graphs entails a matter of minutes on a conventional computer. However, the

online execution time of these policies is efficient since it only requires choosing a

neighbor at each vertex in the graph following the Markov chains. The simulation of

the Markov chains in the evaluation of patrolling policies is also very fast. Further-

more, the advantage of our method is that it is unpredictable for an adversary due

to the randomization. Our patrolling policies can be implemented and executed on

physical robots in real-time as demonstrated in our preliminary experiment. Since

our method is randomized, the limitation of our method is that it can not give the

exact guarantee of the completion time of the whole patrolling route, but can only

provide the expected times. This also applies to the probability of detecting an

adversary.

We consider static obstacles in the environment. We have not explicitly con-

sidered environments with dynamic obstacles. However, one alternative can be the

re-estimation of patrolling policies based on changes in the environment. Also, a

malfunctioning robot can be detected with the help of the base station. If the robot

fails to make contact after a threshold time, the base station can determine that the

robot is not operating. The base station can be aware of a malfunctioning robot

as an obstacle if the robot becomes idle within the line of sight region of the base

station. We used line of sight communication because it is more secure in military

settings [JDH+06], harder to jam or intercept, and robust to noise [CD17]. Other

models of communication can be incorporated which will change the characteristics

of the base station, and the uncertainty will need to be added.
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CHAPTER 5

DEPLOYMENT AND PLANNING FOR UNDERACTUATED

AQUATIC ROBOTS

A data-driven deployment and planning approach is presented in this chapter

for the underactuated aquatic robots called drifters. Parts of this chapter appeared

in [ARBS18]1.

5.1 Motivation and Challenges

The dynamics and underlying phenomena of marine environments vary both spa-

tially and temporally. Thus, the sensing, modeling, sampling, and prediction of

marine environments are challenging tasks. To properly analyze and understand

the environmental processes, we must observe them over long periods. Aquatic

robots, such as Autonomous Surface Vehicles (ASVs), Autonomous Underwater Ve-

hicles (AUVs), and low-cost drifting nodes (drifters), are increasingly being used for

ocean exploration [WYSH00], oceanic sampling [PZL08], long-term ocean monitor-

ing [MLS16], large-scale coral reef assessment [LRM+16], and ocean model predic-

tion [SPC+10]. Since the environmental sampling or survey task entails persistent

deployments, the resources used in the actuation and sensing of aquatic robots must

decrease. Hence, an increase in the utility of inexpensive drifters has recently oc-

curred [LRM+16, SH14a, BFMI+15, XLR16, MBS15]. In some instances, the drifters

utilize a monocular camera to obtain geo-referenced, visual data of the benthos, e.g.,

images over a coral reef, while floating on the surface of the water carried by currents,

waves, and wind. Simple drifters that are equipped with an inertial measurement

unit (IMU), GPS sensor, WiFi communication module, and Raspberry PI comput-

1The author also acknowledges the collaboration of Gregory Murad Reis on the devel-
opment of the ideas and simulations presented in this chapter.
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Figure 5.1: Two examples of drifters observing the marine environments at partic-
ular depths [XLR16, pfl].

ing unit, are suitable for the deployment in a marine environment for long periods

of time, ranging from many days to many weeks. These drifters can collect data

on various environmental attributes, such as temperature, salinity, turbidity, and

chlorophyll content. Some drifters can also move vertically in the water column by

controlling their buoyancy, and achieve controllability through the concept of con-

trolled drift [SSS+11, SH14a]. These floating vehicles are referred to as Lagrangian

profilers [DRDW92, JZZ13] or profiling floats [SH14b, HDS14, RJR+09] in the liter-

ature. Two examples of floating vehicles or drifters to observe marine environments

are shown in Figure 5.1.

The challenges of using drifting nodes in marine environments are threefold: 1)

these drifters do not have any control over their horizontal actuation; thus their pla-

nar motion depends on the ocean currents, 2) the sensing, modeling, and prediction

of marine environments are hard because these environments are dynamic and their

phenomena vary temporally, and 3) it can be computationally expensive to analyze

the large volume of historical data from the long-term sensing of these environments.

In this paper, we address Challenge 2 by utilizing predictions from an ocean model

for ocean current data in a region of Southern California, illustrated in Figure 5.2.

The goal of this work is to find deployment locations and long-term trajectories of
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drifters from current velocity data near to the water surface implying where the

drifters will travel (addresses Challenge 1). Practically, long-term trajectories of

drifters will help us know the state of the environment based on the variations of

spatial and temporal data (addresses Challenge 3 and feedback helps improve the

models supporting Challenge 2).

Figure 5.2: The area of interest in the Southern California Bight (SCB) region
observed by the Regional Ocean Modeling Systems (ROMS) [SM05].

In our work, we investigate the problem of deploying multiple virtual drifters

and the path planning and navigation policy of the drifter. However, the design and

planning of a long-term drifter trajectory (i.e., a trajectory taking several days) are

challenging because of the limited actuation capabilities and the dynamic behavior

of the marine environment. We also examine a seafloor environment by deploying

minimal drifters. This examination involves the covering of the seafloor environment

through a maximum number of non-overlapping images or views from downward-

facing cameras of drifters for extended periods of time. The problem of finding

an optimal ordered sequence of views based on the maximal information gain for

the complete coverage of an environment is known as the Next-Best View (NBV)
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problem. This problem isNP-hard because it can be reduced to a traveling salesman

problem [Con85].

Considering the passive movement of drifters in a long-term deployment, we

take the motion uncertainty into account caused by the disruption of ocean currents

and winds. The ocean current data present the variations in spatial and temporal

dimensions which are important for obtaining the persistent behavior analysis of

the marine environment. To model spatiotemporal phenomena of the marine envi-

ronment and the motion uncertainty, we use a Markov Chain-based state analysis

of the drifters [Ste94]. More specifically, we apply the generalized cell mapping

(GCM) [Hsu13] for finding the long-term behavior of drifters from their projected

motion along with uncertainties in the form of a Markov Chain. Our second and

third contributions [ABS17, ARBR17] are adapted to solve the deployment and

planning problems in a marine environment.

5.2 Background

Many works have been proposed to study the behavior of aquatic robots and the

long-term planning of their trajectories. A path planning and trajectory design for

buoyancy-driven AUVs, called gliders, was proposed for analyzing dynamic features

using ocean model predictions in the Southern California coastal ocean [SCL+10].

The critical assumption of their work was the ability of the glider to navigate to

a given waypoint accurately. They did not consider the motion uncertainty of an

AUV. Nevertheless, authors were able to propagate the errors due to the uncertainty

of the motion of AUVs in [SKC+10]. The motion of different underwater vehicles

was modeled as Gaussian Processes in [OLCJ14, MLS17] for path planning, as well

as sensing and predicting the underlying phenomena in persistent ocean monitoring.
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The long-term trajectories of the underwater vehicles were also applied to persistent

monitoring [SSS+11, MLS16] of small or large marine environments. The planning

method that navigates robots to achieve and maximize information gain through

sampling the environment is called informative planning [BKS10, BKS13]. Here,

we would like to have a long-term informative planning for the drifter from the

persistent behavior of the marine environment.

An ensemble of heterogeneous aquatic robots was used to collect sensor data from

a shallow underwater environment, e.g., a coral reef during a fixed period [LRM+16].

