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Abstract

Location-aware technologies have the potential to revolutionize computing, cel-
lular services, sensor networks, and many other commercial, military, and so-
cial applications. In wireless networks, accurate information about an agent's
location can give meaning to observed data and facilitate the agent's interac-
tions with its surroundings and neighbors. Determining the location of one
or more agents, known as localization or positioning, is a fundamental chal-
lenge. Most existing localization methods rely on existing infrastructure and
hence lack the flexibility and robustness necessary for large ad-hoc networks.
In this thesis, we describe a framework for localization that overcomes these
limitations by utilizing cooperation: the agents in the network work together
to determine their individual locations. We derive a practical algorithm for
cooperative localization by formulating the problem as a factor graph and
applying the sum-product algorithm. Each agent uses relative positioning
measurements and probabilistic location information from its neighbors to it-
eratively update its location estimate. We investigate the performance of this
algorithm in a network of ultra-wideband (UWB) nodes, which are well-suited
for localization due to their potential to measure inter-node distances with
high accuracy. Realistic models of UWB ranging error, based on an extensive
measurement campaign in several indoor environments, are incorporated into
the localization algorithm. Using the experimental data and simulations, we
quantify the benefits that cooperation brings to localization.

Thesis Supervisor: Moe Z. Win
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Chapter 1

Introduction

Location-aware technologies have the potential to revolutionize computing,

cellular services, sensor networks, and many other commercial, military, and

social applications. In particular, location awareness is a key enabling factor

for wireless networks, which are comprised of multiple untethered agents. Ac-

curate information about an agent's location gives meaning to observed data

and facilitates the agent's interactions with its surroundings and neighbors.

For example, new-generation cellular services provide the capability for users

to determine their location relative to friends or landmarks [1]. The ability

to pinpoint the origin of a cell phone call could also dramatically increase the

efficiency of emergency 911 services [2]. In some cases, the function of the

network necessitates that each node have an accurate estimate of its spatial

coordinates within an absolute or relative map. A set of wireless sensors may

be used to detect variations in temperature or barometric pressure [3] across

different regions of an environment. Because such data has meaning only in

relation to the site where it was collected, knowledge of the location of each

sensor is essential. Other possible applications for location-awareness include

search-and-rescue [4], military target tracking [51, healthcare monitoring [6],
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and logistics [7].

The problem of determining the location of one or more agents, known as

localization or positioning, is a fundamental challenge. Typically, only a small

fraction of the nodes in the network, known as anchors, have prior knowledge

about their location, as shown in Figure 1.1. Numerous solutions have been

proposed in existing literature; however, most existing localization methods

are ill-suited for the majority of wireless networks. The ad-hoc and often dy-

namic nature of wireless networks means that localization methods can rely on

minimal, if any, infrastructure, human maintenance, and a priori location in-

formation. A centralized computing unit is often infeasible; hence, distributed

algorithms are required. As wireless networks may contain hundreds or thou-

sands of agents, localization methods must also be scalable. Moreover, the

agents that comprise such networks are typically limited in terms of their pro-

cessing and communication capabilities. Noise and environmental factors also

present a challenge to robust, accurate localization.

In this thesis, we describe an algorithm for localization that addresses the

challenges above through cooperation amongst agents in the network. The

nodes in the network share information to determine each individual location.

An algorithm for cooperative localization is derived by applying the sum-

product algorithm to a factor-graph representation of the problem. Using

probabilistic models of relative positioning measurements, the algorithm allows

agents to exchange and incorporate location information from other agents.

The algorithm provides a framework for cooperative localization using any

type of relative positioning measurements. Due to its fine time resolution,

ultra-wideband (UWB) technology is particularly well-suited for such position-

ing measurements, especially in dense multipath or harsh environments [8]. In

this work, we present the results of an extensive experimental campaign to
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Figure 1.1: Localization for an indoor wireless network

produce models of UWB ranging measurements, which are then incorporated

into the cooperative localization algorithm. Using the experimental data and

simulations, the cooperative localization algorithm is shown to provide greater

robustness and accuracy than traditional localization techniques.

The main contributions of the thesis are as follows:

* We derive a centralized algorithm for cooperation localization using fac-

tor graphs and the sum-product algorithm.

* After performing a graph transformation, we derive a distributed algo-

rithm for cooperative localization with improved computational com-

plexity.

* We discuss the incorporation of practical location information into the

algorithm, the representation of messages transmitted between agents,

and possible adjustments to the algorithm to reduce computation.
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* We present results from an experimental campaign to develop realistic

and tractable models of UWB ranging measurements.

* We quantify the benefits that cooperation brings to localization using

simulations that incorporate the experimental data.

The rest of this thesis is organized as follows. In Chapter 2, we present an

overview of current research in the area of localization, including existing sys-

tems and algorithms. We also discuss the use of UWB for localization. Chap-

ter 3 explains the theoretical background and derivation of the cooperative

localization algorithm. In Chapter 4, we cover practical issues related to the

implementation of the algorithm. Chapter 5 focuses on the UWB measure-

ment campaign and our resulting ranging error models. Results based on

these models and simulations are presented in Chapter 6. Finally, Chapter 7

contains concluding remarks.



Chapter 2

Background and prior work

In this chapter, we present an overview of localization and ultra-wideband

technology. Section 2.1 explains how localization is accomplished and intro-

duces a set of criteria with which to classify localization methods. Localization

systems, both implemented in current systems and proposed in the literature,

are also discussed. Section 2.2 provides a background on ultra-wideband tech-

nology, including its traditional use as a means for communication. We then

explain why ultra-wideband is well-suited for localization.

2.1 Overview of localization techniques

2.1.1 Signal metrics

Localization is accomplished using signals passed between an agent and ex-

isting infrastructure or from agent to agent. Information about the receiver's

location relative to the transmitter (or vice versa) can be extracted from these

signals using a variety of metrics. In the following section, we discuss time of

arrival and time difference of arrival, received signal strength, angle of arrival,

hop count, connectivity, and fingerprinting.
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Time of arrival and time difference of arrival Time-based metrics use

the measured signal propagation time to estimate the distance between a trans-

mitter and a receiver. Assuming a constant known propagation speed s, the

estimated distance is given by d = s t, where t is the measured duration of

the signal propagation. If the clocks at the transmitter and receiver are syn-

chronized, the transmitter can include a timestamp that allows the receiver

to measure the signal flight time based on the time of arrival (ToA). Alter-

natively, the roundtrip flight time can be measured, eliminating the need for

clock synchronization at the expense of increased communication. Time dif-

ference of arrival (TDoA) techniques determine the position of a transmitter

relative to two receivers with known location [9]. The difference in the signal's

arrival time at each receiver defines a hyperbola upon which the transmitter

is located, with loci at each receiver. To calculate TDoA, the receiver clocks

must be synchronized with each other but not necessarily with the transmit-

ting agent.

Because time-based positioning measurements depend on the direct path

signal from transmitter to receiver, they are subject to errors caused by mul-

tipath and non-line-of-sight (NLOS) conditions. Multipath refers to a phe-

nomenon in which signals reflect off of surroundings and arrive at the receiver

via multiple indirect paths. The superposition of these arriving paths results

in fading, complicating detection of the direct path. NLOS conditions, created

by physical obstructions of the direct path, may produce a number of effects.

As the signal propagates through barriers, its speed decreases as a function

of the composition of the obstruction (e.g. material, thickness, etc), which

are typically unknown to the agent. Consequently, there is a discrepancy be-

tween the true propagation speed and the constant s used for the distance

calculation. The direct path may also be attenuated or, in extreme NLOS
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conditions, undetectable compared to late-arriving paths in the received sig-

nal. Such cases may cause detection algorithms to select an indirect path,

producing erroneous time-based positioning measurements and, in particular,

positively biased ToA-based range measurements. The accuracy of time-based

signal measurements increases with the bandwidth of the signal [10].

Received signal strength The distance between a transmitter and receiver

can also be estimated based on received signal strength (RSS) [11]. The rela-

tion between the received signal power Pre and the propagation distance d is

described by the path-loss model

Pre (d) = Po - 10np log d

where n, is the path-loss exponent and Po is the power received at a refer-

ence distance do. These parameters represent the need for prior information

about the channel and transmission power in order to calculate RSS-based

range measurements. Because signal propagation through unknown materi-

als other than air causes the power attenuation to deviate from the path loss

model, shadowing is a major source of error for RSS measurements [7]. RSS

measurements are also subject to errors due to multipath.

Angle of arrival The angle at which a signal arrives at a receiver provides

information about the receiver's position relative to the transmitter [12]. Angle

of arrival (AoA), also known as direction of arrival, can be measured with an

array of antennae in a fixed orientation, e.g. linearly. Based on the signals

arrival time at each antenna, the direction of arrival can be inferred. The need

for multiple antennae makes AoA unattractive for size- or cost-constrained

applications, such as unobtrusive sensors or small mobile units. Because AoA is
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based on multiple ToA measurements, ToA errors due to NLOS and multipath

affect AoA position estimates. Signal reflections arriving from indirect paths

further complicate AoA estimation.

