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Energy Efficiency Optimization in MIMO
Interference Channels: A Successive Pseudoconvex

Approximation Approach
Yang Yang, Marius Pesavento, Symeon Chatzinotas and Björn Ottersten

Abstract—In this paper, we consider the (global and sum)
energy efficiency optimization problem in downlink multi-input
multi-output multi-cell systems, where all users suffer from multi-
user interference. This is a challenging problem due to several
reasons: 1) it is a nonconvex fractional programming problem;
2) the transmission rate functions are characterized by (complex-
valued) transmit covariance matrices; and 3) the processing-
related power consumption may depend on the transmission rate.
We tackle this problem by the successive pseudoconvex approxi-
mation approach, and we argue that pseudoconvex optimization
plays a fundamental role in designing novel iterative algorithms,
not only because every locally optimal point of a pseudoconvex
optimization problem is also globally optimal, but also because
a descent direction is easily obtained from every optimal point
of a pseudoconvex optimization problem. The proposed algo-
rithms have the following advantages: 1) fast convergence as the
structure of the original optimization problem is preserved as
much as possible in the approximate problem solved in each
iteration, 2) easy implementation as each approximate problem
is suitable for parallel computation and its solution has a closed-
form expression, and 3) guaranteed convergence to a stationary
point or a Karush-Kuhn-Tucker point. The advantages of the
proposed algorithm are also illustrated numerically.

Index Terms—Energy Efficiency, Interference Channel,
MIMO, Nonconvex Optimization, NOMA, Pseudoconvex Opti-
mization, Successive Convex Approximation, Successive Pseudo-
convex Approximation

I. INTRODUCTION

In the era of 5G and Internet of Things by 2020, the number
of connected devices is predicted to reach 50 billions [1]. On
one hand, as compared to current systems, the data rate should
be 1000x higher to serve these devices simultaneously. On the
other hand, the significant increase in the data rate is expected
to be achieved at the same or even a lower level of energy
consumption. Therefore the so-called energy efficiency (EE)
is a key performance indicator that should be considered in
the design of transmission schemes.

In this paper, we adopt the notion of EE as the ratio between
the transmission rate and the consumed energy, which has a
unit of bits/Joule, and we study the EE maximization problem
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in a downlink multi-input multi-output (MIMO) multi-cell
system, where the base stations (BSs) are transmitting in
the same frequency band to allow full frequency reuse and
the users suffer from multi-user interference. This problem is
challenging due to several practical difficulties:

(D1) The transmission rate in the interference channel is a
nonconcave function of the transmit covariance matrices.

(D2) In MIMO systems, the transmission rate functions are
characterized by (complex-valued) transmit covariance
matrices.

(D3) The energy consumption depends not only on the trans-
mission power but also on the processing power that
increases with the transmission rate.

For the sake of an intuitive understanding of the challenging
nature, consider the sum rate maximization problem, which is
a special case of the EE optimization problem if the power
consumption is a constant: it has been proved in [2] that
the sum rate maximization problem in interference channels
is nonconvex and finding its globally optimal point is NP-
hard. Due to the high complexity of global optimization,
we are mainly interested in iterative algorithms with parallel
implementations that can efficiently find stationary points.

In a multi-cell network, multiple transmission links coexist
that negatively influence each other through the multi-user
interference. The conflicting interests of different links make
the EE maximization problem a multi-objective optimization
problem and there are several commonly adopted design
metrics with different rationale. For example, the global energy
efficiency (GEE), which is defined as the ratio between the
sum transmission rate and the total power consumption, is
a meaningful measure for the EE of the whole network.
Nevertheless, it may not be relevant in a heterogeneous net-
work, where different transmission links may have different
priorities. The EE of this network is better captured by the
(weighted) sum energy efficiency (SEE), defined as the sum
of all individual EE.

Related work. The EE optimization problem has received
considerable attention in recent years and it has been studied
from different perspectives. For example, to address (D1),
orthogonal transmission schemes based on user selection or
interference cancellation, are adopted in some of the early
works [3, 4, 5, 6] so that the transmission rate functions are
concave in the transmit covariance matrices. However, this
scheme is not optimal due to the inefficient reuse of spectrum,
especially considering the large number of devices in future
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networks and the existing frequency bandwidth limitations.
Along the direction of nonorthogonal multiple access, the

GEE maximization in MISO systems has been studied in [7],
where the authors considered additional Quality-of-Service
(QoS) constraints, in terms of each link’s guaranteed minimum
transmission rate. The SEE optimization problem with QoS
constraints is studied in [8]. Compared with the GEE function,
the SEE function is more difficult to optimize because it is the
sum of multiple fractional functions, while each individual
fractional function is the ratio of a nonconcave function and a
nonconvex function. In MISO systems, the transmission rate
is a function of the SINR which is a scalar quantity and the
algorithms proposed in [7, 8, 9] are built upon this property.
These algorithms can be generalized to MIMO systems by
treating the multiple data streams intended for the same user
independently (i.e., no joint transmit precoding). Although
this scheme has been empirically observed to achieve good
performance, it is in principle a suboptimal approach to
maximize the EE in MIMO systems where the transmission
rate is a function of the (complex-valued) transmit covariance
matrices, cf. (D2).

The sequential pricing algorithm for SEE maximization in
MISO systems proposed in [10, Alg. 1] is a variant of the block
coordinate descent (BCD) algorithm. Although this approach
extends to MIMO systems, the approximate problems solved
in each iteration do not exhibit any convexity and are thus not
easy to solve, making the iterative algorithm not suitable for
practical implementation.

A successive lower bound maximization (SLBM) algorithm
is proposed in [11] to find a KKT point of a large class of EE
optimization problems. The central idea therein is to maximize
in each iteration an approximate function that is a global lower
bound of the original GEE function. On the one hand, the
SLBM algorithm converges even when the objective function
is nondifferentiable. On the other hand, the requirement that
the approximate function must be a global lower bound of
the original objective function may bring limitations. Firstly,
the solution of the approximate function may not have a
closed-form expression and it can only be found iteratively
by a general purpose convex optimization solver. Secondly,
such an approximate function may not even exist for some
applications, for example, the SEE maximization problem.
Note that a global optimization technique is also proposed
in [11] for the GEE and SEE maximization problems, which
may serve as a benchmark in small problem instances only
due to the exponential complexity.

An iterative algorithm is proposed in [12] to maximize the
SEE in MIMO systems (without QoS constraints). However,
it has two limitations. Firstly, it is a two layer algorithm
for which the inner layer consists of a BCD type algorithm
which suffers from a high complexity and a slow convergence
rate. Secondly, only convergence in function value is estab-
lished and the convergence to a stationary point is still left
open. Besides, the algorithm is not applicable when the rate-
dependent processing power consumption (due to, e.g., coding
and decoding, cf. [8, 13, 14]) is considered.

The popular technique in literature to address (D3) is to
majorize the rate-dependent signal-related power consumption

paper D1 D2 D3 GEE SEE QoS
Tervo et al. [7]
Tervo et al. [8]
Pan et al. [10]

Zappone et al. [11]
He et al. [12]

This paper

Table I
SUMMARY OF RELATED WORK: ADDRESSED DIFFICULTIES

by a convex function, because it is possible to integrate such a
function into existing algorithms such as the SLBM algorithm
[11]. This approach is explained in detail in [8] where the
signal-related power consumption is assumed to be a convex
and monotonic function with respect to the transmission rate.
Nevertheless, in MIMO interference channels, it is nontrivial
to find such a convex upper bound, if possible at all.

Contributions. In this paper, we study the GEE and SEE
optimization problems in multi-cell MIMO interference chan-
nels and propose novel iterative algorithms that address the
practical difficulties (D1)-(D3) (see Table I), first without
and then with per-link QoS constraints; see Table I for a
comparison with some of the related works discussed above.
The proposed algorithms have the following attractive features:

• fast convergence as the structure of the original optimiza-
tion problem is preserved as much as possible in the
approximate problem solved in each iteration;

• low complexity as each approximate problem is suitable
for parallel computation and its solution has a closed-
form expression;

• guaranteed convergence to a stationary point or a Karush-
Kuhn-Tucker (KKT) point.

The proposed algorithms are based on the successive pseu-
doconvex approximation (SPCA) framework [15]. In each
iteration, an approximate problem is solved, and the approxi-
mate problem only needs to exhibit a weak form of convex-
ity, namely, pseudoconvexity. Among others, pseudoconvex
optimization problems have two notable properties: firstly,
some special cases of pseudoconvex objective functions (e.g.,
the ratio of positive convex and concave functions) can be
easily optimized and every stationary point is globally optimal,
and secondly, any direction pointing to an optimal point of
a pseudoconvex optimization problem is a descent direction
of the objective function. While the first property has been
recognized and exploited under the framework of fractional
programming (see [3, 4, 11, 16, 17, 18] and the references
therein), the second property has largely been overlooked.
In this paper, we argue that it plays a fundamental role in
designing novel iterative algorithms with provable conver-
gence to maximize differentiable EE functions, by showing
repeatedly that it paves the way to define an approximate
problem that preserves as much structure available in the
original EE function as possible, e.g., the partial concavity
(convexity) in the numerator (denominator) function and the
division operator. Therefore, the proposed algorithms present a
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fast convergence behavior and enjoy an easy implementation.1

The SPCA framework was firstly proposed in [15] to
design efficient iterative algorithms to minimize a nonconvex
objective function over a convex constraint set. On the one
hand, the algorithms for GEE and SEE maximization without
QoS constraints in this paper are obtained by exploiting the
unique problem structures in GEE and SEE maximization
and tailoring the theoretical SPCA framework accordingly. On
the other hand, the proposed algorithms for GEE and SEE
maximization with QoS constraints are a nontrivial extension
of the SPCA framework as the nonconcave QoS functions
make the constraint set nonconvex. We overcome this difficulty
by employing the so-called inner approximation, where the
nonconvex constraint set is approximated by a convex subset.

