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Abstract— In wireless sensor networks (WSNs), sensor location in sensor networks. In the past several years, a number of
plays a critical role in many applications. Having a GPS receiver |ocation discovery protocols have been proposed to reduce

on every sensor node is costly. In the past, a number of 5 completely remove the dependence on GPS in wireless
location discovery schemes have been proposed. Most of these

schemes share a common feature: they use some special nodes€NSOr networks [3], [6], [9], [15]-18], [21], [22]. Mostfo .
called beacon nodesl which are assumed to know their own these SChemeS Share a common feature: they use some SpeCIal
locations (e.g., through GPS receivers or manual configuration nodes, called beacon nodes, which are assumed to know
Other sensors discover their locations based on the information their own locations (e.g., through GPS receivers or manual
provided by these beacon nodes. o configuration). Other sensors discover their locationgtam
In this paper, we show that efficient location discovery can be the inf ti ided by th b d

achieved in sensor networks without using beacons. We propose € Information provided Dy these beacon nodes. . .

a beacon-less location discovery scheme. based on the following Although the overall cost of beacon-based location discov-
observations: in practice, it is quite common that sensors are ery schemes is significantly less than the GPS-like schemes,
deployed in groups, i.e., sensors are put intow groups, and the cost for each beacon node is still expensive. To have a
sensors in the same group are deployed together at the samep,gre ropyst and accurate positioning system, the number of

deployment point (the deployment point is different from the - . .
sensors’ final resident location). Sensors from the same group P€@CON nodes tend to increase. Therefore, it is appealing to

can land in different locations, and those locations usually follow achieve location discovery without using beacon nodes.

a probability distribution that can be known a priori. With In general, a positioning system consists of two components
this prior deployment knowledge, we show that sensors can gne is the reference points, whose coordinates are known;
d:‘s_cover_tr;lelr locations bylogse:rvmg_ the group memberh'ps the other is the spatial relationship between sensors and th
of its neighbors. We model the location discovery problem as reference points. For example, in Global Positioning Syste

a statistical estimation problem, and we use the Maximum ] ) ] g
Likelihood Estimation method to estimate the location. We have the satellites are the reference points, and the time ofaarri

conducted experiments to evaluate our scheme. reveals the relationship between a GPS receiver and the
satellites. In beacon-based positioning system, beacons a
Keyword: System Design. reference points, and relationships between a sensor and th

reference points include time of arrival, time difference o
arrival, angle of arrival, received signal strength, ang-ho

Sensor networks have been proposed for various apgiased distance, etc. For a positioning system that doesseot u
cations. In many of these applications, nodes need to fibdacon nodes, we still need to find some type of reference
their locations. For example, in rescue applications, uescpoints with which sensors can find their locations.
personnel can perform their tasks only if location of the We have observed that when sensors are deployed, the
hazardous event (reported by sensors) is known. Locationcordinates of the deployment points are usually known. Let
also important for geographic routing protocols, in whible t us look at a deployment method that uses an airplane to
location information (in the form of coordinates) is used tdeploy sensor nodes. The sensors are first pre-arranged in
select the next forwarding host among the sender’'s neigi-sequence of smaller groups. These groups are dropped
bors [11]-[13], [20], [23]. Because of the constraints oout of the airplane sequentially as the plane flies forward.
sensors, finding location for sensors is a challenging prabl This is analogous to parachuting troops or dropping cargo
The location discovery problem is referred tolasalization in a sequence. The positions where each sensor group are
problem in the literature. dropped out of the airplane are referred to deployment

The Global Positioning System (GPS) [10] solves thgoints; their coordinates can be pre-determined and stored
problem of localization in outdoor environments for PCssla in sensors’ memories prior to the deployment. Then during
nodes. However, due to cost, it is highly undesirable to hatlee deployment, using the GPS receivers on the airplane, we
a GPS receiver on every sensor node. This creates a demaand ensure that the actual deployment points are the same as
for efficient and cost-effective location discovery algfomis the pre-determined coordinates. We will use these deplayme

