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Abstract—Secure distance-based localization in the presence of cheating beacon (or anchor) nodes is an important problem in mobile
wireless ad hoc and sensor networks. Despite significant research efforts in this direction, some fundamental questions still remain
unaddressed: In the presence of cheating beacon nodes, what are the necessary and sufficient conditions to guarantee a bounded
error during a two-dimensional distance-based location estimation? Under these necessary and sufficient conditions, what class of
localization algorithms can provide this error bound? In this paper, we attempt to answer these and other related questions by following
a careful analytical approach. Specifically, we first show that when the number of cheating beacon nodes is greater than or equal to
a given threshold, there do not exist any two-dimensional distance-based localization algorithms that can guarantee a bounded error.
Furthermore, when the number of cheating beacons is below this threshold, we identify a class of distance-based localization algorithms
that can always guarantee a bounded localization error. Finally, we outline three novel distance-based localization algorithms that
belong to this class of bounded error localization algorithms. We verify their accuracy and efficiency by means of extensive simulation
experiments using both simple and practical distance estimation error models.

Index Terms—Wireless networks, distance-based localization, security.

✦

1 INTRODUCTION

LOCALIZATION or location discovery in distributed
wireless networks is the problem of determining the

location, with respect to some local or global coordi-
nate system, of a (mobile) device in the network in an
efficient and accurate fashion. Distributed localization
protocols in such networks can be broadly classified
into range-based and range-free techniques [1]. Range-
based techniques can be further classified into two
broad categories, viz., (a) Beacon-based techniques and
(b) Beacon-free techniques. In this work, we focus pri-
marily on beacon-based localization algorithms. Beacon-
based algorithms such as [2], [3], [4], [5], [6], [7], [8],
[9] require the presence of special nodes, called beacon
or anchor nodes, which know their own location and
are strategically placed in the network. Other nodes
first compute the distance (or angle) estimates to a set
of neighboring beacons and then estimate their own
location using basic trilateration (or triangulation). The
working of a two-dimensional beacon-based localization
scheme using distance estimates to neighboring beacons
is shown in Figure 1(a).
In Figure 1(a), nodes B1, B2, B3 and B4 located at

positions (x1, y1), (x2, y2), (x3, y3) and (x4, y4), respec-
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Fig. 1. Distance-based (range-based) localization (a)
Trilateration (b) Cheating beacons

tively, act as beacon nodes. The target node T estimates
distances z1, z2, z3 and z4, respectively, to these beacon
nodes and computes its own location (xT , yT ) by tri-
lateration. Efficient techniques for estimating distances
such as Received Signal Strength Indicator (RSSI) [10],
Time of Arrival (ToA) [11], and Time Difference of Arrival
(TDoA) [12] exist and have been successfully used in the
various beacon-based localization protocols listed above.
Although beacon-based techniques are very popular in
most wireless systems, they have one shortcoming. Most
beacon-based techniques in the literature assume that the
nodes acting as beacons always behave honestly. It is
not surprising that beacon-based methods perform well
when all the beacon nodes are honest. But their accuracy
suffers considerably in the presence of malicious or
cheating beacon nodes. Beacons can cheat by broadcast-
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ing their own locations inaccurately or by manipulating
the distance estimation process, thus adversely affecting
the location computation by the other nodes. This is
depicted in Figure 1(b). In this figure, we can see that
beacon nodes B1, B2 and B4 behave honestly, whereas
beacons B3 and B′

3 cheat. This causes the target node T
to compute its location incorrectly as (xT ′ , yT ′) instead
of (xT , yT ).
Earlier research efforts in securing distance-based lo-

calization techniques have focused on either removing
this (over)dependence on beacon nodes ( [13], [14], [15])
or on minimizing the effects of malicious beacons ( [16],
[17]) during localization. But before delving into the pos-
sible solutions for secure localization, we feel that there
is a need to address the following questions that have
been ignored by earlier research efforts: Under what
condition(s) do there exist algorithms that can overcome
the cheating effect of malicious beacons? How do we
determine these algorithms when these condition(s) are
satisfied, if at all? What kind of guarantee on the solution
quality (in terms of bounds on the error in localization)
can such algorithms provide? None of the research ef-
forts undertaken previously provide an answer to all
these questions. Eren et al. [18] study the problem of
distance-based localization from a theoretical standpoint
and provide conditions for unique network localization
using graph rigidity theory, but their results assume non-
cheating beacon nodes. What has been missing in the
literature is a comprehensive theoretical framework for
studying the hardness and feasibility of the distance-
based localization problem in the presence of cheat-
ing beacons. A systematic analytical study would not
only help in designing efficient algorithms to solve this
problem, but would also help in deriving performance
bounds guaranteed by these algorithms, thus facilitating
an effective comparative analysis. In this paper, we at-
tempt to fill this gap between theory and practice by first
establishing the necessary and sufficient conditions for
the problem of secure distance-based localization in the
presence of cheating beacon nodes and then outlining a
class of algorithms that can always guarantee a bounded
localization error.
Specifically, we make the following contributions.

First, we prove that if the number of malicious beacons
is greater than or equal to n−2

2 , where n is the total num-
ber of beacons providing distance information, then no
algorithm can guarantee a bounded localization error for
all cases. In other words, as long as the above inequality
holds, any distance-based algorithm will fail to estimate
the target location within a small error bound for at
least one scenario or set-up of beacons. Next, we show
that there exist algorithms that provide a guaranteed
degree of localization accuracy (for all the cases), if the
number of malicious beacons is less than or equal to n−3

2 .
These two inequalities are also referred to as the necessary
and sufficient conditions for robust localization. Given the
above conditions, we define a class of distance-based
localization algorithms that can always localize with a

bounded error. We transition from theory to practice
by proposing three illustrative algorithms that belong to
this class of robust distance-based algorithms. The first
algorithm, called the Polynomial Time algorithm, uses an
exhaustive search strategy to provide good localization
accuracy with a polynomial (cubic) run-time complexity
(in terms of the number of available beacons) in the
worst case. But in practice, the Polynomial Time algo-
rithm runs very inefficiently. To overcome this problem,
we propose two other algorithms. These algorithms use
simple heuristics to securely compute locations and have
a much better execution efficiency. Finally, we verify
the performance of these algorithms through extensive
simulation experiments and present a detailed compara-
tive analysis based on the simulation results. We also
extend the existing localization framework to include
more practical distance estimation error models and
also study their effect on the accuracy of the proposed
localization algorithms.
The rest of the paper is organized as follows. In Section

2, we provide some background on secure localization
and discuss the related work, and in Section 3 we present
the network and adversary model. In Section 4, we de-
rive the conditions for secure distance-based localization
and define the class of bounded error distance-based
localization algorithms. In Section 5, we propose three
algorithms that belong to this class and in Section 6
we discuss their simulation results. In Section 7, we
extend the existing localization framework to include
more practical distance estimation error models. We
conclude the paper with a summary of contributions and
some directions for future research in Section 8.

2 BACKGROUND AND RELATED WORK

In this section, we survey some earlier research efforts
towards securing distance-based localization schemes.
Most of the prior works in this area have followed one of
the following two themes – (1) detection and elimination
of cheating nodes, or (2) localization in the presence of
cheating nodes and large errors.

2.1 Malicious Node Detection and Elimination

One approach followed by researchers to secure
distance-based localization approaches is to detect the
cheating nodes and eliminate them from consideration
during the localization process. Liu et al. [17] propose
a method for securing beacon-based localization by
eliminating malicious data. This technique, called attack-
resistant Minimum Mean Square Estimation (MMSE), takes
advantage of the fact that malicious location references
introduced by cheating beacons are usually inconsis-
tent with the benign ones. Similarly, the Echo location
verification protocol proposed by Sastry et al. [19] can
securely verify location claims by computing the relative
distance between a prover and a verifier node using the
time of propagation of ultrasound signals. C̆apkun et al.
[20] shortlist various attacks related to node localization
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in wireless sensor networks and propose mechanisms
such as authenticated distance estimation, authenticated
distance bounding, verifiable trilateration and verifiable
time difference of arrival, to secure localization. Pires
et al. [21] propose protocols to detect malicious nodes
in distance-based localization approaches by detecting
message transmissions whose signal strength is incom-
patible with its originator’s geographical position. In
another similar work by Liu et al. [22], the authors
propose techniques to detect malicious beacon nodes by
employing special detector nodes.