We mention for the completeness of this paper that another
popular design metric is to maximize the minimum EE among
all links. This problem has been studied in [11, 21], under
the framework of SLBM, where no rate-dependent processing
power consumption is considered. Our method proposed in
this paper cannot be applied to maximize the minimum EE,
because the minimum EE is a nondifferentiable function. To
our best knowledge, the minimum EE maximization problem
with rate-dependent processing power consumption is still an
open problem.

Paper structure. The rest of the paper is organized as
follows. In Sec. II we introduce the system model and problem
formulation. The novel iterative algorithms are proposed in
Sections III-VI for the following four problems: GEE maxi-
mization without QoS constraints, SEE maximization without
QoS constraints, GEE maximization with QoS constraints, and
SEE maximization with QoS constraints. Numerical results are
reported in Section VII and the paper is concluded in Sec. VIII.

Notation: We use x, x and X to denote a scalar, vector
and matrix, respectively. We use XH and X∗ to denote the
Hermitian of X and the complex conjugate of X, respectively.
The inner product of two matrices X and Y is defined as
X • Y , <(tr(XHY)). The operator [X]+ returns the pro-
jection of X onto the cone of positive semidefinite matrices.
The gradient of f(X) with respect to X∗ and X∗k is denoted
as ∇Q∗f(X) and ∇Q∗

k
f(X), respectively. ∇Q∗f(X) and

∇f(X) (∇Q∗
k
f(X) and ∇kf(X)) are used interchangeably

when there is no ambiguity. When there are multiple matrix
variables X1,X2, . . . ,XK , we use X as a compact notation
to denote all of them: X , (Xk)Kk=1. We also use X−k to
denote all matrix variables except Xk: X−k , (Xj)

K
j=1,j 6=k.

The notation 0 � X ⊥ Y � 0 denotes that X � 0, Y � 0
and <(tr(XHY)) = 0. Similarly 0 ≤ x ⊥ y ≥ 0 denotes that
x ≥ 0, y ≥ 0 and xHy = 0.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink MIMO multi-cell system as de-
picted in Figure 1, where the number of cells is K. We assume

1Some preliminary results of this journal paper are reported in our previous
conference papers (without proof or with shortened proof only): the GEE
maximization problem without QoS constraints and with QoS constraints is
studied in [19] and [20], respectively, while the SEE maximization problem
without QoS constraints is studied in [21]. Besides this, the rate-dependent
processing-related power consumption is not considered in [19, 20, 21].

Figure 1. System topology of 1-tiered small cell interferers (with a central
processing unit in CRAN). The BSs and users may be equipped with multiple
antennas. (This figure is reproduced from [19] c©2017 IEEE).

for simplicity that each cell is serving one user2. The number
of transmit antennas at the BS of cell k is Mk, and the number
of receive antennas of user k served by cell k is Nk. We denote
Hkk as the channel matrix from BS k to user k, and Hkj as
the downlink channel matrix from BS j to user k. We assume
that all K users are active and the multi-user interference is
treated as noise, so the downlink transmission rate of the k-th
user is:

rk(Qk,Q−k) , log det
(
I + Rk(Q−k)−1HkkQkH

H
kk

)
, (1)

where Qk , E
[
xkx

H
k

]
is BS k’s transmit covariance matrix

(based on the circularly symmetric Gaussian signaling3), Q−k
is a compact notation denoting all transmit covariance matrices
except Qk: Q−k = (Qj)j 6=k, and Rk(Q−k) , σ2

kI +∑
j 6=k HkjQjH

H
kj is the noise plus interference covariance

matrix experienced by user k.
The power consumption at BS k can be approximated by

the following equation:

pk(Q) , P0,k + ρktr(Qk) + gk(rk(Q)),

where Q , (Qk)Kk=1, P0,k is the circuit power consumption
and ρk ≥ 1 is the inverse of the power amplifier efficiency
at the transmitter, while gk(x) is a nonnegative differentiable
function of x with gk(0) = 0, which reflects the rate-dependent
processing power consumption, e.g., required for coding and
decoding [8, 13, 14]. The typical values of P0,k and ρk depend
on the types of the cell, e.g., macro cell, remote radio head,
and micro cell. Interested readers are referred to [23, Table 8]
for its typical values.

2All results can be generalized to the MIMO interfering broadcast channel
where each cell is serving multiple users that generate intra-cell interfere to
each other. A concise description for the GEE and SEE maximization problem
without QoS constraints is contained in this paper’s supplementary materials.

3The use of the more general circularly asymmetric Gaussian signaling may
bring additional benefits as shown in [22], but it is outside this paper’s scope
and will be left for future work.
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Optimizing the EE of multiple links in the network simul-
taneously is a typical multi-objective optimization problem,
which could be modeled in several different ways. For exam-
ple, the GEE, which is defined as the ratio between the sum
transmission rate and the total consumed power, models the
EE of the whole network:

maximize
Q

fG(Q) ,

∑K
k=1 rk(Q)∑K
k=1 pk(Q)

subject to Qk � 0, tr(Qk) ≤ Pk, ∀k, (2)

where Pk is BS k’s (predefined) sum transmission power
budget and the optimization variable is the (complex-valued)
transmit covariance matrices Q = (Qk)Kk=1.

To maximize the GEE, users suffering from bad channel
conditions may not be able to transmit, because increasing
the transmit power in the denominator may not lead to a
notable increase in the transmission rate in the numerator.
Another popular design approach is the so-called socially
optimal approach, which aims at finding the optimal point that
maximizes the sum EE (SEE) over all users:

maximize
Q

fS(Q) ,
K∑
k=1

rk(Q)

pk(Q)

subject to Qk � 0, tr(Qk) ≤ Pk, ∀k. (3)

Note that the objective function fS(Q) in (3) is a sum of mul-
tiple fractional functions, each is the ratio of the nonconcave
function rk(Q) and the nonconvex function pk(Q).

In the previous formulations (2) and (3), there are no
QoS constraints specifying each link’s minimum guaranteed
transmission rate. To incorporate the QoS constraints into the
EE optimization problems, we modify the GEE optimization
problem (2) as follows:

maximize
Q

fG(Q) =

∑K
k=1 rk(Q)∑K
k=1 pk(Q)

subject to Qk � 0, tr(Qk) ≤ Pk, rk(Q) ≥ Rk, ∀k, (4)

and we assume that the solution set of (4) is nonempty.
In contrast to problem (2), problem (4) has a nonconvex
constraint set due to the nonconvex QoS constraints and is thus
more challenging. Therefore we study (2) and (4) separately.

Similarly, the SEE optimization problem subject to QoS
constraints is modeled as follows:

maximize
Q

fS(Q) =

K∑
k=1

rk(Q)

pk(Q)

subject to Qk � 0, tr(Qk) ≤ Pk, rk(Q) ≥ Rk, ∀k. (5)

In Sections III-VI, we propose novel iterative algorithms that
can efficiently find a stationary/KKT point of problems (2)-(5).

III. THE PROPOSED ALGORITHM FOR GLOBAL ENERGY
EFFICIENCY MAXIMIZATION

To design an iterative algorithm for problem (2) that enjoys
a low complexity but at the same time a fast convergence
behavior, we need on the one hand to address the issue of
the nonconvexity in the objective function, and, on the other

hand, to preserve the original problem’s structure as much as
possible. Towards this end, we propose an iterative algorithm
based on the successive pseudoconvex approximation frame-
work developed in [15].

To start with, we introduce the definition of pseudoconvex
functions: a function f(x) is said to be pseudoconvex if [24]

f(y) < f(x) =⇒ (y − x)T∇f(x) < 0. (6)

In other words, f(y) < f(x) implies y − x is a descent
direction of f(x) [25]. A function f(x) is pseudoconcave
if −f(x) is pseudoconvex. Some properties of pseudoconvex
functions that are important to the subsequent development are
briefly summarized below.

• A pseudoconvex optimization problem consists of mini-
mizing a pseudoconvex objective function (or maximiz-
ing a pseudoconcave objective function) over a convex
constraint set.

• Every stationary point of a pseudoconvex optimization
problem is also globally optimal.

• The (strong) convexity of a function implies that the
function is pseudoconvex, which in turn implies that the
function is quasiconvex, but the reverse is generally not
true; see [15, Figure 1].

We refer the interested reader to [24, Ch. 9] and [18, Ch. 2]
for a comprehensive treatment of pseudoconvex functions and
pseudoconvex optimization.