Connectivity If an agent is able to receive signals from a transmitter with

known location, the agent's position is within the transmitter's range of com-

munication. Information about an agent's location can thus be inferred through

its connectivity to other agents or beacons [11]. If the agent is connected to

multiple nodes, its possible location is constrained to the intersection of their

communication areas. Hence, the greater the number of connections to an

agent, the more tightly it can constrain the space of possible locations. As the

counterpart to connectivity, disconnectivity may provide information about an

agent's location given that it cannot receive from a known transmitter. For

example, the agent may be likely to be outside of the transmitter's communi-

cation range, or in an area with obstructed line-of-sight to the transmitter.

Hop-count In a network of wireless agents, nodes can communicate only

with neighbors within their range of communication. In order for a node to

send information to a disconnected node, the message must be routed via a

multihop path. If the average hop distance is known, then the message receiver

can estimate its distance from the sender through the number of hops [13]. Hop

count provides a very rough estimate of distance between sender and receiver,

especially in ad-hoc networks, as it is very unlikely that the multihop path

follows a straight line and contains hops of the same distance.

Fingerprinting Fingerprinting, or pattern matching, provides information

about the location of a transmitter by comparing the received signal waveform

or characteristics, such as ToA, AoA, and RSS, to a database [4]. For each
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fixed beacon located throughout the environment, a database is compiled prior

to the deployment of the system consisting of waveforms or characteristics of

signals originating at known locations in the vicinity of the beacon. After the

system is deployed, a beacon performs a pattern matching algorithm on the

signal received from an agent. The database entry that most closely matches

the received signal indicates the agent's probable location.

2.1.2 Localization algorithm classifications

The signal metrics described above provide information about the relative po-

sitions of transmitters and receivers. Localization algorithms then integrate

these measurements into an estimate of the agent's location in a map or coor-

dinate system. The following classifications facilitate an understanding of the

types of localization methods.

Centralized versus distributed In centralized localization algorithms, each

node in the network routes its collection of relative positioning measurements

to a central processing unit. The processor can then determine the locations

of all the nodes using the entire set of measurements; for example, by optimiz-

ing some cost function over the set of measurements. Moreover, the processor

has information about nodes that are disconnected. However, routing infor-

mation from every node to the central computer is likely to result in heavy

communication traffic and power usage. Hence, centralized algorithms become

impractical as the number of network nodes increases. Distributed algorithms

(e.g. GPS), on the other hand, do not rely on a central unit. Instead, each node

can use only the location information that it has collected or received from

neighboring nodes to determine its coordinates. Consequently, nodes have

no information about disconnected nodes unless it is routed to them through
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neighbors. Distributed algorithms are scalable, making them attractive for

large networks.

System-level versus agent-level Algorithms that provide system-level location-

awareness enable users to obtain information about the locations of all the

agents from one node or station. Agents may either route measurement infor-

mation to the central unit where all locations are calculated, as in a centralized

algorithm, or each individual node may may be calculated its location in a

distributed manner and then route the estimate to the system station. Such

localization systems may be useful when an administrator wishes to coordi-

nate the actions of multiple units, e.g. in a military scenario. Alternatively,

algorithms may provide agent-level location-awareness; the objective of these

algorithms is for each agent to individually discover and maintains information

about its own location. For example, a cell phone user may wish to know his

location in an unfamiliar building, but he has no need to locate every other

person in the cellular network.

Infrastructure-dependent versus ad-hoc Some localization algorithms

depend on infrastructure established prior to network deployment. Existing

infrastructure may include beacons fixed at known location that act as posi-

tional references to agents in the network [14]. These algorithms may be pos-

sible when location-awareness is planned for a given building; however, they

are infeasible in situations where agents are deployed with little prior notice

in an unknown environment. Such networks necessitate ad-hoc localization

algorithms. Ad-hoc localization requires no existing infrastructure, enabling

rapid and adaptable deployment of location-aware wireless networks.
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Absolute versus relative Localization algorithms make produce location

estimates in an absolute or a relative map. Absolute localization produces

global coordinates. Relative localization provides information about where

an agent is located in the context of its neighbors or local environment, such

as in a specific building. Localization systems that provide relative position

information may tell users their location in terms of an indoor coordinate

map, or which room or area of the building they are located. If positioning

measurements are made relative to nodes with known global coordinates, both

relative and absolute localization is possible.

Cooperative versus non-cooperative In a non-cooperative algorithm,

each agent receives location information only from reference beacons [15].

In order for all agents to obtain sufficient information for localization, non-

cooperative algorithms necessitate either a high density of beacons or long-

range, high-power beacon transmissions. Both options are undesirable for

ad-hoc and cost- and power-constrained networks. Additionally, dependence

on beacons impairs the robustness of the system; if even one beacon is com-

promised, several agents may be unable to localize. These limitations are

addressed by algorithms that allow agents to cooperatively determine their

location. In cooperative algorithms, agents communicate both with beacons

and with other agents, exchanging information about their relative positions.

Inter-agent communication removes the need for all agents to be within range

of one or more beacons. Moreover, each agent has access to more relative mea-

surements and hence information about its position, increasing the potential

accuracy and robustness of the system.
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2.1.3 Existing localization systems and algorithms

A wide variety of localization techniques are available with existing technology

or have been proposed in literature.

Global coordinates can be calculated using terrestrial or satellite-based

systems. The Global Positioning System (GPS) consists of 24 satellites that

transmit radio signals containing information about their position to receivers

on the earth. The receiver then estimates its distance from the transmitting

satellite using the time of arrival of the signal. Knowing its distance from

at least three GPS satellites, the receiver can calculate its global coordinates

through trilateration with an accuracy of meters [161. Because the receiver

clock is not synchronized with the satellites, a fourth signal corrects for the

timing offset. GPS-based systems work well only when the user is in line-of-

sight of at least three satellites; hence, such systems are impractical in dense

or harsh environments, such as in urban environments, under forest canopies,

and indoors. The 3G communication system provides localization capability

for cellular phones using their radio-frequency communication signals. Base

stations can either determine the absolute coordinates of mobile stations in

the vicinity or provide reference points from which mobile stations can de-

termine their own location. Coarse location information in the 3G system is

accomplished by identifying the cell in which the mobile station is located,

i.e. through proximity to base stations of known location. For finer position

estimates, the 3G system is also able to use TDoA and assisted GPS [17].

Current indoor positioning techniques provide relative localization in GPS-

denied areas for applications such as ubiquitous computing [18] and logistics.

Such systems include Cricket [19], which calculates the distance from a user

to a beacon using the time-of-flight of transmitted radio-frequency and ultra-

sonic signals. RADAR [20] provides indoor location information by perform-
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ing trilateration based on radio-frequency RSS. Radio-frequency identification

(RFID) allows the localization of tagged items based on their proximity to

known RF signal receivers.

Existing localization systems, including those described above, are infrastructure-

dependent and non-cooperative. The dependence on infrastructure precludes

the use of such systems for ad-hoc wireless networks, which may be deployed in

an unknown environment with no prior notice. To address these weaknesses,

recent literature has focused increasingly on ad-hoc, cooperative localization

algorithms [7]. In contrast to traditional localization algorithms, which have

relied on the trilateration of every node using beacons, ad-hoc cooperative

algorithms take advantage of network connections by using inter-agent rel-

ative measurements to improve their location estimates. We consider here

only distributed algorithms, as the nature of ad-hoc networks often prohibits

a centralized computation unit and extensive routing of information.

In the two-step localization algorithm Hop-TERRAIN/Refinement [13],

nodes first estimate their distance from beacons based on the number of hops.

Beginning with this rough position estimate, nodes then use range measure-

ments from their neighbors to iteratively refine their location estimate. The

refinement step performs trilateration by finding the least-squares solution to

a set of linearized equations. The Ad-Hoc Localization System (AHLoS) [21] is

an iterative algorithm in which nodes within range of three beacons determine

their position through time-based trilateration. Agents that have determined

their location then act as beacons for neighboring nodes. Location-awareness

thus propagates throughout the network in an ad-hoc, distributed fashion.

Several variants of the Ad-Hoc Positioning System (APS) have been proposed

to iteratively estimate the location of each node in the network using AoA [12]

or distance-vector routing [22]. In the algorithm Cooperative Localization
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with Optimum of Estimate (CLOQ) [23], agents use statistical information

about the ranging error to select the three best anchors for trilateration. Each

localized agent then acts as an anchor for the next iteration of the algorithm.

