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DESIGN, CONTROL, AND OPTIMIZATION OF ROBOTS WITH ADVANCED 

ENERGY REGENERATIVE DRIVE SYSTEMS

POYA KHALAF

ABSTRACT

We investigate the control and optimization of robots with ultracapacitor 

based regenerative drive systems. A subset of the robot joints are conventional, 

in the sense that external power is used for actuation. Other joints are energetically 

self-contained passive systems that use ultracapacitors for energy storage. An electri­

cal interconnection known as the star configuration is considered for the regenerative 

drives that allows for direct electric energy redistribution among joints, and enables 

higher energy utilization efficiencies. A semi-active virtual control strategy is used to 

achieve control objectives.

We find closed-form expressions for the optimal robot and actuator parameters 

(link lengths, gear ratios, etc. ) that maximize energy regeneration between any two 

times, given motion trajectories. In addition, we solve several tra jectory optimization 

problems for maximizing energy regeneration that admit closed-form solutions, given 

system parameters. Optimal solutions are shown to be global and unique. In addi­

tion, closed-form expressions are provided for the maximum attainable energy. This 

theoretical maximum places limits on the amount of energy that can be recovered. 

Numerical examples are provided in each case to demonstrate the results.

For problems that don't admit analytical solutions, we formulate the general 

nonlinear optimal control problem, and solve it numerically, based on the direct collo­

cation method. The optimization problem, its numerical solution and an experimental 

evaluation are demonstrated using a PUMA manipulator with custom regenerative 

drives. Power flows, stored regenerative energy and efficiency are evaluated. Exper­

imental results show that when following optimal trajectories, a reduction of about
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10 - 22% in energy consumption can be achieved.

Furthermore, we present the design, control, and experimental evaluation of

an energy regenerative powered transfemoral prosthesis. Our prosthesis prototype is 

comprised of a passive ankle, and an active regenerative knee joint. A novel varying 

impedance control approach controls the prosthesis in both the stance and swing 

phase of the gait cycle, while explicitly considering energy regeneration. Experimental 

evaluation is done with an amputee test subject walking at different speeds on a 

treadmill. The results validate the effectiveness of the control method. In addition, 

net energy regeneration is achieved while walking with near-natural gait across all 

speeds.
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CHAPTER I

BACKGROUND AND MOTIVATION

1. 1 Introduction

Energy regeneration technologies have gained much attention due to their po­

tential to reduce the energy consumption of modern engineering systems. Lower 

energy consumption allows devices to work for longer periods of time with lower op­

erational costs. These factors are crucial in the design of systems such as electric and 

hybrid vehicles [66], powered prostheses [54] and exoskeletons [38], autonomous space­

craft [91], and others. The concept of energy regeneration is understood here to be the 

process of recovering energy that would be otherwise dissipated, and redistributing 

or storing it for later use.

At present, regenerative energy technologies are being used in a wide range of 

systems. In the automotive industry, hybrid and electric cars use regenerative brak­

ing [123], in the railway industry, high speed and underground trains are equipped 

with regenerative braking [77]. These technologies are also being used in excava­

tors [60], suspension systems [124], elevators [122], and many other systems.

We are motivated by the application of regenerative technologies in robotic 

systems. Incorporating regenerative design features in robotic systems is justified 

when a significant potential for energy recovery exists. Two applications which are 

the main focus of this dissertation include fast-moving, multi-joint industrial robots 

and powered prostheses. Excess energy can be stored from the robot joints when
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decelerating and reused when the robot joints are accelerating, thus reducing the 

overall energy consumption. For an industrial manufacturing line with many robotic 

systems, this can lead to a significant reduction in electric power costs. For powered 

prostheses, energy regeneration can increase operating times, therefore making them 

more practical for daily use.

In addition, robots with regenerative drive systems offer unique opportuni­

ties for joint-to-joint mechanical energy redistribution by electrical means. Strictly 

speaking, energy transfer among joints may naturally occur in robotic manipulators 

via inertial coupling. However, this kind of indirect energy transfer is governed by 

the structure, mass properties, and joint trajectories of the robot. In many cases, 

these factors are predefined and the joint-to-joint energy flow cannot be managed or 

controlled. For example, the structure of a Cartesian robot prevents any energy flow 

from one joint to another. Bidirectional power (4-quadrant) drive electronics offer the 

opportunity to configure pathways for joint-to-joint energy transfer and management. 

Excess energy regenerated from a joint decelerating can be conveyed to another joint 

that is accelerating and demanding energy. In a regenerative Cartesian robot, this al­

lows for direct energy transfer between joints. Such capabilities can lead to significant 

reduction in the energy consumption of the overall robot.

We consider regenerative drive systems that use capacitive means for stor­

ing energy. The development of electrochemical double layer capacitors, so-called 

ultracapacitors or supercapacitors, in the past decade have enabled efficient means 

of storing and reusing energy [16]. Unlike batteries, ultracapacitors can be charged 

and discharged at high rates without damaging them, have considerably high power 

densities, are lightweight, inexpensive, and durable [55]. Because of these proper­

ties, ultracapacitors are being used in many applications involving energy regenera­

tion [56, 85, 91, 95, 107, 125].
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1. 2 Incorporating Energy Regeneration in Lower Limb Powered Prosthe­

sis

Normal human walking requires positive power output at the ankle and knee 

joints [117]. Energetically passive prostheses enable walking for people with lower limb 

amputations by using damping and spring-like elements [104]. Accordingly, passive 

prostheses cannot provide net positive energy. This results in an increase of energy 

consumption for amputees during walking. The literature reports a 20% increase 

in oxygen consumption for below knee amputees walking with different speeds on a 

treadmill [72], and lower walking speeds and higher levels of oxygen consumption for 

above and below knee amputees [113]. Powered prostheses have been shown to reduce 

the metabolic cost of transport by providing positive net work [4, 97, 99].

The majority of the research conducted on powered lower limb prostheses has 

occurred in the past decade due to enabling improvements in battery, DC motor and 

microcontroller technologies [61]. Although some efforts have been made to develop 

pneumatic [97, 106, 114] and hydraulic [19, 115] powered prostheses, for the purpose 

of this dissertation, we are concerned with electrically actuated powered prostheses. 

Here we mention the most prominent of theses studies and refer the readers to the 

survey [116] for a more comprehensive list of papers regarding powered lower limb 

prosthesis.

The Power Knee (Ossur, Reykjavik, Iceland) is probably the most well known 

commercially available powered prosthetic knee. Since its introduction in 2007, there 

have been several studies comparing its performance with its passive counterparts, 

the C-Leg (Otto Bock, Duderstadt, Germany), and the Mauch SNS (Ossur, Reyk- 

javik, Iceland) [36, 37, 119]. A powered prosthetic knee with an agonist-antagonist 

structure was developed at the MIT (Massachusetts Institute of Technology, Cam- 

bridge, MA). It reproduces natural gait while minimizing energy usage by means of 

series elastic elements [68, 69]. The Empower (Otto Bock, Duderstadt, Germany),

3



(a)
(d)

Figure 1: Powered lower limb prostheses: a)Empower, b)ODYSSEY, c)Power Knee, 
d)Vanderbilt leg.

previously known as the Biom (BionX Medical Technologies, Boston, Massachusetts), 

is a powered ankle prosthesis that was initially developed at MIT [3, 21, 35] and later 

acquired by Otto Bock. The SPARKy powered ankle prostheses, developed at Ari­

zona State University (Tempe, AZ), uses elastic elements to store regenerated energy

and reduce energy consumption [5, 39-42]. The research on SPARKy later led to the 

development of the ODYSSEY (SpringActive, Tempe, AZ). Vrije Universiteit Brus­

sel (Brussels, Belgium) developed their powered ankle prosthesis known as the AMP 

Foot 2. 0 [11, 12], which also uses a combination of elastic elements and electric mo- 

tors to reduce energy consumption while providing the power necessary for forward 

propulsion. The Vanderbilt transfemoral prosthesis (Vanderbilt University, Nashville, 

TN) is among the first to include both a powered ankle and knee joint [61, 99, 100]. 

A study of the Vanderbilt prosthesis showed a reduction of 32% in metabolic energy 

expenditure, compared to passive transfemoral prosthesis when ascending stairs [64]. 

The Vanderbilt prosthesis has also been studied during activities such as upslope 

walking [98], and running [92]. Figure 1 shows some of the well known lower limb 

prosthesis designs.

One main drawback of powered prostheses that hinders their widespread use is 

their power consumption. For the Vanderbilt leg, which includes both a powered knee
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and ankle, a walking distance of about 9-12 km and a battery life of approximately 

1. 8 hours of continual walking have been reported [98, 100]. The Empower ankle can 

provide a battery life of up to eight hours [79]. The Power Knee has a battery life 

of approximately twelve hours depending on usage and a charging time of three and 

one half hours [78]. Considering power consuming daily activities beyond the average 

walking pace for which these values are reported (fast walking or climbing stairs) the 

aforementioned powered prostheses would have to be recharged several times daily for 

an amputee with a moderately active lifestyle. Use of energy regeneration technologies 

in powered prostheses can provide longer battery life and more generous ranges of 

locomotion, making them more practical for daily use.

The potential to recover energy in powered lower limb prostheses can be un­

derstood by considering power flows occurring in able-bodied walking. During normal 

able-bodied gait, the knee has four (K1, K2, K3 and K4) and the ankle two (A1 and 

A2) major phases of positive and negative power [117, 118]. Figure 2 illustrates these 

phases, where negative power indicates power absorption (the joint acts as a brake 

and absorbs/dissipates power), and positive power indicates power generation (the 

joint acts as a motor, delivering power). The figure shows that the major power 

phases for the knee are negative while the majority of positive power is provided by 

the ankle. Table I shows the peak power and the work done for four subjects walking 

with different speeds. We can seen that in Trial WN20A the net energy of the ankle 

is +32(J) while the net energy of the knee is -24(J). For Trial WN56B, these values 

are +25(J) and -38(J) for the ankle and knee, respectively.

In an energy regenerative powered prosthesis, the power dissipated by the knee

has the potential to be stored and reused to reduce the overall energy consumption.

Moreover, stored energy from the knee can be directly transfered to the ankle, thus

providing pathways to manage and further reduce energy consumption. In a normal

human leg, joint-to-joint energy transfer occurs through the tendons and muscles
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Figure 2: Phases of positive and negative power during able-bodied gait, a) knee 
joint, b) ankle joint. Adapted from [117].

[118], in a regenerative powered prosthesis, energy can be exchanged efficiently and 

directly between the prosthesis joints.

1. 3 Joint-to-Joint Energy Transfer in Energy Regenerative Robots

Robots with regenerative drive systems offer the capability to directly man­

age and control energy transfer between robot joints. In a limited sense, indirect 

energy transfer occurs in robotic manipulators via inertial coupling. In human and 

animal locomotion, in addition to inertial coupling, the muscles and tendons partially 

transfer energy from one joint to another [118]. This kind of indirect energy flow 

between robot joints is governed by the structure properties of the of the system, and 

cannot be managed or controlled (e. g. Cartesian robot). Energy regenerative drive 

systems provide additional pathways to directly manage and control joint-to-joint en- 

ergy transfer. Excess energy regenerated from one joint of the robot can be conveyed 

to another joint that is demanding energy. Such capabilities can lead to significant 

reductions in the energy consumption of the overall robot.

This is especially true for lower limb powered prostheses. Figure 2 and Table I

show that in able bodied walking, the knee joint has excess amount of energy while

the ankle joint mostly consumes energy. For example, in Trial WN21B, 14 J of energy
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Table I: Peak power and work done for four test sub jects walking at different speeds. 
Negative power indicates power absorption, and positive power indicates power gen- 
eration. Adapted from [117].

Trial Code
Cadence

(steps/min)

A1 A2 K1

Power
(w)

Work
(J)

Power
(w)

Work
(J)

Power
(w)

Work
(J)

Fast

WN20A 124 -40 -6 340 38 -107 -6
WN56B 125 -40 -8 410 33 -180 -13
Natural

WB21B 104 -40 -8 220 25 -11 -1
WN23C 97 -43 -12 170 18 -94 -7

Slow

WN21H 85 -65 -8 260 37 -100 -8
WN34A 92 -55 -11 150 27 -23 -1

K2 K3 K4

Mass Power Work Power Work Power Work
Trial Code (kg) (w) (J) (w) (J) (w) (J)

Fast

WN20A 78. 5 85 11 -145 -24 -40 -5
WN56B 86. 5 66 7 -160 -18 -140 -14
Natural

WB21B 77. 7 0 0 -80 -8 -50 -9
WN23C 69. 0 16 1 -37 -4 -56 -7

Slow

WN21H 77. 7 46 5 -120 -13 -30 -6
WN34A 74. 6 0 0 -100 -12 -48 -7

is consumed by the ankle and -18 J of energy is dissipated by the knee. In a powered 

transfemoral prosthesis equipped with regenerative drive systems, the excess energy 

from the knee can be stored and transferred to the ankle to further reduce the energy 

cost of the prosthesis. In Trial WN21B, the net energy balance of the knee-ankle is

-4 J in one gait cycle. In other words, assuming no losses, the energy dissipated at

the knee can power the ankle joint and provide a surplus of energy for certain gait

patterns. However, energy regeneration has unavoidable inefficiencies which reduce
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the energy advantage, but a lot is to be gained in terms of battery life by regenerating 

excess energy and enabling direct joint-to-joint energy transfer.

1. 4 Ultracapacitors

Ultracapacitors, also known as supercapacitors, or electrochemical double layer 

capacitors, provide an efficient means of storing and reusing energy [16]. Ultracapac­

itors are lightweight and durable, have high power densities (i. e., high power-to-mass 

ratios) and the ability to rapidly charge and discharge without damage. Due to their 

many benefits, ultracapacitors are being used in a wide range of applications involv- 

ing energy regeneration, including regenerative braking systems [26], electric cars and 

buses [76, 95], satellites [91], suspension systems [56], and many more. We use four 

quadrant drive systems that have ultracapacitors to store regenerated energy and also 

provide energy to the robot joints.

Ultracapacitors generally consist of two electrodes and an ion-permeable sep­

arator which are immersed in an electrolyte solution [9, 74, 87]. Figure 3a shows the 

schematic of an ultracapacitor cell. The electrodes are constructed from a porous 

material with high specific surface area. Higher surface area electrodes, and thinner 

dielectrics, give ultracapacitors significantly larger capacitance and energy density 

compared to conventional capacitors [32]. The Ragone plot in Fig. 3b compares the 

power densities and energy densities of different energy storing devices. Capacitors 

are known for high power densities, batteries are know for high energy densities, and 

ultracapacitors fill the gap between batteries and conventional capacitors. Table II 

lists commercially available ultracapacitors provided by Maxwell Technologies.

Moreover, recent development of graphene-based ultracapacitors have demon­

strated energy densities larger than 64 W-hr/kg [49]. This puts ultracapacitors close

to today's lithium-ion batteries, which have energy densities 100 to 250 Whr/kg, and

promises a bright future for this technology.
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Figure 3: a) Ultracapacitor schematic b) Ragone plot for different energy storing 
devices. Ultracapacitors fill the gap between batteries and conventional capacitors. 
Adapted from [32].

Energy Density (Wh/kg)

(b)

Table II: Ultracapacitors provided by Maxwell Technologies [70].

Specifications HC Series BC Series K2 Series Modules

Capacitance (F) 1 - 150 310 - 350 650 - 3400 5. 8 - 500
Voltage (V) 2. 3 - 2. 7 2. 7 2. 7 - 2. 85 16 - 160
ESRDC (mΩ) 14- 700 2. 2 - 3. 2 0. 28 - 0. 8 2. 1 - 240
Leakage current (mA) 0. 006 - 0. 500 0. 3- 0. 45 1. 5 - 18 3. 0 - 170
Emax (Wh/kg) 0. 7 - 4. 7 5. 2 - 5. 9 4. 1 - 7. 4 2. 3- 4. 0
Pmax (W/kg) 2400 - 7000 9500- 14000 12000 - 14000 3600- 6800

1. 5 Literature Review

The research literature is replete with papers discussing energy regeneration 

and the use of ultracapacitors in systems such as road vehicles [55, 66, 95, 107], indus- 

trial electric motor drive systems [29, 30, 85], vibration control and shock absorber 

systems [2, 48, 56, 125], aerospace applications [91] and so on. However, research 

regarding use of these technologies in robotic systems is scarce. Here we offer a re- 

view of the related research and refer readers to the recent survey [10] for a more 

comprehensive study of the literature.
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Nakamura et al. [75] aimed to reduce the energy consumption of space robot 

systems by storing regenerated energy as kinetic energy in a momentum wheel. The 

proposed approach reduces energy loss by avoiding recharging the regenerated energy 

back into the batteries. Numerical simulations showed that the amount of energy 

saved was significantly large compared with the heat loss due to electric resistance of 

the motors. Similarly, Gale et al. [25] investigated the feasibility of using a flywheel 

energy storage system (FESS) to recover otherwise dissipated energy in an six degree 

of freedom (DOF) robotic manipulator. The flywheel is considered as an additional 

joint of the robotic system and is controlled to maintain the DC bus voltage at a 

constant reference value. Excess mechanical energy is initially converted to electrical 

energy in the DC bus, and then converted back to mechanical energy to be stored in 

the flywheel. Only simulation results are provided and the authors point out the need 

for experimental evaluations to further investigate the effectiveness of the approach. 

Xu et al. [121] took a similar approach and simulated a crane robot that uses a FESS 

to recover energy.

Izumi et al. [46] considered a DC servo system capable of regenerating excess 

energy into a conventional capacitor. They formulated and solved a point-to-point 

trajectory optimization problem for this servo system by minimizing the dissipated 

energy. Experimental results showed storage of excess energy in the capacitor while 

the motor was decelerating. In a later work Izumi et al. [45] considered a two-link 

vertically articulated manipulator with energy regeneration. A point-to point optimal 

trajectory problem minimizing dissipated energy was solved for this robot. Simulation 

results showed that the optimal trajectory reduces energy consumption compared to 

the conventional non-optimized trajectory. While conventional capacitors were used, 

the authors pointed out the need for larger capacitances.

Fujimoto [24] found energy minimizing trajectories for bipedal running. The 

problem was formulated as an optimal control problem and solved numerically for a
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five link planar biped robot. The analysis took into account the possibility of energy 

regeneration. The optimal knee trajectory showed regions of positive and negative 

power. Based on the optimization results it was concluded that the use of energy 

regeneration mechanisms, such as elastic actuators or back-drivable actuators com­

bined with bidirectional power converters, can be used to reduce the overall energy 

consumption. Other works in that follow this research direction have focused on min­

imizing the cost of transport in bipedal and quadrupedal robots by optimizing joint 

trajectories, controls, and system parameters (e. g. link length, actuator placement, 

etc. ) [8, 31, 120]. Incorporating energy regeneration into these systems can open up 

possibilities for further optimization in energy consumption efficiency.