The proposed iterative algorithm for problem (2) consists of
solving a sequence of successively refined approximate prob-
lems. In iteration t, the approximate problem defined around
a given point Qt consists of maximizing an approximate
function, denoted as f̃(Q; Qt), under the same constraints as
(2). The lack of concavity in the objective function should be
properly compensated so that the approximate problems are
much easier to solve than the original problem (2).

The numerator functions (rk(Q))Kk=1 are not concave and
the denominator functions (pk(Q))Kk=1 are not convex in Q.
Meanwhile, the function rk(Q) is concave in component Qk,
and the function P0,k + ρktr(Qk) in pk(Q) is convex in
component Qk. Exploiting this partial concavity may no-
tably accelerate the convergence, as shown in [26] and other
works. Therefore, we approximate the numerator function∑K
j=1 rj(Q) with respect to (w.r.t.) Qk at the point Qt by a

function denoted as r̃G,k(Qk; Qt), which is obtained by fixing
the other variables Q−k in rk(Qk,Q−k) and linearizing only
the functions {rj(Q)}j 6=k that are not concave in Qk:

r̃G,k(Qk; Qt) , rk(Qk,Q
t
−k)+

∑
j 6=k(Qk−Qt

k)•∇krj(Qt),
(7)

where X • Y , <(tr(XHY)) and ∇krj(Q) is the Ja-
cobian matrix of rj(Q) with respect to Q∗k (the complex
conjugate of Qk). Since r̃G,k(Qk; Qt) is concave in Qk,∑K
k=1 r̃G,k(Qk; Qt) is concave in Q. Similarly, we approx-

imate the denominator function pk(Q) by a convex function
p̃G,k(Qk; Qt) which is obtained by keeping P0,k + ρktr(Qk)
and linearizing the nonconvex part pk(Q) w.r.t. Qk at the point
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Q = Qt:

p̃G,k(Qk; Qt) , P0,k + ρktr(Qk) + gk(rk(Qt))

+
∑K
j=1(Qk −Qt

k) • ∇kgj(rj(Qt)), (8)

and p̃G,k(Qk; Qt) is positive and convex. This paves the way
to define the following approximate function of the original
objective function f(Q) at point Qt, denoted as f̃G(Q; Qt):

f̃G(Q; Qt) ,

∑K
k=1 r̃G,k(Qk; Qt)∑K
k=1 p̃G,k(Qk; Qt)

, (9)

The approximate function f̃G(Q; Qt) has some important
properties as we outline.

Firstly, the approximate function f̃G(Q; Qt) is still noncon-
cave, but it is a fractional function of a nonnegative concave
function

∑K
k=1 r̃G,k(Qk; Qt) and a positive linear function∑K

k=1 p̃G,k(Qk; Qt), which is thus pseudoconcave [15].
Secondly, the approximate function f̃G(Q; Qt) is differ-

entiable and its gradient is the same as that of the origi-
nal function fG(Q) at the point Qt where the approximate
function f̃G(Q; Qt) is defined. To see this, we remark that
∇Q∗

k
r̃j(Qj ; Q

t)
∣∣
Q=Qt = 0 if j 6= k, and

∇kr̃G,k(Qk; Qt)
∣∣
Q=Qt = ∇k

(∑K
j=1rj(Q)

)∣∣∣
Q=Qt

, (10a)

r̃G,k(Qt
k; Qt) = rk(Qt). (10b)

Similarly, ∇kg̃G,j(Qj ; Q
t) = 0 if j 6= k and

∇kp̃G,k(Qk; Qt)
∣∣
Q=Qt = ∇k

(∑K
j=1pj(Q)

)∣∣∣
Q=Qt

,

(11a)
p̃G,k(Qt

k; Qt) = pk(Qt). (11b)

Based on the observations in (10)-(11), it can be verified that
the gradient of the approximate function f̃G(Q; Qt) is the
same as that of the original function fG(Q) at the point Qt:

∇kf̃G(Q; Qt)
∣∣∣
Q=Qt

=
∇kr̃k(Qt

k; Qt)∑K
j=1 p̃j(Q

t
j ; Q

t)
−

(
∑K
j=1 r̃j(Q

t
j ; Q

t))∇kp̃k(Qt
k; Qt)

(
∑K
j=1 p̃j(Q

t
j ; Q

t))2

=
∇k(

∑K
j=1 rj(Q

t))∑K
j=1 pj(Q

t)
−

(
∑K
j=1 rj(Q

t))∇k(
∑K
j=1 pj(Q

t))

(
∑K
j=1 pk(Qt))2

= ∇kfG(Q)|Q=Qt , (12)

where the first and third equality is the expression of
∇kf̃G(Q; Qt) and ∇kfG(Q), respectively, and the second
equality follows from (10)-(11).

At iteration t of the proposed algorithm, the approximate
problem defined at the point Qt is to maximize the approx-
imate function f̃G(Q; Qt) defined in (9) subject to the same
constraints as in the original problem (2):

maximize
Q

f̃G(Q; Qt)

subject to Qk � 0, tr(Qk) ≤ Pk, k = 1, . . . ,K. (13a)

and its (globally) optimal point is denoted as BQt:

BQt , arg max
(Qk�0,tr(Qk)≤Pk)Kk=1

f̃G(Q; Qt). (13b)

Since problem (13a) is pseudoconvex, all of its stationary
points are globally optimal [24, Th. 9.3.3]. As we will show
shortly, BQt is unique.

Due to the above mentioned pseudoconcavity, differentiabil-
ity and equal gradient condition (12) at Qt of the approximate
function f̃(Q; Qt) defined in (9), it follows from [15, Prop.
1] that solving the approximate problem (13) yields an ascent
direction of the original objective function fG(Q) at Qt,
unless Qt is already a stationary point of problem (2), as stated
in the following proposition.

Proposition 1 (Stationary point and ascent direction). A point
Qt is a stationary point of (2) if and only if Qt = BQt. If Qt

is not a stationary point of (2), then BQt −Qt is an ascent
direction of fG(Q) in the sense that

(BQt −Qt) • ∇fG(Qt) > 0.

Proof: The proof follows the same line of analysis of [15,
Prop. 1] and is thus not duplicated here.

Since BQt−Qt is an ascent direction of fG(Q) at Q = Qt

according to Proposition 1, there exists a scalar γt ∈ (0, 1]
such that fG(Qt+γt(BQt−Qt)) > fG(Qt) [27, 8.2.1]. This
motivates us to update the variable Q as

Qt+1 = Qt + γt(BQt −Qt). (14)

This also implies that a constant unit stepsize (i.e., γt = 1)
does not necessarily lead to an increase in the objective
function value, unless f̃G(Q; Qt) defined in (9) satisfies an
additional assumption that it is a global lower bound of fG(Q)
[15, Assumption (A6)], which is however not the case. In
practice, the stepsize γt is usually obtained by either the exact
line search or the successive line search. Performing the exact
line search consists of solving an optimization problem

max
0≤γ≤1

f(Qt + γ(BQt −Qt)).

Since the objective function f(Q) is nonconcave, the above
optimization problem is nonconvex and not trivial to solve.
Therefore, we adopt the successive line search to calculate
the stepsize γt. That is, given two scalars 0 < α < 1 and
0 < β < 1, γt is set to be γt = βmt , where mt is the smallest
nonnegative integer m satisfying the following inequality:

fG(Qt + βm(BQt −Qt)) ≥
fG(Qt) + αβm∇fG(Qt) • (BQt −Qt). (15)

Note that the successive line search is carried out over the
original objective function f(Q) defined in (2).

The resulting sequence {fG(Qt)}t is increasing:

fG(Qt+1) = fG(Qt + βmt(BQt −Qt))

≥ fG(Qt) + αβmt∇fG(Qt) • (BQt −Qt)

≥ fG(Qt), ∀t,

where the first and second inequality comes from the defi-
nition of the successive line search (15) and Proposition 1,
respectively.
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Algorithm 1 The successive pseudoconvex approximation
method for GEE maximization (2)
S0: Q0 = 0, t = 0, and a stopping criterion ε.
S1: Solve problem (13) to compute BQt by the following
steps:

S1.0: st,0 =
∑K
k=1 r̃G,k(Qt

k; Qt)/
∑K
k=1 p̃G,k(Qt

k; Qt),
τ = 0, and a stopping criterion ε.

S1.1: Compute Q?
k(st,τ ) by (17) for all k = 1, . . . ,K.

S1.2: Compute st,τ+1 by (18).
S1.3: If |st,τ+1− st,τ | < ε, then BQt = Q?(st,τ ) and go

to S2. Otherwise τ ← τ + 1 and go to S1.1.
S2: Compute γt by the successive line search (15).
S3: Update Qt+1 according to (14).
S4: If ‖BQt −Qt‖ ≤ ε, then STOP; otherwise t← t+ 1 and

go to S1.

The proposed algorithm is formally summarized in Al-
gorithm 1 and its convergence properties are given in the
following theorem.

Theorem 2 (Convergence to a stationary point). The sequence
{Qt} generated by Algorithm 1 has a limit point, and every
limit point is a stationary point of problem (2). Furthermore,
the sequence {fG(Qt)} is monotonically increasing.