Several drifters were deployed for surveying Caribbean shallow coral reefs, resulting

in visual mosaics of coral reefs [XLR16]. The drifters were also used to study the

water dynamics via a Lagrangian approach by collecting the drifter positions as

they move along the water surface over time [TCA+09, BFMI+15]. In [MKMD16],

the authors used an ASV for data collection to do bathymetric mapping and visual

mapping of open-water environments. The authors construct the bathymetric map

from sonar sensor data using a Gaussian Process model and present a value-iteration

based selective coverage algorithm which covers the entire region of interest in a pri-

oritized fashion. They assume an underlying distribution of the phenomenon that

needs to be modeled and builds an off-line trajectory to cover the high probability

regions of a shallow region first and reduce the travel time and energy consumption

at the same time. A coverage method for multiple AUVs with sea current distur-

bances was developed in [JLL+09]. A hybrid terrain coverage framework (HTCF)

is presented for terrain exploration using the AUV in [LL14] that considers vari-

ous surface conditions in three-dimensional environments and generates an efficient

exploration path. However, a very restrictive assumption is that disturbances and

external forces are not applied or considered. A vision for persistent and/or long-

range seafloor exploration and monitoring utilizing ASVs and AUVs to conduct
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autonomous surveys was outlined in [GJK+12]. Nevertheless, the implementation

of this vision will entail careful coordination and a lot of resources whereas the

deployment of drifters will be easy, distributed, and economical.

Autonomous Lagrangian profilers such as the ALACE [DRDW92] and profiling

floats such as the Argo floats [RJR+09] or the PROVOR [LCMM98] have been

utilized in oceanic observation and monitoring for decades. We consider profiling

drifters or floats in our work. These profiling floats take measurements at different

depths along vertical profiles by controlling their depth with an external bladder

connected to a hydraulic pump [JZZ13]; buoyancy control. Argo floats are the

most popular floating vehicles to gather data of deep ocean currents on a large

scale. These data are used to study (and eventually predict) the variability in both

the atmosphere and ocean. Currently, there are approximately 3800 Argo floats

(as of April 3, 2018) in operation for continuous monitoring of the temperature,

salinity, and velocity of the upper ocean [Bel12]. We make use of an ocean modeling

and forecasting system to efficiently examine the long-term deployment of floating

vehicles and increase their controllability.

The use of predictive models in path planning in the ocean is not a new con-

cept, as ocean current models have been widely utilized, e.g., [CMN+92, KSBB07,

GAO05, WD08, PPP+07, ACO04]. This approach has previously been considered

to solve path planning optimization problems. Of particular interest to the ocean

robotics community is utilizing ocean currents to minimize energy consumption,

thus extending a vehicle’s deployment time. Additionally, complex current struc-

tures experienced in a coastal region can vary significantly with time and location,

making subsurface navigation difficult. The authors of this stream of research ad-

dress the problem of path planning for AUVs in a complex, time-dependent, variable

ocean. However, they assumed current velocities are generally coarse resolution av-
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erages, as they are estimated from a compiled database, the average conditions as

seen over long time periods or are provided only in two spatial dimensions. In our

study, we propose not only to use high-resolution ocean models that output 4-D

current velocities for path planning, but also to predict the structure and motion of

the coherent structure from prior information.

5.3 Preliminary Description

In this section, we first describe the representation of the environment, and present

the motion model for the specific type of aquatic robots considered. Then, we

formally state the problems that are addressed.

5.3.1 Environment and Motion Model

We consider a 3-D environment where a workspace is a marine environment denoted

as W ⊂ R
3. The workspace is divided into a set of 2-D current layers, representing

different depths (third dimension) of the environment. Let L be the total number

of current layers in the environment. Hence, the workspace can be defined as W =

W1 ∪ W2 ∪ · · · ∪ WL. At each current layer, we model the workspace Wl ⊂ R
2,

where l ∈ {1, . . . , L}, as a closed polygonal environment. Let Ol ⊂ R
2 be the land

and littoral region of the environment at each layer which is modeled as a polygon,

and is considered an inaccessible region for obvious reasons. The free-water space of

the marine environment at each current layer is composed of all navigable locations

for drifters, and it is defined as El = Wl \ Ol. The free water space in the whole

workspace is denoted by E = E1 ∪ E2 ∪ · · · ∪ EL.

We discretize each workspace layer Wl as a 2-D grid. This grid is also called

a cell workspace as this discretized grid is a collection of cells. Each grid point
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has a geographic coordinate in the form of longitude, latitude, and depth (xt, yt, lt),

where xt, yt ∈ R and lt ∈ {1, . . . , L}. The geographic coordinate of each grid

point represents the center of an equal-sized cell z. Hence, each cell in the grid is

represented as z = (xt, yt, lt), where xt, yt, lt denote longitude, latitude, and depth

of the center of a cell z. Let Nl be the total number of cells in the free water space

at each current layer El.

Initially, we consider a set of drifters to be deployed to explore E1, the water

surface for our given region. We model each drifter as a point-mass and neglect the

orientation. The state space of each drifter, for a given current layer, represents

all the navigable locations or cells in the layer, and is defined as X1 = E1. The

state space X1 for the drifter is discretized into a set of cells which are indexed by

z ∈ {1, . . . , N1}. Let Z1 = {1, . . . , N1} denote the set of all cells in the state space

of the free water surface. In each cell z, except the boundary ones, we consider the

simplified scenario that a drifter has a total of nine actions, based on the currents,

wind, and waves at the surface. For a non-boundary cell z, the set of actions for the

drifter are moving N, NE, E, SE, S, SW, W, NW and the idle operation (staying

in the same cell). We assume that the drifter moves from one cell z to another cell

z′ in E1 following one of the nine actions, considered as the steady motion of the

drifter. We include noise and uncertainty in the movement along with the steady

motion to account for the unknown disturbances, modeling error, and unmodeled

dynamics. When the drifter collides with a boundary cell z, then it will either stay

in the same cell or move to one of the neighboring cells. All the potential options

are assumed to have uniform probability.
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5.3.2 Problem Formulation

In our first problem, we consider the monitoring or patrolling problem for a given

region on the surface of the water. Specifically, How many drifters and where should

they be deployed, such that we achieve total coverage (in 2-D)2 of a given region at

the surface of the water. We assume that the set of drifters will be deployed for a

prolonged period (days to weeks) to solve a persistent monitoring task. Hence, the

trajectories of the drifters, starting from known initial locations (cells), will help us

understand their explored locations (cells) on the water surface. For this purpose,

we study the long-term behavior of the deployed drifters. Let C be a set of initial

cells for the deployment of drifters. In this scenario, we formulate the problem of

finding the deployment locations of drifters so that their trajectories visit all cells

Z1 contained in E1 over the period of the deployment. Hence, we formulate the

following problem statement.

Problem 1. Determine the deployment strategy for a set of drifters:

Given the water surface of a marine environment E1 and the motion model of

drifters, find a lower bound of the required number of drifters and the set of ini-

tial deployment locations (cells) C of them for exploring/visiting all the locations of

interest on the water surface.

In some cases, we may not need to visit all the locations (cells) in a region of

interest based on the footprint of the sensor. An example of this is shallow coral

reef monitoring [XLR16, LRM+16] with cameras. We can visually cover a seafloor

environment with a camera by visiting a subset of the region on the water surface.

