3,756 research outputs found

    A branch-and-cut algorithm for the hub location and routing problem

    Get PDF
    We study the hub location and routing problem where we decide on the location of hubs, the allocation of nodes to hubs, and the routing among the nodes allocated to the same hubs, with the aim of minimizing the total transportation cost. Each hub has one vehicle that visits all the nodes assigned to it on a cycle. We propose a mixed integer programming formulation for this problem and strengthen it with valid inequalities. We devise separation routines for these inequalities and develop a branch-and-cut algorithm which is tested on CAB and AP instances from the literature. The results show that the formulation is strong and the branch-and-cut algorithm is able to solve instances with up to 50 nodes. © 2014 Elsevier Ltd

    Capacitated Hub Routing Problem in Hub-and-Feeder Network Design: Modeling and Solution Algorithm

    Get PDF
    International audienceIn this paper, we address the Bounded Cardinality Hub Location Routing with Route Capacity wherein eachhub acts as a transshipment node for one directed route. The number of hubs lies between a minimum anda maximum and the hub-level network is a complete subgraph. The transshipment operations take place atthe hub nodes and flow transfer time from a hub-level transporter to a spoke-level vehicle influences spoketo-hub allocations. We propose a mathematical model and a branch-and-cut algorithm based on Bendersdecomposition to solve the problem. To accelerate convergence, our solution framework embeds an efficientheuristic producing high-quality solutions in short computation times. In addition, we show how symmetrycan be exploited to accelerate and improve the performance of our method

    Capacitated Hub Routing Problem in Hub-and-Feeder Network Design: Modeling and Solution Algorithm

    Get PDF
    International audienceIn this paper, we address the Bounded Cardinality Hub Location Routing with Route Capacity wherein eachhub acts as a transshipment node for one directed route. The number of hubs lies between a minimum anda maximum and the hub-level network is a complete subgraph. The transshipment operations take place atthe hub nodes and flow transfer time from a hub-level transporter to a spoke-level vehicle influences spoketo-hub allocations. We propose a mathematical model and a branch-and-cut algorithm based on Bendersdecomposition to solve the problem. To accelerate convergence, our solution framework embeds an efficientheuristic producing high-quality solutions in short computation times. In addition, we show how symmetrycan be exploited to accelerate and improve the performance of our method

    Hub Network Design Problem with Capacity, Congestion and Stochastic Demand Considerations

    Get PDF
    Our study introduces the hub network design problem with congestion, capacity, and stochastic demand considerations (HNDC), which generalizes the classical hub location problem in several directions. In particular, we extend state-of-the-art by integrating capacity acquisition decisions and congestion cost effect into the problem and allowing dynamic routing for origin-destination pairs. Connecting strategic and operational level decisions, HNDC jointly decides hub locations and capacity acquisitions by considering the expected routing and congestion costs. A path-based mixed-integer second-order cone programming (SOCP) formulation of the HNDC is proposed. We exploit SOCP duality results and propose an exact algorithm based on Benders decomposition and column generation to solve this challenging problem. We use a specific characterization of the capacity-feasible solutions to speed up the solution procedure and develop an efficient branch-and-cut algorithm to solve the master problem. We conduct extensive computational experiments to test the proposed approach’s performance and derive managerial insights based on realistic problem instances adapted from the literature. In particular, we found that including hub congestion costs, accounting for the uncertainty in demand, and whether the underlying network is complete or incomplete have a significant impact on hub network design and the resulting performance of the system

    Hub Network Design and Discrete Location: Economies of Scale, Reliability and Service Level Considerations

    Get PDF
    In this thesis, we study three related decision problems in location theory. The first part of the dissertation presents solution algorithms for the cycle hub location problem (CHLP), which seeks to locate p-hub facilities that are connected by means of a cycle, and to assign non-hub nodes to hubs so as to minimize the total cost of routing flows through the network. This problem is useful in modeling applications in transportation and telecommunications systems, where large setup costs on the links and reliability requirements make cycle topologies a prominent network architecture. We present a branch and-cut algorithm that uses a flow-based formulation and two families of mixed-dicut inequalities as a lower bounding procedure at nodes of the enumeration tree. We also introduce a greedy randomized adaptive search algorithm that is used to obtain initial upper bounds for the exact algorithm and to obtain feasible solutions for large-scale instances of the CHLP. Numerical results on a set of benchmark instances with up to 100 nodes confirm the efficiency of the proposed solution algorithms. In the second part of this dissertation, we study the modular hub location problem, which explicitly models the flow-dependent transportation costs using modular arc costs. It neither assumes a full interconnection between hub nodes nor a particular topological structure, instead it considers link activation decisions as part of the design. We propose a branch-and-bound algorithm that uses a Lagrangean relaxation to obtain lower and upper bounds at the nodes of the enumeration tree. Numerical results are reported for benchmark instances with up to 75 nodes. In the last part of this dissertation we study the dynamic facility location problem with service level constraints (DFLPSL). The DFLPSL seeks to locate a set of facilities with sufficient capacities over a planning horizon to serve customers at minimum cost while a service level requirement is met. This problem captures two important sources of stochasticity in facility location by considering known probability distribution functions associated with processing and routing times. We present a nonlinear mixed integer programming formulation and provide feasible solutions using two heuristic approaches. We present the results of computational experiments to analyze the impact and potential benefits of explicitly considering service level constraints when designing distribution systems

    Cargo Consolidation and Distribution Through a Terminals-Network: A Branch-And-Price Approach

    Get PDF
    Less-than-truckload is a transport modality that includes many practical variations to convey a number of transportation-requests from the origin locations to their destinations by using the possibility of goods-transshipments on the carrier?s terminals-network. In this way logistics companies are required to consolidate shipments from different suppliers in the outbound vehicles at a terminal of the network. We present a methodology for finding near-optimal solutions to a less-than-truckload shipping modality used for cargo consolidation and distribution through a terminals-network. The methodology uses column generation combined with an incomplete branch-and-price procedure.Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; Argentin

    Solving the Uncapacitated Single Allocation p-Hub Median Problem on GPU

    Full text link
    A parallel genetic algorithm (GA) implemented on GPU clusters is proposed to solve the Uncapacitated Single Allocation p-Hub Median problem. The GA uses binary and integer encoding and genetic operators adapted to this problem. Our GA is improved by generated initial solution with hubs located at middle nodes. The obtained experimental results are compared with the best known solutions on all benchmarks on instances up to 1000 nodes. Furthermore, we solve our own randomly generated instances up to 6000 nodes. Our approach outperforms most well-known heuristics in terms of solution quality and time execution and it allows hitherto unsolved problems to be solved
    • …
    corecore