Hansen et al. [33] considered a KUKA robot and found trajectories that min- 

imize the amount of external electrical energy supplied to the motor drivers. The 

motor drivers are coupled together through a common DC bus, allowing power to 

flow from one joint of the robot to another. However their work does not include a ca­

pacitor to store excess energy. Thus energy regenerated by the robot joints is wasted 

unless at the same time other joints utilize the regenerated energy. The authors 

pointed out the use of a storage capacitor as a future development. Joint trajectories 

are described by B-splines and are optimized using a gradient based optimization 

method. Experimental results showed a 10% decrease in total energy consumption 

for the robot.

Seok et al. [89] present design principles for minimizing energy consumption in 

legged robotic systems for implementation on the MIT Cheetah robot (Massachusetts 

Institute of Technology, Cambridge, MA). The authors identify three main sources of 

energy dissipation in locomotion: actuator Joule losses, friction in the transmission, 

and interaction with the environment. Design principles such as using high torque 

density actuators, energy regenerative elements, low loss transmissions, and a low 

leg inertia are then devised to improve energy efficiency at the source of energy loss.
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An elastic element is used in series with the motor to store recovered energy. A low 

impedance power flow path is also said to increase power generation and regeneration 

efficiency. In addition, the authors point to the trade-off in choosing the transmission 

ratio to reduce energy consumption, a high transmission ratio reduces the Joule losses, 

but at the expense of increasing losses due to friction and environment interaction.

In the powered prosthesis field, as early as the 1980s, a group at MIT devel­

oped a transfemoral prosthesis that used conventional capacitors to store regenerated 

energy [43, 90, 101]. They aimed to design the system so that no external power 

would be required for operation and the power required for the prosthesis would be 

regenerated during passive portions of the gait. The results suggested the use of

larger capacitances, which were not available at the time.

The SPARKy powered ankle prostheses [38-40, 42], uses energy storing elastic 

elements in series with an electric motor to reduce peak power demand of the motor 

and the overall energy consumption of the system. They conclude that by tuning the 

spring stiffness and the transmission mechanism, the motor power can be amplified 

up to four times and the system's energy consumption can be cut in half.

Tucker et al. [103] developed an analytical model of a regenerative powered 

transfemoral prosthesis. Energy is regenerated by controlling the actuator damping 

during passive regions of operation. A regeneration manifold is found that limits 

actuator damping that result in energy regeneration.

Everarts et al. [22] also use an elastic element in series with an electric motor, 

to reduce the peak power and regenerate energy, in a powered ankle prosthesis. They 

emphasize that a variable stiffness actuator is needed to comply with different gaits 

and cadences. They then proposed the use of a variable transmission in series with 

the motor and an elastic element to change the overall stiffness of the actuator. 

Simulation studies are provided to validate the approach.

Richter [81] proposed a unifying framework for modeling and control of robots
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with regenerative drive systems. Based on this framework, several papers have fo­

cused on the use of evolutionary algorithms and other numerical methods to find 

optimal system parameters that optimize a combination of motion tracking and en­

ergy enhancing objectives [18, 20, 27, 80, 82, 84, 111, 112].

1. 6 Problem Statement

Most of the research on energy regenerative robotic systems is concerned 

with specific systems and models, and the results derived from these works are not 

general, and cannot be directly applied to other systems and models. The framework 

proposed by Richter [81] enables a systematic treatment of robot motion, control, and 

systems optimization, with explicit consideration of energy regeneration. It is capable 

of capturing various regenerative actuators in various domains (electromechanical, 

hydraulic, etc. ), that can be implemented in industrial robots, powered prostheses, 

and many other robotic systems. This framework is used as an underlying basis for 

all the results developed in this dissertation.

Based on this framework, we consider robots with regenerative electro-mechanical 

drive systems, where a fairly general model is used to express the dynamic behavior 

of the actuators. The results of this dissertation are valid for any robotic systems 

that can be captured by the framework and the generic actuator model.

Our goal is to explore the possibilities and limitations of robots with energy 

regenerative drive systems. We aim to derive bounds on the amount of energy that 

can be regenerated, given control and motion objectives for a robotic system. To 

achieve this goal, optimization problems are considered based on the aforementioned 

framework to find optimum robot parameters and joint trajectories that maximize 

energy regeneration.

When possible, closed-form solutions are sought that provide insight into the 

regenerative capabilities of the system, can be used as guidelines for designing efficient
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energy enhancing robots, and can be applied to a wide range of robotic systems. When 

closed form solutions are not feasible, we resort to numerical methods to find solutions 

to the optimization problems.

While most efforts have focused on theory and simulations, experimental eval­

uations of the effectiveness of energy regeneration are very scarce in the robotics 

literature. We focus on two main applications, industrial robotic manipulators, and 

lower limb powered prosthesis, and provide experimental results to evaluate the ex­

tent to which energy regeneration can reduce the overall energy consumption of these 

systems.

1. 7 Specific Aims

The objectives of this dissertation are as follows:

Objective 1: Extend the baseline framework developed by Richter [81]. We

aim to investigate possible configurations for the electrical interconnection between 

regenerative actuators, specifically, configurations that allow for direct joint-to-joint 

energy transfer. We aim to extend the baseline framework to include the new con- 

figuration, and use it to formulate optimization problems that will shed light on the 

advantages of different configurations, and possibilities of direct joint-to-joint energy 

transfer.

Ob jective 2: Investigate parameter optimization problems for energy re­

generative robots. Using the extended framework, and assuming given motion 

trajectories, closed-form expressions are sought for the optimal manipulator parame­

ters (link masses, link lengths, etc. ) and actuator parameters (gear ratios, etc. ) that 

maximize energy regeneration between any two times.
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Objective 3: Investigate trajectory optimization problems for energy re­

generative robots. Assuming a fairly generic model for the robot and the drive sys- 

tem, based on the aforementioned framework, we investigate motion and force/moment 

trajectories that maximize energy regeneration between any two times, given a set of 

system parameters.

Objective 4: Experimentally evaluate energy regeneration in an indus­

trial robotic manipulator. We aim to demonstrate the results of point-to-point 

trajectory optimization, using the PUMA 500 robot as a case study. We also aim to 

evaluate the effectiveness of energy regeneration, by preparing an experimental setup, 

and measuring power flows at key locations. Moreover, a definition for quantifying 

the effectiveness of energy regeneration needs to be developed.

Objective 5: Design, control, and experimentally evaluate an energy regen­

erative powered transfemoral prosthesis. The prosthesis prototype, in addition 

to providing natural gait for the amputee, should reduce energy consumption of the 

prosthesis, by explicitly considering energy regeneration in both hardware and control 

design.

1. 8 Organization of this Dissertation

Chapter II presents the framework developed in [81] for analyzing robots with 

regenerative drive systems. We extend this framework to include a configuration for 

direct joint-to-joint energy transfer, and provide equations expressing the amount of 

energy regenerated. This chapter provides the underlying basis for the optimization 

problems formulated in subsequent chapters.

Chapter III formulates and solves several parameter optimization problems 

pertaining to energy regenerative robots. Assuming the robot follows predefined

15



trajectories, closed-form expressions are found for the robot and actuator parameters, 

that maximize energy regeneration. Optimal solutions are shown to be global and 

unique. In addition, closed-form expressions are provided for the maximum attainable 

energy, which places a theoretical limit on the amount of energy that can be recovered.

Chapter IV considers trajectory optimization problems for robots with energy 

regeneration. Optimization problems are formulated using the aforementioned frame­

work to maximize energy regeneration assuming given system parameters. Closed- 

form solutions are obtained for the optimal external force/moment trajectory. Also, 

a more general trajectory optimization problem is studied which maximizes energy 

regeneration with respect to any variable satisfying a set of conditions. For each 

problem, the solutions are shown to be global and unique. Explicit expressions for 

the maximum attainable energy regeneration are derived, and simulation examples 

are provided to demonstrate the results. Furthermore, we solve the linear optimal 

control problem, where closed-form solutions are provided for linear time invariant 

systems. We also consider the general nonlinear optimal control problem, for cases 

where the robotic system cannot be modeled linearly. In the general case, deriving 

closed-form analytical solutions is not always possible, and numerical methods must 

be used to find the optimal solution. The PUMA 500 robot is used as a case study 

to demonstrate the results.

Chapter V presents the experimental evaluation of optimal trajectories which 

maximize energy regeneration for the PUMA 500 robot. The nonlinear optimal con­

trol problem formulated in Chapter IV is solved numerically, using an experimentally 

identified model for the robot. Optimal trajectories are implemented on the PUMA 

robot via a robust control method. An experimental setup is provided to measure 

power flows and evaluate the effectiveness of energy regeneration.

Chapter VI presents the design, control, and experimental evaluation of an 

energy regenerative powered prosthesis. The prosthesis prototype is comprised of an
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ultracapacitor based regenerative knee and a passive ankle joint. We present a new 

varying impedance control method that allows walking at different speeds with the 

prosthesis, while reducing energy consumption by regenerating energy. The prosthesis 

is evaluated experimentally in a clinical setting, with an amputee test subject walking 

on a treadmill.
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CHAPTER II

MODELING AND CONTROL FRAMEWORK FOR ROBOTS WITH 

REGENERATIVE DRIVE SYSTEMS

2. 1 Introduction

We present the framework proposed by Richter [81] for modeling, optimiza­

tion, and control of serial robots with energy regenerative drive systems. Based 

on this framework, we consider robotic manipulators where a subset of the joints 

are conventional, in the sense that external power is used for actuation, while the 

remaining joints are energetically self-contained passive systems that use ultracapac­

itors for energy storage. A relatively generic model is considered that can be used to 

capture a wide range of drive systems in other domains (hydraulic, pneumatic, etc. ). 

The framework also develops a control strategy known as semi-active virtual control 

(SVC), which provides a simple method for controlling the energy regenerative joints.

We extend the concepts of this framework to account for electrical intercon­

nections that allow direct energy redistribution among regenerative joints. Moreover, 

equations for the amount of energy storage in the ultracapacitors are derived ex­

plicitly, which leads to the tractable optimization problems presented in subsequent 

chapters.
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2. 2 Manipulator Model

We consider general serial robots modeled with the dynamic equation:

where q is the n × 1 vector of joint coordinates, D(q) is the inertia matrix, C(q, q) 

is a matrix accounting for Coriolis and centrifugal effects, R(q, q) is a general non­

linear damping term, T is the vector of external forces and moments reflected to the 

manipulator joints, g(q) is the gravity vector and τ is the vector of joint forces and 

moments applied by a set of actuators.

2. 3 Semi-Active and Fully-Active Joints

In this context, robot actuators are either conventional (termed fully-active ) 

or regenerative (termed semi-active ). A fully-active actuator is conventional in the 

sense that it exchanges mechanical power with the robot and draws electric power 

from an external source (similar to typical electric drives). On the other hand, semi­

active actuators have self-contained energy storage. They are passive systems and 

only exchange mechanical power with the robot [81]. Figure 4 depicts the concepts 

of fully-active and semi-active actuators. Semi-active actuators are composed of a 

storage device to provide energy to the robot and possibly store excess energy, a 

power conversion element (PCE) to regulate power and to convert power between 

different domains, and a mechanical stage to interface with the robot. Without loss 

of generality, the first e joints of the robotic manipulator are assumed to be semi­

active, while the remaining n - e joints are fully-active. In addition, for simplicity, 

the terms actuators and joints will be used used interchangeably.
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Figure 4: Schematic of fully-active and semi-active joints. Fully-active joints use ex­
ternal power for actuation, while semi-active joints are passive and have self-contained 
energy storage.

2. 4 Star and Distributed Configurations

Depending on the arrangement of the storage elements for semi-active joints, 

two possible configurations are the distributed configuration and star configuration; 

other configurations can be a combination of these two. In the distributed configura­

tion, each semi-active joint has a separate storage element, which is only connected 

to other storage elements through dynamic interaction with the robot. In contrast, 

in the star configuration, all the semi-active joints are connected in parallel with a 

single storage element. Figure 5 illustrates the distributed and star configurations for 

the semi-active joints. The star configuration provides a way to transfer power from 

one joint to another joint requiring energy using the common storage element as an 

energy reservoir.

2. 5 Semi-active Actuator Modeling

Bond graphs [50] are used to facilitate the representation and equation deriva­

tion. We consider electro-mechanical semi-active actuators with an ultracapacitor as 

the storing element and a DC motor/generator as the PCE. The bond graph model 

however, can capture a wide variety of actuators in different domains (hydraulic, pneu­

matic, etc. ). Figure 6 shows the bond graph model of the semi-active JM in both the
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Figure 5: a) distributed configuration, b) star configuration. In the distributed con­
figuration each semi-active joint has a separate storage element, in the star config­
uration all the semi-active joints are connected to a common storage element. The 
star configuration allows for energy transfer from one semi-active joint to another.

star and distributed configurations. Each link of the robot with a semi-active joint is 

connected to a transmission where nj is the velocity ratio, mj is the inertia, and bj is 

the viscous damping coefficient. The output of the transmission is connected to a DC 

motor/generator with torque constant αj (which equals the back-emf constant) and 

resistance Rj. The inertial and frictional effects of the motor/generator are assumed 

to have been reflected to the link side, and already included in mj and bj. Note that 

bj is not necessarily constant and it can be a nonlinear function. Power transferred to 

the electrical side of the motor/generator is distributed as resistive losses and stored 

energy in the ultracapacitor C. An ideal four-quadrant motor driver is used used 

to control the amount and direction of voltage applied to the DC motor where rj is 

the converter voltage ratio (motor voltage divided by capacitor voltage). Since the 

motor driver does not boost the capacitor voltage, rj is assumed to be constrained to 

[-1, 1]. A value rj < 0 is used to apply reverse voltage to the DC motor terminals 

even though the capacitor voltage is always positive. Ultracapacitors typically have
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2. 6 Augmented Model

Figure 6: Bond graph of electro-mechanical semi-active joint in the distributed and 
star configurations.

where aj = αj nj and Vcap is the capacitor voltage. For the distributed configuration, 

Vcap is the capacitor voltage of the j-th semi-active joint (Vcap = yj /Cj ), and for the

star configuration, Vcap is the voltage of the central capacitor (Vcap = y/C ). Replacing

Tj from Eq. (2. 2) into equation Eq. (2. 1) and absorbing the terms containing q and q
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The interfacing torque or force, τj, for the j-th semi-active joint is derived from 

the bond graph model in Fig. 6 (detailed derivation can be found in Appendix A) as

very low internal resistances (on the order of mΩ), therefore we have omitted the 

effects of internal resistance in the capacitor model.



into the right-hand side, the augmented model is obtained as

Fully-active joints are directly controlled with uj, which is typically an analog input 

voltage to a torque-mode servo amplifier. For the semi-active joints, only the voltage

ratio rj is available as a control variable. Control is achieved with the semi-active 

virtual control method summarized next.

2. 7 Semi-Active Virtual Control Strategy

To control a robot with fully-active and semi-active joints, a virtual control 

law (τd) is first designed for u in the augmented model (Eq. (2. 3)). For fully-active 

joints, this law is enforced directly, using externally-powered servo drives. For semi­

active joints, the control input rj is adjusted such that the following virtual matching 

relation holds:
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The virtual control (τ d) can be any feedback law compatible with the desired motion 

control objectives for the augmented model. If virtual matching (Eq. (2. 6)) holds 

exactly at all times, any properties that apply to the virtual design such as stability, 

tracking performance, robustness, etc. will be propagated to the actual system [81]. 

The modulation law for exact virtual matching is simply obtained by solving for rj 

from Eq. (2. 6). Virtual matching is always possible as long as there is a positive volt­

age in the capacitor, and it will hold exactly whenever aj /Rj is precisely known, and 

the calculated rj is within [-1, 1]. Also, note that the virtual control law (Eq. (2. 6)) 

and the augmented model (Eq. (2. 3)) were derived without the need to model the ul­

tracapacitor. Ultracapacitor models are in general complex and nonlinear and do not 

cover all the aspects of the ultracapacitor's performance [6, 7, 13, 28]. Placing the ca­

pacitor voltage in feedback of the virtual control law allows the analysis and control of 

ultracapacitor based dynamic systems without modeling complexities associated with 

ultracapacitors. Furthermore, as with any system with finite on-board power storage, 

operation must be stopped once charge (indicated by Vcap ) drops below an accept- 

able threshold and the system recharged. It is important to note that self-sustained 

operation or even charge buildup can occur, depending on system parameters and 

trajectories [52, 53, 81, 83].

2. 8 Regenerated Energy

The energy regenerated or consumed by the j -th semi-active joint can be 

derived from the bond graph representation of Fig. 6 as
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where Vj is equal to the capacitor voltage Vcap, and

Note again that Vcap is the capacitor voltage of the j-th semi-active joint in the 

distributed configuration, and the voltage of the central capacitor in the star config- 

uration. Replacing for ij and Vj in Eq. (2. 7),

Assuming exact virtual matching (Eq. (2. 6)), ∆Ej can be written in terms of τd as

A value of ∆Ej > 0 indicates energy regeneration and ∆Ej < 0 indicates energy 

consumption in the specified time interval. For the distributed configuration, ∆Ej 

represents the energy regenerated in the capacitor of the j-th semi-active joint, and 

for the star configuration, by adding the energy contributions of all the semi-active 

joints, the energy regenerated in the central capacitor can found as

As a result of SVC, the above derivation is independent of the ultracapacitor model 

and is a only a function of the control law τd, joint velocities q, and joint parameters 

R and -. In other words, SVC decouples the dynamics of the robot and energy 

regeneration from the dynamics of the ultracapacitor.

In addition, by comparing Eq. (2. 10) and Eq. (2. 11), we can see that the en­

ergy regenerated in the central capacitor of the star configuration, is equal to the sum
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of all energies regenerated in the capacitors of the distributed configuration. As a di­

rect result of SVC under perfect virtual matching, the overall energy regeneration is 

independent of the configuration used, and is only a function of the actuator param­

eters (aj, Rj), joint trajectory (qj), and the designed control (τ d). when choosing one 

configuration over the other, more practical issues such as cost, size limitations, and 

discharge or overcharge prevention, can be overriding factors. One clear advantage 

of the star configuration is the possibility of power redistribution among semi-active 

joints. Intuitively, power surpluses from decelerating joints may be channeled to other 

joints currently demanding power, thus preventing the discharge or overcharge of the 

capacitors, and allowing for the use of smaller capacitances in the regenerative system 

design.

With some algebraic manipulation detailed in Appendix A, the energy regen­

erated in the distributed configuration (Eq. (2. 10)) can be expressed as

where Kj is the kinetic energy and PRj is the power dissipated in the resistive elements 

of the semi-active joint. It can be inferred from this equation that the energy stored

in the capacitor is a result of the work done by the interface torque -τj, the change 

of kinetic energy of the semi-active joint and the energy dissipated in the resistive 

elements and mechanical friction. A similar relation can also be derived for the star 

configuration:

where the energy stored in the central capacitor is a result of the work done by the 

interface torque/force, change in kinetic energy, and energy dissipation in all the
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where Wact is the work done by the fully-active joints, Wext is the work done by 

the external forces and moments, ∆EmT and ΣTm are the total mechanical energy and 

mechanical losses of the robot and the semi-active joints, respectively, ∆Es is the 

energy stored in the capacitor(s) and Σe represents the Joule losses of the semi-active 

joints. This equation shows that the energy stored in the capacitor is the net result

of Wact, Wext and ∆EmT minus all losses. The derivation of Eq. (2. 14) can be found in 

Appendix A. In Chapter III and IV, we formulate optimization problems based on 

maximizing Eq. (2. 10) and Eq. (2. 11).