2Although we consider the drifter as a point mass, the sensing radius of the drifter
is non-trivial, hence total coverage is achievable. We assume that visiting a cell achieves
coverage of that cell.
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Figure 5.3: An approximated 2-D visibility polygon (blue filled region) from the
water surface.

This is a result of the large footprint of the captured image from each visited lo-

cation, see Figure 5.3. For covering a seafloor environment through the visibility

of deployed drifters over an extended duration, we consider a shallow seafloor envi-

ronment observed from a certain height h from the water surface E1. The seafloor

environment is denoted as EL, which is the lowest layer of the environment and

parallel to the water surface. Each drifter has a downward-facing, unidirectional

camera to collect visual data of the seafloor environment EL. Multiple drifters will

collect visual data floating on the water surface to cover the seafloor environment.

From a location on the water surface, a visibility region for the drifter creates a

2.5D visibility [KKLS10] of the seafloor environment. We approximate the 2.5-D

visibility of the downward-looking camera of the drifter as a 2-D visibility polygon

with a specific visibility range. Let the visibility range for the camera of the drifter

be d ∈ R
+. Therefore, the visibility polygon for a cell z ∈ Z1, V (xz), with a visibility
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range d centered at the point xz′ corresponding to the projected cell z′ at the lowest

layer of the environment EL, is defined as [EGA81]:

V (xz) = {xr|xr ∈ EL, |xz′xr| ≤ d}, (5.1)

where xz′xr is the line between two points xr and xz′ and |xz′xr| is the distance

between these two points. An example of approximated 2-D visibility polygon from

a 2.5-D visibility region is illustrated in Figure 5.3.

In this context, we formulate our second problem of deploying drifters for the

visibility-based coverage of a seafloor environment as below.

Problem 2. Construct a deployment policy for complete visibility-based

coverage of a given region using drifters:

Given a seafloor environment EL, a visibility range of the drifter camera d, and the

motion model of drifters, construct a deployment policy for a set of drifters that

covers the seafloor environment together through their visibility from a minimum

number of initial deployment locations (cells) C.

For the next set of problems, we propose to examine the full 3-D of a marine

environment W. This extends the previous problems to incorporating multiple

current layers (l > 1). The free water space of this 3-D environment is E . In this

case, the state space of the drifter is X = X1 ∪ X2 ∪ · · · ∪ XL. The set of cells

in all current layers is Z = Z1 ∪ Z2 ∪ · · · ∪ ZL. The total number of cells in all

current layers of the environment is defined as N =
∑L

l=1Nl. Let xI ∈ X1 be an

initial state of the drifter at the top layer (l = 1) of the environment or on the

water surface. This xI represents the initial deployment location of the drifter. In

this work, we consider buoyancy-driven, profiling floats [SH14b, HDS14] that can

control their vertical motion to achieve different depths in a marine environment,
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and drift passively using different currents at different depths in the ocean. Hence,

the action set of a profiling drifter is U = {−1, 1, 0}. This set of actions produces

three different motions: “up” (move to the layer above), “down” (move to the layer

below), and “drift” (stay at the same layer). A 3-D workspace and the actions of

a profiling drifter in three different current layers of the environment are illustrated

in Figure 5.4.

(a) (b)

Figure 5.4: 3-D workspace and action space: (a) A multiple current layered marine
environment and (b) Actions of a profiling drifter in three current layers of the
marine environment.

In collecting data from a marine environment, it is crucial to find the locations

where the profiling drifter can reach in the long run from its initial deployment

location on the water surface; the reachability set. This information will assist in

deploying the drifter in different initial locations to obtain as much as data possible

of the environment. Let the set of all reachable cell locations at different current

layers from the initial deployment location xI over a long time period be R ⊂ Z.

In this scenario, we formulate our reachability problem as follows.
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Problem 3. Calculate the reachability of a long-term profiling drifter

trajectory:

Given a marine environment E , the motion model of a profiling drifter, and an initial

deployment location of a drifter xI on the water surface, characterize the long-term

behavior of the environment and calculate the set of possible reachable locations R

starting from xI .

Let xG ∈ X be a goal state or location of the drifter at any current layer of

the environment. We define a navigation policy as π : X → U that produces an

action u = π(x) ∈ U(x), for any location x ∈ X , to reach the goal location. This

policy considers the vertical movements of the profiling drifter along with its drift

motion, which will be defined by the flow of water. Therefore, we formulate our

final problem considered here as the following.

Problem 4. Develop an optimal navigation policy for a profiling drifter:

Given a marine environment E , the motion model of a profiling drifter, and a goal

location of a drifter xG, find the optimal policy π that drives the drifter from any

location of the environment to the goal location xG.

5.4 Algorithm Description

In this section, we detail our approach for solving the four problems presented in

Section 5.3.

5.4.1 Data Collection

In this work, we use the predicted oceanic current data from the Regional Ocean

Modeling System (ROMS) [SM05] for the area of interest illustrated in Figure 5.2.
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The geographic bounds of this region are given by 33◦17′60′′ N to 33◦42′ N and

−117◦42′ E to −118◦15′36′′ E, and the region is referred to as the Southern Califor-

nia Bight (SCB) region, California, USA. Model predictions used here are from July

2011. ROMS is a free-surface, split-explicit, terrain-following, nested-grid mode,

and an extensively used ocean modeling applications. ROMS is also an open-source

ocean model that is widely accepted and supported throughout the oceanographic

and modeling communities. Furthermore, the model was developed to study ocean

processes along the western U.S. coast which is our area of interest. ROMS pri-

marily assimilates surface velocities from HF radar data, and it is assumed that the

forecasting for near-surface velocities is reasonable.

The four dimensions of the 4-D ROMS current velocity prediction data consist

of three spatial dimensions, e.g., longitude, latitude, and depth, associated with

time. Each ROMS current velocity prediction is given at depths from 0 m to 4000

m, with a 12-hour hindcast, a 12-hour nowcast, and a 48-hour forecast each day.

In this work, we utilize a concatenation of the earliest 24 hours of each prediction

for each day to create a simulated ocean over an entire month. The three velocity

components of oceanic currents are the northing current (u), the easting current (v),

and the vertical current (w). These velocity components are given based on the four

dimensions (time, depth, longitude, and latitude). For the first two problems, we

use the current velocity prediction data of the water surface at a depth or current

layer of 0 m for a particular time. For the last two problems, we are using the

current velocity prediction data of the water at depths or current layers between 0

m and 10 m. For all problems, we make the simplifying assumption that the vertical

current velocity (w) is zero; no vertical currents are affecting the drifters.
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5.4.2 Generation of a Vector Field and Flow Lines

Given the oceanic current prediction data of a given 2-D current layer of the en-

vironment, we generate a vector field from these data and obtain flow lines from

them in this step. Ocean current velocity prediction data for a specific time and at

a particular current layer can be characterized as a vector field. This vector field

has the data variation in different geographic locations. Let the vector field on a cell

z, or a geographic location on the environment at the processing layer El, be Fl(z).