Proof: The constraint set of problem (2), namely,
{(Qk)Kk=1 : Qk � 0, tr(Qk) ≤ Pk}, is nonempty and
bounded. The sequence {Qt}t is thus bounded and has a
limit point. Then the latter statement can be proved following
the same line of analysis as [15, Theorem 1] and is thus not
duplicated here.

In Step 1 of Algorithm 1, a constrained pseudoconvex opti-
mization problem, namely, problem (13) must be solved. Since
the optimal point BQt does not have a closed-form expression,
we apply the Dinkelbach’s algorithm [17] to solve problem
(13) iteratively: at iteration τ of Dinkelbach’s algorithm, the
following problem is solved for a given and fixed st,τ (st,0

can be set to 0):

maximize
Q

∑K
k=1r̃G,k(Qk; Qt)− st,τ

∑K
k=1 p̃G,k(Qk; Qt)

subject to Qk � 0, tr(Qk) ≤ Pk, ∀k. (16)

Since problem (16) is well decoupled across different vari-
ables, it can be decomposed component-wise into many
smaller optimization problems that can be solved in parallel:
for all k = 1, . . . ,K,

maximize
Q

r̃G,k(Qk; Qt)− st,τ p̃G,k(Qk; Qt)

subject to Qk � 0, tr(Qk) ≤ Pk. (17a)

This problem is convex and its (unique) optimal point has a
closed-form expression based on the generalized waterfilling
solution [28, Lemma 2]:

Q?
k(st,τ ) , arg max

Qk�0,tr(Qk)≤Pk

{
r̃G,k(Qk; Qt)

−st,τ p̃G,k(Qk; Qt)

}
= V[I−Σ−1]+VH , (17b)

where [X]+ denotes the projection of X onto the cone
of positive semidefinite matrices, (V,Σ) is the generalized
eigenvalue decomposition of (HH

kkRk(Qt
−k)−1Hkk, (s

t,τρk+

µ?)I + st,τ∇Q∗
k
(
∑K
j=1 gj(rj(Q

t))) −
∑
j 6=k∇krj(Qt)), and

µ? is the Lagrange multiplier such that 0 ≤ µ? ⊥
tr(Q?

k(st,τ ))−Pk ≤ 0, which can easily be found by bisection.
After (Q?

k(st,τ ))Kk=1 is obtained, st,τ is updated as follows:

st,τ+1 =

∑K
k=1 r̃G,k(Q?

k(st,τ ); Qt)∑K
k=1 p̃G,k(Q?(st,τ ); Qt)

. (18)

It follows from the convergence properties of the Dinkelbach’s
algorithm (cf. [17]) that

lim
τ→∞

Q?(st,τ ) = BQt

at a superlinear convergence rate. Note that BQt is unique,
because both limτ→∞ st,τ and Q?(st,τ ) are unique. This iter-
ative procedure (17)-(18) is nested under Step 1 of Algorithm
1 as Steps 1.0-1.3.

In the following, we discuss some properties and implemen-
tation aspects of the proposed Algorithm 1.

The proposed algorithm presents a fast convergence behav-
ior. The approximate function in (9) is constructed in the same
spirit as [15, 26] by keeping as much concavity as possible,
namely, rk(Qk,Q−k) in Qk and

∑K
j=1(P0,k + ρktr(Qk))

in Q, and linearizing only the nonconcave functions in the
numerator and the nonconvex functions in the denominator,
namely,

∑
j 6=k rj(Q) and

∑K
j=1 gj(rj(Q)). Besides this, the

division operator is also kept. Therefore, the problem structure
is preserved to a large extent and the proposed algorithm is
expected to exhibit a fast convergence behavior, as we shall
later illustrate numerically.

The proposed algorithm enjoys a low complexity and an
easy implementation. In iterative algorithms, the major com-
putational complexity lies in solving the approximate problem
in each iteration. In the proposed algorithm, the approxi-
mate problem can be decomposed into multiple independent
subproblems and is thus suitable for parallel computation.
The optimal point of each subproblem has a closed-form
expression; by contrast, a generic convex optimization problem
must be solved in each iteration in [8, 11].

The proposed algorithm presents a broad applicability.
Firstly, it does not require the approximate function to be
a global lower bound of the original function, see, e.g., the
sequential programming framework proposed in [11]. Such an
approximate function may not even exist for some choices
of the power consumption models. Secondly, the proposed
algorithm is applicable for MIMO systems, where the design
variables are complex-valued matrices, and the rate-dependent
processing power consumption function gk(·) does not have
to be convex, as assumed in [8].

The proposed algorithm can, e.g., be implemented on a
central processing unit which has the channel state information
of all direct-link and cross-link channels, namely, (Hkj)j,k.
In practical systems, this central unit could be embedded in
the centralized radio access network (CRAN), cf. Figure 1:
each BS k sends the direct-link channel Hkk and cross-link
channels (Hkj)j 6=k to the central unit in the CRAN. Then
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the central unit invokes Algorithm 1 and informs each BS k
about the optimal transmit covariance matrix Qk. The incurred
latency is mainly due to the signaling exchange between the
central unit and the BSs, and the execution of the variable
updates. Due to the algorithm’s low complexity, the central
unit is not required to have a strong computational capability.

IV. THE PROPOSED ALGORITHM FOR SUM ENERGY
EFFICIENCY MAXIMIZATION

In this section, we propose an iterative algorithm for prob-
lem (3), which consists in solving a sequence of successively
refined approximate problems. In iteration t, we approximate
the nonconcave function fS(Q) with respect to Qk at the point
Qt by a function denoted as f̃S,k(Qk; Qt):

f̃S,k(Qk; Qt) ,
r̃S,k(Qk; Qt)

p̃S,k(Qk; Qt)
, (19)

where

r̃S,k(Qk; Qt) , rk(Qk,Q
t
−k) + (Qk −Qt

k) •Πk(Qt),

(20a)

Πk(Qt) , pk(Qt) · ∇k

(∑
j 6=k

rj(Q)

pj(Q)

)∣∣∣∣
Q=Qt

, (20b)

and

p̃S,k(Qk; Qt) , P0,k + ρktr(Qk) + gk(rk(Qt))

+ (Q−Qt
k) • ∇kgk(rk(Qt)). (20c)

In (20a)-(20b), we fix Q−k in rk(Qk,Q−k) and linearize
the nonconcave function rj(Q)/pj(Q) with respect to Qk. In
(20c), the nonconvex function gk(rk(Q)) is linearized. As a
result, the numerator and denominator function of f̃k(Qk; Qt)
is concave and convex in Qk, respectively, and f̃S,k(Qk; Qt)
is thus pseudoconcave in Qk. Besides, it is not difficult to
verify that

r̃S,k(Qt
k; Qt) = rk(Qt), (21a)

∇kr̃S,k(Qk; Qt)
∣∣
Q=Qt = ∇krk(Q)|Q=Qt + Πk(Qt),

(21b)

and

p̃S,k(Qt
k; Qt) = pk(Qt), (22a)

∇kp̃S,k(Qk; Qt)
∣∣
Q=Qt = ∇kpk(Q)|Q=Qt . (22b)

Then we can show that f̃k(Qk; Qt) and f(Q) have the same
gradient w.r.t. Qk at the point Q = Qt:

∇kf̃S,k(Qk; Qt)
∣∣∣
Q=Qt

=
∇kr̃S,k(Qt

k; Qt)

p̃S,k(Qt
k; Qt)

− r̃S,k(Qt
k; Qt)∇kp̃S,k(Qt

k; Qt)

p̃S,k(Qt
k; Qt)2

=
∇krk(Qt) + Πk(Qt)

pk(Qt)
− rk(Qt)∇kpk(Qt)

pk(Qt)2

=
∇krk(Qt)

pk(Qt)
− rk(Qt)∇kpk(Qt)

pk(Qt)2

+
∑
j 6=k∇k

(
rj(Q

t)

pj(Qt)

)
= ∇kfS(Q)|Q=Qt , (23)

where the first and third equality is the expression of
∇kf̃S(Q; Qt) and ∇kfS(Q), respectively, and the second
equality follows from (21)-(22).

Given point Qt in iteration t, we define an approximate
problem of the following form:

maximize
Q

∑K
k=1f̃S,k(Qk; Qt)

subject to Qk � 0, tr(Qk) ≤ Pk, k = 1, . . . ,K, (24)

and we denote as BQt = (BkQt)Kk=1 the optimal point. Since
problem (24) is well decoupled across different variables, it
can be decomposed into many smaller optimization problems
that can be solved in parallel:

BQt = arg max
(Qk�0,tr(Qk)≤Pk)Kk=1

∑K
k=1f̃S,k(Qk; Qt) (25)

m
BkQt = arg max

Qk�0,tr(Qk)≤Pk

f̃S,k(Qk; Qt), k = 1, . . . ,K. (26)

Note that BkQt is unique, which can be shown by the same
line of argument used in the previous section.