27

semi-active joints.

An external energy balance for the entire robotic system in both configurations 

can be derived as:



CHAPTER III

PARAMETRIC OPTIMIZATION PROBLEMS

3. 1 Introduction

Using the framework presented in Chapter II, we formulate and solve relevant 

parametric optimization problems related to robots with regenerative drive systems. 

Given joint trajectories, the energy stored in the capacitor in a time interval is maxi­

mized with respect to robot parameters (link lengths, link masses, etc. ) and actuator 

parameters (gear ratios, etc. ). Closed-form solutions are found for each problem that 

are are shown to be strong global maxima and unique. In addition, closed-form ex­

pressions are given for the maximum attainable energy, which places a theoretical 

limit on the amount of energy that can be regenerated. A numerical simulation with 

a double inverted pendulum and cart system is provided to demonstrate the results.

3. 2 Problem Formulation

We aim to find optimal parameters for the robotic system that maximize 

energy regeneration between any two fixed time instants, assuming the virtual control, 

τd, has been designed such that the robot joints, q(t), asymptotically track a given 

reference trajectory, qd(t). Taking this assumption into account and using the linear
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parametrization property for robotic manipulators [96], Eq. (2. 1) can be expressed as

In addition to the parameter vector, Θ, Eq. (3. 2) also contains the parameters related 

to the semi-active actuators (gear ratio, torque constant, etc. ), we refer to these 

parameters as actuator parameters. Two problems leading to explicit solutions with

global properties are considered: i. optimization of the parameter vector Θ, and
αj2

ii. optimization of the actuator parameters nj, and α. For each problem, two 

objective functions are considered: i. optimization for a single semi-active joint, 

where we aim to maximize the contribution of the j-th semi-active joint to energy 

regeneration, and ii. optimization for all semi-active joints, where we aim to maximize 

energy regeneration contribution of all semi-active joints. These two objectives are

where Yn×p is the regressor of the augmented manipulator evaluated along reference 

trajectories, Yj is the j-th row of the regressor, and θp×1 is the parameter vector 

which contains all the physical parameters of to the robotic manipulator (link lengths, 

link masses, etc. ). For clarity, when referring to the θ parameters, we use the term 

parameter vector and when referring to the actual masses and lengths that comprise 

the parameter vector, we use the term physical parameters.

UsingEq. (3. 1) in conjunction with Eq. (2. 2) and Eq. (2. 6), any virtual control 

strategy that provides asymptotic tracking of reference trajectories satisfies
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formulated as

where Td is derived from Eq. (3. 2). For the distributed configuration, Objective (i) is

equivalent to maximizing energy regeneration in the capacitor of the j -th semi-active

joint, and Objective (ii) is equivalent to maximizing the sum of energies regenerated 

in the capacitors of all the semi active joints. Pertinent to the star configuration,

Objective (i) is equivalent to maximizing the energy regeneration contribution of

the j -th semi-active joint, and Objective (ii) is equivalent to maximizing the energy 

regenerated in the common capacitor.

Some notations used in subsequent sections are as follows: G( i1: i2, j1: j2 ) 

denotes the sub-matrix of G consisting of the intersection of rows i1 through i2 and 

columns j1 through j2, G( i1: i2, j ) denotes the intersection of rows i1 through i2 and 

column j, G(:, j) and G(i,: ) denote the j -th row and i-th column of G respectively, 

and V (i: j ) denotes the sub-vector of V consisting of elements i through j.

3. 3 Optimization of the Parameter Vector

In this section, we investigate closed-form solutions for the optimum parameter 

vector maximizing Objective (i) and Objective (ii).
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3. 3. 1 Optimization for a Single Semi-Active Joint

The problem is formulated as in Eq. (3. 3) where τjd is obtained from Eq. (3. 2). 

With some algebraic manipulation, Objective (i) can be written as:

From Eq. (3. 5), we can see that the objective function is quadratic in θ, and 

hence the optimization problem admits a unique global maximum, provided G is 

positive definite. A closer inspection of G reveals that it has the form of a Gram

31



matrix. The Gram matrix is a square matrix

Thus G is always positive-definite and invertible as long as Yj 1 · · · Yjp are linearly 

independent.

Kawasaki et al. [51] show that starting from any regressor for a robotic manip­

ulator, a minimal regressor with linearly independent columns can always be derived. 

This method can be applied to a single row of the regressor matrix to derive linearly 

independent elements Yjii. Note that if any of the elements Yji are zero, then the 

stored energy is independent of the parameter θi and the optimization problem is 

ill-defined. We consider the case where the optimization is with respect to the whole 

parameter vector, and the case where the optimization is with respect to only a part 

of the parameter vector.

Optimization with Respect to the Whole Parameter Vector

From the above discussion we conclude that as long as the elements Yji = 0 

optimization with respect to the whole parameter vector is well defined and admits a 

unique global maximum. By taking the derivative of Eq. (3. 5) with respect to θ and
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consisting of pairwise inner products gΓΛ =< AΓ, AΛ > of elements (vectors) of a 

Hilbert space [34]. All Gram matrices are positive-semidefinite. If A1 · · · Ak are 

linearly independent, then the Gram matrix is positive-definite. We assume that 

regressor entries evaluated on trajectories are functions in L2[t1, t2], a Hilbert space 

with an inner product defined as



equating it to zero, the optimal parameter vector, θ*, is obtained as

Replacing θ* into Eq. (3. 5), we can find the maximum attainable energy regeneration

Equation (3. 13) provides a limit on the maximum amount of energy that can be 

regenerated by varying the parameter vector. If this value is negative, capacitors 

will always discharge, regardless of how the parameter vector is chosen, signaling 

fundamental limitations (induced by the reference trajectories, external forces and 

actuator parameters).

Optimization with Respect to Part of the Parameter Vector

In certain cases, varying all the elements of the parameter vector may be 

physically unfeasible or impractical (changing friction coefficients). In addition, the 

objective function might be independent of some θi (pertaining to Yji = 0). For these 

cases, it is necessary to consider the problem of optimizing with respect to part of the 

parameter vector. The parameter vector θ, can be rearranged as θp x 1 = [θ-T  z x 1,θ T/0]t, 

where θ = θ(1: z) contains the entries to be optimized. G can also be partitioned as

where G11 = G(1: z. 1: z), G12 = G2T1 = G(1: z. z + 1: p), and G22 = G(z + 1: 

p. z + 1: p). Vector H can be partitioned as H = [H1T. H2T]T, where H1 = H(1: z) 

and H2 = H(z + 1: p). Similarly, vector I can also be partitioned as I = [I1T. I2T]T,
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Equation (3. 15) is also quadratic in θ, and thus admits a global unique maximum, as 

long as G11 is positive definite. Similarly, G11 is in the form of the Gram matrix and is 

always positive definite if the sub-matrix of the regressor Y = Y(j, 1: z) has linearly 

independent entries. A regressor matrix satisfying these conditions is always possible 

to find [51]. If any of the elements of the sub-matrix Yji are zero, then the stored 

energy is independent of the parameter θ i and the optimization problem is ill-defined. 

The θi pertaining to zero elements of Y should be placed in θ0.

Taking the derivative of Eq. (3. 15) with respect to θ and equating to zero, the 

optimal parameters θ* is obtained as

3. 3. 2 Optimization for All Semi-Active Joints

The problem is formulated as in Eq. (3. 4) where τjd is replaced from Eq. (3. 2), 

and asymptotic tracking of reference trajectories is assumed. With some algebraic 

manipulation, Eq. (3. 4) can be written as:
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where I1 = I(1: z) and I2 = I(z + 1: p). Equation (3. 5) then becomes



where G is defined as

Similar to the previous cases, Eq. (3. 17) is quadratic with respect to θ and 

the problem admits a global unique maximum provided G is positive definite. Matrix 

G is in the form of the Gram matrix and is always positive-definite assuming linear 

independence of the vectors Vi. Furthermore, vectors Vi are the columns of the sub­

matrix Y(1: e. 1: p), which can always be constructed to have linearly independent 

columns [51]. In addition, if any of the columns of Y(1: e. 1: p) are zero, the 

objective function is independent of the parameter pertaining to that column and the 

optimization problem is ill-defined.

Optimization with Respect to the Whole Parameter Vector

By taking the derivative of Eq. (3. 17) with respect to θ and equating it to 

zero, the optimal parameter vector, θ*, is obtained as

Replacing θ* into Eq. (3. 17), we find the maximum regenerated energy

It is worth noting that the results of this section can be extended to the case
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Equation (3. 22) is quadratic with respect to θ and has a global unique maximum

if G11 is positive definite. G11 is in the form of the Gram matrix and is positive 

definite provided the sub-matrix Y = Y(1: e, 1: z) has linearly independent columns, 

as previously discussed this condition can always be satisfied [51]. If any of the 

columns of the sub-matrix Y are zero (i. e. Yi = Y(:, i) = 0), the objective function 

is independent of the parameter pertaining to Yi, and the optimization problem is 

ill-defined, that parameter should be placed in θ0. Taking the derivative of Eq. (3. 22) 

with respect to θ and equating to zero, we find the optimal parameters θ* as
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of maximizing energy regeneration for a subset of the semi-active joints by simply 

changing the value of e to the number of semi-active joints of interest.

Optimization with Respect to Part of the Parameter Vector

Similar to previous cases, θ is rearranged as θpx1= [θ-Tzx1 θ0]t, where θ = θ(1: 

z) contains the entries to be optimized, Q is partitioned according to Eq. (3. 14), and 

the vectors H and I are partitioned as before. Equation (3. 17) can be written as

A close inspection of Eq. (3. 20) and Eq. (3. 12) reveals a relation between the 

optimal parameter vector resulting from optimization of all semi-active joints (de- 

noted by θ* and derived from Eq. (3. 20)), and the optimal parameter vector resulting 

from optimization of individual semi-active joints (denoted by θ*j and derived from



Eq. (3. 12)):

where the square matrix G(j ) refers to G calculated from Eq. (3. 8) for the case of maxi­

mizing energy regenerated by the j-th semi-active joint. It is related to G (Eq. (3. 18)) 

via

Equation (3. 24) indicates that θ* is a weighted average of θ(*j)s where the weights are
2Rj

2Rj/a2j G(j)

3. 3. 3 Practical Considerations

Up to this point, we have provided closed-form, global, and unique solutions to 

the problem of finding the optimal parameter vector that maximizes energy regener­

ation. In some cases, however, the optimal parameter vector might not be physically 

realizable. The problem of finding a set of physical parameters from the parameter 

vector is in general nonlinear and could have one, infinite, or no solutions. To guar­

antee a physically realizable parameter vector, constraints could be defined; however, 

feasibility constraints are in general non-convex, and solving an optimization problem 

with a quadratic convex objective function and non-convex constraints is by defini­

tion non-convex, and inherits all the problems associated with nonlinear non-convex 

optimization problems (non-uniqueness, local optima, etc. ).

Infeasible solutions are still of significant value, since they provide a direction in 

which the parameter vector can be changed in order to increase energy regeneration. 

Since the objective functions expressed in Eq. (3. 3) and Eq. (3. 4) are convex with 

respect to the parameter vector, moving towards the respective global optimum will 

always increase energy regeneration.

Infeasible solutions could also be an indication of unsuitable reference trajec-

37



tories and/or a poor selection of actuator parameters. Equation (3. 20) shows that 

varying the actuator parameters can move the optimal parameter vector in the pa­

rameter space, possibly from an unfeasible region into a feasible region. Modifying 

the actuator parameters and reference trajectories could be an alternative approach 

when encountered with unfeasible solutions.

3. 4 Optimizing the Actuator Parameters

We present and explicitly solve the problem of maximizing energy regenera­

tion with respect to j-th semi-active joint actuator parameters. These parameters 

include the gear ratio nj, and the composite parameter γ = Rj, referred to as the DC 

motor parameter. For the distributed configuration, the problem is formulated as in 

Eq. (3. 3), and for the star configuration, since the actuator parameters of the j-th 

joint only show up in the j-th term of Eq. (3. 4), the problem is equivalent to that of 

the distributed configuration.

3. 4. 1 Optimizing the Gear Ratio

Taking the derivative of Eq. (3. 3) with respect to the gear ratio, nj (note that 

aj = αjnj), and equating to zero, we find the optimum gear ratio
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In order for an optimal gear ratio to exist, the denominator of Eq. (3. 26) must be 

negative. Assuming this is the case, the second order condition for optimality becomes

In Eq. (3. 27), the expression in the parenthesis is equal to the denominator ofEq. (3. 26), 

hence if denominator of Eq. (3. 26) is negative and a solution exists for n*, this so­

lution will be a maximum. The only points where the derivative does not exist is 

at n- = 0 and n- = +∞. As n- → 0, ∆Es- → -∞, and as n- → +∞, provided 

the denominator of Eq. (3. 26) is negative, ∆Es- → -∞. Therefore we conclude that 

when the denominator of Eq. (3. 26) is negative, the optimal gear ratio calculated from 

Eq. (3. 26) is a global maximum. In the case where the denominator of Eq. (3. 26) 

is positive, there is no real solution for n*. This implies that d∆Esj/dnj is either 

strictly positive or strictly negative. As long as the denominator of Eq. (3. 26) is pos­

itive, d∆Es- /dn- is strictly positive and ∆Es- is an increasing function with respect 

n-. In this case, a larger gear ratio will result in a larger amount of energy regenera­

tion. Table III summarizes each of these cases. Detailed derivations of Eq. (3. 26) can 

be found in Appendix A.

Table III: Different cases for the optimal gear ratio problem.

Denominator of Eq. (3. 26) 
is negative

Denominator of Eq. (3. 26) 
is positive

A solution for nj* exists, and is a 
global maximum

∆Es- is an increasing function 
with respect to n-, a larger gear 
ratio will result in a more energy

regeneration.
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Figure 7: Energy regenerative double inverted pendulum and cart system. Joint 3 is 
fully-active, while Joint 1 and Joint 2 are semi-active.

3. 4. 2 Optimization with Respect to the DC Motor Parameter

Taking the derivative of Eq. (3. 3) with respect to γ = α2/Rj and simplifying

results in

We see that the d∆Esj/dγ> 0, indicating that ∆Esj is a increasing function with 

respect to γ, hence increasing γ will increase energy regeneration. This fact helps us 

greatly in the selection of DC machines to enhance energy regeneration.

3. 5 Simulation Studies

To demonstrate the results of this chapter, we consider a double inverted 

pendulum and cart system, shown in Fig. 7. In this system, q3 is fully-active, q1 

and q2 are semi-active, and no external forces or moments are applied. The regressor 

matrix Y and the parameter vector θ for this system are given in Appendix B. An 

inverse dynamics controller [65] is used as the virtual design for asymptotic tracking. 

In the absence of uncertainties, inverse dynamics is a valid choice to meet the tracking 

objective. However, the results of this chapter are valid for any controller capable of 

achieving asymptotic tracking. The reference trajectories tracked by the controller
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Figure 8: Reference trajectories of the double inverted pendulum and cart system.

are shown in Fig. 8. These trajectories have been chosen such that potential for 

energy recovery exists.

The initial parameter vector, θ0, for this system is

The actuator parameters for q1 and q2 are identical with R = 0. 3Ω, α = 0. 0302 Nm/A, 

and m = 1 × 10-5 kg-m2 (typical commercial values), the gear ratios are chosen to 

be n1 = 10 and n2 = 30, and joint friction is assumed to be negligible.

The system is simulated with the initial parameter vector and actuator pa­

rameters in the distributed and star configurations. Figure 9 shows the regenerated 

energy for both configurations. Because of perfect matching in SVC, the energy re­

generated in the common capacitor of the star configuration is equal to the sum of 

energies regenerated in the capacitors of the distributed configuration. Hence, for the 

sake of conciseness, we only present the energy regeneration results of the distributed 

configuration.
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In the initial non-optimized case, -181. 1 J and -1. 23 J is regenerated by 

Joint 1 and Joint 2 respectively, for the period of the simulation. Note that negative 

energy regeneration indicates energy consumption. The converter voltage ratio (r) for 

both semi-active joints and for both configurations are also shown. We can see that 

the capacitor voltage is sufficient to keep the voltage ratio between -1 and 1. Also, 

note that because of the short period of the simulation, the voltage ratio for the star 

and distributed configurations are almost identical. However, as the simulation time is 

increased, the capacitor voltages change by a significant amount, and the differences 

will become more clear. Power flows are computed for Joint 1 and Joint 2 in the 

distributed configuration based on Eq. (2. 12), and are shown in Fig. 9. Negative 

power indicates power going from the semi-active actuator to cart pendulum system 

joints (power consumption), and positive power indicates power flowing from the 

cart pendulum system joints back to the semi-active actuator (power regeneration). 

Again, SVC dictates that power flows be identical for both configuration. Energy 

will be regenerated, when the power flowing back from the cart pendulum (-τq > 0) 

exceeds the losses (PR) and the changes in kinetic energy (dK/dt) of the semi-active 

actuator. We can see from this figure that for Joint 1, excess power coming back 

from the cart pendulum system is all dissipated as Joule losses in the resistor, and for 

Joint 2, power flows back and forth between the capacitor of the semi-active actuator 

and the cart pendulum system.

For the first case, we maximize energy regeneration of Joint 1 (j = 1) with 

respect to the first five elements of the parameter vector (z = 5, p = 9). The optimal 

parameter vector is calculated directly from Eq. (3. 16),

and simulation results are shown in Fig. 10. We can see that as a result of the
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Figure 9: Simulation results with the initial parameter vector and actuator parame­
ters: top left) regenerated energy, top right) voltage ratio, lower left) power flows for 
Joint 1, lower right power flows for Joint 2. Distributed configuration: solid lines, 
star configuration: dotted lines.

optimization, Joule losses have decreased significantly and Joint 1 is regenerating 

energy, however Joint 2 is consuming energy at a faster rate compared to the previous 

case. At the end of simulation, Joint 1 regenerates 1. 48 J, and Joint 2 regenerates 

-14. 57 J of energy.

The problem of finding physical parameters (link mases, link lengths, etc. ) 

from the parameter vector does not admit a unique solution. For the cart pendulum 

system, feasibility conditions for extracting a set of realizable physical parameters
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We can verify that θ*case1 satisfies the above conditions. After finding the physical 

parameters from θ*case1, the external energy balance is calculated based on Eq. (2. 14), 

and is shown in the Sankey diagram [102] of Fig. 11. We can see that most of the 

energy being injected into the system from Joint 2 and Joint 3 is being dissipated as 

electrical losses (86. 28%) and only a small portion (7. 84%) is stored in the capacitor 

of Joint 1.

