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1 Introduction

In this paper, we address a new hub location and routing problem. The Bounded Cardinality Capac-
itated Hub Routing Problem (BCCHRP) aims to determine the minimum total times transportation
system to transfer goods from origins to destinations through hubs. More precisely, given a set
origin-destination (O-D) pairs defined on a set of nodes, we have to partition this set into a subset
of hub nodes and a subset of non-hub nodes and to design a network including arcs between hubs
and directed routes serving non-hub nodes rooted at hubs. From each hub, one directed route at
most can be performed by a vehicle with a limited capacity. The number of hubs used must lie
within a minimum and maximum hubs. Transhipment takes place at hub nodes where freight is
transferred from the hub-level transporters to the vehicles performing routes. The limited vehicle
capacity influences the allocation of non-hub nodes to hub nodes.

The contribution of this paper is twofold. First, we introduce the problem, and propose a polyno-
mial mixed integer linear model. Second, we describe a hybrid exact algorithm combining branch-
and-cut methodology and Benders decomposition. The efficiency of the approach is assessed on a
various testbed.

Rodriguez-Mart̀ın et al. [6] studied a similar problem. In their article, the number of hub nodes
is fixed and the capacity restriction is on the maximum number of non-hub nodes served on a route.
They proposed a mathematical model and a branch-and-cut approach to solve instances up to 50
nodes. The model and the cuts are based on a previous work devoted to the Plant Cycle Location
Problem (PCLP) [5]. Other related papers are the followings. Gelareh et al. [4] proposed a mixed
integer linear programming formulation and a Lagrangian relaxation for the simultaneous design
of network and fleet deployment of a deep-sea liner service provider (p-String Planning Problem
(pSPP)). Cetiner et al. [1] described a multiple allocation hub location and routing problem applied
to postal delivery. Again for similar applications, Wasner et al. [8] proposed a model where direct
connections between non-hub nodes are allowed. de Camargo et al. [2] tackled a similar problem
where the route lengths are bounded. They proposed a Benders decomposition approach. Last, Nagy
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et al. [7] addressed a hub location routing problem with capacity constraints where pick-up points
and delivery points are served on distinct routes.

2 Solution methodology

First, we propose a mixed integer linear model where 2-index variables are associated with the design
decisions and 4-index variables are associated with the fractions of flows traversing inter-hub or non-
hub arcs for all O-D pairs. Design variables are binary while flow variables are continuous. The model
has two sets of constraints: network design constraints and flow routing constraints. To strengthen
the linear relaxation of this model, we present several valid inequalities involving the design variables,
some of them being similar to those proposed by Rodriguez-Mart̀ın et al. [6].

Then, we describe our solution method which is based on a Benders decomposition scheme. The
master problem includes the network design constraints while the subproblem includes the flow rout-
ing constraints and the linking constraints. The master problem includes also some valid inequalities
which are relaxed versions of the capacity constraint imposed on each route. Other cuts are added
dynamically. To accelerate the convergence, we use a heuristic based on local searches to generate
feasible solutions and add the corresponding cuts to the master problem.

When no violated inequality can be identified, we generate Benders cuts. Due to capacity con-
straints on routes, the subproblem is still a capacitated multi-commodity flow problem parameterized
in the design imposed by the master problem. In some cases, we show that the subproblem can be
decomposed into one subproblem per O-D. This leads to disaggregated cuts which can improve the
lower bound significantly. In addition, by exploiting symmetry, a mechanism is designed that, under
certain conditions, allows extracting a relative interior point of the master problem polytope which
is used later on in generating non-dominated cuts from the subproblem.

3 Computational experiments

Based on a testbed generated from the well-known Australian Post (AP) dataset (see [3]), we con-
ducted two types of computational experiments. First, we solved the proposed model with CPLEX
12.6.1 with a time limit of 36000 seconds. Results are reported in Table 1. The first column reports
the instance name in the format nN pP α where N is the number of nodes, P is the maximum
number of hub nodes, and α represents the factor of economies of scale on inter-hub arcs varying in
{0.7, 0.8, 0.9}. The second column indicates CPU times elapsed during the LP solution. The next
column reports the LP objective function values followed by a column for the LP statuses. The
next column report the number of hub nodes ’Nhubs’ in the LP solution. In columns ’TimeIP’ and
’IPobj’, we report the CPU times for IP solution and the objective function values, respectively. The
subsequent column reports the number of nodes processed in the branch-and-bound algorithm before
termination criteria is met. The column ’IPStatus’ reports the termination criterion that has been
met for every instance. The next column reports the optimality gaps when CPLEX terminated.

In Table 1, one observes that the LP bound is rather weak. In the LP relaxation, there is a
tendency towards opening maximum possible number of hubs (in the fractional sense). While for
n = 10 the instances were solved in less than one hour, for n = 15, optimality could not be proven
within 10 hours.

