6 research outputs found

    The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation

    Get PDF
    The last decades, rehabilitation has become a challenging context for mechatronical engineering. From the state-of-the-art it is seen that the field of prosthetics offers very promising perspectives to roboticist. Today’s prosthetic feet tend to improve amputee walking experience by delivering the necessary push-off forces while walking. Therefore, several new types of (compliant) actuators are developed in order to fulfill the torque and power requirements of a sound ankle-foot complex with minimized power consumption. At the Vrije Universiteit Brussel, the Robotics and Multibody Mechanics research group puts a lot of effort in the design and development of new bionic feet. In 2013, the Ankle Mimicking Prosthetic (AMP-) Foot 2, as a proof-of-concept, showed the advantage of using the explosive elastic actuator capable of delivering the full ankle torques ( ±120\pm 120 ± 120  Nm) and power ( ±250\pm 250 ± 250 W) with only a 60 W motor. In this article, the authors present the AMP-Foot 3, using an improved actuation method and using two locking mechanisms for improved energy storage during walking. The article focusses on the mechanical design of the device and validation of its working principle.This work and the publication costs of this article have been funded by the European Commissions 7th Framework Program as part of the project Cyberlegs under grant no. 287894 and by the European Commission ERC Starting grant SPEAR under grant no. 337596.Peer reviewe

    Design, Control, and Optimization of Robots with Advanced Energy Regenerative Drive Systems

    Get PDF
    We investigate the control and optimization of robots with ultracapacitor based regenerative drive systems. A subset of the robot joints are conventional, in the sense that external power is used for actuation. Other joints are energetically self-contained passive systems that use ultracapacitors for energy storage. An electrical interconnection known as the star configuration is considered for the regenerative drives that allows for direct electric energy redistribution among joints, and enables higher energy utilization efficiencies. A semi-active virtual control strategy is used to achieve control objectives. We find closed-form expressions for the optimal robot and actuator parameters (link lengths, gear ratios, etc.) that maximize energy regeneration between any two times, given motion trajectories. In addition, we solve several trajectory optimization problems for maximizing energy regeneration that admit closed-form solutions, given system parameters. Optimal solutions are shown to be global and unique. In addition, closed-form expressions are provided for the maximum attainable energy. This theoretical maximum places limits on the amount of energy that can be recovered. Numerical examples are provided in each case to demonstrate the results. For problems that don\u27t admit analytical solutions, we formulate the general nonlinear optimal control problem, and solve it numerically, based on the direct collocation method. The optimization problem, its numerical solution and an experimental evaluation are demonstrated using a PUMA manipulator with custom regenerative drives. Power flows, stored regenerative energy and efficiency are evaluated. Experimental results show that when following optimal trajectories, a reduction of about 10-22% in energy consumption can be achieved. Furthermore, we present the design, control, and experimental evaluation of an energy regenerative powered transfemoral prosthesis. Our prosthesis prototype is comprised of a passive ankle, and an active regenerative knee joint. A novel varying impedance control approach controls the prosthesis in both the stance and swing phase of the gait cycle, while explicitly considering energy regeneration. Experimental evaluation is done with an amputee test subject walking at different speeds on a treadmill. The results validate the effectiveness of the control method. In addition, net energy regeneration is achieved while walking with near-natural gait across all speeds

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller
    corecore