For the second case, we maximize energy regeneration for both Joint 1 and
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Figure 10: Simulation results for Case 1: top left) regenerated energy, top right) 
voltage ratio, lower left) power flows for Joint 1, lower right power flows for Joint 2. 
Distributed configuration: solid lines, star configuration: dotted lines.

from the parameter vector can be derived as



Figure 11: Sankey diagram for the external energy balance in Case 1. The overall 
mechanical energy is represented by ∆Em, Σe and Σm are the electrical and mechan- 
ical losses respectively, Wact is the work done by the fully-active joints, and ∆Esj 

is the energy going to (i. e., regenerated) or coming from (i. e., consumed) the j -th 
semi-active actuator.

Joint 2 (e = 2, z = 5, p = 9). The objective function is defined in Eq. (3. 4), and the 

optimal parameters are calculated from Eq. (3. 20)

From Eq. (3. 31), we see that the parameter vector is not physically realizable. How­

ever, as explained in Section 3. 3. 3, the unfeasible solution provides the direction for 

changing the parameter vector to increase energy regeneration. To demonstrate this, 

we vary θcase1 in the direction of the unfeasible parameter vector θcase2, until one of 

the feasibility conditions of Eq. (3. 31) is violated. Doing so results in

Simulation results for Case 3 are shown in Fig. 12 and Fig. 13. Compared to Case 1,
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Time (s) Time (s)

Figure 12: Simulation results for Case 3: top left) regenerated energy, top right) 
voltage ratio, lower left) power flows for Joint 1, lower right power flows for Joint 2. 
Distributed configuration: solid lines, star configuration: dotted lines.

electrical losses for Joint 1 and Joint 2 have decreased, resulting in a significant de­

crease in total losses. At the end of simulation, Joint 1 and Joint 2 regenerate -1. 82 J 

and 0. 84 J of energy respectively. The external energy input has also decreased sig­

nificantly, from 18. 85 J for Case 1 to 3. 38 J for the current case. For Case 3, the 

losses consist of 42. 58% of the input energy, which is a significant decrease compared 

to 86. 28% for Case 1.

An alternative approach when facing unfeasible parameter vector solutions 

is varying the actuator parameters to move the optimal solution into a feasible re­

gion. For Case 4, we change the gear ratio of Joint 2 to 100. The resulting optimal 

parameter vector is calculated from Eq. (3. 20) with e = 2, z = 5, and p = 9,

We can verify that θcase4 satisfies the feasibility conditions. Simulation results are
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shown in Fig. 14 and Fig. 15. An overall power balance shows that the electrical 

losses of Joint 2 have decreased compared to the previous cases. At the end of 

simulation, Joint 1 regenerates 1. 25 J, Joint 2 regenerates -0. 59 J, and a total of 

0. 66 J of energy is gained.

The main advantage of using the star configuration over the distributed con­

figuration is clear in this example. Using the distributed configuration results in a 

charge build up in the capacitor of Joint 1, and a decrease of charge in the capacitor of 

Joint 2. This trend will continue until the capacitor voltage of Joint 2 drops below the 

threshold required to maintain exact virtual control matching (|r| ≤ 1 in Eq. (2. 6)). 

In the star configuration, energy regenerated by Joint 1 can be supplied to Joint 2 

through the common capacitor, thus preventing violation of the virtual matching con­

ditions, and allowing the system to work indefinitely. Note that energy is provided 

to the system through Joint 3, which is fully active. Also, in a real world situation, 

continuous charging of capacitors beyond their maximum capacity will cause damage

Figure 13: Sankey diagram for the external energy balance in Case 3. The overall
mechanical energy is represented by ∆Em, Σe and Σm are the electrical and mechan­
ical losses respectively, Wact is the work done by the fully-active joints, and ∆Es-

is the energy going to (i. e. regenerated) or coming from (i. e. consumed) the j-th
semi-active actuator.
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to them.

Figure 14: Simulation results for Case 4: top left) regenerated energy, top right) 
voltage ratio, lower left) power flows for Joint 1, lower right power flows for Joint 2. 
Distributed configuration: solid lines, star configuration: dotted lines.

Figure 15: Sankey diagram for the external energy balance in Case 4. The overall
mechanical energy is represented by ∆Em, Σe and Σm are the electrical and mechan-
ical losses respectively, Wact is the work done by the fully-active joints, and ∆Esj

is the energy going to (i. e., regenerated) or coming from (i. e., consumed) the j-th
semi-active actuator.
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Figure 16: Simulation results for Case 5: top left) regenerated energy, top right) 
voltage ratio, lower left) power flows for Joint 1, lower right power flows for Joint 2. 
Distributed configuration: solid lines, star configuration: dotted lines.

For Case 5, we optimize the gear ratios of Joint 1 and Joint 2. Assuming the

parameter vector is equal to θ*4, the optimal gear ratios are calculated from Eq. 3. 26 

as n*1 = 39. 89 and n*2= 158. 25. Simulation results are shown in Fiq. 16 and Fig. 17. 

The overall power balance shows a further decrease in electrical losses compared to 

the previous cases. At the end of the simulation, Joint 1 and Joint 2 regenerate 1. 93 J 

and -0. 48 J of energy respectively. Comparing the Sankey diagrams for Case 4 and 

Case 5, we see that both cases have the same input energy, however, in Case 5, the 

electrical losses have decreased from 41. 15% to 14. 98%. This 26. 17% reduction in 

losses has been converted to an extra 26. 17% of energy regeneration.

3. 6 Remarks

In this chapter, we presented global closed-form solutions for maximizing en­

ergy regeneration with respect to the robot parameter vector or the actuator parame­

ters. We found solutions for the star and distributed configurations, and showed that
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the optimization problems under consideration are equivalent for both, but have dif­

ferent implications for each case. For instance, maximizing the energy regenerated in 

the capacitor of the j-th semi-active joint in the distributed configuration is equivalent 

to maximizing the energy regenerated by the j-th joint in the common capacitor of 

the star configuration. This is a direct result of the exact virtual matching associated 

with SVC. The main advantage of using the star configuration is that energy can be 

channeled through the common capacitor, from a joint with an excess of energy to 

a joint requiring energy, thus allowing for a longer periods of operation or possibly 

operating indefinitely.

We also saw that an optimal solution for the parameter vector does not nec­

essarily lead to a feasible solution for the corresponding physical parameters. We 

can define constraints to overcome this problem, however, feasibility conditions are 

in general nonlinear and non-convex, and solving a convex problem with non-convex 

constraints is non-convex and in general hard to solve; this is a limitation of the

Figure 17: Sankey diagram for the external energy balance in Case 5. The overall
mechanical energy is represented by ∆Em, Σe and Σm are the electrical and mechan­
ical losses respectively, Wact is the work done by the fully-active joints, and ∆Esj

is the energy going to (i. e., regenerated) or coming from (i. e., consumed) the j-th
semi-active actuator.

50



results. However, even when the feasibility conditions fail, the unfeasible solution 

provides a direction for varying the parameter vector that improves energy regenera­

tion. In the example provided, the parameter vector is varied in the direction of the 

unfeasible solution until one or more of the feasibility conditions fail. The resulting 

parameter vector, however sub-optimal, improves energy regeneration significantly in 

comparison to the baseline parameters.

In addition, unfeasible solutions can be an indication of unsuitable reference 

trajectories or actuator parameters. An alternative approach when confronted with 

unsatisfactory solutions is to modify these trajectories and parameters. Closed-form 

expressions for the optimal parameter vector, provide information on how to move 

the parameter vector from an unfeasible region to a feasible region.

Closed-form expressions are also given for the optimal actuator parameters. 

We showed that when a solution for the optimal gear ratio exists, it is an unique 

and global maximum, and when the optimal gear ratio does not exist, stored energy 

increases monotonically with the gear ratio. Energy regeneration was also shown to 

be strictly increasing with respect to DC motor parameter γ. This is an important 

design factor for selecting DC machines for regenerative applications.

Moreover, with some trajectories and parameters, charge buildup may occur 

in the capacitors. A net charging trend could be desirable for extended operating 

times in systems with on-board storage; however, ultracapacitors become damaged 

if overcharged. To prevent over-charging, regenerated energy can be stored using 

an additional backup capacitor, or dissipated in a control resistor by using a simple 

thermostat-like switching logic.

The solutions presented here are straightforward to use and eliminate or reduce 

the need for heuristic numerical computations. They also provide valuable insight into 

the limits and practicality of regenerative energy systems.
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CHAPTER IV

TRAJECTORY OPTIMIZATION PROBLEMS

4. 1 Introduction

We investigate trajectory optimization problems for robots with energy regen­

erative drive system. Given system parameters, and using the framework presented 

in Chapter II, force and motion trajectories are found that maximize energy regener­

ation of one or several semi-active joints. We strive to find closed-form solutions for 

these optimization problems; however, when analytical solutions are not attainable, 

we resort to numerical methods to find the optimal solutions. We also investigate 

the general linear and nonlinear optimal control problems, and provide simulations 

to demonstrate the results.

4. 2 Some Results from the Calculus of Variations and Optimal Control

Theory

In this section, we provide a brief overview of some of the results pertaining 

to the calculus of variations theory, and the variational approach to optimal control. 

Readers are refereed to [57] for a comprehensive discussion of both theories.

A functional, J, is defined as a rule of correspondence that assigns to functions 

x belonging to a certain class Ω, a unique real number [57]. Calculus of variations deals 

with finding necessary and sufficient conditions for optimality of functionals. The
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simplest form of a variational problem can be defined as finding the scalar function 

x* for which the functional

has a relative extremum, assuming t1 and t2 are fixed, x(t1) and x(t2) are defined, and 

the integrand g has continuous first and second partial derivatives with respect to all 

of its arguments. The necessary condition for optimality can then derived as [57]

Ifx(t1) and/orx(t2) areunspecified, in addition to the necessary condition of Eq. (4. 2),

extra boundary conditions must also be satisfied for optimality

For the general case,

the necessary condition for optimality becomes

where
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If x is specified at the initial and/or final times, the boundary condition for the 

problem is formulated as

and if the initial and/or final x is unspecified, the boundary conditions are derived 

from

Mixed boundary conditions are also possible, where some of the elements of x are 

specified and others are not.

Using calculus of variations, necessary optimality conditions can be derived

for the optimal control problem. The general optimal control problem is formulated

as finding the m × 1 control vector, u*(t), and the n × 1 state vector, x*(t), that

where the vector p is known as the costate. Necessary conditions for optimality are
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minimizes

while being subjected to

The cases considered here assume specified initial and final times, and specified initial 

conditions (i. e., x(t1) = x0). The Hamiltonian, denoted by H, is defined by



expressed as [57]

For fixed final states, the boundary condition is

and for free final states the boundary condition becomes

A combination of fixed and free final states is also possible.

4. 3 External Force/Moment Trajectory Optimization

In this section, we aim to find the optimal external force/moment trajectory 

that, when applied to the system, maximizes energy regeneration in the semi-active 

joints. We assume that the system parameters are given and the robot asymptotically 

tracks desired reference trajectories, qd. For the j-th semi-active joint, the problem 

is formulated as

where τ j' is derived from
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For maximizing energy regeneration in several semi-active joints, the problem reduces 

to the formulation presented in Eq. (4. 15), hence the solution presented here is valid 

for both cases. Using Eq. (4. 2), the necessary condition for optimality becomes

Replacing for F,, we have

If ∂τd∕∂T, = 0, the objective function is independent of Tj and the problem is ill

defined, hence

and the optimum external force/moment trajectory, Tj, is derived by replacing for

τ, d from Eq. (4. 16):

To show that this equation is indeed a maximum, we look at the second variation of 

the functional in Eq. (4. 15).
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Substituting Eq. (4. 19) into Eq. (4. 15), the expression for the maximum attainable 

energy regeneration is derived as



Replacing for Tj from Eq. (4. 20), the second variation reduces to

Therefore the initial premise is not valid, and 7j* is a global maximum. Moreover 7j* 

is the unique solution of Eq. (4. 20), and hence it is a unique global maximum.

Equation (4. 21) has some interesting features. It only depends on the ref­

erence trajectory followed by the joint (qj'), and the actuator parameters (nj, and 

Yj = aj/Rj). It is an increasing function with respect to nj∙ and γj∙, and a larger 

value for these parameters will contribute to more energy regeneration. Moreover, 

Eq. (4. 21) does not depend on the manipulator parameters (θ) and manipulator dy­

namics (Yj). This is due to the assumption that the joint will robustly follow the 

desired trajectory (qjd). We can conclude that Eq. (4. 21) expresses the maximum 

attainable energy regeneration in j-th semi-active joint with respect to 7j*, provided 

that the joint asymptotically tracks the desired trajectory.

To demonstrate the results of this section, we consider again the double pen-
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which is always negative, and hence 7j* is a maximum. Furthermore, to demonstrate 

that this maximum is global, we initially assume that it is not, and there exists an 

alternative desired control for which the system regenerates more energy:

where υ(t) can be any function. Replacing into Eq. (4. 15) results in



Figure 18: Reference trajectories for the cart double pendulum system.

dulum and cart system, where the manipulator parameter vector is given by

and the semi-active actuators are identical except for the gear ratios, with R = 0. 3 Ω, 

α = 0. 0302 Nm/A, m = 1 × 10-5 kg. m2, n1 = 100, n2 = 30, and negligible joint 

friction.

Figure 18 shows the reference joint trajectories, where an inverse dynamics 

controller is used to guarantee trajectory tracking. Initially, no external forces or 

moments are exerted on the system, and Fig. 19 shows the simulation results for this 

case. Both semi-active joints are are consuming energy, such that at the end of the 

simulation, Joint 1 and Joint 2 regenerate -87. 1 J and -63. 56 J respectively. Power 

flows show that most of the input energy to the semi-active joints is dissipated as 

Joule losses.

The optimal moment trajectory, T2*, that maximizes energy regeneration for 

Joint 2 is computed using Eq. (4. 20), and shown in Fig. 20. The simulation results
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Figure 19: Simulation results for initial case with no external moments applied: top 
left) regenerated energy, top right) voltage ratio, lower left) power flows for Joint 1, 
lower right power flows for Joint 2. Distributed configuration: solid lines, star con­
figuration: dotted lines.

with T2* applied to the system are shown in Fig. 21. Note that the inverse dynamics 

controller tracks the reference trajectories even with T2* applied. We can see that 

Joint 2 is regenerating energy such that 8. 32 J of energy is regenerated at the end of 

the simulation. This value agrees with that obtained from Eq. (4. 21). A comparison 

of the power flows of Fig. 19 and Fig. 21 show that the Joule losses in Joint 2 have 

decreased while power flows and energy regeneration for Joint 1 remain the same. 

This is due to the fact that T2* does not affect the dynamics of Joint 1. The Sankey 

diagram in Fig. 22 shows that the vast majority of input energy (91%) is being 

dissipated as resistive losses.
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Figure 20: Optimum moment trajectory (N. m), 72*, calculated from Eq. (4. 20), that 
maximizes energy regeneration in Joint 2 of the cart double pendulum system.

4. 4 A More General Trajectory Optimization

We consider maximizing energy regeneration with respect to the variable x(t), 

that satisfies the following conditions:

(i) x = qj 

∂τjd

(4. 27)

(ii) lx. =0 
∂hτjd

(4. 28)

(iii) = 0 for h > 1∂xh
(4. 29)

The variable x can be any motion, force, or moment trajectory that satisfies the above 

conditions. When maximizing energy regeneration in a single semi-active joint, and 

assuming all other system variables and parameters are fixed, the problem can be 

formulated as
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Figure 21: Simulation results with the optimal moment trajectory, T2*, applied: top 
left) regenerated energy, top right) voltage ratio, lower left) power flows for Joint 1, 
lower right power flows for Joint 2. Distributed configuration: solid lines, star con­
figuration: dotted lines.

Figure 22: Sankey diagram for the external energy balance with the optimal moment 
trajectory, T2*, applied. The overall mechanical energy is represented by ∆Em, Σe 

and Σm are the electrical and mechanical losses respectively, Wact is the work done by 
the fully-active joints, and ∆Esj is the energy going to (i. e., regenerated) or coming 
from (i. e., consumed) the j-th semi-active actuator.
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where τjd is obtained from Eq. (4. 16). Using Eq. (4. 2), the necessary condition for 

optimality is derived as

Since ∂τj∕∂x = 0 (Condition (ii), Eq. (4. 28)), the necessary condition for optimality

becomes

which is the same as what was obtained for the force/moment trajectory optimiza­

tion problem in the previous section. This is not surprising since Tj satisfies all the 

conditions for x (Eq. (4. 27) to Eq. (4. 29)).

τjd can be rearranged as (Condition (iii), Eq. (4. 29))

and the optimal value for x can be derived as

Similar to Section 4. 3, we can show that x* is a unique and global maximum. Re­

placing Eq. (4. 32) in Eq. (4. 30), the expression for the maximum attainable energy 

is derived and is equal to Eq. (4. 21).

These results can be extended for the case of maximizing energy regeneration 

in several semi-active joints:
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where the variable x satisfies

(i) χ = qj

∂τjd

j=1,..., e (4. 36)

(ii) ~∂j~ =0 ∂x j=1,..., e (4. 37)

∂hτjd
(iii) j = o 

∂xh
h > 1 and j = 1,. .., e (4. 38)

The necessary condition for optimality is then derived from Eq. (4. 5) as

Rewriting τjd as in Eq. (4. 33) (Condition (iii), Eq. 4. 38), the optimum x can be found 

as

A careful inspection of the above equation reveals a relation between the optimum x

when optimizing for a single semi-active joint (xj derived from Eq. (4. 34)), and the 

optimum x when optimizing for all semi-active joints (x* derived from Eq. (4. 40)). 

This relation can be expressed as the weighted average of x*:

where wj = 2⅞jA2.j a j2 j

To demonstrate the results, we revisit the cart double inverted pendulum sys­

tem, where the manipulator and actuator parameters are the same as the example 

in Section 4. 3, an inverse dynamics controller is used to track reference trajectories 

for Joint 1 and Joint 2 shown in Fig. 18, and no external forces or moments are 

applied to the system. We aim to find the optimal reference trajectory for Joint 3 

(q3d) that maximizes energy energy regeneration in Joint 1 and Joint 2. Note that
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Using Eq. (4. 40) the optimal q3 is derived, and integrating yields cfe and qd. The initial 

conditions for integration are chosen such that mean(q3d) = 0 and mean(q3d) = 0. 

These trajectories are shown in Fig. 23. Figure 24 and Fig. 25 show the simulation 

results. We can see that compared to the results of the non-optimized case in Fig. 19, 

energy regeneration has increased such that at the end of the simulation, Joint 1 

and Joint 2 regenerate -45. 21 J and 38. 58 J of energy respectively, which adds up 

to a total of -6. 63 J for both semi-active joints. The Sankey diagram in Fig. 25 

shows that the optimized q3 injects energy into the system ( Wact ) to maximize energy 

regeneration.

