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DESIGN, CONTROL, AND OPTIMIZATION OF ROBOTS WITH ADVANCED
ENERGY REGENERATIVE DRIVE SYSTEMS

POYA KHALAF

ABSTRACT

We investigate the control and optimization of robots with ultracapacitor
based regenerative drive systems. A subset of the robot joints are conventional,
in the sense that external power is used for actuation. Other joints are energetically
self-contained passive systems that use ultracapacitors for energy storage. An electri-
cal interconnection known as the star configuration is considered for the regenerative
drives that allows for direct electric energy redistribution among joints, and enables
higher energy utilization efficiencies. A semi-active virtual control strategy is used to
achieve control objectives.

We find closed-form expressions for the optimal robot and actuator parameters
(link lengths, gear ratios, etc.) that maximize energy regeneration between any two
times, given motion trajectories. In addition, we solve several trajectory optimization
problems for maximizing energy regeneration that admit closed-form solutions, given
system parameters. Optimal solutions are shown to be global and unique. In addi-
tion, closed-form expressions are provided for the maximum attainable energy. This
theoretical maximum places limits on the amount of energy that can be recovered.
Numerical examples are provided in each case to demonstrate the results.

For problems that don’t admit analytical solutions, we formulate the general
nonlinear optimal control problem, and solve it numerically, based on the direct collo-
cation method. The optimization problem, its numerical solution and an experimental
evaluation are demonstrated using a PUMA manipulator with custom regenerative
drives. Power flows, stored regenerative energy and efficiency are evaluated. Exper-

imental results show that when following optimal trajectories, a reduction of about

v



10 — 22% in energy consumption can be achieved.

Furthermore, we present the design, control, and experimental evaluation of
an energy regenerative powered transfemoral prosthesis. Our prosthesis prototype is
comprised of a passive ankle, and an active regenerative knee joint. A novel varying
impedance control approach controls the prosthesis in both the stance and swing
phase of the gait cycle, while explicitly considering energy regeneration. Experimental
evaluation is done with an amputee test subject walking at different speeds on a
treadmill. The results validate the effectiveness of the control method. In addition,
net energy regeneration is achieved while walking with near-natural gait across all

speeds.
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ultracapacitor based regenerative knee and a passive ankle joint. We present a new
varying impedance control method that allows walking at different speeds with the
prosthesis, while reducing energy consumption by regenerating energy. The prosthesis
is evaluated experimentally in a clinical setting, with an amputee test subject walking

on a treadmill.
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the optimization problems under consideration are equivalent for both, but have dif-
ferent implications for each case. For instance, maximizing the energy regenerated in
the capacitor of the j-th semi-active joint in the distributed configuration is equivalent
to maximizing the energy regenerated by the j-th joint in the common capacitor of
the star configuration. This is a direct result of the exact virtual matching associated
with SVC. The main advantage of using the star configuration is that energy can be
channeled through the common capacitor, from a joint with an excess of energy to
a joint requiring energy, thus allowing for a longer periods of operation or possibly
operating indefinitely.

We also saw that an optimal solution for the parameter vector does not nec-
essarily lead to a feasible solution for the corresponding physical parameters. We
can define constraints to overcome this problem, however, feasibility conditions are
in general nonlinear and non-convex, and solving a convex problem with non-convex

constraints is non-convex and in general hard to solve; this is a limitation of the
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Figure 17: Sankey diagram for the external energy balance in Case 5. The overall
mechanical energy is represented by AF,,, Y. and ., are the electrical and mechan-
ical losses respectively, Wy is the work done by the fully-active joints, and AL,
is the energy going to (i.e., regenerated) or coming from (i.e., consumed) the j-th
semi-active actuator.
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results. However, even when the feasibility conditions fail, the unfeasible solution
provides a direction for varying the parameter vector that improves energy regenera-
tion. In the example provided, the parameter vector is varied in the direction of the
unfeasible solution until one or more of the feasibility conditions fail. The resulting
parameter vector, however sub-optimal, improves energy regeneration significantly in
comparison to the baseline parameters.