For a cell z, the easting velocity component or the velocity along the latitude axis is

denoted by u(z), the northing velocity component or the velocity along the longitude

axis is denoted by v(z), and the vertical velocity component at the corresponding

layer is denoted by w(z). The vertical velocity component of the ocean current w(z)

is considered to be zero. Consequently, the vector field at the processing layer based

on three velocity components for a cell z is specified as

Fl(z) = [u(z), v(z), w(z)]. (5.2)

The vector field in Equation (5.2) can be interpreted as a set of ordinary differential

equations. The solution to this system is the flow of water within the region. Flow

lines of the water over the vector field Fl are the trajectories or paths traveled by a

small particle, whose velocity field is given by the vector field for each location and

time. This provides the following definition.

Definition 5.4.1 (Flow Line): The vector-valued function c is a flow line of the

vector field Fl if and only if, for all time t, we have that c′(t) is parallel to Fl(c(t)).

This is also referred to in the literature as a streamline.

The vectors in the vector field are tangent to the flow lines. A flow line or a

streamline for the given vector field from a particular location or a cell z, for all
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time t, is illustrated in Figure 5.5(a). The numerical integration of a flow line over

time produces the endpoint of the trajectory or path that a drifting particle would

follow subjected to that vector field.
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(a) (b)

Figure 5.5: A flow line from a location: (a) The flow line of the given 2-D vector
field for all time t; (b) The same flow line of the given 2-D vector field for a small
time step ∆t.

Let ∆t be a small time step that is sufficient to cross a cell. For our study, we

require all flow lines from cells in Zl at the processing layer for a small time step so

that we can map one cell to another cell based on these flow lines. The flow line

for the given vector field from the same location or cell z as considered before for

a small time ∆t is illustrated in Figure 5.5(b). To calculate the next mapped cell

z(∆t) after a small time interval ∆t from each initial cell at time zero z(0), we use

the Euler integration method following Equation (5.3)

z(∆t) = z(0) + ∆t Fl(z(0)). (5.3)

Equation (5.3) provides the endpoint of the flow line from the initial cell z after

the small time ∆t. After that, we use the Euclidean distance for locating the nearest

cell from this endpoint. This nearest cell z′ becomes the next mapped cell of the
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initial cell z. Following this iterative process, we obtain all flow lines for the small

time step ∆t and calculate the next mapped cell for each cell at the processing layer

of the environment El.

5.4.3 Finding the Long-term Behavior of the Water Flow

Given the cell mapping from the vector field and flow lines for a given 2-D current

layer in the previous step, we use the GCM method [Hsu13, HX99] for finding the

long-term behavior of the flow of water at that layer. Let ρ be the probability of

the steady or perfect motion of the water flow. Once we add the uncertainty in the

water flow, we get a set of mapped cells for each cell z at the processing layer. Let

A(z) ⊂ Zl represent the set of mapped cells of a cell z and pzz′ denote the mapping

probability of cell z being mapped into one of the mapped cells z′. The mapping

probability pzz′ has the following properties:

pzz′ ≥ 0,
∑

z′∈A(z)

pzz′ = 1. (5.4)

For a non-boundary cell i, the mapping probability for the perfect motion pij =

ρ from cell i to cell j, and the mapping probability for imperfect motion pij =

(1−ρ)
(|A(i)|−1)

from cell i to cell j. The calculated next mapped cell from the previous

step identifies the mapped cell for the perfect motion. For a boundary cell i, we

select all neighboring cells including the same boundary cell as a set of potential

mapped cells with a uniform probability. Due to the nature of this cell mapping,

the system evolution of GCM is expressed as

p(n+ 1) = Pp(n) or p(n) = P np(0), (5.5)
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where P is the one-step transition probability matrix, P n is the n-step transition

probability matrix, p(0) is the initial probability distribution vector, and p(n) is

the n-step probability distribution vector. Let pij be the (i, j)-th element of P ; the

one-step transition probability from cell i to cell j. Let pnij be the (i, j)-th element

of P n; the n-step transition probability from cell i to cell j. If it is possible, through

the mapping, to go from cell i to cell j, then we call cell i leads to cell j, symbolically

i⇒ j. Analytically, cell i leads to cell j if and only if there exists a positive integer

m such that pmij > 0. If cell i leads to cell j and cell j leads to cell i, then it is said

that cell i communicates with cell j or cell j communicates with cell i. This will be

denoted by i⇔ j.

This system evolution of GCM leads to a homogeneous finite Markov chain which

determines the long-term behavior of the system. To understand the properties of

GCM based on the theory of Markov chain [HX99], some pertinent definitions are

discussed in Section 3.3.3.

Let g be the total number of persistent groups in the system at a layer. Let Bi

be an i-th persistent group or a set of persistent cells in i-th group where Bi ⊂ Zl

and i ∈ {1, . . . , g}. Thus, the set of all persistent groups or attractors is denoted as

B = {B1, . . . , Bg}. If a transient cell j leads to the i-th persistent group Bi, then

we call Bi a domicile of cell j. A transient cell can have several domiciles. The

definition of domiciles for the GCM method is provided below.

Definition 5.4.2 (Single-Domicile and Multiple-Domicile): Those transient cells

that have only one domicile are called single-domicile transient cells, and those that

have more than one are called multiple-domicile transient cells.

All the single-domicile, transient cells having one particular persistent group as

their common domicile form the domain of attraction of that persistent group. A
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multiple-domicile transient cell having two or more persistent groups as its domicile

is a cell in the boundary region between the domains of attraction of these persistent

groups. Transient cells are further divided into transient groups according to the

number of domiciles they have. Let B(j) where j = {1, 2, . . . , g} be the set of all

single-domicile transient cells having j-th persistent group as its domicile. We call

this j-th single-domicile transient group. It populates the domain of attraction of

j-th persistent group. Let B(i, j) where i, j = {1, 2, . . . , g}, and i < j, be the set of

all multiple-domicile transient cells having i-th and j-th persistent groups as their

domiciles. We call this (i, j)-th two-domicile transient group. The region populated

by this group is called the boundary regions of i-th and j-th domains of attractions.

Hence, we define the set of transient groups at a layer as T .

Algorithm 5.1: PersistentBehavior(El, Fl)

Input: El, Fl – A 2-D layer of the environment, Corresponding vector field
Output: B, T , C, a – Set of persistent groups, Set of transient groups,

Connectivity matrix, Expected absorption times of transient cells
1 G.V ← ∅, G.E ← ∅, S ← ∅, C ← ∅, B ← ∅, L ← ∅, M← ∅
2 for i← 1 to Nl do
3 z ← i
4 x, y ← CellLocation(z)
5 x′, y′ ←MappedCell(x, y, Fl)
6 Z ′ ←MappedCellSet(x′, y′) // Add uncertainty

7 G.V ← G.V ∪ Z ′ ∪ {z}
8 G.E ← G.E ∪ {(z, z′) | z′ ∈ Z ′}

9 S ← StronglyConnectedComponent(G)
10 C ← TransitiveClosure(G)
11 B ← FindPersistentGroups(S, C)
12 L ← FindUnion(B)
13 M← Zl \ L
14 T ← FindTransientGroups(B,M, C)
15 a← CalculateAbsorptionTime(M)
16 return B, T , C, a
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First, we find the set of all persistent groups B and the set of all transient groups

T from all the cells Zl at the processing layer of the environment El. Let Np be the

total number of persistent cells at a layer and Nt be the total number of transient

cells at a layer. Hence, the total number of cells at the processing layer Nl can be

defined as Nl = Np+Nt. Let L be the set of all persistent cells at a layer andM be

the set of all transient cells at a layer. Therefore, the set of all cells at the processing

layer of the environment can be specified as

Zl = L ∪M. (5.6)

In our approach, we correlate between the system evolution of GCM and directed

graph theory. From this association, we find the properties of GCM. To achieve

this, Algorithm 5.1 takes as input the geometric description of a 2-D layer of the

environment El, and the corresponding vector field Fl. In Algorithm 5.1, we create a

directed graph G without adding weights to the edges of G from the set of cells at the

processing layer Zl. Additionally, for each cell z ∈ Zl, it finds the geographic location

(x, y) (line 4). From this geographic location (x, y), it gets the location (x′, y′) of

the next mapped cell as explained before (line 5). Taking the motion uncertainty

into consideration, it computes the set of mapped cells Z ′ where Z ′ ⊂ Zl (line 6).