4. 5 Linear Optimal Control Problem

In this section, we present the closed-form solution to the optimal control 

problem for regenerative energy systems described by a linear system model. This 

solution can be applied to energy regenerative robotic systems that can be accurately 

modeled as a linear time invariant systems.
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Joint 3 is fully-active. We can verify that q'f satisfies all the conditions of Eq. (4. 36) 

to Eq. (4. 38). τ1d and τ2d can be rearranging according to Eq. (4. 33), to find



Figure 23: Optimum motion trajectory for Joint 3, q3d (m), that maximizes energy 
regeneration in Joint 1 and Joint 2.

Figure 24: Simulation results with optimized trajectory for Joint 3: top left) regen- 
erated energy, top right) voltage ratio, lower left) power flows for Joint 1, lower right 
power flows for Joint 2. Distributed configuration: solid lines, star configuration: 
dotted lines.
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Figure 25: Sankey diagram when the trajectory of Joint 3 is optimized. The overall 
mechanical energy is represented by ∆Em, Σe and Σm are the electrical and mechan­
ical losses respectively, Wact is the work done by the fully-active joints, and ∆Esj 

is the energy going to (i. e., regenerated) or coming from (i. e., consumed) the j-th 
semi-active actuator.

Taking the state and control vectors to be

the objective is to find the optimal virtual control, τ d (t), and state trajectory, x (t), 

that maximize energy regeneration in semi-active joints 1 to e

while being constrained to the dynamic equation of the system
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where τext is the external force or moment applied to the joints. All the system 

parameters are assumed to be constant, and all other joints not considered in the 

optimization are assumed to follow reference trajectories, qf. We take the initial 

states (x(0)) and the final time (tf) to be fixed, and take the final final states (x(tf)) 

to be free. We also use the penalty function approach to drive the system to the final 

states (xf), where H is a diagonal matrix with positive elements. This problem is 

equivalent to

where

with 0 being the zero matrix, and I the identity matrix. The solution presented here 

closely follows the solution of the linear tracking optimal control problem, which can 

be found in [57]. The Hamiltonian can be derived from Eq. (4. 11) as

and the necessary conditions for optimality from Eq. (4. 12) as
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Solving Eq. (4. 51), the optimal virtual control can be found as

Replacing in Eq. (4. 52) and Eq. (4. 50) and simplifying results in

which can also be represented in matrix form as

The above system of differential equations are linear, time varying, and non-homogeneous. 

The solution can be written as

where φ is the transition matrix and can be partitioned as

andtheintegral inEq. (4. 57) can be replaced by the 2n×1 vector [f1T, f-T]T. Replacing 

in Eq. (4. 57) we obtain
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The boundary conditions can be derived from Eq. (4. 14), and the final condition for 

the optimal costate is

Replacing

into Eq. (4. 54) and Eq. (4. 55) and eliminating x* we obtain

Since this equation must be satisfied for all x (t) and all τext, we have
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Replacing in Eq. (4. 60), and substituting x*(tf ) from Eq. (4. 59), we find p*(t) as



From Eq. (4. 61) and Eq. (4. 63), the final conditions for K(t) and S(t) become

To demonstrate the results, we consider an example of a vehicle seat suspension 

system, depicted in Fig. 26a. In this example the base of the seat is moving with the

trajectory w, and is connected to the seat via a regenerative semi-active actuator,

and a spring with stiffness Ks. We aim to find the optimal control, (τd) *, and the 

resulting seat trajectory, x*, maximizing energy storage.

The system parameters are

Mm = 100 kg 

m = 1 × 10-5 kg. m2

R = 0. 1Ω

α = 0. 0502 Nm/A

b = 1 e - 2 N. m. s 

n = 100 rad/m 

Ks = 9810 N/m
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Using the final conditions, Eq. (4. 65) and Eq. (4. 66) can be integrated backwards in 

time to derive K(t) and S(t). Replacing K(t) and S(t) into Eq. (4. 63), and then 

replacing the result into Eq. (4. 53), we obtain the optimal virtual control

The maximum attainable energy regeneration can then be derived as

(4. 70)



Figure 26: a) Example of a vehicle suspension system, used to demonstrate the linear 
optimal control problem for maximizing energy regeneration. b) The profile for w is 
selected to model a bump in the road.

and w follows the function

which is used to simulate a bump in the road, and is shown in Fig. 26b. The linear 

state space model of the system can be derived as

We set the final desired state of the system to xf = [0, 0], and select

To find the optimal solution, we integrate Eq. (4. 65) and Eq. (4. 66) backwards in 

time to obtain K(t) and S(t), shown in Fig. 27a and Fig. 27b. The optimal control
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Figure 27: a) K(t) derived from integrating backwards Eq. (4. 65), b) S(t) derived 
from integrating backwards Eq. (4. 66).

is derived from Eq. (4. 68), and Fig. 28 shows the system response when applying the 

optimal control. We can see that the movement of the base causes the seat to start 

vibrating. The semi-active joint initially takes advantage of this vibration and starts 

regenerating energy. However, close to the end of the simulation, the semi active joint 

consumes energy to bring the system states to zero and satisfy the final conditions. 

A total of 5. 41 J energy is regenerated, which agrees with what was obtained from 

Eq. (4. 69).

4. 6 General Optimal Control Problem

The results of the previous section are limited to robotic systems that can be 

accurately modeled by linear equations; this, however, is not the case for most robotic 

systems. In this section, we investigate the general nonlinear optimal control problem, 

where we aim to find motion and control trajectories that maximize the amount of 

energy regenerated for a robotic system that is modeled by nonlinear equations.
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Figure 28: Simulation results for seat suspension system with optimal control: top 
left) regenerated energy, top right) system states, lower left) voltage ratio, lower right) 
semi-active joint power flows.

4. 6. 1 Problem Formulation

The problem is formulated as an optimal control problem of finding the vector 

of optimal trajectories (q(t)) and the vector of optimal controls (τd) that maximize 

energy regeneration in semi-active joints 1 to e:

The robot starts from an initial configuration at time zero, and moves to a final 

configuration at some specified time, while being subjected to the dynamic equations 

of Eq. (2. 3), bounds on the control, and constraints for the starting and ending points
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of the trajectories.

We assume that all motion and control trajectories of other joints not considered 

in the optimization are fixed. The bounds for the controls τ d are obtained from

the requirement |rj | ≤ 1 and Eq. (2. 6), where the available capacitor voltage Vcap is 

assumed constant for the purposes of the optimization. Trajectories start from the

initial position qi and initial velocity qi, and reach the final position qf with final 

velocity qf at time tf.

As a case study, we consider finding optimal trajectories for a PUMA 500 

robot. However, the methods used here are applicable to any robotic manipulator 

that can be modeled as in Eq. (2. 3). The PUMA robot shown in Fig. 29a consists of 

three main joints and a spherical wrist, which together provide six degrees of freedom 

for the robot. Here, we only consider the dynamics of the three main joints of the 

robot which have the most potential for energy regeneration. The three main joints, 

q1, q2, and q3, are assumed to be semi-active and connected in the star configuration 

via a central ultracapacitor. The robot is constrained to start from the initial position 

qi = [0, —π/2, 0] (in joint space) and initial velocity qi = [0, 0, 0] - referred to as Point 

A - and finish at qf = [π/3, 0, π/4] with qf = [0, 0, 0] - referred to as Point B. These 

two points are shown in Fig. 29b.

Using the linear parameterization property for robotic manipulators [96] and 

assuming no external forces and moments are applied to the robot (T = 0), the
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Figure 29: a)The PUMA 500 robot used as a case study for finding optimal trajecto­
ries that maximize energy regeneration. Coordinate frames for modeling the PUMA 
robot are assigned using the Denavit-Hartenberg convention. b) Starting position 
(Point A) and the final position (Point B) for the PUMA robot.

dynamic equations for the PUMA robot (Eq. (4. 75a)) can be written as

where Yn×p is the regressor matrix, θp×1 is the parameter vector, and R includes 

the linear/nonlinear damping and frictional effects for the robot joints and the drive 

mechanism. Here, joint friction is modeled as a linear damping term

Using the Denavit-Hartenberg (DH) convention [96], dynamic equations for the PUMA 

robot and the semi-active drive mechanisms are derived. These equations are pre- 

sented in regressor and parameter vector form in Appendix B. Figure 29a shows 

coordinate frames assigned for the PUMA robot using the DH convention.

The optimal control problem defined in Eq. (4. 74) and Eq. (4. 75) is in gen-

75



eral nonlinear and non-convex. It can have none, one, many, or an infinite number 

of solutions. When no immediate analytical solution exists, one normally resorts to 

numerical methods for solving the problem. The optimality conditions for this prob­

lem (Eq. (4. 12)) generally lead to a set of differential equations with split boundary 

conditions. Methods such as steepest descent and variation of extremals are are used 

for solving theses types of two point boundary value problems [57]; we have taken an 

alternative approach to solve the problem numerically.

After deriving dynamic equations for the PUMA robot and the regenerative 

semi-active joints, we use the method of direct collocation [84, 105, 108] to transcribe 

the optimal control problem into a large-scale nonlinear program (NLP) problem. In 

this method, the states (q, q ) and controls (τd) are discretized into N temporal nodes. 

The cost function (Eq. (4. 74)) and constraints (Eq. (4. 75)) are discretized by using an 

appropriate finite difference approximation for the state derivatives; here, we use the 

backward Euler approximation. The cost function becomes a function of the states 

and controls at each grid point, and the dynamic constraints are converted into a set 

of algebraic constraints that are also a function of the discretized states and controls. 

The optimal control problem is converted to a constrained optimization problem of 

finding the states and controls at each grid point that minimize the discretized cost 

function and satisfy a set of algebraic constraints.

4. 6. 2 Numerical Optimization Results

The code used to numerically solve the optimization problem considered here 

can be downloaded from [14]. The direct collocation problem is solved using the 

IPOPT (interior point optimizer) numerical solver [109]. The IPOPT solver generally 

finds local optima for nonlinear problems. Optimization is run several times starting 

from different random initial conditions to find the best possible solution. In addition, 

using successive mesh refinement, the value of N = 100 was found for which the
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Table IV: Nominal values for R, a and b taken from [17].

R (Ω) a (Nm/A) b (N. m. s)

Joint 1 2. 1 13. 64 8. 26
Joint 2 2. 1 23. 54 8. 53
Joint 3 2. 1 12. 96 3. 02

results of the optimization showed little variation with respect to the value of N. 

Each optimization problem is solved in 400 - 900 iterations, depending on the case 

and the initial conditions, and takes approximately 25 - 55 seconds on a computer 

equipped with Intel Core i7-5600U CPU running Matlab R2018a.

The nominal parameter vector for the PUMA 500 robot is calculated by using 

robot parameters given in [17]

The values for R, a, and b are also taken from [17] and given in Tab. IV.

The optimization was run once from a starting point A to the final point B, 

and once from B back to A. The capacitor voltage during the optimization was 

assumed to be a constant 27 V for the purpose of the optimization. This limits the 

control torques to [-175, 175] Nm, [-303, 303] Nm and [-167, 167] Nm for Joints 1, 

2, and 3 respectively.

Figure 30 shows the optimal trajectories and controls found, and Fig. 31 shows 

the power flows for each joint. Power is positive when it flows from the capacitor of 

the semi-active joint to the robot joint (power is consumed), and is negative when it 

flows back from the robot joint to the capacitor (power is regenerated).

Table V compares the energy consumption of each joint when going from A to 

B and vice versa. Positive energy indicates energy consumption, and negative energy
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Figure 30: Optimal trajectories and controls found for the PUMA 560 robot, a) 
optimal trajectories from point A(starting point) to point B (final point), and from 
point B to point A, b) the optimal virtual controls (τd). Controls are bound between 
[-175, 175] Nm, [-303, 303] Nm and [-167, 167] Nm for Joints 1, 2, and 3 respectively.

indicates energy regeneration. From Tab. V and Fig. 31, we can see that from A to 

B, Joint 2 and Joint 3 are regenerating energy while Joint 1 is consuming energy;
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Figure 31: Power flows for the joints of the the PUMA 500 robot when following 
the optimal trajectories. Power is consumed when positive, and regenerated when 
negative.

from B to A however, all joints are consuming energy. These results are somewhat 

expected since at point B, Joint 2 and Joint 3 are at a lower potential energy level 

compared point A. Therefore, the potential energy difference between points A and 

B is being regenerated and partially stored in the common capacitor. We also observe 

that Joint 2 is the main contributor to energy regeneration when going from A to B. 

This is due to Joint 2 supporting the large weight of the second and third links of the 

robot and motion in a vertical plane. When going from B to A, the capacitor needs 

to provide the potential energy difference between the two points to move the robot 

back to point A.

4. 7 Remarks

In this chapter, we investigated several trajectory optimization problems per­

taining to energy regenerative robots. Assuming given system parameters and using 

the framework in Chapter II, we considered problems where closed-form solutions were
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Table V: Energy consumption for each joint of the PUMA 560 robot when the joints 
follow optimized trajectories. Positive energy indicates energy consumption, negative 
energy indicates energy regeneration.

EA→B ( J) EB→A(J)

Joint 1 6. 22 5. 46
Joint 2 - 46. 72 101. 81
Joint 3 -3. 10 8. 89

attainable. These problems included finding the optimal external force/moment tra­

jectory that maximizes energy regeneration, where a closed-form solution was found 

that was shown to be global and unique. In addition, an explicit expression for the 

maximum energy regeneration was derived which depended on only the trajectory 

followed by the robot and the actuator parameters of the semi-active joints.

We also derived closed-form solutions for a more general trajectory optimiza­

tion problem with respect to any variable satisfying a set of conditions (Eq. (4. 36) 

to Eq. (4. 38)). The problem was formulated to maximize energy regeneration in one 

or many semi-active joints. Closed form solutions were found that were shown to be 

global and unique. For each problem, simulation examples using the double pendulum 

cart system were provided to demonstrate the results.

Furthermore, we considered the linear optimal control problem, where we 

aimed to find optimal control and motion trajectories that maximize energy regener­

ation for linear time invariant systems. Closed form equations expressing the optimal 

solution and the maximum attainable energy regeneration were presented.

For cases where the robotic system cannot be model linearly, the general non­

linear optimal control problem must be solved. However, for this problem, closed-form 

analytical solutions are not always possible; hence we resort to numerical methods for 

finding the optimal solution. The PUMA 500 robot is used as a case study, and the 

problem is formulated to find point-to-point trajectories maximizing energy regener­
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ation. We use the method of direct collocation to transcribe the problem into a large 

scale nonlinear programing problem, and use the IPOPT numeric solver to find the 

solution. The results found that Joint 2 of the PUMA robot was the main contrib­

utor to energy regeneration, which can be due to the large weight of the second and 

third links of the robot and motion in the vertical plane. In addition, observing the 

overall energy balance equation (Eq. (2. 14)) for this case study, we can see that all 

the robot joints are semi-active (Wact = 0), there are no external forces or moments 

being applied to the system (Wext = 0), and the initial and final configurations of the 

robot are constrained (∆EmT is constant). Therefore, maximizing energy regeneration 

(∆Es) is equivalent to minimizing energy consumption (Wext - ∆Es), and equivalent 

to minimizing electrical and mechanical losses (ΣTm + Σe).
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CHAPTER V

EXPERIMENTAL EVALUATION OF OPTIMAL TRAJECTORIES 

FOR THE PUMA 500 ROBOT

5. 1 Introduction

In this chapter, we present the experimental evaluation of point-to-point op­

timal trajectories for the PUMA 500 robot having custom regenerative drives. To do 

so, we initially identify the parameters of the robot model in Appendix B, and derive 

optimal trajectories for the robot using the methodology of Section 4. 6 in Chapter IV. 

Tracking of optimal trajectories is enforced on the robot using a standard robust pas­

sivity based control approach. Power flows, stored regenerative energy, and efficiency 

are then evaluated to demonstrate the effectiveness of energy regeneration.

The problem is formulated as in Section 4. 6, where we consider the first three 

joints of the PUMA 500 robot (qi, q2, q3), that are semi-active and connected to a 

central capacitor in the star configuration. The robot starts from the initial position 

qi and zero initial velocity (qi = [0, 0, 0]), and moves to qf with zero terminal velocity 

(qf = [0, 0, 0]). Three optimal trajectories with different starting and ending positions 

are considered. These points are given in Tab. VI and also shown in Fig. 32.
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Figure 32: Initial (Point A) and final (Point B ) configurations for the three studied 
cases. first row) Case 1, second row) Case 2, third row) Case 3, first column) initial 
configuration, second column) final configuration.
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Table VI: Starting and ending constraints (in joint space) for the three optimal tra­
jectories. Trajectories start at point A (qi, qi) and terminate at time tf at point B 
(qf, f ). Initial and terminal joint velocities are zero for the three trajectories (i. e., 
qi = [0, 0, 0] and qf = [0, 0, 0]).

qi (rad) qf (rad) tf (s)

Case 1 [0, -2π/5, 0] [π/3, 0, π/4] 2
Case 2 [0, π/4, -π/4] [-π/4, -3π/4, 0] 4
Case 3 [0, -π/4, π/4] [π/2, -π/4, π/4] 8

5. 2 Parameter Identification for the PUMA 500 Robot

In all the optimization problems considered, a sufficiently accurate model of 

the system is necessary for the results to have any practical value. In this section, we 

present methods that were used to identify the system parameters of the PUMA 500 

robot.

The PUMA 500 model can be expressed as in Eq. (4. 76), where the regressor 

and the parameter vector are given in Appendix B. R consists of the back EMF 

damping term (a2 /R) and the combined nonlinear friction and damping effects of 

the robot joints and drive mechanism. In place of the linear friction model used in 

Section 4. 6, we use the nonlinear friction model taken from [67] that is simplified by 

neglecting the Stribeck effects according to [71]. For the j -th link

84

where constants γ are parameters of the friction model.

Link length values A2, d2, and d3 are taken from [17] and verified by measuring

the robot. The motor resistances, Rj and the parameter aj = αj nj are derived from 

rearranging the electrical side equation for the regenerative drive (Eq. (2. 8)),



Table VII: Measured values for R and a.

R (Ω) a (Nm/A)

Joint 1 2. 52 13. 96
Joint 2 2. 71 22. 57
Joint 3 2. 19 12. 36

and finding the least square solution by applying various trajectories for rj and mea- 

suring the resulting qj, ij, and Vcap. Table VII lists these values.

All other system parameters (i. e., link masses, link inertias, friction constants, 

etc. ) are found by solving a constrained optimization scheme based on Eq. (4. 76), 

where the robot follows specially constructed trajectories (qe, qe, qe). System param- 

eters are found that minimize the root mean squared error (RSME) of the measured 

virtual control (τedxp) and the virtual control derived from Eq. (4. 76) (τmdodel).