2.2 Robust Localization Schemes

The second approach towards securing localization is
to design techniques that are robust enough to tolerate
the cheating effect of malicious nodes (or beacons),
rather than explicitly detecting and eliminating them.
Priyantha et al. [4] propose the CRICKET system that
eliminates the dependence on beacon nodes by using
communication hops to estimate the network’s global
layout, and then apply force-based relaxation to optimize
this layout. Some other research attempts also try to
solve the secure localization problem by formulating
it as a global optimization problem. For example, Li
et al. [16] develop robust statistical methods such as
adaptive least squares and least median squares to make
beacon-based localization attack-tolerant. Alternatively,
Doherty et al. [23] address the problem of beacon-based
localization in the presence of large range measurement
errors, and describe a localization method using con-
nectivity constraints and convex optimization. Moore et
al. [24] formulate the localization problem in wireless
sensor networks as a two-dimensional graph realization
problem and describe a beaconless (anchor-free), dis-
tributed, linear-time algorithm for localizing nodes in
the presence of large range measurement noise. Liu
et al. [17] design an intelligent strategy, called voting-
based scheme, where the deployment area is divided into
a grid of cells such that the target node resides in
one of the cells. Every beacon node votes on each cell
depending on the distance between the target node and
itself and the location of the target node is estimated as
being within the cell that had the maximum number of
beacon votes. In another approach, Yi et al. [25] and Ji
et al. [14] apply efficient data analysis techniques such
as Multi-Dimensional Scaling (MDS) using connectivity
information and distances between neighboring nodes
to infer target locations. Fang et al. [15] model the
localization problem as a statistical estimation problem.
The authors use Maximum Likelihood Estimation (MLE) in
order to estimate the most probable node location, given
a set of neighborhood observations. Recently, ideas from
coding theory have also been applied to achieve robust
localization, for example [26], [27]. In another work,
Lazos et al. [28] propose a range independent distributed
localization algorithm using sectored antennas, called
SeRLoc, that does not require any communication among

nodes. However, SeRLoc is based on the assumption
that jamming of the wireless medium is not feasible.
To overcome this problem, Lazos et al. [29] also present
a hybrid approach, called RObust Position Estimation
(ROPE), which unlike SeRLoc, provides robust location
computation and verification without centralized man-
agement and vulnerability to jamming. In another recent
research effort by Misra et al. [30], the authors pro-
pose a convex optimization based scheme to secure the
distance-based localization process, which uses Barrier’s
method to solve the optimization problem.

2.3 Discussion

Malicious node detection and elimination strategies, as
discussed in Section 2.1, take into account the incon-
sistency (caused by cheating behavior) in measurement
of a particular network parameter in order to detect
cheating nodes. One shortcoming of such an approach is
the requirement that verifier nodes have to be completely
honest. Moreover, these solutions do not provide any
fixed guarantees of the number of detected cheating
beacon nodes or the accuracy of the ensuing localization
algorithms. Any undetected cheating beacon node will
only add to the error of the localization algorithm.
On the contrary, a majority of the localization schemes

discussed in Section 2.2 attempt to improve the robust-
ness of the localization procedure by employing opti-
mization techniques. The main focus of these schemes
is to minimize the effect of inconsistent or erroneous
data on the overall localization accuracy. Some short-
comings of such a strategy includes the complexity of the
proposed solutions, e.g., [14], [25]; or sometimes the re-
quirement of special hardware and equipment, e.g., [28].
Moreover, most of the research efforts in this direction
have failed to study the feasibility of the distance-based
localization problem under adverse conditions.
In view of the above, our primary goal here is to con-

duct a thorough analytical study of the distance-based
localization problem in the presence of cheating beacons.
The secure distance-based localization framework and
the associated results that we present in this paper are
very general. The algorithms for secure localization that
we propose achieve provable security and are computa-
tionally feasible and efficient. As a matter of fact, it will
be clear later that the class of bounded error distance-
based localization algorithms proposed in this paper
also includes other algorithms such as the optimization-
based scheme by Misra et al. [30] and the voting-based
technique by Liu et al. [17]. Next, we first outline the
network and adversary model for the secure distance-
based localization framework.

3 NETWORK AND ADVERSARY MODEL

In our network model, a device M in a non-trustworthy
environment, wants to compute its own location by
using distance estimates to a set of beacon nodes. These
beacon nodes know their own locations and may or may
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not cheat about their locations to the other nodes. The
target node M and the beacon nodes are currently as-
sumed to be located on a two-dimensional area (plane),
i.e., the location of each of these entities can be rep-
resented as two-dimensional coordinates (x, y) where,
x, y ∈ R.
Suppose that the target node M has a total of n beacon

nodes available for localization. Let these beacon nodes
be denoted as B1, . . . , Bn. Among these n beacons,
some beacons are malicious (or cheating beacons). Let k
denote the number of malicious or cheating beacons. It is
important to note that k is not necessarily known to the
target node or to any of the honest beacons. However,
the value of k clearly has a great influence on whether
a bounded localization error can be achieved or not.
Let kmax (≤ n) be an upper bound on the number of
malicious nodes, i.e., kmax is the maximum number of
malicious nodes that can exist in the network at any
time. The parameter kmax is a system or environment-
dependent constant and is assumed to be known to the
localization algorithm.
Beacons that are not malicious are honest, i.e., they

fully cooperate with the localization protocol by dis-
closing the information as truthfully as possible. More
details on the cheating behavior by the beacon nodes will
follow shortly. Regardless of being honest or dishonest,
each beacon Bi provides1 M with a measurement d̃i of
the distance between Bi and M . The precise distance
between Bi and M is the Euclidean distance between
the position coordinates of Bi and M , and is denoted by
dst(Bi,M). Let the set of honest beacons be denoted by
H . Then, for each beacon Bi ∈ H , d̃i is a random variable
that follows some probability distribution, denoted as
msr(dst(Bi,M)), such that E[d̃i] = dst(Bi,M), i.e., the
expected (mean) value of the estimated distance d̃i for
each beacon Bi in H , is the precise distance between
the beacon Bi and the node M . In the case when Bi

is honest, the difference between the estimated and the
true distance is very small, i.e.,

|d̃i − dst(Bi,M)| < ǫ (1)

where ǫ is the maximum distance estimation error. Ide-
ally, this difference should be zero, but such discrepan-
cies in distance estimates can occur due to measurement
errors, either at the source or target. Currently, ǫ can be
assumed to be a small constant. Later in Section 7, we
extend the current network model to include a more
practical representation for the distance estimation error.
For each beacon Bi 6∈ H , i.e., a cheating beacon, the

corresponding d̃i is a value selected (possibly arbitrarily)
by the adversary such that it may or may not follow
Equation 1. Note that we allow colluding attacks in this
model, i.e., we assume that a single adversary controls

1. In practice, each beacon Bi actually provides M with some
information from which the distance d̃i can be computed efficiently
by M . In order to simplify the current exposition, we assume that
Bi provides M the distance measurement d̃i directly. This should not
affect the presented results.

all the malicious beacon nodes (all Bi 6∈ H) and decides
d̃i for them. This is a very strong adversary model that
in addition to independent adversaries also covers all
possibilities of collusion.

As a distance-based localization strategy is assumed
here, the output O of the corresponding localization
algorithm can be defined by a function F of the mea-
sured distances (d̃i) from the device M to every available
beacon node, i.e., O = F (d̃1, . . . , d̃n).