All cells z, Z ′ are added to the set of vertices and their ordered pairs (z, z′), where

z′ ∈ Z ′, are added the edges set of G (lines 7–8).

Next, we find the set of strongly connected components S from G using Tarjan’s

strongly connected component algorithm [Tar72] (line 9). We define the connectivity

matrix as C and it is calculated from the transitive closure of G (line 10). From

S and C, Algorithm 5.1 finds the set of g persistent groups B using the function

FindPersistentGroups (line 11). In this function, if each vertex in a strongly

connected component communicates to all other vertices in the strongly connected
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component then this strongly connected component is found as a persistent group

and each cell of this persistent group is classified as a persistent cell. Otherwise, each

cell of this strongly connected component is classified as a transient cell. Taking

the union of g persistent group sets, we get the set of all persistent cells L (line 12).

Aside from all the persistent cells, the remaining cells from Zl represent the set of

transient cellsM (line 13). Thus, it classifies all the cells Zl in the processing layer

of the environment El into the set of persistent cells L and the set of transient cells

M. To determine the set of single-domicile and multiple-domicile transient groups

T at the processing layer using the function FindTransientGroups (line 14), we

check if there is any path or connectivity from each transient cell to cells in all g

persistent groups according to the connectivity matrix C of graph G.

To study the evolution of the system from transient cells, we create one sub-

stochastic matrix Q, having order Nt ×Nt. This is a sub-stochastic matrix because

the sum of every row is not equal to one. Based on the following theorem, we

evaluate one property of transient cells that is the expected absorption time using

Q.

Theorem 5.4.3 (Isaacson and Madsen [IM76]): Let Y = (It − Q)−1, where It

is a unit matrix of order Nt. Then, the sum of the elements of the j-th row of Y

gives the expected absorption time aj of the j-th transient cell to be absorbed in the

persistent groups, i.e.,

aj =
Nt
∑

m=1

Yjm, (5.7)

where Yjm denotes the (j,m)-th element of Y .

Physically, aj provides the statistical time, it takes for the system to settle into

its long-term stable motions if it starts from cell j. The expected absorption times of

all transient cells a are calculated using the function CalculateAbsorptiontime
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(line 15). Finally, Algorithm 5.1 returns the set of persistent groups or attractors

B, the set of transient groups T , the connectivity matrix C, and the expected

absorption times of transient cells a for the given layer. The set of persistent groups

and the set of transient groups for the given layer represent the long-term behavior

of the water flow at that layer.

5.4.4 Determining Deployment Locations of Drifters

For solving our first problem, we determine the initial deployment locations of

drifters on the water surface E1 and the minimum number of required drifters for

total coverage from the long-term behavior of the water flow. Prior to this, we found

the long-term behavior of the water flow on the surface E1 at the top layer (l = 0)

based on its vector field F1 using Algorithm 5.1. Then, Algorithm 5.2 determines

a random cell (location) as an initial deployment cell on the water surface in each

group of the set of persistent groups B (line 3). It is determined in this way because

each cell in a persistent group is connected to every other cell in that group. Algo-

rithm 5.2 also selects a set of minimum number of transient cells H on the water

surface for each transient group using the function MinCellsinTransientGroup

(line 5). For each transient group, this function chooses H according to the descend-

ing order of the expected absorption times of transient cells in this group and the

highest number of connected transient cells in the same transient group based on the

connectivity matrix C. The cells in H are determined as the deployment cells (loca-

tions) for the associated transient group (line 6). In the end, Algorithm 5.2 returns

the set of initial cells for the long-term deployment of drifters C, and the cardinality

of this set |C| defining the minimum number of drifters required for exploring the

region represented by E1.
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Algorithm 5.2: DeploymentLocations(B, T , C, a)

Input: B, T , C, a – Set of persistent groups, Set of transient groups,
Connectivity matrix, Expected absorption times of transient cells

Output: C – Set of cells on the water surface for deployment
1 C ← ∅
2 for i← 1 to |B| do
3 C ← C ∪ {RandomCell(Bi)}

4 for j ← 1 to |T | do
5 H ←MinCellsinTransientGroup(Tj , C, a)
6 C ← C ∪ {H}

7 return C

5.4.5 Locating the Visibility-Based Deployment Locations

for Drifters

For solving the second problem of interest, we first construct the complete 2-D

visibility of a shallow seafloor environment through the visibility of the camera sensor

of drifters. Then, we find the minimum deployment locations of the drifter on the

water surface for the long-term visibility-based coverage of the seafloor environment.

The visible circular region with a radius d of the seafloor environment is considered

as the approximated 2-D visibility polygon for a cell z of all cells Zl at the processing

layer as illustrated in Figure 5.3. In our second problem, the processing layer is the

top layer or the water surface (E1) and its set of cells is Z1.

To develop the long-term deployment policy for the 2-D visibility-based coverage

of the seafloor environment EL, Algorithm 5.3 takes as input a 2-D layer of the

environment El, the visibility range d, and the set of persistent groups B from the

long-term behavior of the system. It provides the minimum size subset of cells at

the processing layer for the visibility-based coverage and the set of initial cells for

the long-term deployment C as output. First, we initialize a set of visible cells Y

that will contain the set of cells observed by all 2-D visibility polygons (line 1).
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Therefore, we find the subset of cells that are completely visible by each 2-D

visibility polygon V (xz) using the function VisibleCells and add this subset of

cells to Y (lines 2–3). So, the set of visible cells Y is a collection of subsets of Zl,

such that every element of Zl belongs to at least one subset of Y , as follows:

Zl =
⋃

S∈Y

S. (5.8)

For the drifter, it is an optimal solution to find the minimum size subset of cells

D ⊆ Y , whose elements designated by visibility polygons (they can be overlapping)

cover all the elements of Zl at the processing layer as follows:

Zl =
⋃

S∈D

S. (5.9)

However, the problem of finding the minimum size subset of cells D is an instance

of the set-covering problem which is NP-hard [CLRS01]. Also, our problem is

similar to the set-covering problem, and it does not have an optimal solution using

a polynomial-time algorithm.