I. INTRODUCTION
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The rest of the paper is organized as follows: the next

50 section overviews the existing work on location discovery.
A B c Section Il presents the modeling of deployment knowledge.
150 Section IV describes our beacon-less scheme. Section V

presents the evaluation results. Section VI compares the be
conless scheme with the existing localization schemeslligin
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350 G H I we conclude and lay out some future work in Section VII.
P 1. RELATED WORK
450 . .
In the past several years, a number of location discovery
550 protocols have been proposed to reduce or completely remove
60 the dependence on GPS in wireless sensor networks [1], [3],

_ [4], [6], [8], [9], [15]-[19], [21], [22].
Fig. 1. An Example of Group-based Deployment (each dot reptese  \ost solutions for location discovery in sensor networks
deployment point). .
require a few nodes called beacons (they are also called
anchors or reference points), which already know their ab-

. ) solute locations via GPS or manual configuration. The dgnsit
points as the reference points. of the anchors depends on the characteristics and probably

Next, we need to find a way to allow each sensor to establigi budget of the network since GPS is a costly solution.
a spatial relationship with the reference points, so thasses Anchors are typically equipped with high-power transmtte
can use this relationship (along with the coordinates of th proadcast their location beacons. The remainder of the
reference points) to find their own locations. We have olervpgdes then compute their own locations from the knowledge
the following facts: after the deployment, sensors usuddly of the known locations and the communication links. Based on
not land in locations that are uniformly random across thge type of knowledge used in location discovery, localarat
whole deployment area, they tend to be distributed in aregghemes are divided into two classes: range-based schemes
around their deployment points. Therefore, sensors iremiff 3ng range-free schemes.
ent locations will observe different types of neighbor.(i. Range-based protocols use absolute point-to-point distan
neighbors from different groups). For example, assume thgtangle information to calculate location between neigirtgp
the deployment points are arranged in a grid style depictggnsors. Common techniques for distance/angle estimation
in Figure 1, and a group of nodes are deployed at eagftiude Time of Arrival (TOA) [10], Time Difference of
deployment point. After the deployment, a node at locatiofyriya] (TDOA) [1], [8], [19], Angle of Arrival (AOA) [17],
O will find out that more of its neighbors are from groub and Received Signal Strength (RSS) [1]. While producing
and D than from groupH and; on the contrary, a node atfine-grained locations, range-based protocols remain- cost
location P has more neighbors from group andI than from jneffective due to the cost of hardware for radio, sound,
A andD. This means, knowing how many of its neighbors arg video signals, as well as the strict requirements on time
from each deployment group, a sensor can derive its Spa@?hchronization and energy consumption.
relationship with the deployment points. Alternatively, coarse-grained range-free protocols argt-c

To derive such a spatial relationship, we need to haegfective because no distance/angle measurement amoeg nod
a prior knowledge about how sensors from each group dgeinvolved. In such schemes, errors can be masked by fault
distributed after the deployment, i.e., how likely can theglerance of the network, redundancy computation, andeaggr
land in a locationz meters away from the their deploymengation [9]. A simple algorithm proposed in [3] and [4] com-
points? In practice, given the methods and the conditions giites location as the centroid of its proximate anchor nodes
the deployment, such knowledge can usually be modeled usingnduces low overhead, but high inaccuracy as compared to
a probability distribution function (pdf). others. An alternate solution, DV-Hop [18], extends thejkin