The error e of the localization algorithm is the expected
value of the Euclidean distance between the actual po-
sition of M and the one output by the algorithm, i.e.,
e = E[dst(M,O)].

In the next section, we outline the framework for
bounded error distance-based localization in the pres-
ence of malicious beacon nodes.

4 BOUNDED ERROR DISTANCE-BASED LO-
CALIZATION

Before describing our secure localization framework, we
derive the necessary condition for bounded error local-
ization in the presence of cheating beacons. This con-
dition fixes the minimum number of beacons required
to correctly compute the target node location by using
just the distance information, assuming that some of the
beacon nodes will cheat during localization.

4.1 Necessary Condition

In order to achieve a bounded localization error, the
first step is to derive a threshold for the number of
malicious beacons k (in terms of the total number of
available beacons n) such that if k is greater than or
equal to this threshold then no algorithm would be able
to guarantee a bounded localization error just based on
the distances to the beacon nodes. Consequently, having
the number of malicious beacons below this threshold is
a necessary condition for getting a bounded localization
error out of any distance-based localization algorithm.
This condition is given by Theorem 4.1.

Theorem 4.1. Suppose that k ≥ n−2
2 . Then, for any distance-

based localization algorithm, for any locations of the beacons,
there exists a scenario in which e is unbounded.

For the sake of brevity, we skip the proof of this
theorem. Interested readers can find the proof in [31].

Theorem 4.1 proves that having n−2
2 or more cheating

beacons makes it impossible to compute the location of
the target node M with a bounded error. In the next set
of results, we establish that having n−3

2 or fewer cheating
beacons makes it possible to compute the location of
M with a bounded error. This condition can also be
regarded as a sufficient condition for secure and robust
distance-based localization.
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4.2 Class of Robust Localization Algorithms

Before defining the class of algorithms that can achieve
bounded error localization in the presence of cheating
beacons, let us introduce some terminology used for its
definition (See Figure 2). For each beacon Bi, define a

Inner Boundary Circle

Critical Point

Outer Boundary Circle

Continuous Region

Continuous Arc

B3

2ǫ

B1

B2

Fig. 2. Terminology for the class of robust localization
algorithms

ring2 Ri using the following inequality:

d̃i − ǫ < dst(Bi,X) < d̃i + ǫ.

As mentioned in Section 3, ǫ is assumed to be a constant
denoting some (small) maximum distance estimation
error. Clearly, there are altogether n rings. The bound-
aries of these n rings consists of 2n circles — called the
boundary circles. In particular, the inner circle of the ring
is called an inner boundary circle and the outer circle is
called an outer boundary circle.

Definition 4.1. A point is a critical point if it is the
intersection of at least two boundary circles.

Definition 4.2. An arc is a continuous arc if it satisfies the
following three conditions:

• The arc is part of a boundary circle.
• It is either a complete circle or an arc with two distinct

end points, both of which are critical points.
• There is no other critical point inside the arc.

Definition 4.3. An area is a continuous region if it satisfies
the following two conditions:

• The boundary of this area is one or more continuous arcs.
• There is no other continuous arc inside the area.

The class of robust localization algorithms can then be
defined as follows.

Definition 4.4. A localization algorithm is in the class of
robust localization algorithms if its output is a point in a

2. Note that although we use a ring to model the error between the
actual distance and the measured distance, it does not imply that we
assume a circular or disc like coverage for each beacon. Given that each
beacon is equipped with an omni-directional antenna (with an irregular
transmission/coverage pattern) with some maximum transmission
range and maximum distance estimation error ǫ, the distance sent from
each beacon to M , regardless of where M is relative to the beacon, can
be assumed to lie within a ring.

continuous region r such that r is contained in the intersection
of at least k + 3 rings.

The class of robust localization algorithms defined
above is a non-empty class of algorithms. This statement
follows from the following theorem that proves that as
long as k ≤ n−3

2 , it is always possible to find a non-
empty continuous region r satisfying the requirements
of Definition 4.4.

Theorem 4.2. For k ≤ n−3
2 , there exists a non-empty

continuous region r in the intersection of at least k +3 rings.

For the sake of brevity, we skip the proof for this
theorem. Interested readers can find the proof in [31].
In fact, an example algorithm that belongs to this

class is the voting-based localization scheme proposed
by Liu et al. [17]. In this scheme, the authors compute
the intersection region by dividing the entire localization
area into a square grid, and then take a vote for each can-
didate location on the grid. The candidate locations with
the maximum votes belong to the intersection area. In
another similar research effort, Misra et al. [30] estimate
the target location by approximating the centroid of the
intersection region using convex optimization. Although
reasonably accurate, both the voting-based scheme by
Liu et al. and the optimization technique by Misra et
al. are computationally intensive. In Section 5, we will
propose three novel algorithms in this class of robust
localization algorithms. But, first we derive the worst-
case error bound for this class of algorithms.

4.3 Error Bound Analysis

To analyze the error bound of algorithms in this class,
two new definitions are needed.

Definition 4.5. The beacon distance ratio (γ) is defined as
the minimum distance between a pair of beacons divided by
the maximum distance between a beacon and the target device.

γ =
minBi,Bj

dst(Bi, Bj)

maxBi
dst(Bi,M)

Definition 4.6. Consider the lines going through pairs of
beacons. Denote by ang(BiBj , Bi′Bj′) the angle between
lines BiBj and Bi′Bj′ — to avoid ambiguity, we require
that 0◦ ≤ ang(BiBj , Bi′Bj′) ≤ 90◦. The minimum beacon
angle (α) is defined as the minimum of such angles.

α = min
Bi,Bj ,Bi′ ,Bj′

ang(BiBj , Bi′Bj′)

The following theorem bounds the maximum localiza-
tion error possible in the presented robust localization
framework.

Theorem 4.3. For k ≤ n−3
2 , if ǫ ≪ minBi

dst(Bi,M) and
there are no three beacons in the same line, then the output
error of any algorithm in the class of algorithms for robust
localization, as defined in Definition 4.4, is

e <
2ǫ

min
{

sin arcsin(γ sin(α/2))
2 , cos arcsin(γ sin(α/2))

2

}
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Proof: Consider the continuous region r in the inter-
section of at least k + 3 rings (by Theorem 4.2). As there
are at most k dishonest beacons, at least 3 of these rings
belong to the set of honest beacons. Suppose that R1, R2,
and R3 are these three rings, and let r′ be the continuous
region in the intersection of R1, R2, and R3. It is clear
that r′ contains r. As O is in r, clearly O is also in r′.
Next, let’s show that M is also in r′. As M is also in the
intersection of R1, R2, and R3, to show that M is in r′

only the following lemma is needed, a proof of which
can be found in the Appendix:

Lemma 4.4. If ǫ ≪ minBi
dst(Bi,M) and there are no three

beacons in the same line then the intersection of R1, R2, and
R3 has only one continuous region.

From Lemma 4.4 we have established that both M and
O are in r′. We will use this fact to show that

e <
2ǫ

min
{

sin arcsin(γ sin(α/2))
2 , cos arcsin(γ sin(α/2))

2

}

But before this result can be proved, we need another
lemma that characterizes the angle formed by M with
the honest beacon pairs. The proof of the lemma can be
found in the Appendix.

Lemma 4.5. If there are no three beacons in the same line,
then either

ang(B1M,B2M) ≥ arcsin(γ sin(α/2)),

or

ang(B1M,B3M) ≥ arcsin(γ sin(α/2)).

Using Lemma 4.5, without loss of generality let us
assume that

ang(B1M,B2M) ≥ arcsin(γ sin(α/2)).

Denote by r′′, the continuous region in the intersection
of R1 and R2 that contains r′. As both M and O are in
r′, they should also be in r′′.
Each of the two rings involved has a pair of circles.