Algorithm 5.3: Visibility-BasedDeployment(El , d,B)

Input: El, d,B – A 2-D layer of the environment, Visibility range, Set of
persistent groups

Output: D, C – Minimum size subset of cells for the visibility-based
coverage, Set of cells for deployment

1 Y ← ∅
2 for i← 1 to Nl do
3 Y ← Y ∪ {VisibleCells(V (xz))}

4 D ← ∅
5 U ← Zl

6 while U 6= ∅ do
7 select an S ∈ Y that maximizes |S ∩ U|
8 U ← U − S
9 D ← D ∪ {S}

10 C ← FindDeploymentCells(D,B)
11 return D, C
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Thus, we apply a greedy approximation set cover algorithm, and the best fea-

sible solution we get is an O(logn) approximation solution [Chv79]. Let D be the

minimum size subset of cells at the processing layer for visibility polygons that cover

the seafloor environment completely by the drifter which is empty initially (line 4).

At first, all the cells in Zl at the processing layer are uncovered and the set of un-

covered cells U is Zl (line 5). For finding the minimum size subset of cells at the

processing layer, it selects a subset S ∈ Y that covers the maximum number of cells

not yet covered (line 7). Let U maintain the set of remaining uncovered cells. At

each iteration, we remove the covered cells by selected subset S from U and add

the subset to D (lines 8–9). We continue this process until the set of uncovered

cells becomes empty through the visibility. Thus, the minimum size subset of cells

D is computed and these cells cover the seafloor environment completely through

the visibility from the cells at the processing layer. We further reduce the number

of locations or cells for the long-term deployment utilizing the function FindDe-

ploymentCells. This function selects only the first cell of each persistent group

and removes the others if D has more than one cells of this persistent group because

the long-term trajectory of the deployed drifter will reach to other cells in the same

persistent group. Thus, the set of initial cells C is calculated, and the cardinality

of this set |C| defines the minimum number of locations. Eventually, Algorithm 5.3

returns D and C for visibility-based coverage of a seafloor environment through the

long-term deployment of drifters on the water surface.
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5.4.6 Calculating the Reachability of a Long-term Drifter

Trajectory

To tackle our third problem, we consider a 3-D, multiple current layered marine

environment E . Let a set of vector fields at all current layers be F . Algorithm 5.4

computes a set of all possible reachable locations R of a profiling drifter within

different current layers of the environment. Algorithm 5.4 takes as input a 3-D

environment E , a set of vector fields F , and an initial state or deployment location of

the drifter on the water surface xI . A computed component is the long-term behavior

of the water flow for each current layer of the environment from Algorithm 5.1 (line

3). In this case, the vertical movements of the profiling drifter are considered only

at the initial deployment location xI . The corresponding initial state xI at the

lower layer is the projected location at that layer from xI on the water surface.

Then, we calculate all possible reachable locations (cells) at the processing layer

using the function FindReachableCells from the connectivity matrix C and the

corresponding initial state xI and add these cells to R (line 4). Following a similar

process, we calculate the set of all possible reachable locationsR at all current layers

from Algorithm 5.4.

Algorithm 5.4: PersistentReachability(E ,F , xI )

Input: E ,F , xI – A 3-D environment, Set of vector fields, Initial deployment
location

Output: R – Set of all possible reachable locations
1 R ← ∅
2 for l ← 1 to L do
3 B, T , C, a← PersistentBehavior(El, Fl)
4 R ← R∪ {FindReachableCells(C, xI)}

5 return R
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Algorithm Analysis

The running time of the Algorithm 5.4 is O(N ), where N is the total number of

cells in all current layers of a 3-D marine environment, since it iterates over all the

cells Z at different layers of the environment, processing each cell exactly once.

5.4.7 Developing an Optimal Navigation Policy for a Drifter

To address our fourth problem, we consider a 3-D marine environment E . A set

of vector fields at all current layers F is generated from E . The “drift” action

(represented as 0) at each location is determined from these vector fields and the

“up” (−1) and “down” (1) actions in different current layers are also included with

the action set of a profiling drifter U = {−1, 1, 0} for a location in the environment.

We also consider a framework of a stochastic environment with fully-observable

states which is known as a Markov Decision Process (MDP) [TBF05]. In an MDP,

the policy π : X → U maps from each state x ∈ X to a possible action u ∈ U when

the state is observable. The goal of the MDP framework is to identify the policy π

that maximizes the potential reward. Hence, a reward function of the state and the

action is denoted as r. For instance, the reward function for reaching the goal state

xG can be initialized as follows:

r(x, u) =















100, if u leads to xG,

−1, otherwise.

(5.10)

Every policy has an associated value function, which measures the expected

value of the policy. Let the value function be V̂ . Algorithm 5.5 initializes the value

function V̂ with rmin, which represents the minimum possible immediate reward

(lines 1–2). Then, it implements the recursive calculation of V̂ using the value

iteration method (lines 4–7). Once the value iteration converges after a number of
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Algorithm 5.5: PolicyfromValueIteration (E , r, γ, xG)

Input: E , r, γ, xG – A 3-D environment, Reward function, Discount factor,
Goal location

Output: V̂ , π – Value function, Optimal navigation policy
1 for i← 1 to N do

2 V̂0(xi)← rmin

3 k ← 0

4 while V̂k 6= V̂k−1 do
5 k ← k + 1
6 for i← 1 to N do

7 V̂k(xi)← γ max
u

[

r(xi, u) +
N
∑

j=1

V̂k−1(xj)p(xj|xi, u)
]

8 for i← 1 to N do

9 π(xi)← argmax
u

[

r(xi, u) +
N
∑

j=1

V̂k(xj)p(xj |xi, u)
]

10 return V̂ , π

iterations k, the resulting value function V̂k that maximizes the expected value of the

function, induces the optimal navigation policy. The factor γ is the discount factor.

The value iteration usually converges if γ < 1, and in some special cases, even for

γ = 1. The final value function V̂k after the convergence of the value iteration is the

optimal value function. Thus, Algorithm 5.5 calculates the optimal navigation policy

π from the optimal value function maximizing the expected reward for reaching the

goal location (lines 8–9). This navigation policy π produces an optimal action from

any location of the environment E to the given goal location xG.
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5.5 Results

5.5.1 Software Simulation

We validated our proposed approach using the ROMS [SM05] ocean current predic-

tions for the SCB region. The two-dimensional ocean surface was considered as the

simulation environment for drifter movements, and we discretized the ocean surface

into a 2-D grid. The resolution of the grid was 21 × 29, which corresponds to ap-

proximately 1 km grid cells. A vector field from the ocean current predictions on

the water surface was calculated and is shown in Figure 5.6(a). The flow lines of the

current data were generated through the Euler numerical integration method from

all locations of the water surface for a small time ∆t which is the time to pass a cell.

These flow lines are shown in Figure 5.6(b). We implemented the Algorithm 5.1

to study the long-term behavior of the water flow in the simulated environment.

We found two persistent groups and three transient groups, where two of them are

single-domicile transient groups and one is a multiple-domicile transient group. The

result of the long-term behavior of the water flow is illustrated in Figure 5.7(a). The

initial locations or cells for the long-term deployment of drifters from the result of

the simulation of Algorithm 5.2 are shown with black circles in Figure 5.7(b). The

minimum number of drifters required for exploring the environment |C| is 27. Each

of the two persistent groups has only one deployment cell and needs one drifter to

explore the specified region. Three transient groups have remaining 25 deployment

cells and require 25 drifters to explore their designated regions. In all following

figures, the gray region indicates the inaccessible land region.