Statistical information about ranging measurements is also utilitized in [24] to

determine the maximum likelihood estimate of each agent's position given the

observed measurements. In [6], multidimensional scaling is used to localize sec-

tions of the map, which are then aligned using anchors are references. Kernal

methods are utilized to statistically classify the RSS measurements received

by each agent in [25]. These classifications define areas relative to other nodes

in which the agents are likely to be located. Probabilistic information about

each node's position relative to its location of deployment enables agents to co-

operatively infer their locations without the use of anchors in [26]. In the field

of robotics, Bayesian formalizations of localization [27] have led to methods

in which agents localize themselves with respect to others utilizing Kalman

filters [28] or particle filters [29].

The cooperative algorithms described above have shown promising results

for localization in ad-hoc networks. However, a theoretical framework for

cooperative localization is still needed. The framework should provide a dis-

tributed algorithm for integrating all prior knowledge and relative measure-

ments into location information. A theoretical derivation for cooperative local-

ization would enable both mathematical analysis, such as convergence issues

and bounds on accuracy, as well as practical application. The authors in [30]

describe a specialized framework for localization based on nonparametric belief

propagation (NBP), a message-passing algorithm for performing inference on

a graphical problem. Each node maintains a potential representing its location

belief. Particle-based messages passed between nodes allow the receiver to up-

date its location belief using range measurements relative to the sender. The
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nodes iteratively estimate their coordinates as messages propagate throughout

the network.

2.2 Ultra-wideband technology

Ultra-wideband (UWB) signals have a number of characteristics that make

them an attractive candidate for communication systems in general and par-

ticularly for localization. UWB signals are defined by having a bandwidth that

is 20% of the center frequency or greater than 500 MHz. Because the power is

spread over a large bandwidth, UWB communication systems have low prob-

ability of detection, efficient power consumption, and minimal interference to

other systems [311. Moreover, the wide bandwidth can easily include low fre-

quencies that enable superior signal penetration through obstacles, leading to

robust communications in dense environments.

UWB is particularly attractive for localization because the fine time res-

olution of UWB signals means that multipath components can be easily re-

solved [321. The immunity of UWB signals to multipath [33] enables highly

accurate time-based range measurements even in dense and cluttered envi-

ronments [8]. Algorithms to accurately estimate ToA of UWB signals range

from correlation techniques to super-resolution techniques that have improved

performance in NLOS conditions [34]. The distance between transmitter and

receiver is then calculated using the speed of light as the signal propagation

speed. Moreover, NLOS conditions can be identified [35,36] and the errors

mitigated in UWB range estimation using prior information [24,37]. Because

the accuracy of ToA (and hence AoA) and TDoA measurements scales with the

bandwidth of the signal, UWB localization systems benefit more from these

metrics than RSS, connectivity, and other observed signal characteristics [10].
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UWB signals have the added advantage of simultaneously accomplishing

both communication and accurate ranging. Nodes that exchange information

can thus derive information about their relative positions without the need

for further transmissions, increasing efficiency and reducing power usage in

the network. Because of these characteristics, UWB has attracted increasing

attention as a framework for location-awareness, as evidenced by the recent

development of UWB-specific localization algorithms [15, 38, 39].



Chapter 3

Algorithm derivation

In this chapter, we present the theoretical foundations of the cooperative local-

ization algorithm. Localization is mathematically formalized as an inference

problem in Section 3.1. The problem can be graphically represented and solved

using factor graph theory and the sum-product algorithm, as explained in Sec-

tion 3.2. We can therefore derive an algorithm for cooperative localization by

mapping the physical network to a factor graph. Applying the sum-product

algorithm to this factor graph in Section 3.3 results in a centralized localization

algorithm. In Section 3.4, we transform the factor graph in order to derive a

distributed version of the cooperative localization algorithm.

3.1 Mathematical problem statement

Consider a network of N nodes, labeled 1, 2,... N, existing in a D-dimensional

environment with a predetermined coordinate system. The location of each

node i is described by a D-dimensional vector of coordinates, denoted by xi.

Each location xx is associated with an a priori probability distribution p(xi).

Within the network, nodes are able to communicate with each other by

transmitting packets of information. We denote the set of nodes from which
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node i can receive and decode transmissions by Fi. Note that the communi-

cation link may not be omni-directional; hence, j E Fi does not imply i E Fj.

Using packets received from j E Fi, node i is able to make measurements of

signal metrics, which contain information about its position relative to node

j. These measurements, represented by the vector zj-i, may include time of

arrival, angle of arrival, or other metrics described in Section 2.1.1. We denote

the set of all measurements made in the network by Z = {{zi}vjiri i=1,,

Our objective is to derive a distributed algorithm that enables each node

i to determine its a posteriori location distribution p(xi I Z). These distri-

butions can then be used to estimate the nodes' coordinates and provide any

other pertinent location information (e.g. confidence in these estimates). In

developing the localization algorithm, we need to answer the following ques-

tions:

* How should we incorporate the a priori information and observations?

* Which nodes should cooperate? What information needs to be trans-

mitted between cooperating nodes?

* How can cooperation be carried out in a power-efficient manner?

Our approach revolves around a representation of the problem as a factor

graph. Factor graphs provide a framework for calculating the marginals of a

function in an efficient and distributed manner. In the next section, we present

an overview of factor graphs and the algorithm to compute marginal functions,

as well as the reasoning behind this approach. These details will provide the

foundation for the rest of the chapter, when we will use factor graphs to derive

the desired localization algorithm.
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3.2 Factor graphs and the sum-product algo-

rithm

3.2.1 Factor graphs

Factors graphs provide an intuitive way to represent and understand multi-

variable functions. A factor graph expresses a global function as the product of

factors, or local functions [40]. By illustrating which factors depend on which

variables, a factor graph shows how the variables of the global function are

interdependent through shared local functions.

Consider a global function F(.) that can be expressed as the product of

local functions fj(.):

F(xl,..., xN)= 1fj(Xj)
jEJ

where J is a set of indices, Xj is a subset of ({x,... ,xN}, and fj(Xj) is

a function of the elements of Xj. The factor graph of F(-) is a bipartite

graph containing a factor vertex for each factor fj(.) and a variable vertex

for each variable xi. Factor vertex fj and variable vertex xi are connected

by an (undirected) edge if and only if fj(.) is a function of xi, i.e. xi E Xj.

Hence, the set of vertices adjacent to a variable vertex xi, denoted by 77(xi),

contains all factors taking xi as an argument, and all the variables in set

rq(fj) = Xj are interdependent according to the function fj(-). The factor

graph thus illustrates the relation between all the variables of F(.) via shared

local functions.

Factor graphs are particularly useful in understanding inference problems,

where the global function F(.) represents some joint probability distribution

of several random variables. Connections in the resulting factor graph encode

the interdependency of these random variables.
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(a) (b)

Figure 3.1: Factor graph examples

Figure 3.1 shows some examples of simple factor graphs. The graph in

(a) represents the function F(xl,x2, x3) = fA(X1) fB(X1, 2 ) " fc( 2, 3). The

factor graph for F(xl,x 2,x 3 x 4, x5) = fA(Xl, 2 , 4 ) fB (X2, X3) f(X 3 , X4, X5)

is shown in (b).

3.2.2 The sum-product algorithm

The factorization of the global function F(-), expressed in the factor graph,

facilitates computation of the N marginal functions of F(.), denoted by gj(xi)

for i = 1,..., N. Each marginal function is given by

gi(xi) = E F(xl,. .. XN)

where the notation - {xi} indicates that the summation is performed over

every variable except xil. When F(-) is a joint probability distribution, gi(xi)

is the distribution of the individual random variable xi.

The marginal functions can be calculated by performing the sum-product

'When considering continuous functions, summations are replaced by integrations.



3.2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM

algorithm (SPA), also known in some contexts as belief propagation, on the

factor graph. The SPA applies the distributive law to the factorization of

F(.), enabling parts of the marginal function to be computed locally. These

local pieces of information are then transmitted to other parts of the factor

graph via messages passed along edges of the graph. When message-passing

terminates, each variable vertex xi has received the information necessary to

calculate gi(xi). The SPA thus provides an efficient and distributed way to

calculate all marginal functions of F(.) simultaneously.

Given a cycle-free factor graph, the SPA defines the messages that should

be transmitted along each edge the graph. Two types of messages are de-

scribed: those transmitted from a variable vertex to a factor vertex, denoted

by px-tf(-), and those transmitted from a factor vertex to a variable vertex,

denoted by f__x(-). Each message is a function of the associated variable z.