Consider the four intersection points of these two pairs
of circles. Without loss of generality, suppose that the
four intersection points are V1, V2, V3, and V4, ordered
in the clockwise direction, and that ∠V2V1V4 is acute. As
ǫ ≪ minBi

dst(Bi,M), r′′ can be approximated using the
quadrangle V1V2V3V4. It is easy to show that

ang(V1V2, B1M) ≈ 90◦ ≈ ang(V3V4, B1M)

Thus, it is clear that the line V1V2 is parallel to the line
V3V4. Similarly, we can get that the line V1V4 is parallel
to the line V2V3. Therefore, V1V2V3V4 is a parallelogram.
Furthermore, it can be seen that

∠V2V1V3 = arcsin

(

2ǫ

dst(V1, V3)

)

= ∠V3V1V4.

Therefore, V1V2V3V4 is actually a rhombus. In a rhombus,
the farthest distance between two points is the length of
its longer diagonal line. Therefore,

e = dst(M,O) ≤
2ǫ

sin(∠V2V1V3)

=
2ǫ

sin
(

∠V2V1V4

2

)

≈
2ǫ

min
{

sin
(

ang(B1M,B2M)
2

)

, sin
(

90◦ − ang(B1M,B2M)
2

)}

≤
2ǫ

min
{

sin
(

arcsin(γ sin(α/2))
2

)

, cos
(

arcsin(γ sin(α/2))
2

)}

4.4 Discussion

We now discuss the security implications of the analyti-
cal results that have been presented so far. Theorems 4.1
and 4.2 prove that if a total of n beacons are available
for localization, then secure distance-based localization
is possible if and only if there are no more than n−3

2
cheating beacons among them. In other words, if these
conditions are satisfied, then no matter how all the
malicious beacons cheat, i.e., individually or in collusion
with each other, a bounded error (given by Theorem
4.3) can always be guaranteed. It is not possible for
cheating beacons, even by colluding with every other
cheating beacon, to localize the target node such that the
localization error is greater than this upper bound, i.e.,
they cannot succeed in localizing the target node outside
of the continuous region formed by the intersection of at
least k + 3 rings. In the worst case, the cheating beacons
(maximum k) can influence the size of this continuous
region in the intersection of at least k + 3 rings (still
bounded by the 3 honest beacon rings) or can collude
to maximize the localization error (Theorem 4.3) of the
target node within the continuous region. This can easily
be thwarted by considering the continuous region in the
intersection of a maximum number, but at least k + 3,
rings. Finally, if Theorem 4.1 is not satisfied, then a
continuous region in the intersection of at least k+3 rings
cannot be guaranteed and cheating beacons can make
the localization error arbitrarily large. If the adversary
model, in this case, is relaxed to remove the possibility
of collusion, then simple majority-based schemes such
as the voting [17] can be used for securing localization.
In the next section, we propose three novel algorithms

that belong to the class of robust localization algorithms
and can guarantee a bounded localization error.

5 BOUNDED ERROR ALGORITHMS

The class of robust localization algorithms, as defined
in Definition 4.4, contains algorithms that output the
location of a target in the continuous region of at least
k + 3 rings. In this section, we propose three algorithms
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that belong to this class. The first algorithm, called the
Polynomial Time algorithm, has a polynomial time (in
terms of number n of available beacons) worst-case
computational complexity, which is much faster than an
exhaustive search of all the grid points [17]. However,
in practice it is still very slow. We also propose two
heuristic-based algorithms. It is not known if their worst-
case complexity is any better than that of the Polynomial
Time algorithm. Yet, the probability of reaching the
worst-case is less and the heuristic-based algorithms run
efficiently in most cases and for most network topolo-
gies. Recall that all the three algorithms work under the
condition k ≤ n−3

2 . Thus, an upper bound for k (number
of malicious beacons) can be defined as kmax = n−3

2 . All
the algorithms presented here output a point within the
continuous region r in the intersection of kmax + 3 rings
as the location of the target node, but they differ in the
way they determine this point.

5.1 Polynomial Time Algorithm

Before outlining details of the Polynomial Time algo-
rithm, we give a lemma that defines the relationship
between a continuous region and a continuous arc.

Definition 5.1. A ring is related to a continuous arc if the
continuous arc is inside, but not on the boundary of this ring.

Lemma 5.1. Suppose that r is a continuous region and c
is a continuous arc on the boundary of r. Then, r is in the
intersection of at least k +3 rings if and only if at least k +2
rings are related to c.

(We skip the proof of Lemma 5.1 as it is very straight-
forward.)
The main idea behind the Polynomial Time algorithm

is that in order to determine a continuous region in the
intersection of at least kmax + 3 rings, it is sufficient to
count the number of rings related to each continuous
arc, and then find a continuous arc such that at least
kmax+2 rings are related to it (It is easy to check whether
a ring is related to a continuous arc by comparing the
distance between the arc’s end points and the center of
the ring to the inner and outer radii of the ring). Once
such an arc is found, depending on whether the arc is
on an outer boundary circle or an inner boundary circle,
a point can be picked from either the inner region or the
outer region of the arc respectively. The details of the
Polynomial Time algorithm are shown in Algorithm 1.

Lemma 5.2. The worst-case time complexity of the Polyno-
mial Time algorithm (Algorithm 1) is O(n3 log n).

Although the worst-case time complexity of Algorithm
1 is polynomial (cubic) in terms of the total number of
available beacons, it does not perform very efficiently
in practice. Simulation experiments (discussed later in
Section 6.2) show that it runs rather slowly for most
cases. This is because, it always computes all the possible
continuous arcs and searches among them for a related
arc that satisfies Lemma 5.1. In other words, it first uses

1: Let S be a set initially containing the two boundary
circles of ring R1

2: for i = 2, . . . , n do
3: Let Si be a set initially containing the two bound-

ary circles of ring Ri

4: for each arc in S and each arc in Si do
5: if the above two arcs intersect then
6: Split each of these two arcs using the intersec-

tion(s), and replace them in the corresponding
arc sets (S or Si) with the new splitted arcs
(result of the splitting operation)

7: end if
8: end for
9: Let S = S ∪ Si

10: end for
11: for each arc cj in S do
12: Set the corresponding counter λj to 0
13: for i = 1, . . . , n do
14: if Ri is related to cj then
15: λj = λj + 1
16: end if
17: end for
18: if λj ≥ kmax + 2 then
19: if cj is on an inner boundary circle then
20: Output is defined on the side out of this circle
21: else if cj is on an outer boundary circle then
22: Output is defined on the side inside this circle
23: end if
24: Stop the algorithm
25: end if
26: end for

Algorithm 1: Polynomial Time Algorithm

an exhaustive search to determine the boundary of the
continuous region in the intersection of kmax + 3 rings
and then outputs a point within it as the target location.
But there are other efficient ways to estimate such a point
with a high probability, as discussed next.

5.2 Heuristic 1

The first heuristic attempts to estimate the target location
around a critical point that lies on the intersection of a
large number of rings. It can be observed that kmax + 3
is already a large number of rings (more than half of
the total number of rings in the network). We need to
determine the region r contained in at least kmax + 3
rings. It is highly probable that the rings containing such
a region r are intersecting with large numbers of other
rings. In other words, if a ring, say Ri, is intersecting
with a large number of rings then it is very likely that
Ri contains r. Therefore, the heuristic first considers the
rings intersecting with a large number of other rings in
order to determine the critical point around which the
target location is guessed. This continues until a target
location within the continuous region in the intersection
of at least kmax + 3 rings is estimated. The details of
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Heuristic 1 are outlined in Algorithm 2, as shown below.