Lower Bound ≤ System Parameters ≤ Upper Bound

where ωf is the fundamental frequency. The Fourier series coefficients Ai and Bi are 

found by minimizing the condition number (cond()) and maximizing the minimum
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To facilitate the numerical optimization, excitation trajectories are found by 

solving a separate optimization problem similar to what was done in [71]. The tra­

jectories of the j -th joint are represented as a finite Fourier series



singular value (σmax()) of the regressor matrix Y.

The maximum and minimum singular values of the matrix A are given by the iden­

tities

where ||. ||2 is the 2-norm, and the condition number is defined as [94]

Excitation trajectories obtained in this manner will ensure minimum sensitivity to 

measurement noise and model uncertainty when obtaining system parameters [71]. 

For identifying the parameters of the PUMA robot, we select N = 4 and ωf = 2π/10. 

Figure 33 shows the resulting excitation trajectories. After finding suitable excitation 

trajectories, the robot is made to follow these trajectories by using the robust passivity 

based control method (explained in Section 5. 4). The optimization problem defined 

in Eq. (5. 3) is then solved to identify system parameters. The resulting parameter 

vector is

and the identified γ values for the friction model are given in Tab. VIII. Figure 34 

compares the virtual control resulting from the optimized model (τmdodel) and the 

virtual control measured from the PUMA robot (τedxp ).
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Figure 33: Excitation trajectories found for the purpose of parameter identification.

Table VIII: γ values identified for the friction model.

γ1 γ2 γ3 γ4 γ5

Joint 1 3. 25 32. 64 4. 06 734. 85 2. 13
Joint 2 5. 92 92. 32 0 267. 14 13. 26
Joint 3 1. 46 189. 26 2. 80 11. 94 0. 86
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Figure 34: Comparison of the measured (τedxp) and modeled (τmdodel) virtual control 
post optimization.

5. 3 Experimental Setup

Figure 35 shows the schematic of the experimental setup. The PUMA 500 

robot has three main joints and three joints at the wrist. Here we are only con­

cerned with the operation of the main three joints, which have the most potential 

for energy regeneration. Each joint is actuated by a DC motor that is driven by the 

four quadrant 25 amp SyRen motor driver (Dimension Engineering, Hudson, Ohio). 

The dSPACE 1103 controller board (dSPACE GmbH, Paderborn, Germany) is used 

for controlling the robot and for data acquisition. The input and output voltages 

and currents for each motor driver are needed to calculate the instantaneous power. 

The currents are measured via the ACS723 current sensors (Allegro Microsystems, 

Worcester, Massachussetts). The capacitor voltage is directly measured by using a 

voltage divider and the dSPACE system. The voltage on the motor side is not directly 

measured; however, it is verified separately that this voltage accurately follows the 

voltage requested by the command signal (VCommand). The input of all three motor
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Figure 35: Schematic of the experimental setup. Current sensors are used to measure 
currents on both sides of each motor driver. Voltage on the capacitor side is measured 
directly via the dSPACE system. The dSPACE system is also used for controlling 
the robot. The motor drivers are all connected to a common ultracapacitor (star 
configuration). Dotted lines indicate signals, solid lines indicate wiring.

drivers are connected to a common 48 V ultracapacitor bank (Maxwell Technologies, 

San Diego, California) with a capacitance of 165 F. The capacitor is initially charged 

to 27 V to avoid reaching the 30 V absolute maximum input voltage for the motor 

drivers. A robust passivity-based control method is used to track the optimal trajec­

tories. The controller is implemented in real time with the dSPACE system and uses 

angular position and velocity feedback provided by encoders on the robot joints, in 

addition to capacitor voltage feedback.

5. 4 Overview of robust passivity-based control

The optimization problem yields an open-loop control solution which is not 

implementable in the real robot. The robust passivity-based control [96] was selected 

to ensure the robot tracks the desired optimal trajectories with guaranteed stability 

despite parametric uncertainties in the robot model. Based on the dynamic equa­
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where qd and qd denote the desired joint trajectories and q = q — qd denotes the 

tracking error. Also, K and Λ are diagonal matrices with positive nonzero entries. 

The parameter estimate θ is adjusted according to

where θ0 is a set of constant nominal parameters. If the parametric uncertainty of 

the system is bounded, ∣∣θ — θ∣∣ ≤ ρ, then by choosing δθ as

where e is a small positive parameter, one can show ultimate boundedness of the 

tracking error.
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tion for the augmented model (Eq. (2. 3)) and assuming no known external forces or 

moments are exerted on the robot (T = 0), the control input is chosen as

where Ya is the control regressor and θ is the parameter estimate adjusted by the 

control law. Variables a, v, and r are defined as



5. 5 Experimental Results

We solve the optimization problem formulated in Section 4. 6 using the model 

obtained in Section 5. 2, and the direct collocation method, to find the optimal tra­

jectory for each case in Tab. VI. Similar to before, the optimization is run once from 

point A to point B, and once from B back to A. The central capacitor is charged to 

27 V. For simplicity the capacitor voltage is assumed constant in the optimization. 

This limits τ1d to [-175, 175] Nm, τ2d to [-303, 303] Nm, and τ3d to [-167, 167] Nm. 

The optimal trajectories are implemented on the PUMA 500 robot using the robust 

passivity based control method to ensure trajectory tracking.

Figure 36 shows the optimal trajectories and the actual trajectories followed 

by the robot joints for each studied case. The videos of the motion trajectories can be 

found in [15]. We see that the robust passivity based controller provides good tracking 

of the optimal reference trajectories; however, the controller does lose tracking to a 

small degree (maximum error of 0. 046 radians). This happens due to several reasons. 

Observing the control input τd in Fig. 36, we can see that for the second joint in 

cases 1 and 2, the control torque saturates around -222 N. m. This value is higher 

compared to the limit set on the control torque for the optimization (-224 N. m), 

which was set assuming a constant capacitor voltage of 27 V. However, the capacitor 

voltage does not stay constant during the movement of the robot, as seen in Fig. 37. 

For example, in Case 1, the capacitor voltage is about 26. 84 V at the beginning of 

the movement and varies between 26. 91 and 26. 45 V. Since the capacitor voltage is 

less than the 27 V assumed for the optimization, we can conclude that capacitor 

voltage is lower than what is needed to follow the optimum trajectory for Joint 2. 

One could achieve more accurate results by including the ultracapacitor model in the 

optimization; however, doing so would significantly increase the complexity of the 

problem. Ultracapacitors exhibit nonlinear and complex behavior and their models 

do not represent all the aspects of the ultracapacitor's performance [6, 7, 13, 28].
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By feeding back the capacitor voltage, SVC allows the control of the robot without 

being concerned with the nonlinear behavior of the ultracapacitor. In addition, for the 

robot joints that do not reach the torque saturation limit, better tracking performance 

could have been achieved by increasing the gains of the robust controller; however, as 

explained later, higher gains lead to control signal chattering, which in turn results 

in significant reduction of motor driver efficiency to regenerate energy.

Figure 38 to Fig. 40 show power flows for the motor side and capacitor side 

of the motor drivers for each case. Power is positive when it flows from the ultraca­

pacitor to the motor driver and from the motor driver to the robot joints. Table IX 

summarizes the energy consumed by the robot while following the optimal trajecto­

ries, where negative consumption indicates energy regeneration. Figure 38 to Fig. 40 

also compare the measured power with the power predicted by the robot model when 

following optimal trajectories. In general, the predicted power agrees quit well with 

the power on the motor side, indicating that a very good model was identified for the 

system. Some of the relatively small disagreement can be related to the robot losing 

track of the optimal trajectories. Results also show that the power on the capacitor 

side is higher than the power on the motor side. This reflects the inefficiency of the 

motor driver (some power is dissipated in the motor driver) and also the power re­

quired to operate the motor driver. These inefficiencies are not taken into account by 

the optimization (we have considered an ideal motor driver in the model).

Observing the external energy equation (Eq. (2. 14)) for our case study, we 

note that all joints are semi-active (Wact = 0) and no external forces or moments are 

present (Wext = 0); therefore, energy stored in the ultracapacitor can only be a result 

of a change in the mechanical energy of the system. In Case 1, the robot trajectory 

starts from a higher potential energy level compared to the ending configuration when 

going from A to B. As a result, a portion of this difference in potential energy is 

regenerated and stored in the ultracapacitor by Joint 2 and 3, and the rest is lost as
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Figure 36: first column) Optimal reference trajectories (dotted lines) and actual tra­
jectories (solid lines) followed by the PUMA 500 robot. Trajectories go from point A 
to point B, and vice versa. second column) Control torque commands (τd) applied 
to the robot joints.
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Figure 37: Capacitor voltage for the three studied cases during the movement of the 
robot.

electrical and mechanical losses. Joint 2 is the main contributor to energy regeneration 

(-24. 14 J from A to B with peak negative power of -35 W) due to motion in the 

vertical plane and a large weight, while joint 1 mostly consumes energy (12. 10 J) 

and only regenerates at the end of the A to B portion when the joint is braking 

and reversing direction. Joint 3 shows portions of negative power on the motor side 

(-1. 5 J energy is regenerated from A to B on the motor side) but power on the 

capacitor side is only positive (7. 5 J is consumed on the capacitor side), indicating 

that the regenerated energy is all dissipated in the motor driver and does not reach 

the capacitor. In the B to A portion, power is positive and energy flows from the
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capacitor to the robot (12. 34, 99. 42, and 14. 55 J for joints 1, 2, and 3 respectively). 

Part of this power is stored as potential energy to move the robot back to point A 

and the rest is lost due to mechanical and electrical losses.

In the A to B portion of Case 2, the robot starts at a low elevation, goes 

through an almost vertical position (q2 ≈ -π/2 and q3 ≈ 0), and comes down to its 

final configuration. For Joint 2, this result in energy being consumed and converted 

to potential energy when the robot is moving to a higher potential energy level (from 

q2 = π/4 to q2 ≈ -π/2), and regenerated when the robot is moving to a lower 

potential energy level (from q2 ≈ -π/2 to q2 = -3π/4). Similarly in the B to A 

portion, power is positive when moving to a higher potential energy level (q2 = -π/4 

to q2 ≈ -π/2), and regenerated when going to lower potential energy levels (q2 ≈ 

-π/2 to q2 = π/4). Joint 2 is the main contributor to energy regeneration (negative 

power peak -41 watts). From A to B Joint 2 consumes a net energy of 160. 37 J, 

and from B to A it regenerates a net of - 8. 62 J. Joint 3 is mostly consuming energy 

and only regenerates when the joint is braking and reversing at the end of the A to 

B portion, and Joint 1 is consuming energy throughout the movement of the robot.

The initial and final configurations in Case 3 are chosen such that the robot can 

reach the final configuration by only moving Joint 1. However, maintaining Joint 2 

and Joint 3 at their initial configuration is highly energy consuming. The optimal 

trajectory moves the robot to a low energy consuming configuration where the power 

flow for joints 2 and 3 are close to zero. The robot only moves out of the low energy 

configuration at the end of the trajectory to reach the final configuration. Similar to 

cases 1 and 2, Joint 2 regenerates energy when moving to a lower potential energy 

level.

Note that in portions of the robot's movement, when Joint 2 is regenerating 

energy and Joint 1 and Joint 2 are consuming energy, energy is being channeled from 

Joint 2 to the other robot joints through the capacitor.
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Figure 38: Power flows for the motor side and capacitor side of the motor driver 
in Case 1 for a) Joint 1, b) Joint 2 and c) Joint 3. Positive power indicates energy 
consumption and negative power indicates energy regeneration. The theoretical power 
flow is also shown for comparison.

In addition, note that ultracapacitors exhibit complex and nonlinear dynamic 

behavior due to the capacitance and ESR (equivalent series resistor) being a function 

of voltage and frequency [28, 74]. SVC allows us to control the robot without being 

concerned with the nonlinearities and complexities of ultracapacitor behavior and 

their effect on the overall performance of the robot.

Figure 41 shows Sankey diagrams for the overall energy balance for Case 1 

based on Eq. (2. 14) and using model parameters identified for the robot (Section 5. 2). 

Since there is no energy entering the system from an external source (i. e., Wext =
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Figure 39: Power flows for the motor side and capacitor side of the motor driver 
in Case 2 for a) Joint 1, b) Joint 2 and c) Joint 3. Positive power indicates energy 
consumption and negative power indicates energy regeneration. The theoretical power 
flow is also shown for comparison.

0 and Wact = 0), energy can be stored in the capacitor only due to changes in

mechanical energy (∆EmT ). Also, since the robot trajectories start and end at a

stationary configuration (i. e., qs = qf = [0, 0, 0]), the mechanical energy difference 

between points A to B is equal to the potential energy difference. This potential 

energy difference is 56. 40 J for Case 1. In the first portion of the movement, about 

49% of the mechanical energy is dissipated as mechanical losses, another 27% is 

dissipated as electrical losses, and only about 24% reaches the motor drive. Due to 

inefficiencies in the motor drive only part of that energy is actually stored in the

97



Figure 40: Power flows for the motor side and capacitor side of the motor driver 
in Case 3 for a) Joint 1, b) Joint 2 and c) Joint 3. Positive power indicates energy 
consumption and negative power indicates energy regeneration. The theoretical power 
flow is also shown for comparison.

capacitor; however, by utilizing a high efficiency drive these additional losses can be 

minimized. In the second portion of the movement, 126. 31 J of energy is provided 

by the driver to move the robot from point B to point A. Mechanical losses account 

for about 27% of the provided energy, electrical losses account for about 28% of the 

provided energy, and only 45% is stored as mechanical energy. These figures indicate 

that the mechanical losses, which are due to the design of the robot, are a large portion 

of the total losses and a better robot design can lead to more energy regeneration.
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Table IX: Energy consumption for the PUMA 500 robot when following optimal 
trajectories. Energy consumption is reported for the motor side and capacitor side 
of the motor driver when going from point A to point B and vice versa. Negative 
energy indicates energy regeneration.

Case 1

EA→B (J ) EB→A(J)

Motor Capacitor Motor Capacitor

Joint 1 12. 10 20. 16 12. 34 20. 07
Joint 2 -24. 14 -16. 21 99. 42 103. 76
Joint 3 -1. 50 7. 53 14. 55 22. 80
Total -13. 54 11. 48 126. 31 146. 63

Case 2

EA→B (J ) EB→A(J)

Motor Capacitor Motor Capacitor

Joint 1 10. 34 27. 11 7. 92 25. 72
Joint 2 160. 37 168. 84 -8. 62 7. 07
Joint 3 9. 51 27. 33 1. 66 19. 73
Total 180. 22 223. 28 0. 96 52. 52

Case 3

EA→B (J ) EB→A(J)

Motor Capacitor Motor Capacitor

Joint 1 18. 68 46. 88 17. 20 46. 67
Joint 2 42. 62 70. 10 35. 64 63. 77
Joint 3 7. 05 37. 08 7. 84 37. 47
Total 68. 35 154. 06 60. 68 147. 91

We define the effectiveness of energy regeneration as
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where ∆ER is the energy consumed by the robot in one complete cycle when energy 

regeneration is enabled, and ∆EN R is the energy consumed by the robot in one 

complete cycle when no energy regeneration capability exists. ∆EN R is computed by 

integrating the power flows for each joint assuming all negative power is dissipated

(i. e., P (P < 0) = 0). The effectiveness is a number between 0 and 1, where e = 0 

indicates that energy regeneration has no effect in reducing the energy consumption of 

the robot, and e =1 indicates that energy regeneration reduces energy consumption 

by 100%. For Case 1, ∆Er = 113 J and ∆Enr = 141 J which results in e = 0. 2, 

or in other words a 20% reduction in energy consumption. We use the motor side 

energy to compute e to exclude the deficiencies of the motor driver. For Case 2, a 

22% reduction in energy consumption was observed (e = 0. 22), and for Case 3, 10% 

(e = 0. 10).

To verify that the optimum trajectories are in fact maxima, two neighboring 

trajectories are generated and evaluated. In the interest of conciseness, we only 

consider the A to B portion of Case 1. Neighboring trajectories are generated by 

adding a Gaussian function term to the optimum trajectory
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With μ = 1, σ = μ∕3, and ε = 0. 2max(∣q∣). Parameters for the Gaussian function 

are chosen so that the neighboring trajectories satisfy the boundary conditions for 

the optimal trajectory with negligible error. Figure 42 shows the neighboring tra­

jectories followed by the robot and Table X compares energy consumptions for the 

optimum and neighboring trajectories. We see that compared to the neighboring tra­

jectories, the optimum trajectory results in the maximum total energy regeneration, 

even though Joint 3 consumes slightly more energy.

While conducting experiments, we observed that controller chattering had a



Figure 41: Sankey diagram showing the overall energy balance for the PUMA 500 
robot when following optimal trajectories in Case 1 from a) A to B and b) B to A. 
The overall mechanical energy of the robot is represented by ∆Em, Σe and Σm are 
the electrical and mechanical losses respectively, ∆EDriver is the energy going to (i. e., 
regenerated) or coming from (i. e., consumed) the motor driver.

negative effect on regeneration efficiency. Increasing the gains of the robust passivity 

based controller leads to lower tracking error of the optimum trajectories, but at a cost 

of increasing control signal chattering, which in turn reduces regeneration efficiency. 

This is demonstrated in Fig. 43 where we have increased the gains of the robust 

controller while following the A to B portion of the optimum trajectory in Case 1.
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Figure 42: Optimum and neighboring trajectories followed by the robot when going 
from point A to point B in Case 1. Neighboring trajectories are tested to show the 
effectiveness of the optimization.

Table X: Comparison of energy consumption for the PUMA 500 robot when following 
optimal and neighboring trajectories. Energy consumption is reported for the motor 
side of the motor driver when going from point A to point B in Case 1. Negative 
energy indicates energy being regenerated. The neighboring trajectories show a lower 
amount of total energy regeneration when compared to the optimal trajectory.

EA→B (J )

Neighboring 1 Neighboring 2 Optimal

Joint 1 12. 96 12. 95 12. 10
Joint 2 -21. 25 -22. 05 -24. 14
Joint 3 -1. 91 -1. 10 - 1. 50
Total -10. 20 -10. 20 - 13. 54

Chattering is quantified empirically by summing the magnitude of the fast Fourier 

transform (FFT) of the control signal between 10 Hz and the Nyquist frequency 

(500 Hz, one-half of the sampling rate) [82]. Figure 43 shows that as the root mean 

squared (RMS) tracking error decreases, controller chattering increases. This initially 

results in a slight increase in energy regeneration (decrease in energy consumption)
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Figure 43: Effect of chattering on energy regeneration.

on the motor side, which can be related to more accurately tracking the optimal 

trajectory, but significantly decreases energy regeneration on the capacitor side as a 

result of decrease in motor driver efficiency. After a certain point, further increases 

in chattering significantly decrease energy regeneration on both motor and capacitor 

sides of the motor driver. Therefore, there is a compromise between how well the 

optimal trajectories are followed, and control signal chattering, and in certain cases 

it is necessary to give up trajectory tracking for more energy regeneration.