Based on the prior knowledge about the deployment poirtisp broadcast to multiple-hop flooding, so that sensors can
and the pdf of the deployment, we propose a beacon-ldssl their distance from the anchors in terms of hop counts.
location discovery scheme, KPS (deployment Knowledgélsing the information about the average distance per hop, se
based Positioning System). In our scheme, each sensor fa@ts can estimate their distance from the anchors. Amogphou
finds out the number of its neighbors from each group. Wmsitioning scheme [15] adopts a similar strategy as DV;Hop
call this theobservation of a sensor. With this observation, athe major difference is that Amorphous improves locatidi es
sensor estimates a location based on the principle that thates using offline hop-distance estimations through ieigh
estimated location should maximize the probability of thmformation exchange.
observation. This is exactly the principle of thmaaximum Another existing range-free scheme is APIT algorithm [9].
likelihood estimation (MLE). Therefore, we use the MLE APIT resolves the localization problem by isolating theienv
method to conduct the location estimation. Our results hax@ment into triangular regions between anchor nodes. A nod
shown that KPS can achieve a decent accuracy. uses the point-in-triangle test to determine its relatb@ation



with triangles formed by anchors and thus narrows down the

area in which it probably resides. APIT defines the center of x10°
gravity of the intersection of all triangles that a node desi
in as the estimated node location. /@

Our proposed scheme is significantly different from the ° A \
existing schemes. The major advantage of our scheme isthe re /
moval of the dependency on the expensive beacon (or anchor)
nodes. However, our scheme does not intend to replace the
existing beacon-based schemes, because there are sisuatio
when the accurate deployment knowledge is difficult to abtai o
prior to deployment. If indeed the deployment knowledge can
be obtained, our scheme can substantially reduce the cost
associated with the expensive beacon nodes.

Rao et al. also proposed a localization scheme without
beacons [20]. In this scheme, nodes flood the network to Fig. 2. Deployment distribution for one group.
discover the distance (hops) between perimeter nodes. Com-
pared to this flooding scheme, our scheme is more efficient in
communications, because in our scheme, nodes only need to  xw°
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communicate with their neighbors once. s >
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- el Z :‘.’Q’ ot
1. M ODELING OF THEDEPLOYMENT KNOWLEDGE 1, %&%‘@f’%{f:’:‘:“g&?&%\
We assume that sensor nodes are static once they are * [T "7'/3:,322.’3’;‘3:3‘3“:::‘3%‘3‘:“‘“ \
U] ARSI
. . . . S
deployed. We defineleployment point as the point location 15 S
where a sensor is to be deployed. This is not the location /"
. - . . 1

where this sensor finally resides. The sensor node can reside \

at points around this deployment point according to a aertai  os
probability distribution. As an example, let us consider tlase

where sensors are deployed from a helicopter. The depladymen
point is the location of the helicopter. We also defres dent

point as the point location where a sensor finally resides.

A. Group-based Deployment Model
In practice, it is quite common that nodes are deployed

in groups, i.e., a group of sensors are deployed at a single  Figyre 2 shows an example of two-dimensional Gaussian
deployment point, and the probability distribution fucts distribution at the deployment poirit 50, 150).
of the final resident points of all the sensors from the same

group are the same.
In this work, we assume such a group-based deploymeﬁt,
and we model the deployment knowledge in the following (we There are many different ways to deploy sensor networks,

0 o

Fi

g. 3. The overall deployment distribution over the entiegion.

Deployment Distribution

call this model thegroup-based deployment model): for example, sensors could be deployed using an airborne
1) N sensor nodes to be deployed are divided imtequal vehicle. The actual model for deployment distribution degse
size groups so that each grou@,, for i = 1,...,n on the deployment method.

is deployed from the deployment point with indeéx In this paper, we model the sensor deployment distribution
To simplify the notion, we also us€; to represent as a Gaussian distribution (also called Normal distritntio
the corresponding deployment point, and lef,y;) Gaussian distribution is widely studied and used in practic
represent its coordinates. Although we only employ the Gaussian distribution in this
2) Locations of the deployment points are pre-determing@per, our methodology can also be applied to other distribu
prior to deployment. Their coordinates are stored in eations.
sensor’'s memory. The deployment points can form any We assume that the deployment distribution for any nbde
arbitrary pattern. For example, they can be arranged imgroup G; follows a two-dimensional Gaussian distribution,
a square grid pattern (see Figure 1), a hexagonal gudich is centered at the deployment poiat;, y;). Namely,
pattern, or other irregular patterns. the mean of the Gaussian distributipnequals(x;, y;), and
3) During deployment, the resident point of a noéle the pdf for nodek in group G; is the following [14]:
in group G; follows a probability distribution function ; L o)+ (y—yi)?] /202
fi(z,y | k € G;) = f(x—z4s,y—y;). An example of the filwylkeGi) = 2mo2’ el
pdf f(x,y) is a two-dimensional Gaussian distribution. = flx—x5y— ),