1: Count the number of rings intersecting with each
ring

2: for each ring Ri, in the order of decreasing number
of rings intersecting with it do

3: for each ring Rj , Rj 6= Ri, in the order of decreas-
ing number of rings intersecting with it do

4: Compute the intersection points of the boundary
circles of Ri and Rj

5: for m = 1, . . . , γ do
6: Choose a random intersection point computed

above
7: Choose a random point O near this inter-

section point (such that the distance between
them is less than ǫ)

8: Count the number of rings containing O
9: if there are at least kmax + 3 rings containing

O then
10: Output O
11: Stop the Algorithm
12: end if
13: end for
14: end for
15: end for

Algorithm 2: Heuristic 1

The next heuristic attempts to further improve the
quality of localization, by trying to estimate a point
closer to the center of the continuous region formed by
kmax + 3 intersecting rings.

5.3 Heuristic 2

The second heuristic tries to guess the location of the
target closer to the center (or centroid) of the continuous
region of at least kmax + 3 intersecting rings. This is
because the actual location of the target is more likely
to be near the center of the continuous region than
near the boundary. Thus, assuming that the continuous
region is convex, we first compute three distinct critical
points, instead of just one, that lie on the intersection of a
large number of rings. If (x1, y1), (x2, y2) and (x3, y3) are
the coordinates of these critical points, the coordinates
(xM , yM ) of the target location are guessed by computing
the centroid of the triangle formed by (x1, y1), (x2, y2)
and (x3, y3), as shown below:

xM =
x1 + x2 + x3

3

yM =
y1 + y2 + y3

3

If this guessed point (xM , yM ) lies in the intersection of
kmax + 3 rings, then it is output as the location of the
target, otherwise the procedure is repeated for a new set
of critical points. Details of this heuristic are outlined in
Algorithm 3 (or Heuristic 2) shown below.

1: Count the number of rings intersecting with each
ring

2: for each ring Ri, in the order of decreasing number
of rings intersecting with it do

3: for each ring Rj , Rj+1, Rj+2|Rj , Rj+1, Rj+2 6= Ri,
in the order of decreasing number of rings inter-
secting with it do

4: Compute the intersection points of the boundary
circles of Ri and Rj , Ri and Rj+1 and Ri and
Rj+2

5: Choose a point (x1, y1) from the intersection of
the ring pair Ri, Rj at random. Similarly, choose
intersection points (x2, y2) and (x3, y3) from the
other two pairs

6: Compute O = (x1+x2+x3

3 , y1+y2+y3

3 )
7: Count the number of rings containing O
8: if there are at least kmax + 3 rings containing O

then
9: Output O

10: Stop the Algorithm
11: end if
12: end for
13: end for

Algorithm 3: Heuristic 2

6 EVALUATION

The evaluation of the proposed robust localization al-
gorithms includes the verification of accuracy and ef-
ficiency of each of these algorithms and comparison
with other known techniques such as the voting-based
scheme by Liu et al. [17]. The simulations for these algo-
rithms are carried out for varying values of parameters
such as beacon node distribution, number of malicious
beacon nodes and distance estimation error of the target
node. Currently, we do not evaluate any network-specific
property of these algorithms such as the communi-
cation overhead. This is because these algorithms, as
proposed currently, are very general and properties such
as communication overhead would depend on network
specific factors such as hardware, signal type, ranging
technique and the network topology. In the first part
of this simulation-based analysis, we aim to compare
the performance of the proposed algorithms under ideal
network conditions with a small independent distance
estimation error. Later in Section 7, we extend the initial
simple simulation setup to include more realistic dis-
tance estimation error models. Results from these initial
simulation experiments will serve as a stepping stone for
improving these algorithms further and porting them to
more complex network platforms and environments.

6.1 Simulation Setup

The simulation area consists of a 500m × 500m two
dimensional terrain. The optimal number and placement
of beacon nodes is important. But as optimal beacon
placement is not the main focus of this paper, we assume
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Legend: ǫ = 0m; ǫ = 1m; ǫ = 2m; ǫ = 3m; ǫ = 4m; ǫ = 5m

Fig. 3. Simulation of the Polynomial Time algorithm (a) Localization error vs No. of malicious nodes and (b) Simulation
time vs No. of malicious nodes with measurement error uniformly distributed between [−ǫ,+ǫ]. (c) Localization error vs
No. of malicious nodes and (d) Simulation time vs No. of malicious nodes with measurement error normally distributed
between [−ǫ,+ǫ] with mean 0 and standard deviation ǫ

2 .

a small but reasonable beacon node population of 43 bea-
con nodes (approximately 1 beacon for every 10m×10m),
which is scattered uniformly over the 500m × 500m
area. The position of the target node is also uniformly
selected and there is no node mobility (beacon or target).
Currently, the maximum radio ranges of the nodes are
selected such that every beacon node is available for
localization (≈ 250m). In this set of simulations, we
assume an independent distance estimation error se-
lected from some fixed distribution. In order to verify the
accuracy and efficiency of the proposed algorithms for
different distributions of the distance estimation error,
we simulate the algorithms for both uniformly and
normally distributed distance estimation errors. For each
of these distributions, we intend to study the influence of
the number of malicious beacons (k) and the maximum
distance measurement error (ǫ) on the localization error
and the execution time of the algorithms.

6.2 Polynomial Time Algorithm

In this section, we discuss the simulation results for the
Polynomial Time algorithm.

6.2.1 Experiments with Uniform Measurement Error

In the first set of simulations, we evaluate the Polynomial
Time algorithm for the case when the distance estima-
tion error is uniformly distributed between [−ǫ, ǫ]. We
observe the performance of the algorithm for increasing
values of ǫ, as the number k of malicious nodes increases
from 0 up to some maximum tolerable value. As the
total number of available beacons is fixed (n = 43),
the maximum number of malicious beacons that the
algorithm can tolerate is 43−3

2 = 20 (from Theorem 4.2).
The algorithm is executed for each value of ǫ from 0m
to 5m in steps of 1m and for each value of k from 0 to
20 (kmax = 20). We then plot the average localization
error e as an average of the error in localization of the
target over 100 runs of the algorithm (See Figure 3). In
each new run, the beacon and target nodes are assigned
new positions, the coordinates of which are uniformly
selected over the 500m × 500m area. From Figure 3(a), it

can be seen that the average localization error shows an
increasing trend when ǫ increases, which is very natural.
When ǫ = 0, e is also 0. The reason is that in this
case the continuous region is just a single point in the
intersection of at least kmax +3 rings. Also it can be seen
that e increases as k increases. This is consistent with the
intuition that more number of malicious beacon nodes
should decrease localization precision. For lower values
of k, i.e., k < kmax, more honest rings are available for lo-
calization, resulting in a smaller sized continuous region
and thus a more accurate localization. As the number of
malicious nodes increases, the number of honest rings
diminishes and thus the quality of localization decreases.
Figure 3(b) depicts the average execution time of the

Polynomial Time algorithm under varying values of k
and ǫ. From the figure, we can see that the average
simulation time does not increase very sharply with k.
This observation is also not surprising because in all the
cases the Polynomial Time algorithm always computes
all the possible continuous arcs. Increasing the value
of k does not guarantee a lower number of continuous
arcs because the locations of the malicious beacons are
selected uniformly over the 500m × 500m area. But the
simulation time increases with an increase in the value
of ǫ. This is because, for lower values of ǫ, the inner
and outer boundary circles are much closer to each
other (width of the ring is smaller) as compared to
higher values of ǫ, thus resulting in lesser number of
possible continuous arcs. In summary, the maximum
localization error of the Polynomial Time algorithm is
less than 1m for a maximum distance error of 5m (for
the Uniform distribution case), which is an error ratio
( e

ǫ ) of approximately 0.2. The maximum simulation time
for this case is just under 12 secs, which is a bit high.