5. 6 Remarks

In this chapter, we experimentally evaluated optimal point-to-point trajec­

tories for the PUMA 500 robot. Based on the nonlinear optimal control problem 

formulated in Section 4. 6 of Chapter IV, we find optimal trajectories maximizing en­

ergy regeneration using an experimentally identified model for the PUMA 500 robot. 

The problem is solved numerically and the optimal trajectories are implemented on 

the PUMA 500 using a robust passivity based controller. Power flows are reported 

for the motor side and capacitor side of the motor driver. Experimental results show
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a good agreement with the theoretical results for the motor side of the motor driver 

and less agreement with the capacitor side. This is due to the efficiency of the mo­

tor driver and the power required to operate it. In addition, due to the fact that 

there was no energy entering the system from an external source (i. e., Wext = 0 and 

Wact = 0 in Eq. (2. 14)), energy is stored in the capacitor due to only changes in 

mechanical energy, potential energy being the main contributor. For this reason, we

only considered the first three joints of the PUMA 500 robot for optimization, which

have potential for energy regeneration - compared to the three main joints, the robot 

wrist is light weight, has a lot of friction, and moves slowly.

Also, while conducting the experiments, it was observed that controller chat­

tering has a negative effect on energy regeneration. In certain cases it might be 

necessary to compromise trajectory tracking for more energy regeneration. Using a 

higher quality motor driver can also mitigate the problems associated with motor 

driver. On the other hand, including the inefficiencies of the motor driver in the 

model could provide more energy regeneration by prompting the optimization to look 

for different trajectories that operate in the efficient range for the motor drivers. 

Moreover, experimental results for the neighboring trajectories showed the strong 

dependency of energy regeneration on trajectories followed by the robot joints; thus 

the need for trajectory optimization. Results also showed that a great portion of the 

energy is dissipated as mechanical losses due to the robot design. Even with these 

losses, energy regeneration resulted in about 10- 22% reduction in the overall energy 

consumption. In a factory assembly line with many robots, energy regeneration can 

lead to significant reduction in operating cost.

As part of future research paths, an alternative approach to the one taken 

here could be to use model predictive control methods to provide optimal feedback 

directly, as opposed to solving for the optimal trajectory separately and enforcing 

it via a robust control method. Such an approach provides online calculations of
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new optimal trajectories with changes in initial or final positions. Model predictive 

control involves a moving-horizon implementation of essentially the same optimal 

control solutions presented in this chapter. The energy-based cost function, however, 

is not positive-definite relative to any particular equilibrium point, and the required 

feasibility, stability, and performance analyses fall into the category of economic model 

predictive control [73]. This requires a separate approach, and is a current area under 

study.
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CHAPTER VI

DEVELOPMENT AND EXPERIMENTAL EVALUATION OF A 

POWERED PROSTHETIC KNEE

6. 1 Introduction

In Chapter I we discussed how energy regeneration can reduce the overall 

energy consumption of lower limb prostheses, making them more practical for daily 

use. In this chapter, we present an overview of the design, control, and experimental 

evaluation of an ultracapacitor based regenerative powered prosthetic knee. The 

framework presented in Chapter II is used to design and model the powered prosthesis. 

Our prosthesis prototype is comprised of a passive ankle joint, and a powered knee 

joint that is actuated by an semi-active ultracapacitor based drive system. We also 

present a novel varying impedance control approach that drives the prosthesis in 

both stance and swing phase, while explicitly dealing with energy regeneration. This 

approach provides a natural variation in the impedance of the knee and leads to far 

fewer tuning parameters compared to some other approaches [97-100]. In addition, 

the controller allows walking at different speeds without the need for retuning, and 

with a simple adjustment, the same tuning can be used for different subjects. The 

prosthesis is evaluated experimentally by having an amputee test subject walk with 

the device on a treadmill. This is the first known human trial testing of an electro­

mechanical energy-regenerative prosthesis.
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Figure 44: Prosthetic knee prototype with ottobock triton vertical shock foot.

6. 2 The Regenerative Prosthesis Model

Our prosthetic leg prototype, depicted in Fig. 44, is comprised of a powered 

regenerative knee joint and a passive ankle joint. To model the system, the prosthesis, 

excluding the regenerative drive mechanism, can be thought of as a four degree of 

freedom standard open-chain robotic system. The first three degrees of freedom are 

the horizontal motion, vertical motion, and rotation of the prosthesis socket in the 

sagittal plane; the fourth degree of freedom corresponds to flexion/extension of the 

knee joint. The equation of motion for this system can be expressed using Eq. (2. 1).

The motion of the prosthesis socket (q1, q2, and q3) is controlled by the human 

subject and can be thought of as fully-active, injecting energy into the system. The 

prosthetic knee is connected to a semi-active drive mechanism, where the schematic 

and bond graph model are depicted in Fig 45. The inertial and frictional effects of 

the motor are assumed to have been reflected to the transmission and are thereby 

included in m and b. In the most general case, the transmission ratio can be a function 

of the knee joint angle.
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Figure 45: The prosthetic leg with the regenerative drive mechanism and its bond 
graph representation. The first three joints of the prosthesis are actuated by the 
human subject and are considered fully-active. The knee joint is regenerative and 
considered semi-active.

Substituting τ4 from Eq. (6. 1) into the dynamic equations for the prosthesis (Eq. (2. 1))

and absorbing the terms containing q and q into the left-hand side, the complete model 

of the prosthesis with the regenerative drive mechanism is obtained.

The first three joints are actively controlled by the human subject (u1-3), and the 

knee joint is controlled via the semi-active virtual control method.
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From the bond graph model in Fig. 45, the interfacing force τ4 for the knee 

joint is found as

where D and R result from augmenting Do and R° in Eq. (2. 1),



6. 3 Variable Impedance Control Method

Many powered lower limb prostheses use impedance control [4, 38, 44, 61, 97]. 

Impedance control emulates the behavior of physical springs and dampers; any active, 

variable, and nonlinear behavior can be achieved. For prostheses, power is produced 

by varying the joint impedance during different gait phases. However, the advantages 

of impedance control over mechanical springs and dampers, as with any powered 

control method, come at the price of energy consumption.

The general approach for controlling powered lower limb prostheses is to use a 

finite state impedance controller which divides the gait into discrete states [3, 4, 44, 

61, 63, 68, 97-100, 110]. Each state has its separate controller and transitions between 

states are triggered by sensors placed on the prostheses. The control parameters for 

each state are tuned to individual subjects and different walking speeds. A five state 

controller with three gains per state across three walking speeds can lead to as many 

as 5 × 3 × 3 = 45 tuning parameters in addition to gait-phase switching rules [100]. 

More elaborate methods add variation of the impedance parameters based on joint 

angles or measured forces during the finite states to reduce the number of tunable 

parameters [23, 93]. We refer readers to a comprehensive survey [104] of control 

strategies used for powered lower extremity prostheses.

We use a novel varying impedance control method to control the prosthetic 

knee. Our approach changes the impedance of the knee joint based on the amount 

of force applied to the prosthesis' shank. This provides a continuous variation of the 

knee impedance during the gait cycle and enables a soft transition between the stance 

and swing phases of gait. Moreover, our approach leads to far fewer tuning parameters 

when compared to finite state impedance control. Five parameters that are indepen­

dent of walking speed are identified. Furthermore, once the controller is tuned, the 

same tuning can be used for different subjects with just a simple adjustment.
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The equation describing the control structure is

We mainly rely on the kinetic energy of the prosthesis at the beginning of the swing 

phase to extend the knee. The virtual stiffness Ks can be used to further propel the 

leg if the knee joint does not fully extend before heel strike. During tests with the 

prototype, we observed that this was not the case and set Ks to zero.

Virtual damping constant Bh prevents the mechanical hard stop from making 

contact at the end of the swing phase and only becomes active when the knee angle 

approaches full extension, meaning that the screw displacement becomes less than a
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where B and Bh are virtual damping coefficients, F is the shank force, Fs is a nor- 

malization factor, K and Ks are virtual spring stiffnesses, and q4 is the equilibrium 

point of the virtual spring. We explain the controller's functionality in the stance and 

swing phases separately.

6. 3. 1 Swing Phase

In the swing phase the shank force F is zero and Eqn. (6. 4) reduces to

certain threshold.

This could, however, be achieved mechanically by installing a soft stop insert, avoiding 

the need to expend extra electrical energy.

The purpose of the virtual damping constant B is to regenerate energy in the 

swing phase. The damping constant is set by considering the regenerated energy



Eq. (2. 10) under the case where τd = -Bq4.

From Eq. (6. 7) it can be seen that energy is regenerated (∆Es > 0) only if

Equation (6. 8) suggests that power can only be regenerated with a virtual damper 

if negative damping constants are used. Negative damping constants in the range of

Eq. (6. 8) reduce the damping of the overall system but not to the extent of causing

instability. Assuming that q4 is mostly governed by the system dynamics and varying 

B in the range of Eq. (6. 8) has negligible effect on q4, we can differentiate Eq. (6. 7) 

with respect to B and set it to zero to find the optimum damping constant for 

regeneration.

and the optimum energy regenerated is

Note that this expression is identical to Eq. (4. 21). This is to be expected since, 

assuming q4 is constant with respect to changes in the damping constant, B satisfies 

all the conditions for x in Section. 4. 4.

6. 3. 2 Stance Phase

Once the foot makes contact with the ground, the shank force F is non-zero, 

reinstating the full control law Eq. (6. 4). The virtual spring K dominates the control 

in stance phase due to the smaller knee velocities. Also, the virtual spring constant
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The normalization factor Fs is the measured shank force F when the amputee is fully 

supported by the prosthetic leg.

During stance phase the behavior of the control law dictates that as the user 

shifts his or her weight to the prosthetic leg, the knee will stiffen, providing the 

amputee with the necessary support even when the knee remains slightly flexed. 

This is in contrast to the slow collapse of, for example, a hydraulic knee joint under 

matching conditions. During late stance when the amputee prepares for swing phase 

and begins to transfer his or her weight to the opposing leg, the proposed control law 

causes the prosthesis to soften, initializing the knee flexion required to enter swing 

phase. Each of these transitions are accomplished without switching between multiple 

sets of control gains.

6. 3. 3 Controller Tuning Procedure

Tuning the control law requires the selection of five values. These are bh,

qthreshold,, K, Ks, and q4∙ Notedly, B is automatically determined by three system 

parameters; see Eq. (6. 9). The parameter bh is set to be a little larger than the 

magnitude of B so that it cancels the negative damping. The smallest sufficient value 

of qthreshol, to prevent the hard stop is chosen, typically a couple of millimeters. K 

is determined by trial and error such that the amputee feels well supported. Ks 

and q4 are nonzero only when needed and are increased until the knee fully extends 

under the user's volition. Once this initial tuning is completed, it is expected that 

other amputees could reuse the same tuning parameters. The value for Fs, which 

is specific to the user's weight, would only need to be updated. None of the tuning 

parameters are dependent on the user's selected speed either. These features of the
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K is typically set to much larger values compared to Ks. The stance phase control 

reduces to



Figure 46: Prosthetic leg system overview indicating power and information paths.

controller make tuning efforts minimal and very straightforward compared to finite 

state impedance controllers.

6. 4 The Prosthesis Prototype and Experimental Setup

The prototype used for this work was constructed from off-the-shelf compo­

nents with an emphasis on creating a low-cost, proof-of-concept system. The overall 

system can be divided into the following categories: actuation, power storage, control, 

and sensing. A schematic of the system is given in Fig. 46.

The knee structure was built such that standard pyramid adapters are available 

at both the thigh and ankle interfaces. Also, it should be noted in relation to stance 

phase that when the knee is completely straight it can enter a mechanically self­

locking region, depending on the location of the user's center of mass. Under this 

condition q4 = q4 = 0, eliminating active power usage and saving energy. The knee 

attached to a socket and an Ottobock Triton Vertical Shock foot is shown in Fig. 44.
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A12 VDC motor-driven lead screw (ULTRAMOTION) actuates the knee joint 

by use of the crank-slider architecture. The measured resistance and torque constant 

for this motor are 0. 27 Ω and 0. 31 Nm/A. The screw has a transmission ratio of 

n = 989. 5 rad/m. Power is supplied to the motor from four ultracapacitors linked in 

series by balancing circuitry (Maxwell Technologies, BKIT-MCINT). These capacitors 

are rated for up to 2. 7 V and at 650 F each (Maxwell Technologies, BCAP0650 P270 

K04), determining a maximum operating voltage of 10. 8 V. Regulating the power 

flow to and from the motor, a 10 A SyRen motor driver was selected. This device is 

capable of four-quadrant operation. The analog control signal sent to the motor driver 

is generated by the dSPACE system, specifically the DS1104. The control software 

run by this system was developed in Simulink with the more complex computations 

written directly in MATLAB code.

A variety of sensors were installed for both control feedback and performance 

evaluation. For feedback, motor position, which is kinematically related to knee angle, 

was measured by an encoder, from which velocity could be computed. Additionally, 

two strain gages were adhered to the foot and then calibrated to produce shank 

force. The capacitor voltage was measured for use in the semiactive virtual control 

method. To be able to evaluate the energy regeneration capacity of the prosthesis, 

current sensors were installed at both the input and output to the motor driver; see 

Fig. 46 for the wiring schematic. The voltage applied to the motor as well as the 

voltage across the capacitors, as previously mentioned, were recorded. Combining 

these two pairs of measurements provides information regarding the power usage and 

the efficiency of the motor driver. All data with the exception of the knee position 

were passed through a digital filter with a cutoff frequency of 24 Hz.

Human trials with an amputee subject were completed at the Louis Stokes 

Cleveland VA Medical Center as approved by its internal institutional review board. A 

35-year-old male (81. 7 kg, 175. 3 cm) with a right transfemoral amputation volunteered
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Figure 47: Test subject walking with the prosthesis prototype (Copyright Cleveland 
FES Center, Cleveland, USA).

to trial the leg; see Fig. 47. The test subject walks with a Freedom Innovations 

Plie microprocessor-controlled passive knee in combination with an Ottobock Triton 

Vertical Shock foot on a daily basis. The subject used his personal socket and daily 

foot for all of the trials. All components were fit by a certified prosthetist.

Three speeds were selected for the trial protocol, which was executed on a 

treadmill. These were the amputee's preferred speed while using his everyday leg 

and plus and minus 0. 15 m/s, giving 0. 6 m/s, 0. 75 m/s, and 0. 9 m/s. All test 

data were taken on the same day. The amputee was provided two periods of at 

least 15 minutes on previous, non-consecutive days to familiarize himself with the 

experimental prosthesis.

6. 5 Test Results

The video taken from the test is available and can be found via the link 

provided in [14]. The controller was tuned by trial and error based on the amputee's 

feedback and the guidelines previously described. The final parameters are provided
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Table XI: Controller tuning parameters.

K (N/mm) Ks (N/mm) B (Ns/mm)
200 0 -1. 743

bh (Ns/mm) q4 (mm) qthreshold (mm)
2. 5 0 2

in Tab. XI. K, the spring constant dominating the stance phase, was tuned before the 

trial so that the leg could hold the weight of one of the students in our lab. This gain 

was then fine-tuned with the test subject while he walked on a treadmill. The swing 

phase spring constant Ks and accordingly q4 were zero because the test subject's gait 

pattern caused the prosthesis to fully extend without aid. B was computed based on 

the constants a and R that were identified for the actuator. Bh overrides the negative 

damping during late swing phase, which is defined as qthreshold = 2 mm of screw travel 

before full extension. Note that the same tuning was used for all tests and walking 

speeds.

Figure 48 shows the prosthetic knee angle as derived from the motor position 

for three walking speeds: slow (0. 6 m/s), preferred (0. 75 m/s), and fast (0. 9 m/s). 

It can be seen that as walking speed increases the maximum angle of the knee in 

the swing phase also increases slightly, which is consistent with able-bodied gait [58]. 

However, the increase in maximum angle is less pronounced when comparing the 

preferred and fast speeds as opposed to the slow and preferred speeds, especially 

when considering the larger standard deviation band of the fast speed. This could 

be due to a singularity in the slider-crank mechanism of the knee actuator. The knee 

shows almost none of the flexion in the stance phase that is usually seen in able-bodied 

walking [117, 118]. This behavior, having little to no flexion in the stance phase, is 

typical, however, for most powered and passive prostheses [47, 62, 68, 88, 92, 97, 99]. 

While our controller had the ability to recover knee flexion in the stance phase, it
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Figure 48: Average knee angle for three walking speeds. The slow, preferred, and 
fast walking speeds are 0. 6, 0. 75, and 0. 9 meters per second, respectively. The gray 
bands show one standard deviation from the average trajectories.

was observed that the test subject would fully extend the knee joint before foot strike 

instead of using this feature, potentially due to previous walking habits and/or a lack 

of confidence in the prosthesis' ability to support the amputee's weight while flexed. 

The weight of the device might have also aided this outcome. A similar lack of stance 

flexion has been seen in below knee amputee gait data [86], suggesting the possibility 

that this phenomenon is due to the prosthetic ankle.

Figure 49 shows the electrical power flows for the three tested walking speeds. 

Power flows are given for the capacitor and motor side of the motor driver. Positive 

power indicates power consumption while negative power indicates power regenera-
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Figure 49: Power flows for the slow (0. 6 m/s), preferred (0. 75 m/s), and fast (0. 9 m/s) 
walking speeds. The gray bands show one standard deviation from the average trajec­
tories. Positive power indicates power consumption. Negative power indicates power 
regeneration.

tion. In the stance phase, very little power is consumed. In able-bodied gait, the 

knee joint uses positive power while it is being extended during mid-stance [117]. As 

previously explained, for our tests the knee was fully extended during stance and 

supported the weight of the amputee without the need for energy expenditure. Hence 

the controller only needs to provide sufficient power to stabilize the knee. In the 

swing phase the negative damping term of Eq. (6. 4) becomes dominant, and power 

is regenerated and stored in the ultracapacitor. With increased walking speed the 

peak value of the regenerated power increases. In addition, not all of the regenerated 

power is stored in the capacitor, and a portion of it (0. 7 Watts) is consumed by the
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Figure 50: Average energy regenerated in each gait cycle for three walking speeds. 
Regenerated energies are reported for the capacitor side and the motor side of the 
motor driver.

motor driver.

As was observed from the power plots, energy regeneration was possible under 

the test conditions. Integrating the power measurements yields total energy regener­

ated. This is shown for both the motor and capacitor sides of the motor driver and 

across all speeds in Fig. 50. As speed increases, it is clear from the motor side values 

that energy regenerated increases. However, approximately one half or more of the 

regenerated energy does not reach the capacitor bank to be stored. Efficiency does in­

crease significantly between the slow speed and both higher rates, suggesting that the 

efficiency of the motor driver is affected by the return voltage and/or current applied. 

There is a less significant increase between the preferred and fast walking speeds. This 

is likely partially due to the previously mentioned singularity in the crank-slider. It is 

also true that the hard stop prevention damping will use more energy at higher swing 

speeds, causing less energy to be available for storage. Comparing these results with
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able-bodied data, in [117] the range of available energy is about 15-30 J for slow to 

fast paced walking, respectively. It therefore seems likely that there is still significant 

energy to be captured beyond what we have accomplished. Indeed, a regeneration 

potential is known to exist during the stance phase of able-bodied gait [117]. Our 

current results do not include energy recovery from this region.

