5,555 research outputs found

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    Responding to COVID – 19: Insight Into Capability Re-Configuration of Healthcare Service Ecosystems? The Use Case of Hospitalization at Home

    Get PDF
    An effective Healthcare Service Ecosystem must emphasize the notion of well-being co-creation which entails a dynamic interplay of actors, in face of the challenges, with their ability to use the available resource pools, at the different system levels. An appropriate response, largely avoiding any crisis, depends on a society's resilience and the related response of actors in the reconfiguration of resources. Originally considered luxury and for the fortunate few who could afford the learning curve, Hospitalization-at-Home (HaH) recently approached a new normal with a positive impact to health outcomes. Nowadays, hospitals have had to reconfigure their health services to reduce the workload of caregivers during the COVID-19 outbreak. We show an example of how HaH can be a viable re-configuration of Healthcare Service Ecosystems and a use case for capability reconfiguration. Our use case can be a lesson for the adaptation of technology for patient empowerment allowing patients to interact with their care ecosystem while at their home

    MROS: Runtime Adaptation For Robot Control Architectures

    Get PDF
    Known attempts to build autonomous robots rely on complex control architectures, often implemented with the Robot Operating System platform (ROS). Runtime adaptation is needed in these systems, to cope with component failures and with contingencies arising from dynamic environments-otherwise, these affect the reliability and quality of the mission execution. Existing proposals on how to build self-adaptive systems in robotics usually require a major re-design of the control architecture and rely on complex tools unfamiliar to the robotics community. Moreover, they are hard to reuse across applications. This paper presents MROS: a model-based framework for run-time adaptation of robot control architectures based on ROS. MROS uses a combination of domain-specific languages to model architectural variants and captures mission quality concerns, and an ontology-based implementation of the MAPE-K and meta-control visions for run-time adaptation. The experiment results obtained applying MROS in two realistic ROS-based robotic demonstrators show the benefits of our approach in terms of the quality of the mission execution, and MROS' extensibility and re-usability across robotic applications

    An adaptive IoT architecture using combination of concept-drift and dynamic software product line engineering

    Get PDF
    Internet of things (IoT) architecture needs to adapt autonomously to the environment and operational to maintain their supreme services. One common problem in the IoT architecture is to manage the reliability of data services, such as sensors’ data, that only sending data to the collector via gateway. If there is a disruption of services, then it is not easy to manage the system reliability. To this, an adaptive environment which is based on software reconfiguration creates a great challenge to provide better services. In this work, the software product line engineering (SPLE) reconfigures the edge devices via rules and software architecture. To identify disruption of data services which can be detected based on anomaly and truncated data. Our work makes use of concept drift to provide a recommendation to the system manager. This is important to avoid misconfiguration in the system We demonstrate our method using an open-source internet of things portal system that integrated to a cluster of sensors which is attached to specific gateway before the data are collected into a cloud storage for further processes. In identifying drifting data, the adaptive sliding window (ADWIN) method outperforms the Page-Hinkley (PH) with more selective identification and sensitive reading

    Contextual impacts on industrial processes brought by the digital transformation of manufacturing: a systematic review

    Get PDF
    The digital transformation of manufacturing (a phenomenon also known as "Industry 4.0" or "Smart Manufacturing") is finding a growing interest both at practitioner and academic levels, but is still in its infancy and needs deeper investigation. Even though current and potential advantages of digital manufacturing are remarkable, in terms of improved efficiency, sustainability, customization, and flexibility, only a limited number of companies has already developed ad hoc strategies necessary to achieve a superior performance. Through a systematic review, this study aims at assessing the current state of the art of the academic literature regarding the paradigm shift occurring in the manufacturing settings, in order to provide definitions as well as point out recurring patterns and gaps to be addressed by future research. For the literature search, the most representative keywords, strict criteria, and classification schemes based on authoritative reference studies were used. The final sample of 156 primary publications was analyzed through a systematic coding process to identify theoretical and methodological approaches, together with other significant elements. This analysis allowed a mapping of the literature based on clusters of critical themes to synthesize the developments of different research streams and provide the most representative picture of its current state. Research areas, insights, and gaps resulting from this analysis contributed to create a schematic research agenda, which clearly indicates the space for future evolutions of the state of knowledge in this field

    Size Matters: Microservices Research and Applications

    Full text link
    In this chapter we offer an overview of microservices providing the introductory information that a reader should know before continuing reading this book. We introduce the idea of microservices and we discuss some of the current research challenges and real-life software applications where the microservice paradigm play a key role. We have identified a set of areas where both researcher and developer can propose new ideas and technical solutions.Comment: arXiv admin note: text overlap with arXiv:1706.0735

    Antifragility = Elasticity + Resilience + Machine Learning: Models and Algorithms for Open System Fidelity

    Full text link
    We introduce a model of the fidelity of open systems - fidelity being interpreted here as the compliance between corresponding figures of interest in two separate but communicating domains. A special case of fidelity is given by real-timeliness and synchrony, in which the figure of interest is the physical and the system's notion of time. Our model covers two orthogonal aspects of fidelity, the first one focusing on a system's steady state and the second one capturing that system's dynamic and behavioural characteristics. We discuss how the two aspects correspond respectively to elasticity and resilience and we highlight each aspect's qualities and limitations. Finally we sketch the elements of a new model coupling both of the first model's aspects and complementing them with machine learning. Finally, a conjecture is put forward that the new model may represent a first step towards compositional criteria for antifragile systems.Comment: Preliminary version submitted to the 1st International Workshop "From Dependable to Resilient, from Resilient to Antifragile Ambients and Systems" (ANTIFRAGILE 2014), https://sites.google.com/site/resilience2antifragile
    • …
    corecore