We remark that although f̃S,k(Qk; Qt) is pseudoconcave in
Qk, the approximate function

∑K
k=1 f̃S,k(Qk; Qt) in (24) is

not necessarily pseudoconcave in Q, because, unlike concave
functions, the sum of pseudoconcave functions is not always
pseudoconcave. Despite the lack of pseudoconcavity in the
approximate function

∑K
k=1 f̃k(Qk; Qt) in (24), BQt − Qt

is still an ascent direction of the original objective function
f(Q) at Q = Qt. To see this, we note that

(BQt −Qt) • ∇fS(Qt) =
∑K
k=1(BkQt −Qt

k) • ∇kfS(Qt)

=
∑K
k=1(BkQt −Qt

k) • ∇kf̃S,k(Qt
k; Qt).

As both the objective function and the constraint set of the ap-
proximate problem (24) is well decoupled among the different
block variables and each subproblem (26) is pseudoconvex,
we have (BkQt −Qt

k) •∇kf̃S,k(Qt
k; Qt) > 0 if BkQt 6= Qk

and (BkQt −Qt
k) • ∇kf̃S,k(Qt

k; Qt) = 0 otherwise. This is
formally stated in the following proposition.

Proposition 3 (Stationary point and ascent direction). A point
Qt is a stationary point of (3) if and only if BQt = Qt. If Qt

is not a stationary point of (3), then BQt −Qt is an ascent
direction of fS(Q) in the sense that

(BQt −Qt) • ∇fS(Qt) > 0.

Proof: The proof follows the same line of analysis of [15,
Th. 3] and is thus not duplicated here.

According to Proposition 3, BQt−Qt is an ascent direction
of fS(Q) at Q = Qt, and we calculate the stepsize by the
successive line search: given two scalars 0 < α < 1 and
0 < β < 1, γt is set to be γt = βmt , where mt is the smallest
nonnegative integer m satisfying the following inequality:

fS(Qt + βm(BQt −Qt)) ≥
fS(Qt) + αβm∇fS(Qt) • (BQt −Qt). (27)

Note that the successive line search is carried out over the
original objective function f(Q) defined in (3). After the
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Algorithm 2 The successive pseudoconvex approximation
method for SEE maximization (3)
S0: Q0 = 0, t = 0, and a stopping criterion ε.
S1: Solve problem (26) to compute BQt by the following
steps:

S1.0: st,0k = r̃S,k(Qt; Qt)/p̃S,k(Qt; Qt) for all k =
1, . . . ,K, τ = 0, and a stopping criterion ε.

S1.1: Compute Q?
k(st,τ ) by (29) for all k = 1, . . . ,K.

S1.2: Compute st,τ+1
k by (30) for all k = 1, . . . ,K.

S1.3: If
∥∥st,τ+1 − st,τ

∥∥ < ε, then BQt = Q?(st,τ ) and
go to S2. Otherwise τ ← τ + 1 and go to S1.1.

S2: Compute γt by the successive line search (27).
S3: Update Qt+1 according to (28).
S4: If ‖BQt −Qt‖ ≤ ε, then STOP; otherwise t← t+ 1 and

go to S1.

stepsize γt is found, the variable Q is updated as

Qt+1 = Qt + γt(BQt −Qt). (28)

The above steps are formally summarized in Algorithm 2.
From Proposition 3 and (27)-(28) it can be verified that the
sequence {fS(Qt)}t is monotonically increasing. Moreover,
the sequence {Qt} has a limit point and every limit point is a
stationary point of (3), whose proof follows the same line of
analysis as [15, Th. 3] and thus not duplicated here.

In Step 1 of Algorithm 2, a constrained pseudoconvex
optimization problem, namely, problem (26), must be solved,
and we apply the Dinkelbach’s algorithm to find BS,kQt itera-
tively. At iteration τ of Dinkelbach’s algorithm, the following
problem is solved for a given st,τk (st,0k can be set to 0):

maximize
Qk

r̃S,k(Qk; Qt)− st,τk p̃S,k(Qk; Qt)

subject to Qk � 0, tr(Qk) ≤ Pk, ∀k. (29)

Similar to problem (17), the optimal point of problem (29),
denoted as Q?

k(st,τk ), has a closed-form expression based on
the generalized waterfilling solution (cf. (17) in Section III).
After (Q?

k(st,τk ))Kk=1 is obtained, st,τk is updated as follows:

st,τ+1
k =

r̃S,k(Q?
k(st,τk ); Qt)

p̃S,k(Q?(st,τk ); Qt)
. (30)

It follows from the convergence properties of the Dinkelbach’s
algorithm that limτ→∞Q?

k(st,τk ) = BkQt for all k. This iter-
ative procedure (29)-(30) is nested under Step 1 of Algorithm
2 as Steps 1.0-1.3.

The proposed Algorithm 2 for the SEE maximization prob-
lem (3) has the same attractive features as those of Algorithm
1 for the global EE maximization problem (2), namely, the fast
convergence, the broad applicability and the low complexity;
see the discussion at the end of Sec. III. We complement the
discussion by emphasizing that Algorithm 2 is the first parallel
Jacobi-type algorithm designed for the maximization of the
sum EE function, and pseudoconvexity plays a fundamental
role that has not been fully recognized nor exploited by
existing techniques. This also marks a notable relaxation in
state-of-the-art convergence conditions for Jacobi algorithms.

V. THE PROPOSED ALGORITHM FOR GLOBAL ENERGY
EFFICIENCY MAXIMIZATION WITH QOS CONSTRAINTS

In this section, we propose an iterative algorithm to maxi-
mize the GEE subject to the QoS constraints defined in (4).

The nonconcave QoS constraints in (4) make the constraint
set nonconvex and Algorithm 1 proposed in Sec. III for prob-
lem (2) is no longer applicable, because 1) the approximate
problem is difficult to solve, and 2) the new point updated
according to (14) is not necessarily feasible. To design an itera-
tive algorithm for problem (4) that enjoys a low complexity but
at the same time a fast convergence behavior, we need on the
one hand to overcome the nonconcavity/nonconvexity in the
objective function/the constraint set, and, on the other hand, to
preserve the original problem’s structure as much as possible.
Towards this end, we extend the successive pseudoconvex
approximation framework developed in [15] for minimizing
a nonconvex function over a convex constraint set to solve
problem (4) where the objective function/the constraint set is
nonconcave/nonconvex.

In iteration t, the approximate problem defined around the
point Qt consists of maximizing an approximate function,
denoted as f̃(Q; Qt), over an approximate set, denoted as
Q̃(Qt). We first note that the nonconcave function rk(Q) in
(4) can be rewritten as the difference of two concave functions:

rk(Q) = log det
(
I + Rk(Q−k)−1HkkQkH

H
kk

)
= log det

(
σ2
kI +

∑K
j=1HkjQjH

H
kj

)
− log det

(
σ2
kI +

∑
j 6=kHkjQjH

H
kj

)
.

Introducing auxiliary variables Yk such that Yk =∑K
j=1HkjQjH

H
kj , we reformulate problem (4) as follows:

maximize
Q,Y

fG(Q) (31a)

subject to Qk � 0, tr(Qk) ≤ Pk, (31b)

r+k (Yk)− r−k (Q−k) ≥ Rk, (31c)

Yk =
∑K
j=1HkjQjH

H
kj , ∀k, (31d)

where r+k (Yk) , log det(σ2
kI + Yk) and r−k (Q) ,

log det(σ2
kI+

∑
j 6=kHkjQjH

H
kj). As we will see later, such a

reformulation is beneficial because the resulting approximate
problem can be efficiently solved by parallel algorithms.

Approximate function. The nonconcave numerator func-
tion

∑K
j=1 rj(Q) is approximated in the same way as in

(7). We also approximate the nonconvex denominator function∑K
j=1 pj(Q) w.r.t. Qk by p̃G,k(Qk; Qt) defined in (8). The

approximate function f̃(Q; Qt) is of the following form:

f̃G(Q,Y; Qt,Yt),

∑K
k=1(r̃G,k(Qk; Qt)− c ‖Yk −Yt

k‖
2

F )∑K
k=1 p̃G,k(Qk; Qt)

,

(32)
with Yt

k =
∑K
j=1HkjQ

t
jH

H
kj , while c ≥ 0 is a given constant.

When c = 0, the approximate function (32) is the same as
(9). However, when c > 0, the quadratic regularization term
makes the numerator function strongly concave in Y and
the benefit will become clear later. The approximate function
f̃G(Q,Y; Qt,Yt) is pseudoconcave in (Q,Y) for any given
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and fixed (Qt,Yt), and the gradient of f̃G(Q,Y; Qt,Yt) and
that of fG(Q) are identical at the point (Qt,Yt):

∇Q? f̃G(Q,Y; Qt,Yt)
∣∣
Q=Qt,Y=Yt = ∇Q∗fG(Qt),

∇Y? f̃G(Q,Y; Qt,Yt)
∣∣
Q=Qt,Y=Yt = 0 = ∇Y∗fG(Qt).

(33)

As we have seen repeatedly, these properties are essential in
establishing the convergence of the proposed algorithm.