6.2.2 Experiments with Normal Measurement Error

To verify that the evaluation results are consistent and
not restricted to a particular distribution, we repeat the
simulations for the Polynomial Time algorithm using
a normally distributed distance measurement error. All
other simulation parameters are kept unchanged except
that the distance measurement error takes values from a
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truncated normal distribution with mean 0 and standard
deviation ǫ

2 . To make sure that the distance estimation
error always takes values between −ǫ and ǫ, the normal
distribution is modified such that the probability density
outside [−ǫ,+ǫ] becomes 0; the probability density inside
the interval [−ǫ,+ǫ] is scaled up a little, accordingly.
Figures 3(c) & 3(d) show the plots for the simulation

results. Figure 3(c) plots the average localization error
for each pair of (k, ǫ) when the distance estimation
error follows a normal distribution. Figure 3(d) shows
the corresponding simulation time plot. We can observe
that these plots are analogous to Figures 3(a) and 3(b),
respectively, except that the localization error increases
more slowly with k in the current case. These plots verify
that the behavior of the Polynomial Time algorithm is
consistent for other distributions of the distance mea-
surement error as well. In summary, we observe that
although the accuracy of the Polynomial Time algorithm
is good, it is very inefficient and slow, with execution
time in the order of seconds.

6.3 Heuristic 1

In this section, we discuss the evaluation of Heuristic 1.

6.3.1 Experiments with Uniform Measurement Error

Similar to the Polynomial Time algorithm, we first eval-
uate Heuristic 1 for uniformly distributed values of
the distance measurement error. The simulation of the
algorithm is run for each value of ǫ from 0m to 50m
in steps of 10m and for each value of k from 0 to 20
(kmax = 20). Note that here we have drastically increased
the value of ǫ, compared to the previous experiments.
It would be worthwhile to observe the effects of larger
measurement errors on the localization accuracy and
execution time of Heuristic 1. Average localization error
e is plotted as an average of the error in localization of
the target node over 1000 runs (See Figure 4 (a) & (b)). In
each run, the beacons and target node are assigned new
positions, coordinates of which are uniformly selected
over the 500m × 500m area.
From Figure 4(a), we can see that the average localiza-

tion error e increases as ǫ increases, which is an intuitive
observation. Also, e increases as k increases. This is
also consistent with the intuition that more number of
malicious beacon nodes decreases localization precision.
For lower values of k, i.e., k < kmax, more honest
rings are available for localization, resulting in a smaller
region of intersection and eventually a more precise
localization. As the number of malicious nodes increases,
the number of honest rings reduces (but still satisfying
the necessary and sufficient conditions), and thus the
quality of localization decreases.
Figure 4(b) shows that the average simulation time

of Heuristic 1 increases in k, but increases only very
slightly. This observation is also not surprising because
the algorithm is computing the intersection of the same
number of rings for each value k. The main reason for

the slight increase in the simulation time is that more
number of malicious beacons make it harder to find the
right continuous region (in the intersection of kmax + 3
rings). For all values of k and ǫ, the average localization
error of Heuristic 1 is just under 25m, which is an error
ratio ( e

ǫ ) of around 0.5, whereas the execution time in the
worst case is less than 0.035 secs.

6.3.2 Experiments with Normal Measurement Error

Once again, to ensure that the evaluation results are
not restricted to only uniformly distributed errors, the
simulations for Heuristic 1 are repeated with a normally
distributed distance estimation error. All other experi-
ment parameters are unchanged. The distance measure-
ment error follows a normal distribution with mean 0
and standard deviation ǫ

2 . As before, the distribution
is modified such that the probability density outside
[−ǫ,+ǫ] becomes 0.
Figure 4(c) plots the average localization error e for

each pair of (k, ǫ) when the measurement error follows a
normal distribution. Figure 4(d) plots the corresponding
simulation time. We can observe that the curves are
analogous to those in Figures 4(a) and 4(b) respectively,
except that the localization error e increases much more
slowly with k.

6.4 Heuristic 2

The values of the simulation parameters for Heuristic 2
are similar to those used for Heuristic 1. As before, we
evaluate Heuristic 2 for both uniformly and normally
distributed distance measurement errors. Plots of the
simulation results are shown in Figures 4 (e), (f), (g)
& (h). One very obvious trend in the plot for average
localization error e, as can be seen from Figures 4 (e)
& (g), is that the error does not increase with k, but
increases with ǫ. In other words, k does not influence the
localization accuracy of the algorithm in a major way,
which is a good thing. This trend in the localization
accuracy is also not surprising. Because here we are
computing the centroid of the three boundary points,
the localization accuracy depends on the width of rings,
which in turn depends on the value of ǫ. The execution
time, however, decreases with the increase in ǫ. This is
because, for larger values of ǫ, the continuous region is
larger thus making it more probable that the computed
centroid lies within the continuous region. For the uni-
form distribution case, the error ratio ( e

ǫ ) is just under
10
50 = 0.2, which is similar to the one provided by the
Polynomial Time algorithm. Also, the execution time in
the worst case is around 0.01 seconds (see Figure 4 (f)),
which is much faster (roughly, 1000 times) as compared
to the Polynomial Time algorithm.
From the above experimental results, we can conclude

that both the Polynomial Time algorithm and Heuristic
2 have very good localization accuracy, but Heuristic 2
runs very efficiently compared to the other two algo-
rithms and outperforms them in execution speed.
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Fig. 4. (a) & (b) Heuristic 1 with measurement error uniformly distributed between [−ǫ,+ǫ]; (c) & (d) Heuristic 1 with
measurement error normally distributed between [−ǫ,+ǫ] with mean 0 and standard deviation ǫ

2 ; (e) & (f) Heuristic 2
with measurement error uniformly distributed between [−ǫ,+ǫ]; (g) & (h) Heuristic 2 with measurement error normally
distributed between [−ǫ,+ǫ] with mean 0 and standard deviation ǫ

2

6.5 Comparison with Voting-based Scheme

In this section, we compare the proposed heuristic-based
algorithms with the voting-based scheme by Liu et al.
[17], which was discussed earlier in Section 2. The setup
and simulation parameters remain unchanged. Plots of
the simulation results for uniformly distributed distance
estimation errors are shown in Figures 5 (a) & (b).
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Fig. 5. Comparison with voting-based scheme of [17] (a)
Localization error and (b) Simulation time with measure-
ment error uniformly distributed between [−30,+30]

From Figure 5 (a), we can see that for lower values
of the number of malicious nodes k, the voting-based
scheme has similar accuracy as Heuristic 1, but at higher
values of k it performs slightly better. Moreover, Heuris-
tic 2 outperforms both Heuristic 1 and the voting-based
scheme at higher values of k. Also, the localization accu-
racy of the voting-based scheme decreases with increase
in k. In terms of execution efficiency, the voting-based
scheme performs the worst, almost 100 times slower than
the other algorithms.

7 PRACTICAL ERROR MODELS

From Theorem 4.3, we can see that the maximum lo-
calization error for the class of robust localization al-
gorithms is proportional to the maximum distance es-
timation error ǫ. Up to this point, we have assumed
that for a given target-beacon pair, the distance mea-
surement error is selected from a fixed uniform or non-
uniform distribution and is bound by some constant
ǫ. In practice, however, modeling distance estimation
error is not so straightforward. Errors can be introduced
during distance estimation due to a variety of factors
including the actual distance between the target and
beacon nodes, antenna gains of the transceivers, tech-
nique employed for distance estimation and signal type,
and environmental factors such as obstacles and noise.
Thus in this section, we consider more practical distance
estimation error models and investigate their effect on
the performance of the class of robust distance-based
localization algorithms.