where o |s the standard deviation, and(z,y) = Note that, giver?, all X; are mutually independent. There-
sre~ (7 +4)/27° Without loss of generality, we assume thatore,
the pdf for each group is identical, so we y&éz,y | k € G;)
instead off} (z,y | k € G;) throughout this paper. In(a]0)
Although the distribution function for each single group = Pr(Xi;=a;]0) - Pr(X, =a,]|0). (2)
is not uniform, we still want the sensor nodes to be evenly
deployed throughout the entire region. By choosing a properThe above probability indicates how likely it is to observe

distance between the neighboring deployment points wilty, = a,,...,X,, = a, at locationd. The function f,(a |
respect to the value of in the pdf, the probability of finding ¢) describes the joint pdf for every observed vector=
a node in each small region can be made approximat€ly,,..., a,) in the sample. Whery, (a | 0) is regarded as

equal. Assuming that a sensor node is selected to be ira unction off for a given vectora, in statistics, it is called
given group with an equal probability, the average deplaymethe likelihood function.
distribution (pdf) of any sensor node over the entire regoon  The goal of the location discovery now becomes an estima-
tion problem, namely, we need to select the paramgfeom
the parameter spade. We should certainly not consider any
value of § € Q for which it would be impossible to obtain
the vectora that was actually observed. Instead it would be
To see the overall distribution of sensor nodes over theeenthatural to try to find a value of for which the probability
deployment region, we have plottefl,.,.; in Eq. (1) for densityf,(a | 0) is large, and to use this value as an estimate
6 x 6 = 36 groups over &00m x 600m square region with Of 6. For each possible observed vectgrwe are led by this
the deployment point8c = 100m apart (assuming = 50). reasoning to consider a value éffor which the likelihood
We use the grid strategy to arrange the deployment pointsfegction f.(a | 6) is @ maximum and to use this value as
depicted in Figure 1. Figure 3 shows the overall distributio@n estimate ob. This is the concept ofmaximum likelihood
From Figure 3, we can see that the distribution is almo§#timation (abbreviated as MLE).
flat (i.e. nodes are fairly evenly distributed) in the whatgion ~ The method of MLE was introduced by R. A. Fisher in
except near the boundaries. 1912, it is by far the most widely used method of estimation
in statistics. The principle of MLE is simple. That is to find
the parameter values that make the observed data most likely
In other words, MLE is a method by which the probabil-
After sensors are deployed, each sensor broadcasts itisdistribution that makes the observed data most likely is
group id to its neighbors, and each sensor can count W,Ight Details of MLE can be found in most of the statistics
number of neighbors fronG;, for i = 1,...,n. Assume textbooks [5].
that a sensor finds out that it has, ..., a, neighbors from  Letus see how to compute the likelihood functify{a | 0)
group Gy, ...,G,, respectively. The question is whether thigvhen the vectoia is observed. Ley;(¢) be the probability
information, along with the deployment knowledge, can helpat a sensor from grou@; can land within the neighborhood
the sensor estimate its own location. of point  (we will show how to computey; () later in this
Intuitively speaking, the observation of the neighborsigy  section). Therefore, the probability that exaatlysensors are
ids is helpful. For example, if a sensor sees many of iwithin the neighborhood of poirtt is the following (wherem
neighbors from groug; but zero neighbors from grou@,, is the number of sensors deployed at each deployment point):
we will know that the sensor is close to the deployment
point of G, and it is far away from the deployment point f(Xi=a;|0) = (m) (g:(0)% (1 _gi(g))(mfai)
of G. However, we need a systematic method to use this
neighborhood information to calculate the sensor’s locati
directly.
Assume that the location of the sensor of concerd is
(z,y). Given the numberrg) of nodes deployed in each group

foverallxy ka$y|k€G) (1)