We also calculated the expected absorption times for transient cells in the single-

domicile and multiple-domicile transient groups. The result is shown in Figure 5.8,

where the mean expected absorption times for transient cells in the multiple-domicile
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(a) (b)

Figure 5.6: A Vector field and flow lines: (a) A 2-D Vector field for the water current
of ocean-surface; (b) Flow lines of one step-size from all locations of ocean-surface.

transient group B(1, 2) are higher as compared with those of the transient cells in

the single-domicile transient groups. Also, the transient cells of the single-domicile

transient group of the first persistent group B(1) take less time on average to get

absorbed into their persistent group compared with the transient cells of the single-

domicile transient group of the second persistent group B(2).

We tested Algorithm 5.3 in simulation on the same environment and the visibility

range d = 6 cell units. This simulation gave the minimum size subset of cells D

of 16 cells on the water surface that covered the seafloor environment completely

through the visibility. This subset D is illustrated in Figure 5.9(a). This D was

further reduced to find the initial deployment locations or cells because the long-

term deployment requires fewer drifters. This D has 9 persistent cells that are

cells in the first persistent group of two groups calculated before. Keeping only the

first persistent cell out of the 9 cells along with the remaining 7 transient cells, the

simulation of Algorithm 5.3 provided the number of initial deployment locations or

cells |C| = 8 for the visibility-based coverage through the long-term trajectories of
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(a) (b)

Figure 5.7: Simulation results of the long-term behavior of the water flow and the
long-term deployment strategy of drifters: (a) Two persistent groups (the first one
is composed of persistent cells in the green region and the second one is composed
of persistent cells in the red region) and two single-domicile transient groups (the
single-domicile transient group of the first persistent group consists of transient cells
in the yellow region and the single-domicile transient group of the second persistent
group consists of transient cells in the blue region.). Also, one multiple-domicile
transient group of both persistent groups is shown through the cyan region where
both persistent groups are the domiciles of transient cells in this region; (b) Initial
deployment locations or cells (filled in black circles) for regions of these persistent
and transient groups.
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Figure 5.8: The expected absorption times for single- and multiple-domicile transient
groups.

drifters. The set of initial deployment locations or cells C on the water surface are

shown in Figure 5.9(b).

We implemented Algorithm 5.4 to study the persistent behavior of the water

flow in a 3-D simulated environment consisting of three current layers for several
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(a) (b)

Figure 5.9: Simulation results of the long-term deployment policy for the visibility-
based coverage: (a) The minimum size subset of cells (in blue filled circles) for the
complete visibility (in the light blue region) of the environment; (b) The reduced set
of cells (in blue filled circles) as the initial deployment locations or cells for drifters.
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Figure 5.10: Persistent behavior results after time t = 1 hour: (a) Vector fields
at three water layers; (b) Persistent groups (blue and red regions) and associated
transient groups (the light blue region for the blue persistent group, the light red
region for the red persistent group, and the purple region for both persistent groups)
at the three current layers as the long-term behavior of the water flow.

times and initial deployment locations on the water surface. The resolution of each

discretized 2-D layer of this environment is the same as considered before. We

generated a set of vector fields at three current layers of the environment after time

t = 1 hour, t = 12 hours, and t = 24 hours as generated above for the top layer of the

environment. We found different numbers of persistent groups and their associated
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Figure 5.11: Long-term reachability results after time t = 1 hour: The light blue
reachable locations at three current layers in the long run from the two green initial
deployment locations of the drifter on the water surface.
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Figure 5.12: Persistent behavior results after time t = 12 hours: (a) Vector fields
at three water layers; (b) Persistent groups (blue and red regions) and associated
transient groups (the light blue region for the blue persistent group, the light red
region for the red persistent group, and the purple region for both persistent groups)
at the three current layers as the long-term behavior of the water flow.

transient groups after time t = 1 hour, t = 12 hours, and t = 24 hours at three

current layers. The set of generated vector fields and the persistent behavior results

after these times are illustrated in Figure 5.10, 5.12, and 5.14. We also calculated

the set of all possible reachable locations at three current layers for two different
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Figure 5.13: Long-term reachability results after time t = 12 hours: The light
blue reachable locations at three current layers in the long run from the same green
initial deployment locations of the drifter on the water surface.
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Figure 5.14: Persistent behavior results after time t = 24 hours: (a) Vector fields
at three water layers; (b) Persistent groups (blue regions) and associated transient
groups (the light blue region for the blue persistent group) at the three current
layers as the long-term behavior of the water flow.

initial deployment locations of the drifter on the water surface after time t = 1 hour,

t = 12 hours, and t = 24 hours which are shown in Figure 5.11, 5.13, and 5.15. In

these figures, the vertical movements of the drifter are shown in green voxels at its

initial deployment locations.
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Figure 5.15: Long-term reachability results after time t = 24 hours: The light
blue reachable locations at three current layers in the long run from the same green
initial deployment locations of the drifter on the water surface.

We tested our implementation of Algorithm 5.5 on the 3-D simulated environ-

ment considered above with a goal location, as illustrated in Figure 5.16(a). We

generated a set of vector fields for time t = 1 hour which is shown in Figure 5.10(a).

Based on these vector fields, the action set, and the goal location, the optimal

value function is estimated using the value iteration method. The optimal value

function after the convergence of the value iteration method is demonstrated in Fig-

ure 5.16(b). The optimal navigation policy π is calculated based on the optimal

value function making use of the MDP framework, which maximizes the expected

reward for reaching the goal location. The optimal navigation policy is shown in Fig-

ure 5.16(c). This policy shows the best possible actions at all locations to reach the

goal location that include “up”, “down”, and “drift” (at the same layer) movements.

5.6 Summary

In the final contribution, we presented a data-driven approach for solving the long-

term deployment and planning problems using drifters in marine environments.
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Figure 5.16: Optimal navigation policy result: (a) A 3-D environment with a red
goal location; (b) The optimal value function after the value iteration convergence;
(c) The optimal navigation policy showing active vertical actions with blue arrows
and passive horizontal drifts with red arrows.

These deployed drifters can explore the whole water surface starting from mini-

mum deployed locations and cover a seafloor environment through the visibility of

the cameras of minimum deployed drifters while they traverse. We generated a vec-

tor field to understand the water flow on the 2-D water surface from a concatenated

ROMS ocean model prediction data. From these data, the long-term behavior of the
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system was studied employing the generalized cell mapping. Based on the long-term

behavior of the system, the minimum deployment locations on the water surface for

drifters were estimated for the whole water surface exploration and the visibility-

based seafloor environment coverage. Our simulation results of the deployment of

drifters showed the promising and potential application of our approach.

Further, we generated a set of vector fields in a 3-D marine environment from

the ocean current prediction data and analyzed the persistent behavior of the 3-D

environment. Based on the persistent behavior of the water flow, we also find all

possible reachable locations at different current layers of the environment for the

long-term trajectory of a profiling drifter starting from its initial deployment loca-

tion. Our simulation results also show the variations both in the persistent behavior

of the water flow and the long-term planning of drifter trajectory for different loca-

tions and times. We also developed an optimal navigation policy in the 3-D marine

environment that generates the best possible action in the simulated policy from any

location of the environment to the goal location considering the passive horizontal

drift and the active vertical movements of the profiling drifter.
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

In this chapter, we present a brief summary of the dissertation, discuss open prob-

lems that remain to be solved, and outline some potential directions for future

research.