Approximate set. It follows from the definition of concave
functions that r−k (Q) is upper bounded by its first order
approximation at the point Qt:

r−k (Q) ≤ r−k (Qt)+
∑
j 6=k(Qj−Qt

j)•∇Q∗
j
r−k (Qt)

, r̄−k (Q; Qt), (34)

where

r−k (Qt) = r−k (Qt; Qt) and ∇Q∗r−k (Qt) = ∇Q∗r−k (Qt; Qt).
(35)

Thus r+k (Yk)− r̄−k (Q; Qt) is a global lower bound of rk(Q):

rk(Q) = r+k (Yk)− r−k (Q) ≥ r+k (Yk)− r̄−k (Q; Qt), (36)

where equality holds at Q = Qt.
We then define the (inner) approximate constraint set Q̃(Qt)

by replacing the nonconcave functions rk(Q) with its lower
bound rk(Q; Qt):

Q̃(Qt) ,


Qk � 0, tr(Qk) ≤ Pk,

(Q,Y) : r+k (Yk)− r̄−k (Q−k; Qt) ≥ Rk,
Yk =

∑K
j=1HkjQjH

H
kj ,∀k

 .

(37)
The set Q̃(Qt) is convex as r+k (Yk)− r̄k(Q; Qt) is concave.

Approximate problem. In iteration t, the approximate
problem defined at the point Qt is to maximize the ap-
proximate function f̃(Q,Y; Qt,Yt) defined in (32) over the
approximate set Q̃(Qt) defined in and (37):

maximize
(Q,Y)∈Q̃(Qt)

f̃G(Q,Y; Qt,Yt), (38)

and its optimal point is denoted as (BQQt,BY Qt)). Note that
its dependence on Yt is suppressed for notation simplicity.

It turns out that BQQt − Qt is an ascent direction of the
original objective function f(Q) at Q = Qt, unless Qt is
already a KKT point4 of problem (4), as stated in the following
proposition.

Proposition 4 (KKT point and ascent direction). A point Qt

is a KKT point of (4) if and only if Qt = BQQt). If Qt is not
a stationary point of (4), then BQ(Qt,Yt)−Qt is an ascent
direction of fG(Q) in the sense that

(BQQt −Qt) • ∇Q∗fG(Qt) > 0.

Proof: See Appendix.
Given the ascent direction BQQt − Qt, we calculate the

stepsize γt by the successive line search as explained in
(15) and update the variable Q accordingly. The proposed

4For an optimization problem with a nonconvex constraint set, a stationary
point is defined as a KKT point, see [29, Definition 2].

algorithm is summarized in Algorithm 3 and its convergence
properties are given in the following theorem.

Theorem 5 (Convergence to a KKT point). Given a feasible
initial point Q0 ∈ Q, the sequence {Qt} generated by
Algorithm 3 has a limit point, and every limit point is a KKT
point of problem (4).

Proof: Although the constraint set Q of problem (4) is
nonconvex, the sequence {Qt} generated by Algorithm 3 is
always feasible. To see this, we check if Qt+1 satisfies the
QoS constraint rk(Qt+1) ≥ Rk:

rk(Qt+1) = rk(Qt + γ(BQt −Qt))

≥ r+k (Yt + γ(BY Qt −Yt))

− r−k (Qt + γ(BQQt −Qt); Qt)

≥ (1− γ)(r+k (Yt)− r−k (Qt; Qt))

+ γ(r+k (BY Qt)− r−k (BQQt; Qt))

≥ (1− γ)rk(Qt) + γRk,

where the first inequality follows from the fact that r+k (Y)−
r−k (Q; Qt) is a global lower bound of rk(Q), cf. (36), the
second inequality from the concavity of r+k (Y)− r−k (Q; Qt),
and the third inequality from the feasibility of (BQQt,BY Qt),
i.e., (BQQt,BY Qt) ∈ Q̃(Qt). Therefore rk(Qt+1) ≥ Rk
if rk(Qt) ≥ Rk. Since Q0 is feasible, Qt+1 is feasible by
induction.

Since the constraint set Q is closed and bounded, the
sequence {Qt}t is bounded and thus has a limit point. The
proof for the latter argument follows the same line of analysis
as [15, Theorem 1].

On solving the approximate problem (38). Proposition
4 and Theorem 5 hold for any choice of nonnegative c, even
when c = 0. Since problem (38) is pseudoconcave, its globally
optimal point can be found either by standard gradient-based
methods or by the interior-point method proposed in [30].

From now on, we assume c > 0. As we will show
shortly, the choice of a positive c brings numerical benefits
when we apply the Dinkelbach’s algorithm to solve problem
(38) iteratively. At iteration τ of Dinkelbach’s algorithm, the
following problem is solved for a given and fixed st,τ :

maximize
Q,Y

∑K
k=1

(
r̃G,k(Qk; Qt)− c

∥∥Yk −Yt
k

∥∥2
F

)
− st,τ

∑K
k=1p̃G,k(Qk; Qt) (39a)

subject to Qk � 0, tr(Qk) ≤ Pk, (39b)

r+k (Yk)− r̄−k (Q; Qt) ≥ Rk, (39c)

Yk =
∑K
j=1HkjQjH

H
kj , k = 1, . . . ,K. (39d)

We denote the solution of problem (39) as
(Q?(st,τ ),Y?(st,τ )). Then st,τ is updated as follows:

st,τ+1 =

∑K
k=1

(
r̃G,k(Q?

k(st,τ ); Qt)− c ‖Y?
k(st,τ )−Yt

k‖
2

F

)
∑K
k=1 p̃G,k(Q?

k(st,τ ); Qt)
.

(40)
It follows from the convergence properties of the Dinkel-
bach’s algorithm that limτ→∞Q?(st,τ ) = BQQt and
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Algorithm 3 The successive pseudoconvex approximation
method for GEE maximization with QoS constraints (4)
S0: Q0 ∈ Q, t = 0, and a stopping criterion ε.
S1: Compute BQQt by solving problem (38):

S1.0: st,0 = 0, τ = 0, and a stopping criterion ε.
S1.1: Solve problem (39) to compute Q?(st,τ ) by the

following steps:
S1.1.0: υ = 0, λ = 0, Σ = 0, and a stopping

criterion σ.
S1.1.1: Compute QL

k (λυk) and YL
k (Συ

k) by (44) and
(45), respectively, for all k = 1, . . . ,K.

S1.1.2: Update λk and Σk by (46) for all k.
S1.1.3: If

∥∥(λυ+1,Συ+1)− (λυ,Συ)
∥∥ ≤ σ, then

Q?
k(st,τ ) = QL

k (λυk). Otherwise υ ← υ + 1 and
go to S1.1.1.

S1.2: Compute st,τ+1 by (40).
S1.3: If

∥∥(λυ+1,Συ+1)− (λυ,Συ)
∥∥ ≤ σ, then

Q?
k(st,τ ) = QL

k (λυk). Otherwise υ ← υ + 1 and go to
S1.1.1.

S2: Compute γt by the successive line search (15).
S3: Update Q and Y by Qt+1 = Qt + γt(BQQt −Qt) and
Yt+1 = Yt + γt(BY Qt −Yt), respectively.
S3: If ‖BQt −Qt‖ ≤ ε, then STOP; otherwiset← t+ 1 and
go to S1.

limτ→∞Y?(st,τ ) = BY Qt. This iterative procedure (39)-(40)
is nested under Step 1 of Algorithm 3.

On solving problem (39). Problem (39) is convex and
the coupling constraints have a separable structure, which
can readily be exploited in the standard dual decomposition
method. To see this, the Lagrangian of (39) is:

L(Q,Y,λ ,Σ; Qt,Yt, st,τ ) =
∑K
k=1r̃G,k(Qk; Qt)

−
∑K
k=1

(
c
∥∥Yk −Yt

k

∥∥2
F

+ st,τ p̃G,k(Qk; Qt)
)

−
∑K
k=1Σk •

(
Yk −

∑K
j=1HkjQjH

H
kj

)
+
∑K
k=1λk(r+k (Yk)− r̄−k (Q; Qt)−Rk), (41)

where λk and Σk are the Lagrange multipliers associated with
the constraints (39c)-(39d). The dual function d(λ,Σ) is

d(λ,Σ) = max
(Qk�0,tr(Qk)≤Pk,Yk�0)Kk=1

L(Q,Y,λ,Σ), (42)

where the dependence of L(Q,Y,λ,Σ) on (Qt,Yt, st,τ ) is
dropped in (42) for notation simplicity. The dual problem of
(39) is

minimize
λ≥0,Σ

d(λ,Σ). (43)

Since the Lagrangian L(Q,Y,λ,Σ) is well decoupled across
different variables for fixed dual variable (λ,Σ), the max-
imization problem in (42) can be decomposed into many
smaller optimization problems that can be solved in parallel:

for all k = 1, . . . ,K,

QL
k (Σk, λk) ,

arg max
Qk�0,tr(Qk)≤Pk


r̃G,k(Qk; Qt)− st,τ p̃G,k(Qk; Qt)

−Qk •
(∑K

j=1 HH
jkΣkHjk

)
−Qk •

(∑
j 6=k λj∇Q∗

k
r−j (Qt)

)

(44)

and

YL
k (Σk) , arg max

Yk�0

{
λk log det(σ2

kI + Yk)−Σk •Yk

−c ‖Yk −Yt
k‖

2

F

}
,

(45)
where “L” in the superscript stands for “Lagrangian”. Since
c > 0, QL

k (λk) in (44) and YL
k (Σk) in (45) exist and are

unique, and they have a closed-form expression, cf. [28, Lem.
2] and [31, Lem. 7].

