2,422 research outputs found

    A Bio-Inspired Two-Layer Mixed-Signal Flexible Programmable Chip for Early Vision

    Get PDF
    A bio-inspired model for an analog programmable array processor (APAP), based on studies on the vertebrate retina, has permitted the realization of complex programmable spatio-temporal dynamics in VLSI. This model mimics the way in which images are processed in the visual pathway, what renders a feasible alternative for the implementation of early vision tasks in standard technologies. A prototype chip has been designed and fabricated in 0.5 μm CMOS. It renders a computing power per silicon area and power consumption that is amongst the highest reported for a single chip. The details of the bio-inspired network model, the analog building block design challenges and trade-offs and some functional tests results are presented in this paper.Office of Naval Research (USA) N-000140210884European Commission IST-1999-19007Ministerio de Ciencia y Tecnología TIC1999-082

    Modeling of switched-capacitor delta-sigma Modulators in SIMULINK

    Get PDF
    Precise behavioral modeling of switched-capacitor /spl Delta//spl Sigma/ modulators is presented. Considering noise (switches' and op-amps' thermal noise), clock jitter, nonidealities of integrators and op-amps including finite dc-gain (DCG) and unity gain bandwidth, slew-limiting, DCG nonlinearities and the input parasitic capacitance, quantizer hysteresis, switches' clock-feedthrough, and charge injection, exhaustive behavioral simulations that are close models of the transistor-level ones can be performed. The DCG nonlinearity of the integrators, which is not considered in many /spl Delta//spl Sigma/ modulators' modeling attempts, is analyzed, estimated, and modeled. It is shown that neglecting this parameter would lead to a significant underestimation of the modulators' behavior and increase the noise floor as well as the harmonic distortion at the output of the modulator. Evaluation and validation of the models were done via behavioral and transistor-level simulations for a second-order modulator using SIMULINK and HSPICE with a generic 0.35-/spl mu/m CMOS technology. The effects of the nonidealities and nonlinearities are clearly seen when compared to the ideal modulator in the behavioral and actual modulator in the circuit-level environment

    A mixed-signal integrated circuit for FM-DCSK modulation

    Get PDF
    This paper presents a mixed-signal application-specific integrated circuit (ASIC) for a frequency-modulated differential chaos shift keying (FM-DCSK) communication system. The chip is conceived to serve as an experimental platform for the evaluation of the FM-DCSK modulation scheme, and includes several programming features toward this goal. The operation of the ASIC is herein illustrated for a data rate of 500 kb/s and a transmission bandwidth in the range of 17 MHz. Using signals acquired from the test platform, bit error rate (BER) estimations of the overall FM-DCSK communication link have been obtained assuming wireless transmission at the 2.4-GHz ISM band. Under all tested propagation conditions, including multipath effects, the system obtains a BER = 10-3 for Eb/No lower than 28 dB.Ministerio de Ciencia y Tecnología TIC2003-0235

    Stargrazer One: A New Architecture for Distributed Maximum Power Point Tracking of Solar Photovoltaic Sources

    Get PDF
    The yield from a solar photovoltaic (PV) source is dependent on factors such as light and temperature. A control system called a maximum power point tracker (MPPT) ensures that the yield from a solar PV source is maximized in spite of these factors. This thesis presents a novel implementation of a perturb and observe (PO) MPPT. The implementation uses a switched capacitor step down converter and a custom digital circuit implementation of the PO algorithm. Working in tandem, the switched capacitor step down converter and the custom digital circuit implementation were able to successfully track the maximum power point of a simulated solar PV source. This implementation is free of the overhead encountered with general purpose processor based MPPT implementations. This makes this MPPT system a valid candidate for applications where general purpose processors are undesirable. This document will begin by discussing the current state of MPPT research. Afterward, this thesis will present studies done to be able to use the chosen switched capacitor step down converter. Then the digital circuit PO implementation will be discussed in detail. Simulations of the architecture will be presented. Finally, experimental validation using a hardware prototype will be shown

    Highly Linear 2,5-V CMOS ΣΔ Modulator for ADSL+

    Get PDF
    We present a 90-dB spurious-free dynamic range sigma–delta modulator (ΣΔM) for asymmetric digital subscriber line applications (both ADSL and ADSL+), with up to a 4.4-MS/s digital output rate. It uses a cascade (MASH) multibit architecture and has been implemented in a 2.5-V supply, 0.25μm CMOS process with metal–insulator–metal capacitors. The prototypes feature 78-dB dynamic range (DR) in the 30-kHz to 2.2-MHz band (ADSL+) and 85-dB DR in the 30-kHz to 1.1-MHz band (ADSL). Integral and differential nonlinearity are within +/-0.85 and +/-0.80 LSB, respectively. The ΣΔ modulator and its auxiliary blocks (clock phase and reference voltage generators, and I/O buffers) dissipate 65.8 mW. Only 55 mW are dissipated in the ΣΔ modulator.This work was supported by the European Union under IST Project 29261/MIXMODEST and IST Project 2001-34283/TAMES-2 and the Spanish MCyT and the ERDF under Project TIC2001-0929/ADAVERE.This work was supported by the European Union under IST Project 29261/MIXMODEST and IST Project 2001-34283/TAMES-2 and the Spanish MCyT and the ERDF under Project TIC2001-0929/ADAVERE.Peer reviewe