The algorithm initiates at the leaves of the graph, where the message from the

terminal vertex to an adjacent vertex is given by

Ai-xfm(xi) = 1

Jff-,XjXj = fn(Xi)

for variable vertices and factor vertices respectively. Non-terminal vertices

then use the following update rule to calculate the outgoing message along an

edge based on messages incoming along the other incident edges:

IiX*Lfm(Xi) = J7 Ilf., (Xi) (3.1)
fnEll(Xi)\fm

PfI-f,(xj) = ( fn(Xn) - II Xk-fn (Xk) (3.2)
M{xj} skeXn\xj

Message-passing terminates when a message has been sent in both directions
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along every edge of the graph. Each marginal function gi(xi) is then equal

to the product of the ingoing and outgoing messages passed along any edge

incident to variable vertex xi:

gi(xj) = pixiim(xj) -pIfmzi(x), fm E ?7(xi)

Figure 3.2 illustrates the application of the SPA on the factor graph for

F(xl, x2, 3) = fA(Z1)" fB(x1, 2)" fc(x2, x3). The numbered arrows in (a) in-

dicate the order in which messages propagate. Two example messages, labeled

in (b), are given by

IfB -X 2(X2)2 fB (1, X2)x1 -- fB (X 1)
X1

I1X2'fB(X 2)= B2 Lfc-X2 (X2)

After all messages have been passed, the marginal function of x2 can be cal-

culated as

9x(Z2) = PfB-x 2(X2) " zX2 -((X) = I -fc 2 x(X2) - lx 2 -fc(X2)

Scaling the global function and messages in the SPA has no effect on the al-

gorithm except to scale the resulting marginal functions. Consequently, when

the SPA is used to perform inference (e.g. when calculating marginal distribu-

tions from a joint distribution), it is often desirable to normalize the messages

and interpret them as probability distributions. We shall discuss message in-

terpretation in much greater detail in Section 4.3, when we apply factor graphs

and the SPA to the localization problem.
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fA fB fc

52 3
(1 Xi2 X 3

(a) Propagation of SPA messages

(b) Example messages

Figure 3.2: Application of the SPA

3.2.3 Cyclic factor graphs

The SPA is proven to produce the exact marginal functions on any factor graph

without cycles. When a factor graph does contain cycles, the initialization and

termination steps described above are no longer valid. Instead, the SPA can

be adapted into an iterative algorithm, also known as loopy belief propagation.

To initialize the algorithm, the messages incoming along certain edges are set

to unity. The algorithm then proceeds with messages computed according

to the same update rules 3.1 and 3.2. Due to the structure of the graph,

message-passing is cyclic and thus iterative. After initialization, each vertex

sends an outgoing message. When these messages are received, they update the

outgoing messages, trigger a new round of messages that replace the previous

ones. We will represent the iterations by adding a time superscript to the

message notation: Xl•-,im(xi) andpft -_xj (xj). Because no natural termination

occurs, the cyclic SPA iterates some stopping criterion is met. The marginal
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function at each variable vertex is then given by one of the following:

* the product of the incoming and outgoing messages along an incident

edge

* the product of all outgoing messages from that vertex

The two expressions above can be shown to be equal if the outgoing messages

reflect the most recent incoming messages.

The results of the SPA on a cyclic factor graph are not guaranteed to

be exact marginal functions. In fact, convergence of the loopy algorithm is

not well-understood and remains an open area of research [41]. Extensive

simulations have shown, however, that the adapted SPA can achieve good

performance despite cycles in the graph [42].

3.2.4 Factor graph transformations

A number of transformations can be made to a factor graph without changing

the represented global function. Below, we describe a few transformations that

will be utilized later in the localization algorithm derivation.

* Any factor vertex representing a constant function can be eliminated

from the graph.

* Any set M of factor vertices can be merged, forming a single vertex

whose function fM is the product of the merged factors:

fM(XM) = II fm(Xm)
mEM

where XM is the union of the arguments of the factors. Each edge

incident on an original factor vertex is replaced with an edge incident on

the merged vertex.
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* Similarly, a factor vertex can be split into multiple vertices whose product

equals the original function.

The vertex-merging and vertex-splitting transformations can be used to remove

or introduce cycles in a factor graph. Consequently, such transformations may

result in different marginal functions and affect the convergence of the SPA,

even though the global function remains the same.

3.2.5 Factor graphs for localization

The objective of our work, as described in Section 3.1, is to determine the

posterior distribution p(xa I Z) for the location of every node i = 1,..., N.

As these distributions are the marginal functions of the joint probability dis-

tribution p(xl,... , N I Z), factor graphs and the SPA are a natural choice to

approach the problem. Visualizing the joint distribution as a factor graph pro-

vides insight about how the measurements Z create interdependency between

unknown locations mx, as well as how a priori information affects the desired

marginal distributions. Moreover, as we shall see in the following section,

the physical network topology can be clearly mapped onto the factor graph.

Consequently, we can interpret the SPA messages as information that nodes

should exchange in order to cooperatively determine their locations. We will

use the theoretical SPA messages to derive the content of physical messages

transmitted by agents in the network. These physical transmissions form the

basis of a cooperative localization algorithm that calculates all the desired

location distributions simultaneously.
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3.3 Centralized algorithm derivation

We first consider a centralized algorithm for cooperative localization, intended

to be executed on a central processing unit. In this section, we derive the

centralized localization algorithm using a factor graph of the joint posterior

distribution p(xl,... ,N I Z). By applying the SPA to this factor graph, we

obtain an algorithm that computes the marginal distributions p(xz I Z) for

i = 1,...,N.

3.3.1 Available information

In order to execute the centralized algorithm, the central processing unit first

collects all available location information and measurements from the network.

The processor therefore has access to the following information:

* the identities of nodes j E Fi from which each node i received transmis-

sions

* the identities of nodes k PFr from which each node i did not receive

transmissions

* all measurements Z

* all a priori distributions p(xi), i = 1,... N

3.3.2 Factor graph

To develop the desired factor graph, we begin with a factorization of the joint

distribution p(xl,... , XN I Z). The factorization follows from the assumptions

below:
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1. The locations of all nodes are a priori mutually independent:

N

p(X1,... ,XN) = fip(X)
i=1

2. Conditioned on the locations of the nodes, all measurements are mutually

independent:

p(Z IX1,. XN) = N { I P(Zj--i I X1, XN) kI fD(Xi, Xk)
i=1 jEri kriI

where fD(Xi, Xk) is a function constraining the possible locations of nodes

i and k given that node i cannot receive transmissions from k.

3. Conditioned on the locations of the nodes, the relative measurement

zji depends only on the receiver's and transmitter's locations, zx and

xj respectively:

p(Zji I X 1, ... ,XN) = P(Zj-i I xi, Xj)

Using these assumptions, we can now factorize the joint distribution as follows.

According to Bayes' Rule,

p(X1 ,. ,XN I Z) - p(X1  XN)- p(Z)I X1, XN)

p(z)

Because p(Z) is a constant normalizing factor that does not depend on the

locations Xl,..., XN, it can be ignored without affecting the SPA.

p(x1,. .. ,XN I Z) ( P( 1,... ,XN) p (Z I x1,-.. - ,N)
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Applying assumptions 1-3 in order,

N

p(x, XN I Z) oc p(xi) -p(Z I ..., X)
i=1

0c p(xi) p(zji I .X1, X.,N) fDXi, Xk)
i=1 jEri kFri

c p(Xi) I p(zjj I xi, xj) IIfD(i, k) (3.3)
i=1 jEri kori

The joint distribution (and hence the corresponding factor graph) is highly

dependent on the physical network topology that it represents. To illustrate,

Figure 3.3(a) depicts a simple example network with nodes labeled 1-42. The

communication links, depicted by arrows, are omnidirectional except between

nodes 1 and 4 (the latter can receive from the former, but not vice versa). The

factor graph for the corresponding joint distribution p(x1, x2, 3, x4  Z) is

shown in Figure 3.3(b). Each location xz and measurement z--,i is represented

by a variable vertex. The a priori distribution of xi is represented by the

adjacent factor vertex p(xi). Variable vertices xiand xj and measurements zji

and zi_,j (if they exist) share a mutually adjacent factor vertex hi,j(xi, xj) that

has one of the following forms, depending on the physical network topology:

* If nodes i and j can both receive communication from the other, then

hij (xi, xj) = p(zij I xi, xj)p(zj.i I xj, xi).

* If node i is able to receive communication from node j but not vice versa,

then hi,,(zx, xj) = p(zj--i I xj, xi)fDo(j, xi).

* If nodes i and j cannot communicate at all, then hi,j(xi, xj) = fD(Xi, Xj)fD(Xj,i Xi).

2Continuing previous terminology, we will use the term node to refer to a component of
the physical network and the term vertex to refer to a component of the factor graph.
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(a) Physical network

(b) Corresponding factor graph

Figure 3.3: An example network with corresponding factor graph
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3.3.3 Resulting algorithm

Due to cycles in the graph, the SPA is initialized by setting all the incom-

ing messages to unity. The update rule then gives the following theoretical

messages:

1jixj-- (Xi) = XZi) 14-j'h,,k-•, (zi )
k/j

Ihij (x) h (xi), Xzj) r,-hij (Zi)
xi

Note that for each location variable xi, a unique message must be sent to every

other location variable xj, j Z i. Messages are iteratively calculated, sent, and

updated until termination criteria is met. After message-passing terminates

at time T, the marginal functions p(xi I Z) are given by the product

p(x, I Z) = _ j j X,

for any j 7 i.