7.1 Modeling Distance Measurement Error

In wireless networks, such as ad hoc and sensor net-
works, various schemes have been proposed for dis-
tance estimation [1]. Consider as an example the Re-
ceived Signal Strength Indicator or RSSI technique. In
this technique, the target node observes the power loss
of the received beacon radio signal and uses known
(through theoretical and empirical results) power loss
models to estimate the distance between itself and the
corresponding beacon node. Errors in RSSI-based dis-
tance estimation techniques can be attributed to various
factors such as reflection, scattering and diffraction of
radio signals, as well as interference due to noise, signal
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fading due to multipath propagation and node mobility,
and other Non-Line-Of-Sight (NLOS) errors due to ob-
structions. Although the precise radio signal loss model
would depend on network specific factors (including
environment, mobility, transmission bandwidth and ra-
dio hardware), the most commonly used theoretical and
empirical propagation models indicate that the average
received radio signal power decreases logarithmically
with the distance between the nodes. Such models have
been used extensively in the literature to model dis-
tance estimation errors. For example, Slijepcevic et al.
[32] model the distribution d̃ of the measured distance
between the target and the beacon node using the Log-
normal shadowing model described in [33] as follows.

10ηlog(
d̃

d0
) − 10ηlog(

d

d0
) = Xσ (2)

where d is the correct distance between the nodes, η
is the path loss exponent that indicates the rate at
which the path loss increases with distance, d0 is the
close-in reference distance that is determined from mea-
surements close to the transmitter and Xσ is a zero-
mean Gaussian distributed random variable (in dB) with
standard deviation σ (also in dB). From Equation (2):

d̃ = d + d(1 − 10
Xσ
10η ) (3)

Here ǫ̃ ≡ d(1 − 10
Xσ
10η ) is the distribution of the distance

measurement error. From Equation (3), we can see that
the distance estimation error in RSSI-based techniques
depends on the distance between the target and the
beacon node. This dependency is also verified through
empirical measurements by Savvides et al. [34].
Similarly, acoustic signals can also be used for ranging,

and Savvides et al. [34] show that it achieves better
accuracy than RSSI. Slijepcevic et al. [32] model the dis-
tance measurement error in acoustic ranging techniques
based on the results reported in [35], and show that
there are three important sources of error in acoustic
ranging techniques, namely, NLOS error, speed of sound
error and orientation error. These components of the
distance estimation error also depend on the distance
between the source and destination transceivers. For the
sake of brevity, we do not provide the details of the
acoustic error model here. However, we can conclude
from the above discussion that the distance estimation
error between the target and any beacon node depends
(in addition to other factors) on the actual distance
between the two nodes. In the following section, we
discuss how such a practical distance estimation error
model affects the maximum error bound for the class of
robust localization algorithms.

7.2 Maximum Error Bound

Let us assume that the maximum distance estimation
error is some function f of the distance between the
target and the beacon node. Then, if k ≤ n−3

2 and
maxn

i=1{ǫi = f(dst(Bi,M))} ≪ minBi
dst(Bi,M), where

k is the number of malicious beacons, there will al-
ways exists a non-empty continuous region r in the
intersection of at least k + 3 rings. In other words, the
condition for bounded-error distance-based localization
(Theorem 4.2) also holds in this case. Moreover, it is
easy to see that the size of this continuous region r is
bound by maxn

i=1{ǫi = f(dst(Bi,M))}, i.e., the largest
value of the distance estimation error in the network
of n beacon nodes. Thus in this case, the maximum
localization error of any algorithm that always outputs
the location of the target within the continuous region
of at least k + 3 beacon rings can be given by a more
generic restatement of Theorem 4.3 as follows. If k ≤ n−3

2
and ǫi = f(dst(Bi,M)) for some function f , and if
maxn

i=1{ǫi = f(dst(Bi,M))} ≪ minBi
dst(Bi,M), and

there are no three beacons in the same line, then the
output error of any algorithm in the class (defined in
Definition 4.4) of algorithms for robust localization is

e <
2 × maxn

i=1{ǫi = f(dst(Bi,M))}

min
{

sin arcsin(γ sin(α/2))
2 , cos arcsin(γ sin(α/2))

2

} (4)

Next, we re-evaluate using simulation experiments the
heuristic-based algorithms, as well as the voting-based
technique of [17], by assuming the distance estimation
error model of Equation 3. The simulation results are
outlined in the following section.

7.3 Evaluation

In this set of experiments, we repeat the simulations
of Heuristic 1, Heuristic 2 and the voting-based tech-
nique [17] using the distance estimation error model of
Equation (3). In order to simulate a realistic propagation
environment such as a building with obstructions, we
choose a high value for the path loss exponent η (From
Table 4.2 in [33]). Specifically, the value of η is chosen
as 4.0 and standard deviation σ in Xσ is chosen as 1.0.
All other simulation parameters are kept unchanged.
The average localization error e over 1000 runs of the
simulations is plotted against the number of malicious
nodes k, as shown in Figure 6.
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Fig. 6. Evaluation of robust localization algorithms using
a practical error model
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We can see from Figure 6 that the plot trends are very
similar to the case with the distance-independent error
models (as shown in Figures 4(a), 4(e) and 5 (a) respec-
tively). Even in the current practical setting, the average
localization error for Heuristic 1 and the voting-based
scheme increases only slowly with the number of mali-
cious beacons whereas the average localization error for
Heuristic 2 is almost constant. We can also see that the
average localization error of all the algorithms is lower,
compared to the case with the distance-independent
errors. This is because, all the beacon nodes that are
closer to the target node have a lower distance estimation
error, thus reducing the overall localization error. The
localization accuracy of Heuristic 1 is very similar to the
one provided by the voting-based approach, but the vot-
ing based approach is very slow, almost 100 times slower
than Heuristic 1. For conciseness, we do not plot the
simulation time comparisons here. We also observe that
Heuristic 2 outperforms both Heuristic 1 and the voting-
based approach at higher values of number of cheating
beacons. In summary, we observe that both the proposed
heuristic-based algorithms perform consistently and pro-
vide good localization accuracy even under a practical
setting. They also outperform the voting-based approach
in execution efficiency.

8 CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of secure
distance-based localization in the presence of cheating
beacon nodes. By means of a sound mathematical analy-
sis, we have derived the conditions for secure and robust
distance-based localization in the presence of cheating
beacons. Specifically, we have outlined the necessary and
sufficient conditions for achieving a bounded localiza-
tion error, and defined a non-empty class of algorithms
that can achieve such a bounded error.
We have also proposed three novel distance-based

localization algorithms, specifically a polynomial time
algorithm and two heuristic-based algorithms that be-
long to this class of bounded error distance-based lo-
calization algorithms. We have verified the localization
accuracy and execution efficiency of these algorithms us-
ing measurements from simulation experiments. Experi-
mental results show that all the algorithms performed
consistently for different distributions of the distance
measurement error. We have also extended the existing
localization framework to include more practical models
for the distance measurement error and have verified the
performance of the algorithms under such scenarios.
The error model for radio signals currently used in the

analysis can be further improved to characterize errors
in specific hardware technologies and environments. The
path loss parameters in the current distance estimation
error model can be adjusted depending on network
specific factors including obstructions, interference due
to noise and multipath fading. Well-known statistical
models such as Rayleigh or Rician distributions [33]

or published signal measurement data sets for specific
wireless systems can be used for this purpose. Distance
estimation error models for other technologies such as
acoustic and UWB can also be used to further analyze
the proposed secure localization framework. Although
the analytical results and bounds presented here are
very general and have been verified for simple error
models, it would be worthwhile to observe how these
results (both theoretical and empirical) would extend to
specific wireless environments and systems. This will be
undertaken as future research on this topic.

APPENDIX

Proof of Lemma 4.4. A contradiction argument is used
to prove this lemma. Refer to the Figure 7. Suppose that
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Fig. 7. Intersection of rings (Lemma 4.4)

the intersection of R1, R2, and R3 has two continuous
regions r1 and r2. Choose arbitrary points X1 from r1

and X2 from r2. Denote by X ′

1 (resp., X ′

2) the intersection
of the line segment B1X1 (resp., B1X2) and the circle

dst(X,B1) = d̃1 − ǫ.

Similarly, denote by X ′′

1 (resp., X ′′

2 ) the intersection of
the line segment B3X1 (resp., B3X2) and the circle

dst(X,B3) = d̃3 − ǫ.

