104 research outputs found

    Dynamic Range of Vertebrate Retina Ganglion Cells: Importance of Active Dendrites and Coupling by Electrical Synapses

    Get PDF
    The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.Fundacao de Amparo a Pesquisa do Estado de Sa Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de SA Paulo FAPESPCNPq (Brazil)CNPq (Brazil

    Microsaccadic sampling of moving image information provides Drosophila hyperacute vision.

    Get PDF
    Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors' encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes' optical limits. These discoveries elucidate how acuity depends upon photoreceptor function and eye movements

    A biophysical model explains the spontaneous bursting behavior in the developing retina

    Full text link
    During early development, waves of activity propagate across the retina and play a key role in the proper wiring of the early visual system. During the stage II these waves are triggered by a transient network of neurons, called Starburst Amacrine Cells (SACs), showing a bursting activity which disappears upon further maturation. While several models have attempted to reproduce retinal waves, none of them is able to mimic the rhythmic autonomous bursting of individual SACs and reveal how these cells change their intrinsic properties during development. Here, we introduce a mathematical model, grounded on biophysics, which enables us to reproduce the bursting activity of SACs and to propose a plausible, generic and robust, mechanism that generates it. The core parameters controlling repetitive firing are fast depolarizing VV-gated calcium channels and hyperpolarizing VV-gated potassium channels. The quiescent phase of bursting is controlled by a slow after hyperpolarization (sAHP), mediated by calcium-dependent potassium channels. Based on a bifurcation analysis we show how biophysical parameters, regulating calcium and potassium activity, control the spontaneously occurring fast oscillatory activity followed by long refractory periods in individual SACs. We make a testable experimental prediction on the role of voltage-dependent potassium channels on the excitability properties of SACs and on the evolution of this excitability along development. We also propose an explanation on how SACs can exhibit a large variability in their bursting periods, as observed experimentally within a SACs network as well as across different species, yet based on a simple, unique, mechanism. As we discuss, these observations at the cellular level have a deep impact on the retinal waves description.Comment: 25 pages, 13 figures, submitte

    Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance

    Full text link
    Despite advances in experimental and theoretical neuroscience, we are still trying to identify key biophysical details that are important for characterizing the operation of brain circuits. Biological mechanisms at the level of single neurons and synapses can be combined as ‘building blocks’ to generate circuit function. We focus on the importance of capturing multiple timescales when describing these intrinsic and synaptic components. Whether inherent in the ionic currents, the neuron’s complex morphology, or the neurotransmitter composition of synapses, these multiple timescales prove crucial for capturing the variability and richness of circuit output and enhancing the information-carrying capacity observed across nervous systems

    Connectivity of the Outer Plexiform Layer of the Mouse Retina

    Get PDF
    The retina has two synaptic layers: In the outer plexiform layer (OPL), signals from the photoreceptors (PRs) are relayed to the bipolar cells (BCs) with one type of horizontal cell (HC) as interneuron. In the inner plexiform layer (IPL), the retinal ganglion cells (RGCs) receive input from the bipolar cells, modulated by multiple types of amacrine cells. The axons of the retinal ganglion cells form the optic nerve which transmit the visual signal to the higher regions of the brain (Masland 2012). Studies of signal processing in the retina usually focus on the inner plexiform layer. Here, the main computations take place such as direction selectivity, orientation selectivity and object motion detection (Gollisch and Meister 2010). However, to fully understand how these computations arise, it is also important to understand how the input to the ganglion cells is computed and thus to understand the functional differences between BC signals. While these are shaped to some extent in the IPL through amacrine cell feedback (Franke et al. 2017), they are also influenced by computations in the OPL (Drinnenberg et al. 2018). Accordingly, it is essential to understand how the bipolar cell signals are formed and what the exact connectivity in the OPL is. This thesis project aims at a quantitative picture of the mouse outer retina connectome. It takes the approach of systematically analyzing connectivity between the cell types in the OPL based on available high-resolution 3D electron microscopy imaging data (Helmstaedter et al. 2013). We reconstructed photoreceptor axon terminals, horizontal cells and bipolar cells, and quantified their contact statistics. We identified a new structure on HC dendrites which likely defines a second synaptic layer in the OPL below the PRs. Based on the reconstructed morphology, we created a biophysical model of a HC dendrite to gain insights into potential functional mechanisms. Our results reveal several new connectivity patterns in the mouse OPL and suggest that HCs perform two functional roles at two distinct output sites at the same time. The project emphasizes how large-scale EM data can boost research on anatomical connectivity and beyond and highlights the value of the resulting data for detailed biophysical modeling. Moreover, it shows how the known amount of complexity increases with the level of detail with which we can study a subject. Beyond that, this thesis project demonstrates the benefits of data sharing and open science which only enabled our studies

    Neural Control of Interlimb Oscillations II. Biped and Quadruped Gaits and Bifurications

    Full text link
    Behavioral data concerning animal and human gaits and gait transitions are simulated as emergent properties of a central pattern generator (CPG) model. The CPG model is a version of the Ellias-Grossberg oscillator. Its neurons obey Hodgkin-Huxley type equations whose excitatory signals operate on a faster time scale than their inhibitory signals in a recurrent on-center off-surround anatomy. A descending command or GO signal activates the gaits and triggers gait transitions as its amplitude increases. A single model CPG can generate both in-phase and anti-phase oscillations at different GO amplitudes. Phase transition from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases. Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop), and the pronk are simulated using this property. Rapid gait transitions are simulated in the order walk, trot, pace, and gallop that occurs in the cat, along with the observed increase in oscillation frequency. Precise control of quadruped gait switching uses GO-dependent. modulation of inhibitory interactions, which generates a different functional anatomy at different arousal levels. The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are simulated, without modulation, by oscillations with the same phase relationships but different waveform shapes at different GO signal levels, much as the duty cycles of the feet are longer in the walk than in the run. Relevant neural data from spinal cord, globus palliclus, and motor cortex, among other structures, are discussedArmy Research Office (DAAL03-88-K-0088); Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499, F49620-92-J-0225, 90-0128
    corecore