A total of 2N 2Nit messages are calculated in the centralized localization

algorithm, where N is the number of nodes and Nit is the number of itera-

tions. The order of complexity of the algorithm is dependent on the message

representation, as discussed in Section 4.3.

3.4 Distributed algorithm derivation

In many practical situations, a centralized localization algorithm is infeasible

or undesirable, due to the need for a centralized processing unit and extensive

routing of information. In this section, we develop a distributed localization

algorithm, in which computation is performed by individual network nodes.
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We transform the factor graph from Section 3.3.2 to reflect the information

available to each node. The theoretical SPA messages are adapted into feasible

physical messages to be transmitted between nodes, producing a distributed

algorithm for localization.

3.4.1 Available information

In the distributed algorithm, computation is performed by the individual net-

work nodes instead of a signal processing unit. Unlike a centralized processor,

each node has access to only limited information, which must be taken into

account when developing the algorithm. The following information is available

to node i:

* the identities of nodes j E Fi from which it can receive transmissions

* the measurements it has made from received signals: zj-i for j E Fi

* its a prior distribution p(xi)

Notice the key differences between the information available to each node and

the information available to a centralized processor in Section 3.3.1. First,

node i does not have any information about disconnected nodes k 0 r, 3. It

additionally does not know measurements Zi_,j made from its own transmis-

sions, nor any measurements in which it is neither the transmitter or receiver.

3.4.2 Factor graph

Regardless of how of the joint distribution p(xl,... , XN I Z) is marginalized,

the factorization remains as in Equation 3.3. We will therefore transform
3We assume for now that information is not forwarded across multiple hops in the physical

network.
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the factor graph in Figure 3.3(b), keeping the global function constant but

accounting for the following:

* Each node has a limited set of available information.

* Cooperation takes the form of information exchanged between physical

nodes. Hence, the theoretical SPA messages that are passed between

vertices of the factor graph must be adapted into physical messages that

can feasibly be transmitted as packets between nodes in the network.

Figure 3.4(a) depicts the same factor graph as Figure 3.3(b), with the informa-

tion available to each node represented by the shaded areas. The vertices and

edges of the shaded area corresponding to node i will be termed the domain

of node i. Note that factor vertex hi (xi, xj) depends on both zj-i, which

is available to xi, and zj,i, which is available to xi. Computation involving

this vertex is thus shared between two nodes. In order to distribute computa-

tion and reduce the amount of internode communication, we need to associate

each vertex with a single node. Consequently, we apply the vertex-splitting

transformation, separating hij,(xi, xj) = p(z••j I xi, xj)p(zj-i I x 1j, i) into two

vertices, p(zi-j I xi, xj) and p(zj_..i xj, xi). The former is now available only

to node j and the latter only to node i. Additionally, because nodes are un-

aware of disconnected nodes, we can consider the factors fD(', -) to contain no

information. Hence, these factor vertices can be removed from the graph.

The transformed factor graph is shown in Figure 3.4(b). The flow of infor-

mation in the physical network is represented by directed edges between the

nodes.
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(a) Domains of nodes

(b) Transformed factor graph

Figure 3.4: Factor graph for distributed algorithm
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3.4.3 Resulting algorithm

Applying the SPA to the transformed factor graph produces theoretical mes-

sages I passed between vertices of the graph. These theoretical messages will

be used to derive physical messages, which we shall denote by m, that are

passed between nodes in the network.

The SPA messages of the factor graph in Figure 3.4(b) are as follows:

= ,_), (3.4)
kEri

__~ý= Z(xj)- p(z_ .jI xx),__(xi) (3.5)

We first discuss message 3.4. The message i .p _j (xi) represents information

computed within the domain of node i and passed to the domain of node j. We

can thus interpret this theoretical message as a physical message that should

be transmitted from node i to j at time t:

m_(x,) =  t  (i)

By normalizing the outgoing message, we can interpret it as the distribution

p(xi I Z) at time t given all the information obtained up to time t - 1. Notice

that the message does not depend on j. In fact, the transmitted message from

node i to any connected node is identical. Node i can therefore broadcast this

message instead of sending a unique outgoing message to each receiver. To

emphasize this fact, we denote the broadcast message as

mf(xc ) = mptj(xi)

Accordingly, the amount of necessary computation is greatly reduced compared
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to the centralized algorithm, in which each node must calculate a distinct

message for each other node in the network.

SPA message 3.5, /zt,_-.x (xj), uses information available only to node j

and remains entirely within the domain of j. Message computation is done

internal to node j using the received physical message mi(xi), according to

Aii-',( j> = Zp(zi.. I xi, x3 )m!(xi)
xi

The internal message can be interpreted as information about location xj that

is obtained from the distribution mO(xj) of its neighbor and the corresponding

received measurement zi-,j. To emphasize the origin of the received informa-

tion and to simply notation, we will denote the internal message as

To account for cycles in the factor graph, the SPA is initialized by setting

all theoretical incoming messages 1 _.k4xi(xi) equal to unity. Hence, the dis-

tributed localization algorithm begins at time t = 0 with each node i broad-

casting its a priori distribution p(zi). Node i then listens for any messages

broadcast by its neighbors, receiving m (xj) for all j E Fi. For each received

message m (xj), node i calculates the internal message

The new outgoing message is then given by the product of all internal messages

with the a priori distribution:

mt+l(xi= p(Xi) /t Ik-'X (xi)

kEri
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The algorithm iterates until termination conditions are met at time T. The

marginal posterior distribution of each node i is then given by the most recent

outgoing message,

p(XI Z) = m[(xi)

In the distributed algorithm, a total of N(IF avg + 1)Nit messages are com-

puted, where IFlavg is the average number of neighbors for each node. The

number of messages is notably reduced from the centralized algorithm by a

acor which is much less than for typical large ad-hoc networks, be-factor 2N, which is much less than2

cause incoming messages are received only from connected nodes and outgoing

messages are broadcast. The distributed localization algorithm thus increases

computational efficiency while decreasing dependence on infrastructure.



Chapter 4

Algorithm implementation

In this chapter, we consider how the algorithm is implemented. We describe

the practical information contained in the a priori information and measure-

ment models of the algorithm in Sections 4.1-4.2 respectively. In Section 4.3,

we examine how messages should be represented in order to be transmitted

between nodes. Finally, we discuss how the algorithm terminates in Section

4.4, and how to use the resulting marginal functions to produce estimates of

the nodes' coordinates in Section 4.5.

4.1 A priori information

Before localization, each node i uses any available location information about

its location xi to form the a priori probability distribution function p(xi).

For anchors, such as GPS-enabled nodes or nodes that have been placed in

determined positions by a system administrator, p(xi) can be described as a

Dirac delta function shifted to the known coordinates. Agents, which have

no prior information about their location, may be represented with a uniform

p(xi) over the entire map. The available prior location knowledge may also

contain more complicated information; for example, if nodes have a map of the
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building layout, p(xi) may convey the fact that the node cannot be in a wall

or a restricted area. In wireless sensor networks, a node may use its collected

data to infer information about its location; for example, if a weather-sensing

node detects heavy rainfall, it may shape p(xi) to reflect a greater probability

of being in a location that is known to receive more rain.

Because any uniform function may be removed from a factor graph, as

described in Section 3.2.4, the a priori distribution of agents may be ignored.

Practically, this means nodes with no a priori location information are cen-

sored; they do not transmit outgoing messages until they have received nontriv-

ial location information from neighbors. As a result, message-passing propa-

gates from nodes with prior information, i.e. anchors, outward to agents many

hops away. This strategy greatly reduces the amount of traffic, especially in

the first few iterations of cooperation.

4.2 Measurements and measurement models

Node i is able to obtain relative measurements {Zji}vjier either prior to or

during localization, possibly using the message broadcast by node j. These

measurements relate the location xi to location xj through the probabilistic

model p(zij I zi, xj). The value of the distribution p(zij I xi, xj) conveys the

likelihood of variable arguments xi and xj, given the observed measurement

zi-j. Good knowledge of p(zij I xi, j) improves the performance of the

algorithm.

Below, we discuss the incorporation of measurements and measurement

models appropriate for UWB signals.
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Ranging

As mentioned in Section 2.2, UWB transmissions have the potential to pro-

vide accurate and high resolution range measurements. Therefore, for the

remainder of this thesis, we will consider zj-i to contain a measurement d

of the distance d = J1xj - xill from j to i. The corresponding distribution,

p(d I d), describes the likelihood that the true distance between nodes i and j

is d, given that the measured distance is d. If the ranging measurements were

known to be exact, the distribution p(d I d) would be a Dirac distribution

6(d- d). Realistically, though, there is some uncertainty about the accuracy

of the measured range. To develop realistic distributions p(d I d) for UWB

radio nodes, we conducted an extensive measurement campaign, presented in

Chapter 5.