Remark 6. Since c > 0, the optimization problem in (45) is
strongly concave, which implies that a solution always exists
and it is unique [32]. This is however not necessarily the case
when c = 0 because the constraint set in (45) is unbounded,
and this justifies the quadratic regularization in (32).

The dual problem (43) can be solved by the gradient
projection algorithm and its gradient of d(λ,Σ) is

∇λk
d(λ,Σ) = log det(σ2

kI+YL
k (Σk))−r̄−k (QL

−k(λk))−Rk,
∇Σ∗d(λ,Σ) =

∑K
j=1HkjQ

L
j (λk)HH

kj −YL
k (Σk).

In iteration υ to solve problem (43), the dual variable is
updated as follows:

λt,τ,υ+1
k =

[
λt,τ,υk + ζt,τ,υ∇λk

d(λt,τ,υ,Σt,τ,υ)
]+
, (46a)

Σt,τ,υ+1
k = Σt,τ,υ

k + ζt,τ,υ∇Σ∗d(λt,τ,υ,Σt,τ,υ), (46b)

where λt,τ,0 and Σt,τ,0 can be set to 0. When c > 0 and the
stepsizes {ζt,τ,υ}υ are properly selected, e.g.,

∑
υ ζ

t,τ,υ =∞
and

∑
υ(ζt,τ,υ)2 < ∞, then limυ→∞Ql(λt,τ,υk ) = Q?(st,τ )

and limυ→∞Yl(λt,τ,υk ) = Y?(st,τ ) [33, Cor. 28.1.1]. This
iterative procedure (44)-(46) is nested under Step 1.1 of
Algorithm 3.

The Algorithm 3 consists of three layers: the outer layer
with index t, middle layer with index τ , and inner layer
with index υ, and Q? = limt→∞ limτ→∞ limυ→∞Ql(λt,τ,υk ),
where Q? is a KKT point of (4) and the limit with respect
to t is in the sense of subsequence convergence specified
by Theorem 5. Note that both the middle and inner layers
converge very fast (typically convergence is observed after a
few iterations), and the proposed algorithm exhibits a faster
convergence than state-of-the-art algorithm [11], because the
proposed approximate problem can be solved by parallel
algorithms based on the dual decomposition and all updates
have closed-form expressions, while the approximate problem
proposed in [11] must be solved by a generic convex optimiza-
tion solver. Furthermore, we remark that the state-of-the-art
algorithm [11] is not applicable when there is rate-dependent
processing-related power consumption, cf. Table I.
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VI. THE PROPOSED ALGORITHM FOR SUM ENERGY
EFFICIENCY MAXIMIZATION WITH QOS CONSTRAINTS

In this section, we propose an iterative algorithm to maxi-
mize the SEE subject to the QoS constraints defined in (5).

Given Qt at iteration t, it is tempting to define the ap-
proximate function as (24), which is proposed for problem
(3), where the approximate function is the sum of mul-
tiple component functions (f̃S,k(Qk; Qt))Kk=1, while each
component function f̃S,k(Qk; Qt) is pseudoconcave in Qk.
However, such an approximate function is not necessarily
pseudoconcave, and it cannot be decomposed into multiple
independent pseudoconcave optimization problems either, cf.
(25)-(26), as the QoS constraints introduce coupling among
different optimization variables (Qk)Kk=1 in the constraint set
in problem (5). To overcome this difficulty, we define an
approximate function that is concave as concavity is preserved
under addition and a concave function is also pseudoconcave.

Firstly, we reformulate problem (5) as follows:

maximize
Q,Y

fS(Q) (47a)

subject to Qk � 0, tr(Qk) ≤ Pk, (47b)

r+k (Yk)− r−k (Q−k) ≥ Rk, (47c)

Yk =
∑K
j=1HkjQjH

H
kj , ∀k, (47d)

On the one hand, we approximate the original objective
function fS(Q) by an approximate function f̃S(Q,Y; Qt):

f̃S(Q,Y; Qt) =
∑K
k=1f̃S,k(Qk,Yk; Qt), (48a)

f̃S,k(Qk,Yk; Qt) ,
rk(Qk,Q

t
−k)

pk(Qt)
+ (Qk −Qt

k) •Πk(Qt)

− c
∥∥Yk −Yt

k

∥∥2
F
, (48b)

where

Πk(Q) = − rk(Qt)

pk(Qt)2
∇Q∗

k
pk(Qt) +

∑
j 6=k∇Q∗

k

(
rj(Q

t)

pj(Qt)

)
.

In contrast to (19), f̃S,k(Qk,Yk; Qt) defined in (48b) is no
longer a fractional function, and it is concave in (Qk,Yk).
Therefore, f̃S(Q,Y; Qt) is concave in (Q,Y). Furthermore,
its gradient at the point (Q,Y) = (Qt,Yt) is the same as
that of the original function fS(Q):

∇Q∗
k
f̃S(Q,Y; Qt)

∣∣∣
Q=Qt

= ∇Q∗
k
f̃S,k(Qk,Yk; Qt)

∣∣∣
Q=Qt

=
∇Q∗

k
rk(Qt)

pk(Qt)
− rk(Qt)

pk(Qt)2
∇Q∗

k
pk(Qt) +

∑
j 6=k

∇Q∗
k

rj(Q
t)

pj(Qt)

= ∇Q∗
k
f̃S(Q)

∣∣∣
Q=Qt

,

and ∇Y∗
k
f̃S(Q,Y; Qt)

∣∣∣
Y=Yt

= 0 = ∇Y∗
k
f̃S(Q).

On the other hand, the nonconvex constraint set in (47) is
approximated by its inner approximation Q̃(Qt) defined in
(37). Then in iteration t, the approximate problem consists of
maximizing the approximate function f̃S(Q,Y; Qt) over the

Algorithm 4 The successive pseudoconvex approximation
method for SEE maximization with QoS constraints (5)
S0: Q0 = 0, t = 0, and a stopping criterion ε.
S1: Compute (BQQt,BY Qt) by problem (49):
S2: Compute γt by the successive line search (27).
S3: Update Q and Y by Qt+1 = Qt + γt(BQQt −Qt) and
Yt+1 = Yt + γt(BY Qt −Yt), respectively.
S4: If ‖BQQt −Qt‖ ≤ ε, then STOP; otherwise t ← t + 1
and go to S1.

approximate set Q̃(Qt):

maximize
Q,Y

∑K
k=1f̃S,k(Qk; Qt)

subject to Qk�0, tr(Qk)≤Pk, r+k (Yk)−r−k (Qk; Qt)≥Rk,
Yk =

∑K
j=1HkjQjH

H
kj , k = 1, . . . ,K, (49)

and let (BQQt,BY Qt) denote the optimal point. By following
the same line of analysis in Proposition 4, we can show that
BQQt−Qt is an ascent direction of fS(Q) at Q = Qt, unless
Qt is already a KKT point of (47). To update the variable,
the stepsize could be calculated by the successive line search
as explained in (27). Following the same line of analysis in
Theorem 5, we could claim that the sequence {Qt} has a limit
point and any limit point is a KKT point of (47).

The above iterative procedure is summarized in Algorithm
4. In Step 1, the convex problem (49) can be solved by parallel
algorithms based on the dual decomposition, as its objective
function and constraint set have a separable structure (the
discussion is similar to that of problem (39) and thus omitted
here). Therefore, the complexity of the proposed Algorithm
4 is much lower than [10, Alg. 1], where the nonconvex
approximate problem is difficult to solve in each iteration.

VII. SIMULATIONS

In this section, we compare numerically the proposed al-
gorithms with state-of-the-art algorithms. In particular, we
consider a 7-user MIMO IC, where the number of trans-
mit antennas is MT = 8 and the number of receive an-
tennas is MR = 4. The power dissipated in hardware is
P0,k = 16W, and the power budget normalized by the
number of transmit antennas and noise covariance is 10dB,
i.e., 10 log10(Pk/MT /σ

2) =10dB. The inverse of the power
amplifier efficiency is ρ = 2.6, the noise covariance is σ2 = 1,
the antenna gain is 16dB, and the path loss exponent is 2. The
results are averaged over 20 i.i.d. random channel realizations.
All algorithms are tested under identical conditions under
Matlab R2017a on a PC equipped with an operating system
of Windows 10 64-bit, an Intel i7-7600U 2.80GHz CPU, and
a 16GB RAM. All of the Matlab codes are available online at
http://orbilu.uni.lu/handle/10993/34787.

A. GEE Maximization

We compare the proposed Algorithm 1 based on the suc-
cessive pseudoconvex approximation for problem (2) with
the successive lower bound minimization (SLBM) algorithm
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Figure 2. GEE maximization: achieved GEE vs. the number of iterations
and CPU time (seconds)

proposed in [11, Prop. 6], which we briefly describe here. At
iteration t, Qt+1 is obtained by solving the following problem:

max
Q�0

{∑K
k=1(r+k (Q)− r−k (Qt)− (Q−Qt) • ∇r−k (Qt))∑K

k=1 P0,k + ρktr(Qk)

}
,

(50)
subject to the power constraints (tr(Qk) ≤ Pk for all k),
where r+k (Q) , log det(σ2

kI +
∑K
j=1 HkjQjH

H
kj), and this

optimization problem is solved iteratively by the Dinkelbach’s
algorithm. The SLBM algorithm bears its name from the fact
that the objective function in (50) is a global lower bound of
the original objective function fG(Q) defined in (2). We do
not consider the rate-dependent processing power consumption
here because the SLBM algorithm is not applicable otherwise.

