384 research outputs found

    Modelling and Analysis of TCP Performance in Wireless Multihop Networks

    Get PDF
    Researchers have used extensive simulation and experimental studies to understand TCP performance in wireless multihop networks. In contrast, the objective of this paper is to theoretically analyze TCP performance in this environment. By examining the case of running one TCP session over a string topology, a system model for analyzing TCP performance in multihop wireless networks is proposed, which considers packet buffering, contention of nodes for access to the wireless channel, and spatial reuse of the wireless channel. Markov chain modelling is applied to analyze this system model. Analytical results show that when the number of hops that the TCP session crosses is fixed, the TCP throughput is independent of the TCP congestion window size. When the number of hops increases from one, the TCP throughput decreases first, and then stabilizes when the number of hops becomes large. The analysis is validated by comparing the numerical and simulation result

    Decisive analysis of current state of the art in congestion aware and control routing models in ad hoc networks

    Get PDF
    An important aspect that portrays a crucial position in the ad hoc network routing is congestion. Almost every research analysis is en-route in adapting this key factor in addressing congestion. This problem cannot be totally addressed by the regular TCP protocol based networks, keeping in view the special assets which include multi hop sharing etc, which is difficult to ascertain in ad hoc networks. Many attempts have been made and are in progress by researchers to provide unique solutions to the above mentioned problems. This paper projects a vital study on jamming aware and different routing standards that have been dealt with in recent times

    TCP with Adaptive Pacing for Multihop Wireless Networks

    Get PDF
    In this paper, we introduce a novel congestion control algorithm for TCP over multihop IEEE 802.11 wireless networks implementing rate-based scheduling of transmissions within the TCP congestion window. We show how a TCP sender can adapt its transmission rate close to the optimum using an estimate of the current 4-hop propagation delay and the coefficient of variation of recently measured round-trip times. The novel TCP variant is denoted as TCP with Adaptive Pacing (TCP-AP). Opposed to previous proposals for improving TCP over multihop IEEE 802.11 networks, TCP-AP retains the end-to-end semantics of TCP and does neither rely on modifications on the routing or the link layer nor requires cross-layer information from intermediate nodes along the path. A comprehensive simulation study using ns-2 shows that TCP-AP achieves up to 84% more goodput than TCP NewReno, provides excellent fairness in almost all scenarios, and is highly responsive to changing traffic conditions

    Achieving Soft Real-time Guarantees for Interactive Applications in Wireless Mesh Networks

    Get PDF
    The use of 802.11-based multi-hop wireless mesh networks for Internet access is extensive and growing. The primary advantages of this approach are ease of deployment and lower cost. However, these networks are designed for web and e-mail applications. Highly interactive applications, such as multiplayer online games and VoIP, with their requirements for low delay, present significant challenges to these networks. In particular, the interaction between real-time traffic and TCP traffic tends to result in either a failure of the real-time traffic getting its needed QoS or the TCP traffic unnecessarily experiencing very poor throughput. To solve this problem we place real-time and TCP traffic into separate queues. We then rate-limit TCP traffic based on the average queue size of the local or remote real-time queues. Thus, TCP traffic is permitted to use excess bandwidth as long as it does not interfere with real-time traffic guarantees. We therefore call our scheme Real-time Queue-based Rate and Admission Control, RtQ-RAC. Extensive simulations using the network simulator, ns-2, demonstrate that our approach is effective in providing soft real-time support, while allowing efficient use of the remaining bandwidth for TCP traffic

    Wireless Multi Hop Access Networks and Protocols

    Get PDF
    As more and more applications and services in our society now depend on the Internet, it is important that dynamically deployed wireless multi hop networks are able to gain access to the Internet and other infrastructure networks and services. This thesis proposes and evaluates solutions for providing multi hop Internet Access. It investigates how ad hoc networks can be combined with wireless and mesh networks in order to create wireless multi hop access networks. When several access points to the Internet are available, and the mobile node roams to a new access point, the node has to make a decision when and how to change its point of attachment. The thesis describes how to consider the rapid fluctuations of the wireless medium, how to handle the fact that other nodes on the path to the access point are also mobile which results in frequent link and route breaks, and the impact the change of attachment has on already existing connections. Medium access and routing protocols have been developed that consider both the long term and the short term variations of a mobile wireless network. The long term variations consider the fact that as nodes are mobile, links will frequently break and new links appear and thus the network topology map is constantly redrawn. The short term variations consider the rapid fluctuations of the wireless channel caused by mobility and multi path propagation deviations. In order to achieve diversity forwarding, protocols are presented which consider the network topology and the state of the wireless channel when decisions about forwarding need to be made. The medium access protocols are able to perform multi dimensional fast link adaptation on a per packet level with forwarding considerations. This i ncludes power, rate, code and channel adaptation. This will enable the type of performance improvements that are of significant importance for the success of multi hop wireless networks

    A Proposal for Congestion Control in Multi -Hop Mobile Ad Hoc Networks Using Cross -Layer Based TCP Protocol Approach

    Get PDF
    Abstract A Cross -Layer based approach for the improvement of TCP performance in Multi -Hop Mobile Ad Hoc Networks is proposed in this paper. The proposed congestion triggering mechanism triggers congestion whenever the Channel Occupied Ratio reaches a maximum threshold value and the received signal strength is less than a minimum threshold value. Then, the Congestion Control scheme controls the data sending rate of the sender by determining available bandwidth, delay of its link and COR. Further, a fair resource allocation scheme is put forwarded

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Enhancing TCP Performance in Mobile Ad Hoc Network Using Explicit Link Failure Notification (ELFN)

    Get PDF
    The dynamics and the unpredictable behaviour of a wireless mobile ad hoc network results in the hindrance of providing adequate reliability to network connections. Frequent route changes in the network relatively introduce incessant link failures which eventually degrade TCP performance considerably. In this research, we are going to study the potential improvement of TCP performance when Explicit Link Failure Notification is implemented as opposed to the standard TCP mechanism. ELFN modifies the ‘slow start’ mechanism that is used in standard TCP so that the throughput achieved from the network can be maximized
    • …
    corecore