6.1 Dissertation Summary

In this dissertation, we used simple robots, which we called bouncing robots, in

many resource-constrained scenarios. Using the approaches in this dissertation, we

made them capable of solving the fundamental robotic tasks such as localization,

navigation, coverage, planning, patrolling, and deployment with limited sensing,

actuation, computation, storage, and communication requirements. We utilized

one dynamical system technique called the simple cell-to-cell mapping (SCM) to

model the deterministic motion of the simple robots and another dynamical system

technique called the generalized cell-to-cell mapping (GCM) to characterize the

movement of the simple robots with uncertainty. These dynamical system techniques

provide the attractors and domains of attraction from the system behavior which

allowed us to develop the filters, controllers, and algorithms for the solutions to

the tasks mentioned before. These solutions were verified on physical robots that

enables them to operate in application domains that previously could not utilize

autonomous systems in resource-constrained scenarios due to the task complexity.

In our approach, we also optimized the properties of Markov chain which is the

originality of our work. The defining aspect of this dissertation is its emphasis on

using the dynamical system approach for simple system modeling which is unique in

the robotics computing community. One striking feature of this dynamical system
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approach is that it is very general. As such, we can apply this approach in tackling

problems to different domains as long as we have a consistent motion model of the

robots. Consequently, the works presented in this dissertation leave possible avenues

to solve several interesting open problems.

6.2 Open Problems

The open problems to solve using the dynamical system techniques and the simple

robot behavior are discussed here.

6.2.1 Design and Planning for Simple Robots

One possible line of inquiry is how to solve design and planning problems for simple

robots. In the planning problem, a robot will decide what to do to reach its goals.

Using our dynamical system techniques, we find the properties of the system. Based

on these properties, we can address the planning problem on the system with passive

dynamics by tweaking the dynamics at specific points according to the associated

costs. In this case, some notion of costs needs to be formulated too. In the design

problem, robots can form a stable cycle around, for example, a crucial target area

in the environment. We can also supplement the design to add some maximally

useful additional modes of the dynamics. Furthermore, our concept based on limit

cycles is similar to the concept of feedback motion planning with funnels presented

in [Ted09, MT13, MT17] for simple underactuated systems. It will be an interesting

problem to study our limit cycles with respect to funnels, which take a broad set of

initial conditions to a goal region [BRK99].
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(a) θ = 1.07 rad, 20 bounces (b) θ = 0.57 rad, 50 bounces

(c) θ = −0.08 rad, 75 bounces (d) θ = −1.4 rad, 20 bounces

Figure 6.1: Different behaviors of bounce trajectories in a regular pentagon [NBL17].

6.2.2 Comparison with Analytical Solutions

We have focused our attention on devising numerical solutions to diverse tasks

for bouncing robots. A closely related analytical solution was recently proposed

in [NBL17] to find periodic trajectories for bouncing robots. These bouncing tra-

jectories in a regular polygonal environment are illustrated in Figure 6.1. We can

connect our numerical results with this study of bouncing with geometric models.

It is also an open problem how to characterize non-periodic dynamics.
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6.2.3 Minimalist Communication Protocol

In the case of the resource-constrained robotics, it is another open problem to de-

sign a minimalist communication protocol for coordinating multiple robots. Once

limited sensing and actuation requirements of simple mobile robots are met, they

also need to minimize the amount of information that needs to be shared with them

as power constraints can limit their communication capabilities. Therefore, a mini-

malist communication protocol has the potential for robustness even for a team of

simple robots.

6.3 Future Directions and Extensions

In the future, we are interested in addressing some potential shortcomings of the

approaches presented in this dissertation. Therefore, we conclude by mentioning

future directions and extensions for each key contribution of this dissertation.

For the first contribution of this dissertation, we have several interesting di-

rections for future work. Our localization filter does not always provide a single

configuration (singleton) of the robot in the environment. We wish to reduce the

uncertainty of the robot’s configuration in the environment by further analyzing the

structure of the localization filter. In order to do this, the robot may have to switch

its bouncing angle and we can find the minimum number of changes to reduce the

uncertainty. Since we discretize the state space and use a finite abstraction, our

ideas connect naturally with finite bisimulations [VdS04], [TP03]. We assume that

our cell-to-cell abstraction is deterministic and also that the system resets to the

cell center in each step. Alternatively, we can model the nondeterministic cell-to-cell

transitions by using GCM which uses a probabilistic cell transition map. We have

implemented and used GCM to model the imperfect rotation of the robot for solving
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the coverage problem [ABS17], and we believe that it can be used to account for

the non-determinism in our localization method.

In the second contribution, it will be a more practical approach to incorporate

a bounded uncertainty for both rotation and translation of the robots which will

lead to the development of a probabilistic variant of our deterministic SCM based

algorithm in the extended version of our navigation work. More reliable bouncing

angles can be added to the set of bouncing angles for getting additionally minimal

navigation plans. Nevertheless, it is an interesting problem to solve a complete

navigation method for both rectilinear and non-rectilinear environments using the

bouncing robot. Furthermore, we can do the more quantitive analysis of our coverage

method in terms of efficiency by comparing with the boustrophedon coverage method

for simple robots [CP98].

In the third contribution, further experimental tests and analytical techniques

can be used to quantify the differences in performance between our approach and

existing nondeterministic multi-robot patrolling methods. In this case, one area of

interest is extending our ideas to 2.5D or 3D environments, which will extend the

scope of applications of our work. Our estimation of randomized policies will work

not only in planar graphs but also in graphs representing 2.5D and 3D environments.

However, one challenge is the calculation of the visibility polyhedra [DDP02] in this

case which is not a straightforward extension of our visibility polygon calculation.

A potential solution is to approximate the visibility polyhedra with a simple shape

(a sphere or a cone) or to use a 3D ray tracing approximation [BGZ07]. This will

be one of our future extensions of this work. We also plan to solve the problem of

dynamically reassigning patrolling policies to the robots when the central base sta-

tion determines that one of the multiple robots is failing to patrol the environment.

An approximation algorithm for dividing the environment into k regions can be in-
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cluded in our extended work. Unidirectional visibility can be considered based on

the orientation of a patrolling robot. We can model the adversary and apply game

theory to find the optimal policy for a patroller competing with that adversary.

In the final contribution, our proposed approach seems to have a relation to La-

grangian Coherent Structures (LCS) [SLM05]. We will investigate this relationship

for further applications or extensions of the research presented in this work. Phys-

ical deployments are being planned to acquire a larger spatiotemporal dataset for

drifting vehicles. Additionally, we are examining the use of data gathered by the

network of Argo floats [RJR+09] as a proxy larger dataset to develop methods for

learning predictive models and flow fields for use with our proposed methods. We

will also find the stochastic shortest path between two locations of an environment

using the motion model of drifters which will give us the predicted trajectory of a

drifter from its initial deployment location to a goal location. Some autonomous

surface vehicles (ASVs) should retrieve the information collected by drifters in the

long-term deployments. The drifters are able to communicate with other vehicles

and transmit information. In this scenario, we can design a communication network

that will include realistic parameters that affect the communication quality between

a transmitter of the drifter and a receiver of the ASV, for example: a) the distance

between two components, and b) the presence of obstacles.
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