1,588 research outputs found

    Biomedical Sensing - A Sensor Fusion Approach for Improved Medical Detection and Monitoring

    Get PDF
    Enhanced technological advancement in computation, communication, and sensing has dramatically changed the dynamics of modern medicine. Advancing preventive medicine is paramount to a sustainable improvement in the quality of life and life expectancy. On-body sensors provide continuous measurements for healthy and ailing individuals leading to faster recovery and more timely detection of illnesses. Novel sensor designs and sensor fusion for preventive monitoring can provide extensible benefits, including a better understanding of ailment progression, treatment optimization, and patient feedback through data analytics and visualization. However, existing research does not thoroughly investigate sensor fusion approaches in biomedical sensing, as well as spot sensing, which can provide better information through more accurate detection of specific tissues instead of secondary measurements. This article presents the development of an ex-vivo sensor fusion system to track a person\u27s muscular condition. The embedded system provides a significant benefit by notifying users of particular muscle events in real-time

    Detection of Human Vigilance State During Locomotion Using Wearable FNIRS

    Get PDF
    Human vigilance is a cognitive function that requires sustained attention toward change in the environment. Human vigilance detection is a widely investigated topic which can be accomplished by various approaches. Most studies have focused on stationary vigilance detection due to the high effect of interference such as motion artifacts which are prominent in common movements such as walking. Functional Near-Infrared Spectroscopy is a preferred modality in vigilance detection due to the safe nature, the low cost and ease of implementation. fNIRS is not immune to motion artifact interference, and therefore human vigilance detection performance would be severely degraded when studied during locomotion. Properly treating and removing walking-induced motion artifacts from the contaminated signals is crucial to ensure accurate vigilance detection. This study compared the vigilance level detection during both stationary and walking states and confirmed that the performance of vigilance level detection during walking is significantly deteriorated (with a

    Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates.</p> <p>Aim</p> <p>To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system.</p> <p>Methods</p> <p>We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording.</p> <p>Results</p> <p>Interpretable sensor recordings were obtained in all patients (feasibility = 100%). Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value) was more frequent in patients than controls (27% vs 8%, p < 0.05). At 100 bpm stress heart rate, systolic/diastolic time ratio (normal, < 1) was > 1 in 20 patients and in none of the controls (p < 0.01); at recovery systolic/diastolic ratio was > 1 in only 3 patients (p < 0.01 vs stress). Post-exercise reduced arterial pressure was sensed.</p> <p>Conclusion</p> <p>Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor.</p

    Robust and accurate modeling approaches for migraine Per-Patient prediction from ambulatory data

    Get PDF
    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Pulse Signal System: Sensing, Data Acquisition and Body Area Network

    Get PDF
    Heart rate variability (HRV) is an important physiological signal of the human body, which can serve as a useful biomarker for the cardiovascular health status of an individual. There are many methods to measure the HRV using electrical devices, such as ECG and PPG etc. This work presents a novel HRV detection method which is based on pressure detection on the human wrist. This method has been compared with existing HRV detection methods. In this work, the proposed system for HRV detection is based on polyvinylidene difluoride (PVDF) sensor, which can measure tiny pressure on its surface. Three PVDF sensors are mounted on the wrist, and a three-channel conditioning circuit is used to amplify signals generated by the sensors. An analog-to-digital converter and Arduino microcontroller are used to sample and process the signal. Based on the obtained signals, the HRV can be processed and detected by the proposed PVDF-sensor-based system. Another contribution of this work is in designing a wireless body area network (WBAN) to transmit data acquired on the human body. This WBAN combines two different wireless network protocols, for both efficient power consumption and data rate. Bluetooth Low Energy protocol is used for transmitting data from the microcontroller to a personal device, and Wi-Fi is used to send data to other terminals. This provides the potential for remote HRV signal monitoring. A dataset consisting of two subjects was used to experimentally validate the proposed system design and signal processing method. ECG signals are acquired from subjects with wrist pulse signals for comparison as standard signal. The waveforms of ECG signals and wrist pulse signals are compared and HRV values are calculated from these two signals separately. The result shows that HRV calculated by wrist pulse has low error rate. A test of movement effect shows the sensor can resist mild motions of wrist. Some future improvements of system design and further signal processing methods are also discussed in the last chapter

    Technology developments applied to healthcare/nursing

    Get PDF
    Future technology developments as applied to healthcare and particularly nursing were discussed. Emerging technologies such as genetics, small unobtrusive monitoring devices, use of information and communication technologies are as tools to not only facilitate but also promote communication among all parties of the healthcare process. These emerging technologies can be used for ubiquitous healthcare (uhealth). The role of nursing in the u-health is fundamental and required for success and growth. Nursing's role will evolve as nurses become 'information- mediators' in a broader-sense than current role. All technologies will ultimately focus on the consumer through 'behind-the-scenes' data collection, which in turn will also allow nurses to analyze these data to improve care. We need to acknowledge an increased presence and or pervasiveness of information technologies as key components of quality healthcare. This sort of acknowledgment will help propel nursing, and healthcare, to increase use of these tools. To develop nurses with these types of skills the nursing education process will require a fundamental change to integrate these technology-sorts of tools as necessary elements for success.info:eu-repo/semantics/publishedVersio
    corecore