NLOS identification

Information about whether a signal was LOS or NLOS may affect the distri-

bution p(zi-j xz, xj). For example, the range measured in a NLOS scenario

will include a positive bias that is not present in the LOS scenario [43]. The

identification of NLOS conditions [35, 36] can determine which distribution

p(d I d) to use, as discussed further in Chapter 5. Previous work has shown

that NLOS identification can mitigate errors in UWB range estimation for

localization [24, 37].

Connectivity

If node i is able to receive communication from node j, it may be able to

constrain its location to a certain area (for example, within the radius of

communication of node j). Disconnectivity may provide less information. A

node i may be unable to receive from another node k if a physical blockage
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completely obstructs the signal path, even if node k is within communication

range.

4.3 Message representation

In the localization algorithm, nodes convey information to each other by broad-

casting messages. The messages, which can be interpreted as probability dis-

tributions, must be represented in a manner that can be transmitted as packets

by physical nodes. The message representation determines the communication

and computational costs of the localization algorithm. In this chapter, we dis-

cuss two possibilities for representing the physical messages: probability mass

functions (pmfs) and particle representations.

4.3.1 Probability mass functions

To represent a continuous distribution over an environment, we can discretize

the environment and simply represent the values of the distribution at each

discrete point. The resulting discrete function is called a probability mass

function. The effectiveness and computational complexity of utilizing a pmf

representation is directly related to the resolution of discretization. Because

the messages are of dimension D02 , the complexity increases exponentially with

the resolution along each dimension. This is a problem for fine-grained local-

ization and highly accurate ranging over a large map. The finite number

of discrete points implies a finite number of distances on which to evaluate

p(d I d). If the resolution of discretization is too coarse compared to the res-

olution of the range estimates d, then the discrete ranging model distribution

may fail to represent the true, continuous distribution. Moreover, the final lo-

cation estimate will have a degree of uncertainty associated with the resolution
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of the map.

4.3.2 Particle representation

In this section, we consider representing the physical message distributions

with a finite set of samples. The general use of particle filters for localization

is discussed in [27]. Our discussion pertains to a two-dimensional environment

in which ranging measurements are used, although the particle techniques can

be extended to higher dimensions and other signal metrics.

Sampling methods

A set of samples Ix(r) r=1,..., with associated weights W(r) r..., is said to

represent a continuous distribution p(x) if

Zw(r) 
-1

r=l

and

r w(r) f(x()) f (x)p(x) dx

for any integrable function f(x). There are a number of methods to produce

such samples from a distribution p(x). In uniform sampling, R independent

samples are drawn directly from p(x), each with equal weight ±. This tech-

nique works well for distributions such as the uniform and Gaussian, but it is

often hard to directly sample an arbitrary target distribution p(x) [44]. Impor-

tance sampling addresses these difficulties by using a distribution q(x) that is

easy to sample from and that is nonzero everywhere that p(x) is nonzero [45].

Equal-weight samples X(r ) =1,...,R are drawn from the sampler distribution
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q(x). Each sample x(r) is then assigned a weight w(r) according to [46]

W(r) 0cp(x(r))
q(x(r))

Hence, samples that are more likely to be produced by q(x) than by p(x) are

given a lower weight, and vice versa. The closer the sampler distribution q(x)

is to the target distribution p(x), the more accurate the sample representation.

After all weights have been calculated, they are normalized by their sum.

Messages

To implement particle representations, we must determine how to represent

the broadcast message'

m(xi) = H t-i (i)
kEri

as a set of samples and weights (x•ý ) , (w r=)  In addition, we need a

method to calculate samples {x•. ), W(r)J of the internal message

lx( j) = 1p(d I d = Ixi - xjllI)mý(x,)

using the received samples of mý(xj). Note that the number of samples rep-

resenting the broadcast message, Rext, may differ from the number Rint used

for the internal message calculation, allowing the algorithm's communication

cost to be tuned independently of the computational cost.

To represent the broadcast message m (xa), we use importance sampling.

The target density mý (xi) is the product of Fril distributions, the internal

messages X~t- (xi) for k E Fi. Each distribution k is represented by samples

'We remove the a priori distribution p(xi), assuming it is uniform. However, it is straight-
forward to include a non-uniform distribution in this discussion.
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and weights (r) .r).,Rint For the sampler distribution q(xi), we use

the sum of the distributions,

q(xj) ( x-
kEri

To sample q(xi), we draw R from each distribution 4t- 1 (s), producing

samples (Ic ) r=l,...,Ri.t' where a ;> 1 and can be tuned for complexity (similar

to [301). The weights of the samples are then given by

% kEri. (r))

In order to evaluate ,k_,x(X~r)), we convert the sample representation of

k,,,_,(xi) into a smooth distribution,

Rint

xk--x (Xi) Wk iV (Zr k,
r=1

where Af(x, E) is a Gaussian with mean x and covariance E. For regularization,

we follow a suggestion in [30] and use

wcov( x} )Ltr=1,...,RiR =

where wcov(-) is the weighted covariance of its arguments. The regularization

of AXkXi(xi) enables the computation of ,xk,x(x )i ) (and hence Wr)) for any

Xr). We thus obtain aRint weighted samples of mi(xi), which can be inde-

pendently resampled to produce equal-weight samples xt (r) } The

computation of mi(xi), represented by Rext samples, is of O(aRV.t IF2i + Rext)

complexity.
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We now consider the internal message

xi--X,(xj) = _P(d I d = IIxi - xjjI)mi(xj)
xi

Our goal is to obtain a sample representation x r), W(r) r=,..., of , (),

given Rext equal-weight samples x£r) of mi(Xi). We first produce Rint equal-

weight samples of m2 (xa) by augmenting the original set {(r) } ,..., with

the necessary number of copies. The desired samples x 'r) are related to the

given samples xfr) by d = 11xi - xj | in the distribution

p(d I d = 11Zx - xj j)

Hence, we can use samples of d from the ranging distribution p(d I d) to obtain

a sample a r) for every given sample xsr). Because p(d I d) may be difficult to

sample from, we use importance sampling. We first draw Rint samples of the

angle 0(r) from a uniform distribution on (0, 21r], as well as Rint samples d(r)

from a sampler distribution q(d I d). Each sample x.r) is then given by

( sin 0(r )

The weight w(r) of each sample x(r) is given by

( p(d I d(r))

q(d(r) I d)

The Rint-sample representation of the internal message xj-, (xj) requires

O(Rint) computational time.

The full localization algorithm is therefore of complexity O(aR,2nt IFlavg NNit+

RextNNit). The terms IFlavg and N are properties of the network. However,
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a, Rint, ext, and Nitare tunable parameters of the algorithm, which may be

adjusted to achieve the desired trade-off between complexity and performance.

4.4 Convergence

Ideally, the localization algorithm would stop when it met some convergence

criteria. While convergence of the loopy SPA algorithm remains an open area

of research [41], extensive simulations have shown it can achieve good perfor-

mance despite cycles in the graph [42]. Possible stopping criterion include a

threshold for the variance of the posterior location distribution of each node.

Nodes with "peaky" location distributions stop refining (but continue to broad-

cast) their beliefs. Alternatively, the algorithm can simply be run for a prede-

termined number of iterations.

4.5 Location estimation

The estimated coordinates of the node may be given by the mode of the

posterior distribution, corresponding to the maximum a posteriori (MAP) es-

timator. Alternatively, the mean of the posterior distribution provides the

minimum mean square error (MMSE) estimate. The posterior distribution

may also be used to measure the level of confidence in the estimate, e.g. using

the variance of the distribution.
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Chapter 5

UWB ranging measurement

campaign

In order to develop realistic and tractable models of UWB range measure-

ments, an extensive experimental campaign was carried out. In Section 5.1,

the purpose of the campaign is explained in detail. Section 5.2 describes the

set-up of the experiment. The resulting range models are presented in Section

5.3.

5.1 Purpose

Our algorithm incorporates a model p(zi-,j I xi, xj) that determines the like-

lihood of the unknown positions xi and xj given the measurement zi-,. The

performance of the algorithm is heavily dependent on how well this model rep-

resents the true distribution of zi_,j given the location of the sending and re-

ceiving nodes. Measurement models are also typically used to simulate ranging

measurements to evaluate the performance of localization algorithms. Hence,

these models affect both the true performance of the algorithm as well as simu-

lated performance evaluation. Because realistic ranging models have generally
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been unavailable, authors have thus far resorted to models derived from highly

idealized signals [7, 47, 48]. This leads to misleading results for the localiza-

tion algorithms that build upon these ranging models, as well as unrealistic

performance characteristics based on simulation.