In addition, unfeasible solutions can be an indication of unsuitable reference
trajectories or actuator parameters. An alternative approach when confronted with
unsatisfactory solutions is to modify these trajectories and parameters. Closed-form
expressions for the optimal parameter vector, provide information on how to move
the parameter vector from an unfeasible region to a feasible region.

Closed-form expressions are also given for the optimal actuator parameters.
We showed that when a solution for the optimal gear ratio exists, it is an unique
and global maximum, and when the optimal gear ratio does not exist, stored energy
increases monotonically with the gear ratio. Energy regeneration was also shown to
be strictly increasing with respect to DC motor parameter +. This is an important
design factor for selecting DC machines for regenerative applications.

Moreover, with some trajectories and parameters, charge buildup may occur
in the capacitors. A net charging trend could be desirable for extended operating
times in systems with on-board storage; however, ultracapacitors become damaged
if overcharged. To prevent over-charging, regenerated energy can be stored using
an additional backup capacitor, or dissipated in a control resistor by using a simple
thermostat-like switching logic.

The solutions presented here are straightforward to use and eliminate or reduce
the need for heuristic numerical computations. They also provide valuable insight into

the limits and practicality of regenerative energy systems.
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Figure 25: Sankey diagram when the trajectory of Joint 3 is optimized. The overall
mechanical energy is represented by AF,,, Y. and ¥, are the electrical and mechan-
ical losses respectively, W, is the work done by the fully-active joints, and AFE;
is the energy going to (i.e., regenerated) or coming from (i.e., consumed) the j-th
semi-active actuator.
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capacitor to the robot (12.34, 99.42, and 14.55 J for joints 1, 2, and 3 respectively).
Part of this power is stored as potential energy to move the robot back to point A
and the rest is lost due to mechanical and electrical losses.

In the A to B portion of Case 2, the robot starts at a low elevation, goes
through an almost vertical position (g, &~ —7/2 and ¢z =~ 0), and comes down to its
final configuration. For Joint 2, this result in energy being consumed and converted
to potential energy when the robot is moving to a higher potential energy level (from
g2 = w/4 to ¢q2 ~ —n/2), and regenerated when the robot is moving to a lower
potential energy level (from ¢2 ~ —7/2 to ¢2 = —3x/4). Similarly in the B to A
portion, power is positive when moving to a higher potential energy level (¢, = —7/4
to g &~ —7/2), and regenerated when going to lower potential energy levels (g, =~
—7/2 to go = w/4). Joint 2 is the main contributor to energy regeneration (negative
power peak —41 watts). From A to B Joint 2 consumes a net energy of 160.37 J,
and from B to A it regenerates a net of —8.62 J. Joint 3 is mostly consuming energy
and only regenerates when the joint is braking and reversing at the end of the A to
B portion, and Joint 1 is consuming energy throughout the movement of the robot.

The initial and final configurations in Case 3 are chosen such that the robot can
reach the final configuration by only moving Joint 1. However, maintaining Joint 2
and Joint 3 at their initial configuration is highly energy consuming. The optimal
trajectory moves the robot to a low energy consuming configuration where the power
flow for joints 2 and 3 are close to zero. The robot only moves out of the low energy
configuration at the end of the trajectory to reach the final configuration. Similar to
cases 1 and 2, Joint 2 regenerates energy when moving to a lower potential energy
level.

Note that in portions of the robot’s movement, when Joint 2 is regenerating
energy and Joint 1 and Joint 2 are consuming energy, energy is being channeled from

Joint 2 to the other robot joints through the capacitor.

95












Table IX: Energy consumption for the PUMA 500 robot when following optimal
trajectories. Energy consumption is reported for the motor side and capacitor side
of the motor driver when going from point A to point B and vice versa. Negative
energy indicates energy regeneration.