Our initial computational experiments show that using our solution hybrid solution approach, we
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Table 1: Computational experiments with the 2-index model.

instance TimeRoot LPobj LPStatus Nhubs TimeIP IPobj Nnodes IPStatus Gap (%)
n10 p3 0.9 3 2219.32 Optimal 3 1974 3395.63 15905 Optimal 0.00
n10 p3 0.8 3 2160.99 Optimal 3 2177 3315.81 19729 OptimalTol 0.01
n10 p3 0.7 3 2097.88 Optimal 3 3371 3235.99 50926 OptimalTol 0.01
n15 p3 0.9 8 5998.29 Optimal 3 36009 14461.60 2923 AbortTimeLim 56.71
n15 p3 0.8 8 5863.59 Optimal 3 36017 14702.10 4661 AbortTimeLim 56.97
n15 p3 0.7 10 5699.74 Optimal 3 36016 11842.20 4305 AbortTimeLim 48.50
n15 p4 0.9 25 5568.42 Optimal 4 36035 10785.20 5615 AbortTimeLim 43.16
n15 p4 0.8 21 5419.25 Optimal 4 36030 9594.57 5072 AbortTimeLim 37.67
n15 p4 0.7 1- 5240.83 Optimal 4 36025 10425.50 6505 AbortTimeLim 44.79
n15 p5 0.9 20 5203.81 Optimal 5 36021 9122.92 4391 AbortTimeLim 37.44
n15 p5 0.8 17 5039.83 Optimal 5 36023 7381.18 7004 AbortTimeLim 23.58
n15 p5 0.7 20 4852.73 Optimal 5 36027 7885.72 7149 AbortTimeLim 32.88

can solve to optimality up to n = 20. The first column in Table 2 indicates the instance name.
The second and third columns reports CPU times and the best incumbent value found. The col-
umn ’Nnodes’ report the number of nodes processed in the course of solution process. The column
’CplexStatus’ reports the CPLEX status upon termination. The column ’Gap(%)’ reports the ter-
mination gaps (the LB is also reported when the method failed). The next two columns represent
number of feasibility Benders cuts (’#F. Cuts’) and number of optimality Benders cuts (’#O. Cuts’).

Table 2: Computational experiments with the Benders decomposition.
instance Time (sec.) Obj. Val. #Nodes CplexStatus Gap(%) #F. Cuts. #O. Cuts.
n10 p3 0.9 14 3395.63 0 Optimal 0.37 0 696
n10 p3 0.8 14 3315.81 0 Optimal 0.42 0 617
n10 p3 0.7 17 3235.99 0 OptimalTol 0.09 0 785
n15 p3 0.9 398 11244.20 9 OptimalTol 0.19 3 3009
n15 p3 0.8 1395 11255.74 25 OptimalTol 0.27 3 6465
n15 p3 0.7 929 11120.20 47 OptimalTol 0.41 4 5681
n15 p4 0.9 899 9067.25 84 OptimalTol 0.00 1 2690
n15 p4 0.8 883 10170.06 39 OptimalTol 0.41 0 4706
n15 p4 0.7 1073 10683.44 97 OptimalTol 0.37 9 6039
n15 p5 0.9 1615 7387.35 231 Optimal 0.00 0 2364
n15 p5 0.8 591 7143.31 46 Optimal 0.00 0 1989
n15 p5 0.7 626 6899.27 68 Optimal 0.00 0 1581
n20 p3 0.9 28673 24935.81 288 OptimalTol 0.25 10 13250
n20 p3 0.8 — — 114 failed 22.07%(LB = 19509.37) — —
n20 p3 0.7 15307 5548.09 965 OptimalTol 0.46 33 747
n20 p4 0.9 15767 21585.40 184 Optimal 0.00 0 9202
n20 p4 0.8 14432 21284.45 107 OptimalTol 0.48 3 13217
n20 p4 0.7 — — 199 failed 30.57%(LB = 15169.85) — —
n20 p5 0.9 19051 17441.26 301 Optimal 0.00 0 6676
n20 p5 0.8 19572 17624.70 247 OptimalTol 0.24 16 5694
n20 p5 0.7 6470 16933.63 51 Optimal 0.00 0 5984
n20 p6 0.9 98991 17274.12 1525 AbortUser 31.33 0 10308
n20 p6 0.8 46695 16922.59 719 AbortUser 31.01 0 10462
n20 p6 0.7 27531 15738.56 275 OptimalTol 0.41 0 16339

As a rule, the number of nodes processed is very moderate and most instances are solved to op-
timality. For two instances we have numerical issues that led to failures. The efforts to avoid such
numerical instabilities by tuning different parameters and tolerances were not successful. In order
to avoid numerical issues we have set the gap tolerance to 0.5%. One observes that the optimality
is subject to the user-defined tolerance gap. The number of feasibility Benders cuts corresponds to
the iterations where infeasible solution has been encountered. These numbers are also very small. It
means that the number of iterations with no (or very minimal) improvement in the lower bound is
quite small.
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