The purpose of our measurement campaign was to develop realistic yet

tractable ranging error models for commercial UWB radios. Ranging mea-

surements were collected in a variety of indoor environments around the MIT

campus, including offices, hallways, and hangars, and in line-of-sight (LOS)

and non-line-of-sight (NLOS) conditions. On the resulting database of ranging

measurements, we applied learning algorithms to model the ranging error and

derived tractable models using Gaussian mixtures densities. These UWB rang-

ing models are later incorporated into the localization algorithm in Chapter

6.

5.2 Experimental set-up

For the experiment, two Time Domain Corporation PulsOn@ 210 radios [49]

were used. These commercial UWB radios, shown in Figure 5.1, have a center

frequency of approximately 4.7 GHz with bandwidth 3.2 GHz and comply

with FCC power regulations. Each radio is of dimensions 16.5cm x 10.2cm x

5.1cm, a feasible size for practical localization systems. The node is able to

transmit and receive packets through an omni-directional antenna. Ranging

is accomplished using the roundtrip time-of-flight; one node sends a request,

to which the other returns a reply. The roundtrip time-of-flight is calculated

at the requester using the time-of-arrival and an estimate of the electrical

delay, the amount of time the responder takes to process the packet, which is

included in the response. In the next ranging request, the range estimate d
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Figure 5.1: Time Domain Corporation PulsOn@ 210 radio

is piggybacked in the range packet, so that both nodes know their internode

distance. To account for the nature of realistic localization systems, which may

be composed of off-the-shelf parts, no modifications were made to the hardware

or embedded and host software. Range measurements were collected and used

as is.

Our measurements thus specifically characterize off-the-shelf, FCC-compliant

ranging devices that can be readily deployed in practical localization systems,

unlike previous UWB experimental campaigns that employed equipment or

data processing that may not be realistically feasible. For example, measure-

ments made with a vector network analyzer and low noise amplifiers [50,51]

may result in a high signal-to-noise ratio that fails to represent real-world

scenarios, where such hardware often cannot be accommodated. These exper-

iments also make use of extensive post-processing to analyze data collected in

the frequency domain. Furthermore, [51] assumes ideal detection and channel

estimation, which may not be true of practical systems. Many other UWB

range models are based on measurement campaigns to date have been under-

taken with the goal of characterizing channel parameters such as path loss,

fading, and delay spread, independent of the effect of the measurement device

and methods [52, 53].
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Location Signal characterization Min-max separation dsep

LIDS 6th-floor hallway LOS 0.25-19.25 m
LIDS 6th-floor office and lobby NLOS (concrete wall) 2.75-9.00 m

CSAIL 3rd-floor hallway LOS 0.25-13.50 m
CSAIL 3rd-floor hallway NLOS (glass doors) 1.50-13.50 m

Aero/Astro hangar LOS 0.25-12.00 m

Table 5.1: Environments used for measurement campaign

A series of five campaigns were performed in different indoor environments

around the MIT campus, as described in Table 5.1. Two environments, CSAIL-

NLOS and LIDS-NLOS, were characterized by non-line-of-sight conditions,

while the line-of-sight between the nodes was unobstructed in CSAIL-LOS,

LIDS-LOS, and Hangar-LOS. In each environment, the nodes were placed 89

centimeters above the ground. At each distance dsep of separation, 1000 rang-

ing measurements were collected. We perform no averaging of measurements,

unlike [50, 51]. The separation of the nodes was increased in increments of 25

centimeters. The experimental set-up in two environments is shown in Figure

5.2.

5.3 Ranging models

We observed that a histogram of the 1000 ranging measurements collected

at each true distance dsep typically contained one large peak near dsep, plus

a small set of outliers on each side of the peak. For example, Figures 5.3-

5.5 show histograms of the measurements collected at dsep = 5.25 m in each

environment. The outliers are consistently centered at large distances from

the main peak, sometimes producing negative range measurements. The fact

that some measured ranges are significantly less than and greater than the

true distance dsep indicates that far-lying outliers are primarily caused by the

ranging algorithm rather than multipath or NLOS effects. Further examina-
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(a) LIDS-LOS

(b) CSAIL-LOS

Figure 5.2: Experimental set-up in two environments
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tion revealed that the electrical delay estimated by the Time Domain nodes

under a proprietary algorithm was subject to high variance and possibly large

errors. These findings indicate that the measurement devices and methods are

important factors to take into consideration when characterizing UWB range

measurements.

Figures 5.3-5.5 show that the ranging environment has a significant ef-

fect on the distribution of the measurements. The measurements collected

in the CSAIL hallway, with no clutter, have much fewer outliers than those

collected in the LIDS hallway, with adjacent concrete pillars and walls, and

in the hangar, where large crates and other objects were nearby. The figures

additionally show that NLOS measurements tend to have more outliers than

LOS measurements collected in the same environment. Moreover, the variance

of the main peak in LIDS-NLOS is greater than the variance of LIDS-LOS.

Additionally, the nature of the blockage plays an important role in determin-

ing its effect on NLOS measurements. The glass doors in CSAIL caused much

fewer outliers than the concrete wall in LIDS. These findings are corroborated

by the results in other UWB measurement campaigns [51].

Using the histograms, we concluded that a reasonable underlying distribu-

tion for the measurements collected in a given environment at distance dsep is

a Gaussian mixture density with three components, labeled 1 = 1, 2, 3 for the

lower outliers, main component, and upper outliers respectively. Each com-

ponent is parametrized by a mean MI(dsep, 9), a variance R,(dsep, E), and a

weight Wl(dsep, E). Hence, the distribution of range measurements collected

at true distance dsep is given by

3

p(d I dsep, E) = ( Pw,(dsep, )f(PM,l(dsep, ), PR, (dsep, ))
l-1
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In order to determine the means M, (dsep, E), variances R1 (dsep, E), and weights

WI(dsep, 7), we applied the expectation-maximization (EM) algorithm [54,55]

to the set of 1000 measurements collected at each distance dsep in environment

E. The EM algorithm uses the maximum likelihood criteria to estimate the

parameters of a Gaussian mixture. As an example, Figure 5.6 shows the

histogram for dsep = 5.25 m in LIDS-LOS with the resulting Gaussian mixture

distribution.

Each environment £ is thus characterized by a set of Gaussian parameters:

{ { M(dsep, E)}1=1,2,3 { IRl(dsep 6)}=1,2,3 ,{ W1 (dsep, £)} l=,2,3 }Vdp

For example, the set of parameters for LIDS-NLOS are plotted as a function

of dsep in Figure 5.7. Results presented later in the chapter (Figures 5.8-5.12)

include plots of the parameters for all environments. The EM-determined

Gaussian parameters capture the features of the histograms, with the main

component 1 = 2 typically having high weight, very low variance, and a mean

M2(dsep, ) with very small bias. NLOS measurements, such as in Figure

5.9, exhibit a larger positive bias M2 (dsep, C) - dsep than the corresponding

LOS measurements, Figure 5.8. This agrees with other UWB measurement

campaigns and models [43]. The lower and upper outliers, represented by

components I = 1 and 1 = 3 respectively, are characterized by smaller weights

than I = 2, while the variances are greater. The means of the outlier compo-

nents are offset by fairly constant biases M(dsep, E) - dsep. Unlike [51], we find

that the variance the measurements does not always increase with distance.

Our results demonstrate that the effect of the surrounding environment may

outweigh the effect of distance and LOS/NLOS conditions.

We model how the distribution of ranging measurements varies with con-
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tinuous distance d by fitting quadratic polynomials Pc,M,I(d), Pe,R,l(d), and

Pe,w,i(d) to {Mi(dsep , £)}Vd.ep{R(dsep ,,•)}Vdsep, and {Wi(dsep, E)}vdsp respec-

tively. The coefficients for the resulting polynomials of form a2d2 + ad+ao are

shown in Table 5.2. Our final model of the UWB ranging measurements d as a

function of true distance d in environment S is a Gaussian mixture described

by
3

p(d I d, ) = Pe,w, (d)AN(Pe,M, (d), Pe,R,l(d))
1=1

The Gaussian parameters with polynomial fits for each environment are dis-

played in Figures 5.8-5.12. With the polynomial coefficients as its only pa-

rameters, our UWB ranging model is tractable and easily implemented in low-

complexity localization systems. Moreover, it accurately describes a practical

ranging device operating in non-ideal, realistic environments.
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Figure 5.11: Gaussian parameters and polynomial fits for CSAIL-NLOS
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Chapter 6

Performance analysis

In this chapter, we analyze the performance of the cooperative localization

algorithm. A series of simulations incorporating realistic range measurements

and the experimentally-developed range models were carried out, as described

in Section 6.1. In Section 6.2, we present and analyze the results of the simu-

lations.

