21,194 research outputs found

    Online Learning Models for Content Popularity Prediction In Wireless Edge Caching

    Full text link
    Caching popular contents in advance is an important technique to achieve the low latency requirement and to reduce the backhaul costs in future wireless communications. Considering a network with base stations distributed as a Poisson point process (PPP), optimal content placement caching probabilities are derived for known popularity profile, which is unknown in practice. In this paper, online prediction (OP) and online learning (OL) methods are presented based on popularity prediction model (PPM) and Grassmannian prediction model (GPM), to predict the content profile for future time slots for time-varying popularities. In OP, the problem of finding the coefficients is modeled as a constrained non-negative least squares (NNLS) problem which is solved with a modified NNLS algorithm. In addition, these two models are compared with log-request prediction model (RPM), information prediction model (IPM) and average success probability (ASP) based model. Next, in OL methods for the time-varying case, the cumulative mean squared error (MSE) is minimized and the MSE regret is analyzed for each of the models. Moreover, for quasi-time varying case where the popularity changes block-wise, KWIK (know what it knows) learning method is modified for these models to improve the prediction MSE and ASP performance. Simulation results show that for OP, PPM and GPM provides the best ASP among these models, concluding that minimum mean squared error based models do not necessarily result in optimal ASP. OL based models yield approximately similar ASP and MSE, while for quasi-time varying case, KWIK methods provide better performance, which has been verified with MovieLens dataset.Comment: 9 figure, 29 page

    Secure Beamforming For MIMO Broadcasting With Wireless Information And Power Transfer

    Full text link
    This paper considers a basic MIMO information-energy (I-E) broadcast system, where a multi-antenna transmitter transmits information and energy simultaneously to a multi-antenna information receiver and a dual-functional multi-antenna energy receiver which is also capable of decoding information. Due to the open nature of wireless medium and the dual purpose of information and energy transmission, secure information transmission while ensuring efficient energy harvesting is a critical issue for such a broadcast system. Assuming that physical layer security techniques are applied to the system to ensure secure transmission from the transmitter to the information receiver, we study beamforming design to maximize the achievable secrecy rate subject to a total power constraint and an energy harvesting constraint. First, based on semidefinite relaxation, we propose global optimal solutions to the secrecy rate maximization (SRM) problem in the single-stream case and a specific full-stream case where the difference of Gram matrices of the channel matrices is positive semidefinite. Then, we propose a simple iterative algorithm named inexact block coordinate descent (IBCD) algorithm to tackle the SRM problem of general case with arbitrary number of streams. We proves that the IBCD algorithm can monotonically converge to a Karush-Kuhn-Tucker (KKT) solution to the SRM problem. Furthermore, we extend the IBCD algorithm to the joint beamforming and artificial noise design problem. Finally, simulations are performed to validate the performance of the proposed beamforming algorithms.Comment: Submitted to journal for possible publication. First submission to arXiv Mar. 14 201

    Online Contention Resolution Schemes

    Full text link
    We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our rounding technique, which we call online contention resolution schemes (OCRSs), is applicable to many online selection problems, including Bayesian online selection, oblivious posted pricing mechanisms, and stochastic probing models. It allows for handling a wide set of constraints, and shares many strong properties of offline contention resolution schemes. In particular, OCRSs for different constraint families can be combined to obtain an OCRS for their intersection. Moreover, we can approximately maximize submodular functions in the online settings we consider. We, thus, get a broadly applicable framework for several online selection problems, which improves on previous approaches in terms of the types of constraints that can be handled, the objective functions that can be dealt with, and the assumptions on the strength of the adversary. Furthermore, we resolve two open problems from the literature; namely, we present the first constant-factor constrained oblivious posted price mechanism for matroid constraints, and the first constant-factor algorithm for weighted stochastic probing with deadlines.Comment: 33 pages. To appear in SODA 201

    Outage Constrained Robust Secure Transmission for MISO Wiretap Channels

    Full text link
    In this paper we consider the robust secure beamformer design for MISO wiretap channels. Assume that the eavesdroppers' channels are only partially available at the transmitter, we seek to maximize the secrecy rate under the transmit power and secrecy rate outage probability constraint. The outage probability constraint requires that the secrecy rate exceeds certain threshold with high probability. Therefore including such constraint in the design naturally ensures the desired robustness. Unfortunately, the presence of the probabilistic constraints makes the problem non-convex and hence difficult to solve. In this paper, we investigate the outage probability constrained secrecy rate maximization problem using a novel two-step approach. Under a wide range of uncertainty models, our developed algorithms can obtain high-quality solutions, sometimes even exact global solutions, for the robust secure beamformer design problem. Simulation results are presented to verify the effectiveness and robustness of the proposed algorithms

    Energy-Efficient Power Control: A Look at 5G Wireless Technologies

    Get PDF
    This work develops power control algorithms for energy efficiency (EE) maximization (measured in bit/Joule) in wireless networks. Unlike previous related works, minimum-rate constraints are imposed and the signal-to-interference-plus-noise ratio takes a more general expression, which allows one to encompass some of the most promising 5G candidate technologies. Both network-centric and user-centric EE maximizations are considered. In the network-centric scenario, the maximization of the global EE and the minimum EE of the network are performed. Unlike previous contributions, we develop centralized algorithms that are guaranteed to converge, with affordable computational complexity, to a Karush-Kuhn-Tucker point of the considered non-convex optimization problems. Moreover, closed-form feasibility conditions are derived. In the user-centric scenario, game theory is used to study the equilibria of the network and to derive convergent power control algorithms, which can be implemented in a fully decentralized fashion. Both scenarios above are studied under the assumption that single or multiple resource blocks are employed for data transmission. Numerical results assess the performance of the proposed solutions, analyzing the impact of minimum-rate constraints, and comparing the network-centric and user-centric approaches.Comment: Accepted for Publication in the IEEE Transactions on Signal Processin

    Energy efficiency optimization in MIMO interference channels: A successive pseudoconvex approximation approach

    Get PDF
    In this paper, we consider the (global and sum) energy efficiency optimization problem in downlink multi-input multi-output multi-cell systems, where all users suffer from multi-user interference. This is a challenging problem due to several reasons: 1) it is a nonconvex fractional programming problem, 2) the transmission rate functions are characterized by (complex-valued) transmit covariance matrices, and 3) the processing-related power consumption may depend on the transmission rate. We tackle this problem by the successive pseudoconvex approximation approach, and we argue that pseudoconvex optimization plays a fundamental role in designing novel iterative algorithms, not only because every locally optimal point of a pseudoconvex optimization problem is also globally optimal, but also because a descent direction is easily obtained from every optimal point of a pseudoconvex optimization problem. The proposed algorithms have the following advantages: 1) fast convergence as the structure of the original optimization problem is preserved as much as possible in the approximate problem solved in each iteration, 2) easy implementation as each approximate problem is suitable for parallel computation and its solution has a closed-form expression, and 3) guaranteed convergence to a stationary point or a Karush-Kuhn-Tucker point. The advantages of the proposed algorithm are also illustrated numerically.Comment: submitted to IEEE Transactions on Signal Processin
    corecore