    Design techniques for low-power wide-band direct digital frequency synthesizers of spread spectrum communication applications

    Get PDF
    For frequency agile communication systems, fast frequency switching in fine frequency steps with good spectral purity is crucial. Direct Digital Frequency Synthesizer (DDFS) is best suitable for these applications, but is not widely employed in wireless communication systems due to its high power consumption. In general, low power and high integration design are two challenges for mixed signal-circuits and communication systems designers. In this dissertation, new design techniques for DDFS at both architecture and circuit levels are proposed and investigated in order to minimize power consumption and optimize performance. A ROM-less low power wide band DDFS prototype using segmented sine wave Digital-to-Analog Converter (DAC) were designed, fabricated and tested to demonstrate the new design techniques.;First, to further reduce power consumption and save chip area, two new phase interpolation ROM less DDFS architectures are proposed. Segmentation technique is applied to the design of sine wave DAC for DDFS: (1) based upon trigonometric identities, a segmented sine wave DAC with fine nonlinear interpolation DAC\u27s is proposed; (2) based upon first order Taylor series and simple linear interpolation, a segmented sine wave DAC with a fine linear interpolation DAC is proposed. Second, a figure of merit (FM) is defined to find the optimal sine wave DAC segmentations for various resolutions of the segmented sine wave DAC\u27s. The device mismatch effects on the performance of segmented sine wave were also discussed. Third, For DDFS using current-steering segmented sine wave DAC with 12-b phase resolution and 11-b amplitude resolution, a behavioral model in Verilog was used to verify the functionality and validate the architecture. Finally, a DDFS prototype was designed and fabricated in a standard 0.25mum CMOS process. The measured SFDR is better than 50 dB with output frequencies up to 3/8 of the 300 MHz clock frequency. The prototype occupies an active area of 1.4 mm2 and consumes 240 mW for 300 MHz clock frequency. The new techniques reduce the power dissipation and die area substantially when compared to conventional ROM based DDFS designs with on-chip DAC

    Parametric analog signal amplification applied to nanoscale cmos wireless digital transceivers

    Get PDF
    Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e TecnologiaSignal amplification is required in almost every analog electronic system. However noise is also present, thus imposing limits to the overall circuit performance, e.g., on the sensitivity of the radio transceiver. This drawback has triggered a major research on the field, which has been producing several solutions to achieve amplification with minimum added noise. During the Fifties, an interesting out of mainstream path was followed which was based on variable reactance instead of resistance based amplifiers. The principle of these parametric circuits permits to achieve low noise amplifiers since the controlled variations of pure reactance elements is intrinsically noiseless. The amplification is based on a mixing effect which enables energy transfer from an AC pump source to other related signal frequencies. While the first implementations of these type of amplifiers were already available at that time, the discrete-time version only became visible more recently. This discrete-time version is a promising technique since it is well adapted to the mainstream nanoscale CMOS technology. The technique itself is based on the principle of changing the surface potential of the MOS device while maintaining the transistor gate in a floating state. In order words, the voltage amplification is achieved by changing the capacitance value while maintaining the total charge unchanged during an amplification phase. Since a parametric amplifier is not intrinsically dependent on the transconductance of the MOS transistor, it does not directly suffer from the intrinsic transconductance MOS gain issues verified in nanoscale MOS technologies. As a consequence, open-loop and opamp free structures can further emerge with this additional contribution. This thesis is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. The use of the latter is supported on the presentation of several circuits where the MOS Parametric Amplifier cell is well suited: small gain amplifier, comparator, discrete-time mixer and filter, and ADC. Relatively to the latter, a high speed time-interleaved pipeline ADC prototype is implemented in a,standard 130 nm CMOS digital technology from United Microelectronics Corporation (UMC). The ADC is fully based on parametric MOS amplification which means that one could achieve a compact and MOS-only implementation. Furthermore, any high speed opamp has not been used in the signal path, being all the amplification steps implemented with open-loop parametric MOS amplifiers. To the author’s knowledge, this is first reported pipeline ADC that extensively used the parametric amplification concept.Fundação para a Ciência e Tecnologia through the projects SPEED, LEADER and IMPAC

    Low power/low voltage techniques for analog CMOS circuits

    Get PDF
    corecore