6.1 Simulations

To characterize the performance of the cooperative localization algorithm, an

extensive series of simulations was designed and executed. These simulations

incorporated the range models that were experimentally developed in Chapter

5. The purpose of the simulations was to compare the distributed coopera-

tive localization algorithm to two benchmark algorithms under the following

varying conditions:

* number of anchor nodes

* LOS and NLOS conditions

* ability and inability to identify NLOS range measurements
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We created 100 network topologies T1,..., T10o by uniformly distributing the

100 agents across a 100 meter by 100 meter environment. Each topology Ti was

superimposed on two maps, LOS and NLOS. In the former, no obstructions

exist; hence all signals are LOS. We simulated a set of range measurements

Z LOS for each topology Ti in the LOS map. If nodes i and j were within

20 meters of each other, range measurements -,j and dj-,i were drawn from

a combination of the LIDS-LOS, CSAIL-LOS, and Hangar-LOS distributions

described in Section 5.3. For each communication link i -+ j, we took 10

range measurements and threw away the outliers, a reasonable strategy for a

realistic localization system. We then use one of the remaining measurements

for di-,.

The second map was based on a simple indoor floor plan, shown in Figure

6.1. Another set of range measurements Z N Los was simulated for each topol-

ogy Ti. For fair comparison, LOS range measurements were set equal to those

in ZiL s , as described above. When nodes were separated by a wall, we consid-

ered the signal to be NLOS. NLOS range measurements were drawn from the

LIDS-NLOS distribution up to distances of 10 meters. Again, multiple range

measurements were taken for each link, with the outliers thrown away.

For each topology Ti with corresponding measurements Z'LOs and Z$JLOS

we ran the localization algorithm, varying the following parameters with each

trial:

Number of anchor nodes Simulations were performed with 4, 6, 8, 10,

and 12 anchors, all uniformly distributed on the map.

NLOS identification In half of the simulations, we assumed perfect iden-

tification of NLOS signals. Identified LOS range measurements used the com-

bined LOS range model for p(d I d). Identified NLOS measurements used the
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Figure 6.1: NLOS map

LIDS-NLOS distribution. In the other half of the simulations, no NLOS iden-

tification was used. The range model was then a combination of the LOS and

NLOS distributions.

Localization algorithm We compared the performance of the distributed

cooperative localization algorithm and a non-cooperative localization algo-

rithm.

A smaller scale study of the following parameters was also performed.

Number of samples We performed a limited number of tests to determine

how the performance of the algorithm changed with the number of samples

transmitted per message and the number of samples used for internal compu-

tation, denoted R and Rint respectively.

Number of iterations We also examined how the accuracy of the algorithm

increased with the number of iterations.
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To account for the removal of outlier range measurements, we used only the

main Gaussian component (1 = 2) in the ranging model p(d I d). The sampler

distribution q(d I d) was a Gaussian with mean and variance given by fitting

the measured range d to the polynomials M2(d) and R2(d) respectively. After

the algorithm terminated, we estimated the location of each node using the

mode of the appropriate marginal distribution. We then measured the error

for each node, defined as the distance between the node's true and estimated

locations.

6.2 Results

Figure 6.2 shows how the accuracy of the cooperative localization algorithm

increases with each iteration, as information propagates out from the anchors.

The estimated location of each node is connected to the true location by a gray

line, which represents the error for that node. The result after the first iteration

in Figure 6.2(a) is equivalent to the non-cooperative localization algorithm;

agents receive information only from anchor nodes. Hence, all nodes outside

of anchor range have no information about their location, as shown by their

lack of a location estimate. The improvement between Figures 6.2(a) and (d)

clearly demonstrates the benefit of cooperation for localization.

We can quantify the benefit of localization more systematically by examin-

ing the errors in all 100 network topologies for any combination of parameters.

The outage probability P(e) at each error value e is defined as the probability

of a node having error greater than e. Hence, the faster the function goes

to 0, the better the performance of the algorithm. To calculate the outage

probability P(e), we determined the number of nodes with error greater than

e in TI,..., T1oo and normalized by the total number of nodes (1002).
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Figure 6.3 shows the outage probability for the NLOS map with no NLOS

identification. The arrows indicate the increasing number of anchors (4, 6,

8, 10, and 12) for both the cooperative algorithm (after 7 iterations) and the

non-cooperative algorithm. As expected, the performance of both algorithms

improves as the number of anchors increases. More importantly, the cooper-

ative algorithm consistently outperforms the non-cooperative algorithm. In

fact, the non-cooperative is able to localize only a small fraction of the nodes,

while the cooperative algorithm localizes almost all.

Figure 6.4 compares the performance of localization with and without

NLOS identification in the NLOS environment. The identification of NLOS

signals, along with the corresponding adjustment of the ranging distribution

.10
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Figure 6.4: Outage probability with and without NLOS identification

p(d I d), has little effect on the outage curve. We believe the similarity in

performance is due to the robustness of UWB ranging in both LOS and NLOS

environments. These results confirm that ultra-wideband technology is an

appropriate choice for localization.

Figure 6.6 compares localization with random anchor placement to local-

ization with a predetermined configuration. The anchor configuration, shown

in Figure 6.5, was chosen based on a small-scale study of the performance of

different anchor placements.We found that the larger the coverage of the an-

chors, the better the localization performance. In addition, placing anchors as

far away from each other as possible ensures that all nodes are within a few

hops of an anchor. Placing each node in the vicinity of an absolute reference

reduces the possibility of a large cluster of neighbors achieving correct rela-
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tive location estimates, but not absolute. Evidently, a good choice of anchor

configuration can significantly improve the performance of the localization al-

gorithm. The performance gain for the cooperative algorithm is much larger

than that of the non-cooperative.

Finally, Figure 6.7 shows how the performance of the algorithm changes

with the number of samples used. This small-scale study was run only on

topology T1 for 8 anchors, with no NLOS identification in the NLOS map. The

heavy blue plots indicate the performance for R = 100 transmitted samples

and Rint = 500 internal samples, the settings used for all previous results. In

Figure 6.7(a), only Rint changes, while R remains constant at 100. Varying only

the number of internal samples has little (and inconsistent) effect, suggesting

that changing Rint alone may cause negligible performance gain. In Figure

6.7(b), we vary both R and Rint. In this case, the number of nodes with small

error (less than 10 meters) clearly increases with the number of samples. More

transmitted and internal samples thus results in better localization, at the cost

of greater computational complexity. Once again, the performance gained by

the cooperative algorithm is much greater than that by the non-cooperative.



6.2. RESULTS 85

-,,0

A

0
a,L-
a)

20 40
e(m)

Figure 6.6: Outage probability for random and configured anchor placements

10020 40



CHAPTER 6. PERFORMANCE ANALYSIS

20 40 100
e(m)

(a) Internal samples

100
e (m)

(b) Transmitted and internal samples

Figure 6.7: Outage probability with different numbers of samples

100

10- 1

10- 2

S
- 3

I YJ

- - 100/500, non-coop
- - - 100/1000, non-coop
- - - 100/5000, non-coop

100/500, coop
- 100/1000, coop
- 100/5000, coop

100

10- 1

10-2

1I -

- -- 100/500, non-coop
- - - 1000/1000, non-coop
- - - 3000/3000, non-coop
- - - 5000/5000, non-coop

100/500, coop
1000/1000, coop
3000/3000, coop
5000/5000, coop

I I-

'I ' 

'

Iv

Iv



Chapter 7

Conclusions

In this thesis, we derived an algorithm for cooperative localization in wireless

networks. By formulating the localization problem as a factor graph and

applying the sum-product algorithm, we obtained a theoretical solution for

the a posteriori marginal distribution of each node's location. This theoretical

algorithm was then adapted in a practical, distributed localization algorithm

in which nodes cooperate by broadcasting messages. Several details related

to algorithm's implementation were explored, including the incorporation of

practical information and the representation of messages.

We demonstrated that ultra-wideband radios are capable of achieving high-

resolution ranging measurements. Through an extensive measurement cam-

paign in multiple environments, we developed realistic yet tractable models of

UWB ranging error. These models were incorporated into a series of simula-

tions that characterized the performance of cooperative localization. Simula-

tion results showed that cooperation increases the accuracy and robustness of

localization.

There are several possibilities for future research directions. First, con-

vergence of the algorithm is of great importance. Specifically, knowing the
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conditions under which the algorithm (a) converges and (b) converges to the

correct distribution would be useful in assessing the algorithm's reliability.

Additionally, a comprehensive study of the algorithm's numerical parameters

(e.g. the number of samples R and the number of iterations) may reveal how

the performance improves with increasing computation or complexity. The

effects of unreliable transmissions and interfering communication traffic are

practical considerations that should be taken into account in future work. An-

other area of interest is anchor placement; for example, how anchors should

be deterministically placed in the environment to optimize the localization of

agents. Finally, the cooperative localization algorithm can be extended to ac-

count for mobile networks, potentially compromised nodes, and other realistic

scenarios. After showing that cooperation improves localization both in theory

and in practice, we believe the full potential of cooperative localization has yet

to be explored.
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