As we see from Figure 2 (a), given the same initial point
(Q0 = PT /MT I), both algorithms achieve the same GEE,
and the proposed algorithm converges in fewer number of
iterations than the SLBM algorithm. In Figure 2 (b), the total
CPU time is plotted. Note that all operations are counted,
and they consists of solving the approximate problem (13),
performing the line search (15), and updating the variable
(14), which corresponds to Step S1, S2, and S3 of Algorithm
1, respectively. We see from Figure 2 (b), the proposed
algorithm needs much less time to converge to a stationary
point than that the SLBM algorithm needs. This is because the
variable update at each iteration of the proposed algorithm can
be implemented in closed-form expressions, while a generic
convex optimization problem in the form of (50) must be
solved (by CVX [34] in our simulations) for the SLBM
algorithm. Finally we remark that the SLBM algorithm cannot
handle rate-dependent processing power consumption.

B. SEE Maximization

We compare the proposed Algorithm 2 based on the suc-
cessive pseudoconvex approximation for problem (3) with the
linear transformation alternating (LTA) algorithm proposed
in [12, Alg. 1]. Note that we do not consider the rate-
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Figure 3. SEE maximization: achieved SEE vs. the number of iterations and
CPU time (seconds)

dependent processing power consumption here because the
LTA algorithm is not applicable otherwise.

We can draw several observations from Figure 3, where the
achieved SEE versus the number of iterations and the total
CPU time is plotted, respectively. Firstly, Figure 3 (a) shows
that the proposed algorithm achieves a better SEE than the
LTA algorithm. Secondly, as we can see from Figure 3 (b),
the proposed algorithm converges to the stationary point in
less than 1 second and is thus suitable for real time applica-
tions. This is because the variable update at each iteration
of the proposed algorithm can be implemented in closed-
form expressions and the Dinkelbach’s algorithm in the inner
converges superlinearly. Although the variable updates of the
LTA algorithm are also based on closed-form expressions, the
inner layer is a BCD type algorithm which suffers from slow
asymptotic convergence and typically needs many iterations
before convergence. Finally we remark that the LTA algorithm
cannot handle rate-dependent processing power consumption.

In Figure 4 we consider the rate-dependent processing
power consumption and compare the proposed algorithm with
the SCA algorithm in [8, Algorithm 3], where gk(x) = 0.1x2.
Note that the SCA algorithm was originally designed for
MISO systems and thus for a single data stream, but it could
be extended to the MIMO system by treating the multiple
data streams (min(Mk, Nk) = 4 in this example) intended
for the same users as interfering streams, which is essentially
a MISO IBC. We see from Figure 4 that both the proposed
algorithm and the SCA algorithm asymptotically converge to
the same SEE, but the proposed algorithm converges in much
fewer number of iterations. We also remark that the proposed
algorithm has a guaranteed convergence to a stationary point
while the SCA algorithm may not necessarily converge. Never-
theless, the SCA algorithm can be implemented in a distributed
fashion and is thus more suitable when there is no centralized
controller.

C. GEE and SEE maximization with QoS constraints

In this subsection, we test Algorithm 3-4 for problems (4)
and (5). In particular, the achieved GEE by Algorithm 3 and
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Figure 4. SEE maximization with rate-dependent processing power con-
sumption: achieved SEE vs. the number of iterations and CPU time (seconds)

the achieved SEE by Algorithm 4 is plotted in Figure 5 (a).
As a benchmark, we also plot the achieved GEE by Algorithm
1 and the achieved SEE by Algorithm 2, which are designed
for the GEE and SEE maximization problems without QoS
constraints, namely, (2)-(3). On the one hand, we can see
from Figure 5 (a) that the achieved EE by Algorithms 3-4
is, as expected, monotonically increasing w.r.t. the number
of iterations. The achieved GEE/SEE is smaller than that
achieved by Algorithm 1/2, because the feasible set of problem
(4)/(5) is only a subset of the feasible set of problem (2)/(3).
On the other hand, the transmission rate of a particular user is
plotted in Figure 5 (b) and we can see that this particular user
is guaranteed a minimum transmission rate by Algorithms 3-4,
while such a guarantee is not provided by Algorithms 1-2. This
is because as long as the QoS constraints are not enforced, the
users with bad channel conditions may not be able to transmit
in order to maximize the GEE/SEE.

VIII. CONCLUDING REMARKS

In this paper, we have proposed novel iterative algorithms
based on the successive pseudoconvex approximation frame-
work for the GEE and SEE maximization problem, possibly
with nonconcave QoS constraint functions. As we have shown,
pseudoconvexity plays a fundamental role, because it enables
us to design an approximate function that is not necessarily
a global lower bound of the original function. This makes
it possible to design new approximate functions that have
more flexibility (e.g., rate-dependent processing power con-
sumption) and that can be efficiently optimized. In particular,
the proposed algorithms have the following attractive features:
1) fast convergence as the structure of the original optimization
problem is preserved as much as possible in the approximate
problem solved in each iteration, 2) easy implementation as
each approximate problem is suitable for parallel computation
and its solution has a closed-form expression, and 3) guaran-
teed convergence to a stationary point or a KKT point. These
advantages of the proposed algorithms are also numerically
illustrated.
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Figure 5. GEE and SEE maximization with QoS constraints: achieved EE
and achieved transmission rate of a particular user vs. the number of iterations
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APPENDIX

Proof of Proposition 4: Suppose Qt = BQQt. The
Lagrangian of (38) is

L̃(Q,Y,Π,Σ,λ,µ; Qt,Yt)

= f̃G(Q,Y; Qt) +
∑K
k=1Πk •Qt

k −
∑K
k=1λk(tr(Qk)− Pk)

+
∑K
k=1µk(r+k (Yk)− r−k (Q−k; Qt))

+
∑K
k=1Σk • (Yk −

∑K
j=1HkjQjH

H
kj),

where (Π,Σ,µ,λ) are the dual variables. By definition
(Qt,Yt) solves the optimization problem (38). Since (Q,Y)
is a regular point [31], there exists (Πt,Σt,µt,λt) such
that (Qt,Yt) and (Πt,Σt,µt,λt) together satisfy the KKT
conditions [25, Prop. 4.3.1]:

∇Q∗L̃(Qt,Yt,Πt,Σt,λt,µt; Qt,Yt) = 0, (51)

0 � Πt
k ⊥ Qt

k � 0, 0 ≤ µtk ⊥ tr(Qt
k)− Pk ≤ 0, (52)

Yt
k =

∑K
j=1HkjQ

t
jH

H
kj ,Σ

t
k • (Yt

k −
∑K
j=1HkjQ

t
jH

H
kj),

(53)
0 ≤ λtk ⊥ r+k (Yt

k)− r−k (Qt
−k; Qt)−Rk ≥ 0, ∀k. (54)

Substituting (33) and (35) into (51) yields

∇Q∗L(Qt,Yt,Πt,Σt,λt,µt) = 0, (55)

where L(Q,Y,Π,Σ,λ,µ) is the Lagrangian of (31):

L(Q,Y,Π,Σ,λ,µ)

= fG(Q) +
∑K
k=1Πk •Qt

k −
∑K
k=1λk(tr(Qk)− Pk)

+
∑K
k=1µk(r+k (Yk)− r−k (Q))

+
∑K
k=1Σk • (Yk −

∑K
j=1HkjQjH

H
kj)

Similarly, substituting (35) into (54) yields

0 ≤ λk ⊥ r+k (Yt
k)− r−k (Qt)−Rk ≥ 0, ∀k. (56)
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Therefore (Qt,Yt,Πt,Σt,λt,µt) satisfies the KKT condi-
tions of problem (31), namely, (52), (53), (55) and (56).

If, reversely, there exist (Πt,µt,λt) and (Qt,Yt) satisfy-
ing the KKT conditions of problem (31), namely, (52), (53),
(55) and (56), we can see that (Πt,µt,λt) and (Qt,Yt)
also satisfies the KKT conditions of (38), namely, (51)-(54).
Since the objective function in (38) is pseudoconcave and the
constraint set Q̄(Qt) is convex, it follows from [24, Th. 10.1.1]
that (Qt,Yt) is an optimal point of (38), i.e., BQQt = Qt.

If BQQt 6= Qt, then

f̃G(BQQt,BY Qt; Qt) < f̃G(Qt,Yt; Qt).

Since f̃G(Q,Y; Qt) is pseudoconcave,

0 < (BQQt −Qt) • ∇Q∗ f̃G(Qt,Yt; Qt)

+ (BY Qt −Yt) • ∇Y∗ f̃G(Qt,Yt; Qt)

=(BQQt −Qt) • ∇Q∗fG(Qt),

where the equality follows from (33). Thus BQQt−Qt is an
ascent direction of fG(Q) at Q = Qt.
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