10 research outputs found

    A beacon-less location discovery scheme for wireless sensor networks

    Get PDF
    In wireless sensor networks (WSNs), sensor location plays a critical role in many applications. Having a GPS receiver on every sensor node is costly. In the past, a number of location discovery schemes have been proposed. Most of these schemes share a common feature: they use some special nodes, called beacon nodes, which are assumed to know their own locations (e.g., through GPS receivers or manual configuration). Other sensors discover their locations based on the information provided by these beacon nodes. In this paper, we show that efficient location discovery can be achieved in sensor networks without using beacons. We propose a beacon-less location discovery scheme. based on the following observations: in practice, it is quite common that sensors are deployed in groups, i.e., sensors are put into n groups, and sensors in the same group are deployed together at the same deployment point (the deployment point is different from the sensors ’ final resident location). Sensors from the same group can land in different locations, and those locations usually follow a probability distribution that can be known a priori. With this prior deployment knowledge, we show that sensors can discover their locations by observing the group memberships of its neighbors. We model the location discovery problem as a statistical estimation problem, and we use the Maximum Likelihood Estimation method to estimate the location. We have conducted experiments to evaluate our scheme

    Quarantine region scheme to mitigate spam attacks in wireless sensor networks

    Get PDF
    The Quarantine Region Scheme (QRS) is introduced to defend against spam attacks in wireless sensor networks where malicious antinodes frequently generate dummy spam messages to be relayed toward the sink. The aim of the attacker is the exhaustion of the sensor node batteries and the extra delay caused by processing the spam messages. Network-wide message authentication may solve this problem with a cost of cryptographic operations to be performed over all messages. QRS is designed to reduce this cost by applying authentication only whenever and wherever necessary. In QRS, the nodes that detect a nearby spam attack assume themselves to be in a quarantine region. This detection is performed by intermittent authentication checks. Once quarantined, a node continuously applies authentication measures until the spam attack ceases. In the QRS scheme, there is a tradeoff between the resilience against spam attacks and the number of authentications. Our experiments show that, in the worst-case scenario that we considered, a not quarantined node catches 80 percent of the spam messages by authenticating only 50 percent of all messages that it processe

    A framework for cooperative localization in ultra-wideband wireless networks

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 89-93).Location-aware technologies have the potential to revolutionize computing, cellular services, sensor networks, and many other commercial, military, and social applications. In wireless networks, accurate information about an agent's location can give meaning to observed data and facilitate the agent's interactions with its surroundings and neighbors. Determining the location of one or more agents, known as localization or positioning, is a fundamental challenge. Most existing localization methods rely on existing infrastructure and hence lack the flexibility and robustness necessary for large ad-hoc networks. In this thesis, we describe a framework for localization that overcomes these limitations by utilizing cooperation: the agents in the network work together to determine their individual locations. We derive a practical algorithm for cooperative localization by formulating the problem as a factor graph and applying the sum-product algorithm. Each agent uses relative positioning measurements and probabilistic location information from its neighbors to iteratively update its location estimate. We investigate the performance of this algorithm in a network of ultra-wideband (UWB) nodes, which are well-suited for localization due to their potential to measure inter-node distances with high accuracy. Realistic models of UWB ranging error, based on an extensive measurement campaign in several indoor environments, are incorporated into the localization algorithm. Using the experimental data and simulations, we quantify the benefits that cooperation brings to localization.by Jaime Lien.M.Eng

    Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications

    Get PDF
    Nowadays, the availability of the location information becomes a key factor in today’s communications systems for allowing location based services. In outdoor scenarios, the Mobile Terminal (MT) position is obtained with high accuracy thanks to the Global Positioning System (GPS) or to the standalone cellular systems. However, the main problem of GPS or cellular systems resides in the indoor environment and in scenarios with deep shadowing effect where the satellite or cellular signals are broken. In this paper, we will present a review over different technologies and concepts used to improve indoor localization. Additionally, we will discuss different applications based on different localization approaches. Finally, comprehensive challenges in terms of accuracy, cost, complexity, security, scalability, etc. are presente

    Secure location-aware communications in energy-constrained wireless networks

    Get PDF
    Wireless ad hoc network has enabled a variety of exciting civilian, industrial and military applications over the past few years. Among the many types of wireless ad hoc networks, Wireless Sensor Networks (WSNs) has gained popularity because of the technology development for manufacturing low-cost, low-power, multi-functional motes. Compared with traditional wireless network, location-aware communication is a very common communication pattern and is required by many applications in WSNs. For instance, in the geographical routing protocol, a sensor needs to know its own and its neighbors\u27 locations to forward a packet properly to the next hop. The application-aware communications are vulnerable to many malicious attacks, ranging from passive eavesdropping to active spoofing, jamming, replaying, etc. Although research efforts have been devoted to secure communications in general, the properties of energy-constrained networks pose new technical challenges: First, the communicating nodes in the network are always unattended for long periods without physical maintenance, which makes their energy a premier resource. Second, the wireless devices usually have very limited hardware resources such as memory, computation capacity and communication range. Third, the number of nodes can be potentially of very high magnitude. Therefore, it is infeasible to utilize existing secure algorithms designed for conventional wireless networks, and innovative mechanisms should be designed in a way that can conserve power consumption, use inexpensive hardware and lightweight protocols, and accommodate with the scalability of the network. In this research, we aim at constructing a secure location-aware communication system for energy-constrained wireless network, and we take wireless sensor network as a concrete research scenario. Particularly, we identify three important problems as our research targets: (1) providing correct location estimations for sensors in presence of wormhole attacks and pollution attacks, (2) detecting location anomalies according to the application-specific requirements of the verification accuracy, and (3) preventing information leakage to eavesdroppers when using network coding for multicasting location information. Our contributions of the research are as follows: First, we propose two schemes to improve the availability and accuracy of location information of nodes. Then, we study monitoring and detection techniques and propose three lightweight schemes to detect location anomalies. Finally, we propose two network coding schemes which can effectively prevent information leakage to eavesdroppers. Simulation results demonstrate the effectiveness of our schemes in enhancing security of the system. Compared to previous works, our schemes are more lightweight in terms of hardware cost, computation overhead and communication consumptions, and thus are suitable for energy-constrained wireless networks

    A beacon-less location discovery scheme for wireless sensor networks

    No full text
    Abstract — In wireless sensor networks (WSNs), sensor location plays a critical role in many applications. Having a GPS receiver on every sensor node is costly. In the past, a number of location discovery schemes have been proposed. Most of these schemes share a common feature: they use some special nodes, called beacon nodes, which are assumed to know their own locations (e.g., through GPS receivers or manual configuration). Other sensors discover their locations based on the information provided by these beacon nodes. In this paper, we show that efficient location discovery can be achieved in sensor networks without using beacons. We propose a beacon-less location discovery scheme. based on the following observations: in practice, it is quite common that sensors are deployed in groups, i.e., sensors are put into n groups, and sensors in the same group are deployed together at the same deployment point (the deployment point is different from the sensors ’ final resident location). Sensors from the same group can land in different locations, and those locations usually follow a probability distribution that can be known a priori. With this prior deployment knowledge, we show that sensors can discover their locations by observing the group memberships of its neighbors. We model the location discovery problem as a statistical estimation problem, and we use the Maximum Likelihood Estimation method to estimate the location. We have conducted experiments to evaluate our scheme. Keyword: System Design. I
    corecore