Case 1
Easp(J) Epa(J)
Motor  Capacitor Motor Capacitor
Joint 1 12.10 20.16 12.34 20.07
Joint 2 —24.14 —16.21 99.42 103.76
Joint 3 —1.50 7.53 14.55 22.80
Total —13.54 11.48 126.31 146.63
Case 2
EA—)B(J) EB—)A(J)
Motor  Capacitor Motor Capacitor
Joint 1 10.34 27.11 7.92 25.72
Joint 2 160.37 168.84 —8.62 7.07
Joint 3 9.51 27.33 1.66 19.73
Total 180.22 223.28 0.96 52.52
Case 3
Easp(J) Epa(J)
Motor  Capacitor Motor Capacitor
Joint 1 18.68 46.88 17.20 46.67
Joint 2 42.62 70.10 35.64 63.77
Joint 3 7.05 37.08 7.84 37.47
Total 68.35 154.06 60.68 147.91

We define the effectiveness of energy regeneration as

AFg

—1—
‘ ABnn

(5.13)
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while also completing the assigned task. Some of this research is currently underway

at Cleveland State University.
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Wj] = / <2mjnj%' + <25jnj + éj ]> Qj> gjdt—

t1
to
2R; ((Y,0+T;) . a’ng\ .
[ = < ’ " o myngd; + <bjnj + Tjj G (A-18)
1

~(Y;0+T; i} N .

X <7( ]nz s) + myd; + <bj+%> qj> dt =0

7 7

%)
.. . a2 .
/ <2mjn;1.qjqj + 2 <bj + ﬁ) q?n?) dt
)

1
3
TL] tl
to
2R, . a? . A.19
/ a—;(%%’mmjn?qﬁ(bﬁgj) an?> A1)
t1

2
x (—Yj@ =T mydyn} + (bj + %) q‘m?) dt) =0
J

to
2
St R
J

1 (A.20)

“oR 2\ \?

i . o .

- / a—zj <<mj%’ + <bj + E) %’) n? — (Y50 + ;j)2> dt =0
t1



From the above equation, the optimum gear ratio can be found as

_f”R (Y0 + T;)2d

t2 . a2\ - 2R 2
j;l 2ijij + 2 (b] + R_]> qj — (m]qj (b + ) q]> dt

4 _
n; =

(A.21)
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APPENDIX B

SYSTEM MODELS

Double Pendulum and Cart System

The regressor matrix Y and the parameter vector € for the double inverted pendu-
lum and cart system are given below using a shorthand notation for trigonometric

functions (¢; = cos(q;); s; = sin(q;); ¢;; = cos(q + q;); si; = sin{q; + q;)).

Gzsa —gcz Yi2 G2 Yiu Yis 0 ¢ 0 0
Y = 0 Yoo 0 Yoy Yos 0 0 g2 O

G2+ Gosy Yaz O 0 0 g5 0 0 s

where Y15 = Ya2 = gc12 — 3512, Y14 = —52(@% — 2G1G2) + 2241 + G2), Yis = Gas1 — gcu,

Yas = —ci2(gr + G2)® — $12(G1 + Ga), You = 529% +cagy and Y5 = Yo5 = G1 + Go.

0 — (91 h2M2 (93 llMQhQ (95 B3 Bl B2 (99

where (91 = h1M1 — ll(Ml +M2), (93 = 11 +M1(l1 — h1)2 +Z%M2, (99 = M1 +M2 +M3
and (95 — Mgh% + 12.
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definitions of the coordinate frames and other parameters.

0y = Mady + Ms(ds — da)® + Tny + Iow + I32 + mun?

0 = M3 (Cor + A2)2 + M3A§ — Loy + Loy

03 = Mscg,x — I3, + I3y

04 = Cap Ao My

05 = Csx M3(d3 — dy)

06 = Ma(Cow + A)* + M5(C3, + A3) + Loz + I3, + monj
07 = Is. + MsC3, + manj

Og = —dyMy(Cap + Az) + AsMs(ds — dy)

g = C3.9Ms3

010 = gMs(Can + As) + AsgM;
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