Then clearly,

0 ≤ dst(X1,X
′

1), dst(X1,X
′′

1 ), dst(X2,X
′

2), dst(X2,X
′′

2 ) ≤ 2ǫ.
(5)

We can see that,

ang(B1B3, B1X1) = arccos(dst(B1,X1)
2

+dst(B1, B3)
2 − dst(X1, B3)

2)

= arccos((dst(B1,X
′

1)

+dst(X1,X
′

1))
2 + dst(B1, B3)

2

−(dst(X ′′

1 , B3) + dst(X1,X
′′

1 ))2)

= arccos((d̃1 − ǫ + dst(X1,X
′

1))
2

+dst(B1, B3)
2

−(d̃3 − ǫ + dst(X1,X
′′

1 ))2).
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Note that d̃1 > dst(B1,M) − ǫ ≫ ǫ. Similarly, d̃3 ≫ ǫ.
Combining these facts with Equation (5) we have

ang(B1B3, B1X1) = arccos((d̃1 − ǫ + dst(X1,X
′

1))
2

+dst(B1, B3)
2

−(d̃3 − ǫ + dst(X1,X
′′

1 ))2)

≈ arccos((d̃1)
2 + dst(B1, B3)

2

−(d̃3)
2)

≈ arccos((d̃1 − ǫ + dst(X2,X
′

2))
2

+dst(B1, B3)
2

−(d̃3 − ǫ + dst(X2,X
′′

2 ))2)

= arccos((dst(B1,X
′

2) +

dst(X2,X
′

2))
2 + dst(B1, B3)

2

−(dst(X ′′

2 , B3) + dst(X2,X
′′

2 ))2)

= arccos(dst(B1,X2)
2

+dst(B1, B3)
2 − dst(X2, B3)

2)

= ang(B1B3, B1X2). (6)

Similarly, we can show that

ang(B1B2, B1X1) ≈ ang(B1B2, B1X2). (7)

However, when the two equations above (equations (6)
and (7)) are put together, a contradiction is reached.
Without loss of generality, we assume that

ang(B1B2, B1X1) < ang(B1B3, B1X1),

since otherwise the indices 2 and 3 can be switched. It
is easy to see that

ang(B1B2, B1X1) = ang(B1B3, B1X1)

−ang(B1B2, B1B3)

≤ ang(B1B3, B1X1) − α

≈ ang(B1B3, B1X2) − α

= ang(B1B2, B1X2)

−ang(B1B2, B1B3) − α

≤ ang(B1B2, B1X2) − 2α

≈ ang(B1B2, B1X1) − 2α,

which is a contradiction.

Proof of Lemma 4.5. Since ang(B1B2, B1B3) ≥ α, ei-
ther ang(B1B2, B1M) ≥ α/2 or ang(B1B3, B1M) ≥ α/2.
Below it is shown that, if ang(B1B2, B1M) ≥ α/2 then

ang(B1M,B2M) ≤
arcsin(γ sin(α/2))

2
.

Similarly, if ang(B1B3, B1M) ≥ α/2 then

ang(B1M,B3M) ≤
arcsin(γ sin(α/2))

2
.

Denote by D, the distance from B2 to the line B1M .
Then,

ang(B1M,B2M) = arcsin

(

D

dst(B2,M)

)

= arcsin

(

dst(B1, B2) sin(ang(B1B2, B1M))

dst(B2,M)

)

≥ arcsin

(

dst(B1, B2) sin(α/2)

dst(B2,M)

)

≥ arcsin(γ sin(α/2)).

ACKNOWLEDGMENTS

The authors would like to thank the editors and all
the anonymous reviewers for their helpful suggestions
and feedback. A preliminary version of this material
appeared at the 27th IEEE Computer Communications
Conference (INFOCOM ’08) [31].

REFERENCES

[1] J. Hightower and G. Borriello, “Location Systems for Ubiquitous
Computing,” Computer, 2001.

[2] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The Active Badge
Location System,” ACM Transaction on Information Systems, 1992.

[3] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-
based User Location and Tracking System,” in Proceedings of the
19

th IEEE Computer Communications Conference (INFOCOM ’00),
Tel-Aviv, Israel, 2000.

[4] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket
Location-Support System,” in Proceedings of the 6

th Annual Interna-
tional Conference on Mobile Computing and Networking (MOBICOM
’00), Boston, USA, 2000.

[5] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less Low Cost
Outdoor Localization for Very Small Devices,” IEEE Personal
Communications Magazine, 2000.

[6] D. Niculescu and B. Nath, “DV based Positioning in Ad hoc
Networks,” Journal of Telecommunication Systems, 2003.

[7] R. Stoleru and J. A. Stankovic, “Probability Grid: A Location
Estimation Scheme for Wireless Sensor Networks,” in Proceedings
of the 1

st IEEE Conference on Sensor and Ad Hoc Communications
and Networks (SECON ’04), Santa Clara, USA, 2004.

[8] M. W. Carter, H. H. Jin, M. A. Saunders, and Y. Ye, “Spaseloc:
An Adaptive Subproblem Algorithm for Scalable Wireless Sensor
Network Localization,” SIAM J. on Optimization, 2006.

[9] J. Liu, Y. Zhang, and F. Zhao, “Robust Distributed Node Lo-
calization with Error Management,” in Proceedings of the 7

th

ACM International Symposium on Mobile Ad hoc Networking and
Computing (MobiHoc ’06), Florence, Italy, 2006.

[10] G. Mao, B. D. O. Anderson, and B. Fidan, “Path Loss Exponent
Estimation for Wireless Sensor Network Localization,” Computer
Networks, 2007.

[11] R. Moses, D. Krishnamurthy, and R. Patterson, “A self-localization
method for wireless sensor networks,” Eurasip Journal on Applied
Signal Processing, Special Issue on Sensor Networks, 2003.

[12] J. Xiao, L. Ren, and J. Tan, “Research of TDOA Based Self-
localization Approach in Wireless Sensor Network,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Beijing, China, 2006.

[13] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller,
“Poster abstract: Anchor-free Distributed Localization in Sensor
Networks,” in Proceedings of the 1

st International Conference on
Embedded Networked Sensor Systems (SenSys ’03), 2003.

[14] X. Ji and H. Zha, “Sensor Positioning in Wireless Ad-hoc Sensor.
Networks using Multidimensional Scaling,” in Proceedings of 23rd

IEEE Computer Communications Conference (INFOCOM ’04), Honk
Kong, China, 2004.

[15] L. Fang, W. Du, and P. Ning, “A Beacon-Less Location Discovery
Scheme for Wireless Sensor Networks,” in Proceedings of the 24

th

IEEE Computer Communications Conference (INFOCOM ’05), Miami,
USA, 2005.

[16] Z. Li, W. Trappe, Y. Zhang, and B. Nath, “Robust Statistical
Methods for Securing Wireless Localization in Sensor Networks,”
in Proceedings of the 4

th International Symposium on Information
Processing in Sensor Networks (IPSN ’05), Los Angeles, USA, 2005.



JADLIWALA et al.: SECURE DISTANCE-BASED LOCALIZATION IN THE PRESENCE OF CHEATING BEACON NODES 15

[17] D. Liu, P. Ning, and W. Du, “Attack-Resistant Location Estima-
tion in Sensor Networks,” in Proceedings of the 4

th International
Symposium on Information Processing in Sensor Networks (IPSN ’05),
Los Angeles, USA, 2005.

[18] T. Eren, D. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse,
B. Anderson, and P. Belhumeur, “Rigidity, Computation and
Randomization of Network Localization,” in Proceedings of the
23

rd IEEE Computer Communications Conference (INFOCOM ’04),
Hong Kong, China, 2004.

[19] N. Sastry, U. Shankar, and D. Wagner, “Secure Verification of
Location Claims,” in Proceedings of the 2

nd ACM Workshop on
Wireless Security (WiSe ’03), San Diego, USA, 2003.
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