6. 6 Remarks

Within this work we have developed a powered knee prosthesis and controller, 

emphasizing control simplicity and energy regeneration. An experimental trial con­

ducted with an amputee test subject validated the control method and achieved 

energy regeneration. Furthermore, basic features of able-bodied gait were replicated 

in testing, including swing phase knee flexion and transitions between gait phases.

Three traits of the proposed control law differentiate it from alternative meth­

ods. First, it has only five parameters, and they are intuitive for the individual 

adjusting the gains. This makes the tuning process relatively easy; tuning was able 

to be completed in a matter of minutes while conducting the test. Second, guidelines 

for tuning for energy regeneration can be developed analytically. Lastly, our approach 

only provides power to the knee joint when needed, yielding further energy savings.

The stability of the controller has not been evaluated analytically. This topic 

has been reserved for future work.

Considering longer periods of operation in the future, several items must be 

addressed. As with any system with finite on-board power storage, operation must 

be stopped once charge (indicated by Vcap) drops below an acceptable threshold. At 

this point the system must be recharged. It is important to note that two alternative 

conditions, self-sustained operation or even charge buildup, can also occur in a system 

with energy regeneration. Achieving either of these conditions is dependent on system 

parameters and trajectories. If charging occurs during operation, the regenerated
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power from the knee can be used for operating a powered ankle, which is a primary 

long-term goal of this work.

As suggested by the results, the prototype suffers from several sources of energy 

loss. Additionally, there are some losses that are not even reflected in the measure­

ments taken. In the next hardware iteration, an improved actuator, including the 

motor, motor driver, and screw, will aid in eliminating these losses. Because the 

energy regenerated is directly dependent on the motor parameters, a more optimal 

motor can be selected with this in mind. A different four-quadrant motor driver 

should be identified to better transfer the power available for regeneration at low 

walking speeds. The current screw is a lead screw with a rated efficiency of about 

60%. Replacing it with a ballscrew can easily raise this value above 90%. In addition, 

the energy regenerated by the negative damping is inversely proportional to electrical 

resistance (R), Eq. (6. 10). By embedding the electronics and eliminating the lengthy 

tether used in the test, further improvements in energy regeneration are possible.
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CHAPTER VII

CONCLUSION

7. 1 Statement of Contributions

In this dissertation, we set out to investigate the possibilities and limitations 

of robots having energy regenerative drive systems. We aimed to explore the factors 

affecting energy regeneration, and to find bounds on the maximum energy regenera­

tion attainable. To achieve this goal, five objectives were set at the beginning of this 

dissertation.

Ob jective 1: Extend the baseline framework developed by Richter.

In Chapter II, we expanded the framework in [81] to include the star configu­

ration for the semi-active joints. In the star configuration, all the semi-active joints 

are connected to a common central capacitor, therefore allowing direct energy trans­

fer from a joint with excess energy to a joint that requires energy. We showed that 

in terms of the total energy regenerated, the star and distributed configurations are 

equivalent; this was dictated by the SVC control strategy. However, the main advan­

tage of the star configuration, over the distributed configuration is that it prevents 

the complete discharge, or overcharge of the capacitors, by channeling energy between 

semi-active robot joints. The star and distributed configurations are the two more rel­

evant topologies investigated; other possible configurations for the semi-active joints
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can be seen as the combination of the two. We also showed that by feeding back 

the capacitor voltage, SVC eliminates the need to model the ultracapacitor(s) for 

controlling the robot and formulating optimization problems. This is an important 

feature since ultracapacitors behave in a complex and nonlinear manner. In addition, 

we derive expressions for the amount of energy regenerated and the overall energy 

balance, which become the basis of all the optimization problems formulated in sub­

sequent chapters. Moreover, the extended framework enables the generalization of all 

the results developed in this dissertation to any robotic system that can be captured 

using this framework.

Objective 2: Investigate parameter optimization problems for energy re­

generative robots.

In Chapter III, we formulated and solved parameter optimization problems 

pertaining to robots with energy regeneration. Assuming the robot follows prede­

fined motion trajectories, we found closed-form solutions for the optimal manipulator 

parameter vector that maximize energy regeneration in one or more semi-active joints. 

The optimal parameter vector can be used as a guideline when designing robotic sys­

tems that are capable of energy recovery. In addition, we show that the optimal 

solution is global and unique, and derive closed-form expressions for the maximum 

attainable energy regeneration. Moreover, we provide closed-form expressions for the 

optimal gear ratio and show that energy regeneration increases with the increase of 

the motor torque constant, and the decrease of motor winding resistance. The closed- 

form expressions we derive in this chapter provide insight into the capabilities and 

limitations of energy regeneration and become very valuable, considering that they 

are applicable to any energy regenerative robotic system that can be modeled using 

the framework of Chapter II.
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Publications:

• Khalaf, P., & Richter, H. (2018). On global, closed-form solutions to parametric optimization 

problems for robots with energy regeneration. Journal of Dynamic Systems, Measurement, 

and Control, 140(3), 031003.

• Khalaf, P., & Richter, H. (2016, July). Parametric optimization of stored energy in robots with 

regenerative drive systems. In 2016 IEEE International Conference on Advanced Intelligent 

Mechatronics (AIM), (pp. 1424-1429).

Objective 3: Investigate trajectory optimization problems for energy re­

generative robots.

In Chapter IV, assuming fixed system parameters, we solved several trajectory 

optimization problems, where closed-form solutions were possible. These problems 

included maximizing energy regeneration with respect to the external force/moment 

trajectory, and maximizing energy regeneration with respect to an arbitrary variable 

satisfying a set of conditions. All other system trajectories were assumed predefined 

and fixed. For each case, we give expressions for the maximum energy regeneration 

that are global and unique. These solutions provide understanding of the limits and 

bounds on energy regeneration, and can help in making various design decisions, 

such as choosing an appropriate capacitor size, or comparing the cost vs. benefits 

of incorporating energy regeneration in a given system. Moreover, we present the 

analytical solution to the linear optimal control problem, where assuming fixed system 

parameters, we find optimal control and motion trajectories that maximize energy 

regeneration for a linear time invariant system. Cartesian robots fall under this 

category and are utilized extensively in industrial production lines for high speed pick 

and place operations. The optimal linear control solution can easily be applied to any 

energy regenerative Cartesian robot that can be modeled using the aforementioned
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framework. Most robotic systems, however, can not be accurately modeled using 

linear equations. Therefore, we formulate the nonlinear optimal control problem in 

this chapter. In the general case, analytical solutions for this problem cannot be 

found; hence, we provide the numerical formulation based on the direct collocation 

method and demonstrate the results using a PUMA 500 robot model.

Publication:

• Khalaf, P., & Richter, H. (2019). Trajectory Optimization of Robots with Regenerative Drive 

Systems: Numerical and Experimental Results. IEEE Transactions on Robotics. (under 

review)

Objective 4: Experimentally evaluate energy regeneration in an industrial 

robotic manipulator.

One of the goals we set out to achieve at the beginning was to provide exper­

imental results that demonstrate the effectiveness of energy regeneration in robotic 

systems, which is lacking in the literature. Therefore, in Chapter V, we experimentally 

evaluated optimal point-to-point trajectories, maximizing energy regeneration for the 

PUMA 500 robot. To do so, we used an experimentally identified model to numeri­

cally solve the nonlinear optimal control problem via the direct collocation method. 

The optimal trajectories are enforced on the robot using robust passivity based con­

trol, and an experimental setup is devised to measure power flows at key locations. 

Three trajectories with different starting and ending points and movement durations 

were considered. The experimental power flows showed a good agreement with nu­

merical results. In addition, motor driver inefficiency and friction were identified as 

the major sources of energy loss. We develop a new definition for the effectiveness of 

energy regeneration. The experimental results showed that energy regeneration was
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effective in reducing the overall energy consumption by 10 - 22%. A more efficient 

robot design (lower friction, higher quality parts, etc. ) can lead to further reductions 

energy consumption. Moreover, we investigated neighboring optimal trajectories and 

showed the strong dependency of energy regeneration on trajectories followed by the 

robot. In addition, we performed experiments to show the negative effect of controller 

chattering on motor driver regeneration efficiency.

Publication:

• Khalaf, P., & Richter, H. (2019). Trajectory Optimization of Robots with Regenerative Drive 

Systems: Numerical and Experimental Results. IEEE Transactions on Robotics. (under 

review)

Objective 5: Design, control, and experimentally evaluate an energy re­

generative powered transfemoral prosthesis.

One of the main focuses of this dissertation was the applications of energy 

regenerations in lower limb powered prostheses. In Chapter VI, we presented the 

design and control of an energy regenerative powered transfemoral prosthesis. Our 

prototype included a regenerative knee joint and a passive ankle joint. We developed 

a novel varying impedance control method control method that emphasizes simplicity 

while explicitly dealing with energy regeneration. The controller has only five tunning 

parameters that are easily adjusted in a matter of minutes. The controller allows 

walking at different speeds with the prosthesis while regenerating energy to reduce 

energy consumption. The prosthesis prototype is evaluated with an amputee test 

subject walking on a treadmill. To our best knowledge, this is the first human trial 

testing of an electro-mechanical energy-regenerative prosthesis. The prototype did, 

however, suffer from several sources of inefficiency, which can be eliminated by design
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revisions and using higher quality parts in future iterations. Therefore, in terms of 

energy regeneration, there is a lot of potential to be gained.

Publication:

• Khalaf, P., Warner, H., Hardin, E., Richter, H., & Simon, D. (2018, September). Develop­

ment and Experimental Validation of an Energy Regenerative Prosthetic Knee Controller and 

Prototype. In ASME 2018 Dynamic Systems and Control Conference (pp. V001T07A008- 

V001T07A008). American Society of Mechanical Engineers.

7. 2 Future Perspectives

Research in the area of energy regenerative robotics is relatively new and 

ongoing. With advances in energy storage technology and electric drive systems in 

the coming future, energy regeneration will find its way into more applications related 

to robotic systems. Here, we briefly mention some of the possible directions for future 

research.

In most of this dissertation, we have been concerned with motion tracking con­

trol methods, and only in Chapter VI we look into a specific case of impedance control 

for the powered prosthesis application. By controlling the dynamic interaction of the 

robot with its environment, impedance control can be used to emulate complaint be­

havior, which, as pointed out in Chapter VI, makes it the ideal control method for 

powered prostheses, exoskeletons, and in general, for controlling human robot inter­

actions. Therefore, investigating impedance control methods applied to regenerative 

robotic systems for the purpose of finding the range of impedance parameters that 

result in energy regeneration, or possibly finding closed-form solutions for the optimal 

impedance parameters maximizing energy regeneration, is of particular value.

In this dissertation, we took a model based approach for formulating and solv-
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ing optimizing problems pertaining to energy regenerative robots. In this approach, 

the optimization results depend heavily on the accuracy of the system model, re­

quiring a lot of time and effort to be spent on model development. An alternative 

approach would be to use model-free online optimization methods, such as extremum 

seeking [1, 59]. For the powered prosthesis application coupled with impedance con­

trol, extremum seeking can be used to find the optimal impedance parameters that 

would result in maximum energy regeneration without the need to model the pros­

thesis or predict the behavior of the human subject.

We evaluated energy regeneration experimentally for two applications: the 

PUMA 500 industrial robotic manipulator, and the lower limb powered prosthesis 

prototype. In both cases, we used custom regenerative drives (four quadrant motor 

driver powered by an ultracapacitor) with existing hardware for evaluating the ef­

fectiveness of energy regeneration. On the other hand, in Chapter III, we showed 

that system parameters (gear ratios, link masses, etc. ) have a great effect on energy 

regeneration, and how unsuitable parameter values, can lead to little or no regen­

eration. In order to truly evaluate the potential of energy regeneration in robotic 

systems, one needs to design the robot from the beginning with energy regeneration 

in mind. Therefore, every aspect of the robot, from selected gear ratios and elec­

tric motors, to the design of the control system and motion trajectories, are aimed 

towards maximizing energy regeneration.

An energy regenerative robot configured in the star configuration allows en­

ergy to flow directly between robot joints through the central capacitor. This concept 

could also be extended to multi-robot and collaborative robot systems, where energy 

can flow from a joint of one robot with an excess of energy to a joint of another robot 

requiring energy. Theses robots can be performing independent tasks or working to­

gether to achieve a common goal. Interesting optimization problems could be defined 

to find the trajectories for the robots that will result in maximum energy regeneration
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while also completing the assigned task. Some of this research is currently underway 

at Cleveland State University.
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APPENDIX A

EQUATION DERIVATION

Interfacing Torque/Force for Semi-Active Joints

Bond graphs are used to model semi-active joints in the star and distributed 

configurations (Fig. 51). In this section, we present the detailed derivation of Eq. (2. 2). 

The effort and flow variables for each bond are denoted by ei and fi respectively. The 

interfacing torque for the j-th semi-active joints can be written as

Figure 51: Bond graph of electro-mechanical semi-active joint in the distributed and 
star configurations.
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where e2 = bj∙f2, e3 = nj∙mj∙d(qj)/dt, and e4 = αj∙f5. Substituting gives

f2 = nj∙ q and

where

and

Replacing e5 and e6 in Eq. (A. 3), we have

and replacing for f5 in Eq. (A. 2), we have

(A. 2)

(A. 3)

(A. 4)

(A. 5)

(A. 6)

(A. 7)

where a = αn.

Energy Balance Equations

This section provides detailed derivations of Eq. (2. 12), Eq. (2. 13), and Eq. (2. 14). 

We start by deriving the expression of the Joule losses in terms of the desired control 

(τjd ). From the bond graph of Fig. 51 we have
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Replacing for f5 from Eq. (A. 6) gives

By expanding this equation and using Eq. (2. 6) we get

Equation (2. 2) expresses the relation between τj and τjd. Multiplying both sides of 

this equation by qj yields

The kinetic energy of the actuator is expressed as Kj∙ = 1/2mj∙(njqj)2. The above 

equation can be simplified as

a2

Replacing Rqj from Eq. (A. 10) and rearranging the result gives

Taking the integral from t1 to t2 of both sides of this equation, Eq. (2. 12) is obtained

as
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Equation (2. 13) is obtained by taking the sum of the above equation over all semi­

active joints.

To derive Eq. (2. 14), we start by writing the overall energy balance for the 

robotic manipulator:

where the first term on the left hand side is the work done by the semi-active joints,

the second term is the work done by the fully active joints (Wact ), and the third term

is the work done by the external forces and moments (Wext). ∆Em is the change in 

mechanical energy, and Σm is the dissipated mechanical energy in the system.

where ΔΕπ = ΔΕπ + ∑ e=ι δk is the total mechanical energy of the manipulator

∑e=ι (bjnj qj dt is the total mechanical dissipation of 
e t2

the manipulator and actuators, Σe = je=1 PRj dt is the electrical dissipation in

the actuators, and ∆Ecap is the total energy stored in the capacitors of the semi-active 

joints. Note that for the star configuration ∆Ecap = ∆Es and for the distributed 

configuration ∆Ecap = je=1 ∆Esj.
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Tjq dt from Eq. (A. 14), Eq. (2. 14) results:



Optimum gear ratio

This section explains the derivation of Eq. (3. 26). We start by substituting 

for τjd in the energy regeneration equation (Eq. (3. 3)), from Eq. (3. 2). Taking the 

derivative with respect to nj results in

By factoring out 1/nj3 we have

Since 1/nj3 = 0 the above equation can be simplified as
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From the above equation, the optimum gear ratio can be found as
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APPENDIX B

SYSTEM MODELS

Double Pendulum and Cart System

The regressor matrix Y and the parameter vector θ for the double inverted pendu­

lum and cart system are given below using a shorthand notation for trigonometric 

functions (ci = cos(qi); si = sin(qi); cij = cos(qi + qj ); sij = sin(qi + qj )).

where Y12 = Yjj = gc12 - ⅛s12, Y14 = -Sj(qj - 2q⅛) + Cj(2q1 + qj), Yχ5 = q3s1 - gcι, 

Y33 = -c12(q1 + q2)2 - s12(q'1 + q'2), Y24 = s2q12 + c2q'1 and Y1, 5 = Y25 = q'1 + q'2.

where θ1 = h1M1 - l1(M1 + M2), θ3 = I1 + M1(l1 - h1)2 + l12M2, θ9 = M1 + M2 + M3

and θ5 = M2h22 + I2.
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PUMA 500 Robot

The 3 × 10 regressor matrix for the three main joints of the PUMA 500 robot 

(excluding the robot wrist) is given below where Yij is the i-th row and j-th column 

element of the regressor matrix, ci = cos(qi), si = sinqi, cij = cos(qi + qj), and 

sij = sin(q+qj).

Yii = qi

Y12 = qιcj - 2q1q2c2s2

Yi3 = qιcj3 - 2qι(q2 + ⅛3)s23C23

Y14 = 2(qι - q1q2)c23C2 - 2(q1q2

+ q1q3)s23c2

Y15 = (⅛2 + ⅛3)2C23 + (qj + ⅛3)s23

Y16=Y17=Y19=0

Y110 = Y112 = Y113 = 0

Y18 = qjc2 + q2 s2

Y22 = q12c2s2

Y23 = q12c23s23

Y21 = Y211 = Y213 = 0

Y24 = (c23s2 + s23c2)q12 - (2q3q2

Y25 = q1s23

γ26 = q2

γ27 = q3

Y28 = qiS2

γ29 = - c23

γ210 = -c2

γ31 = γ32 = γ36 = γ38 = 0 

γ310 = γ311 = γ312 = 0 

γ33 = q12s23c23 

Υ34 = q1s23 c2 + qjs3 + q2c3 

γ35 = q1s23

Υ37 = q2 + q3

γ39 = - c23

+ q3)s3 + (2q2 + q3)c3

The 10 × 1 parameter vector θ is given below, where Mi is the mass of the i-th robot 

link, Iij is the moment of inertia of the i-th link with respect to the j axis of the 

coordinate frame located at the center of mass of link i and parallel to frame i, Cij 

is the distance from the center of mass of link i along the j axis of frame i, to the 

origin of frame i, and g is the gravity constant. Refer to Fig. 6 and Fig. 29a for the
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definitions of the coordinate frames and other parameters.

θ1 = M2d22 + M3(d3 - d2)2 + I1y + I2x + I3x + m1n21 

θ2 = M2(C2x + A2)2 + M3A22 - I2x + I2y 

θ3 = M3C32x - I3x + I3y

θ4 = C3xA2M3

θ5 = C3xM3(d3 - d2)

θ6 = M2(C2x + A2)2 + M3(C32x + A22) + I2z + I3z + m2n22 

θ7 = I3z + M3C32x + m3n23

θ8 = - d2M2 (C2x + A2) + A2M3(d3 - d2)

θ9 = C3xgM3

θ10 = gM2 (C2x + A2) + A2gM3
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