IV. A BEACON-LESSLOCATION DISCOVERY SCHEME

%

Therefore, according to Equation (2), the likelihood fumict
fn(a | 8) can be computed using the following equation:

and the pdf function of the deployment, we can compute the f,(a|0) = H fXi=a;]6)

probability thataq,...,a, nodes (from groupGy,...,G,, i=1

respectively) can be observed by a node at the loc#idret o (m a (m—ay)

X, be the random variable that represents the number of nodes = H (ai> (9:(0)™ (1 — 9:(0)) ‘

from groupG; that are neighbors to the node at locatior.et =t

a = (ai,...,an) be avector representing the observation. The the yaue of ¢ that maximizes the likelihood function

probability thata is observed by a node étis the following: £,(G'| 0) will be the same as the value 6fthat maximizes

log f»(G | 9), because logarithm is an increasing function.
fala]0)=Pr(X;=ay,...,X,, =a,|0). Therefore, it will be more convenient to determine the MLE



by finding the value of that maximizes likelihood functionL(#) and its first derivatives. In section IV-
C and IV-D, we will show how to simplifyL(6) and its first

L) = logfu(G|0) derivatives using approximation and table-lookup appneac
n n . . .
B 1 m og a:(8 In the next subsections, we describe two algorithms that
- Z 8\ 4 +Zaz 0z 9:(0)) achieve a much better efficiency, however, at the cost of
1_1” =t the accuracy. These two algorithms can be used as a stand-
+Z(m — a;) log(1 — g:(0)). (3) alone approach to estimate the location when the accuracy
= requirement is not high. Moreover, they can also be used to

) ) o find the starting point for the gradient descent method.
There are various ways to find tifethat maximizesL(f). ) A Geometric Approach: From a geometric perspective,
When L(6) is differentiable and the maximal exists, it musft 5 sensor can get its distance from at least three deploymen
satisfy the following partial differential equations knovas points, it can calculate its position. We will give a much

the likelihood equations: simplified scheme to estimate a sensor’s distance from a
AL(0) AL(0) deployment point. Assume that the sensor has obsefiyed
“or and oy 0. neighbors from the deployment grod, it can use the MLE

o o ) ~ tofind the distance, such that the probability to obserug
This is because the definition of maximum or minimumeighbors from grous; is maximized.

derivatives vanish at such points. 9 represents the location of the sensor. Based on Equation (3)
If the first derivative has a simple analytic form, we cage have

solve the above likelihood equations to find the value for Li(#) = log f(Xi=a;|0)

6 = (z,y). However in practice, often we cannot derive an m

equation with a simple analytic form for its first derivative = log (ai) + a;log gi(0)

This is especially likely if the model is complex and invatve +(m — a;)log(1 — g:(0))
many parameters and/or complex probability functions. As ! e
we will show later when we describe how to compuytéd), Let us usez to represent the distance fromh to the
L(9) is indeed very complicated. In such situations, the MLEeployment point of7;. Let g(z) represent the probability that
estimate must be sought numerically. We will describe sdver sensor from groug; can land within a circle (with radius
numerical methods in the next subsection. R), the center of which is: distance from the deployment

point of G;. Becausg(z) = ¢;(#), we can use to replaced
A. Finding Maximum in the above equation:

m

1) Gradient Descent: Gradient descent [7], also known Li(z) = log( >+a7; log g(2)
as the method of steepest descent, is a common method in i
numerical analysis. The key idea of gradient descent is tb fin +(m —a;)log(1 — g(2)).
the maximum of a function based on the information of its To find 2, such thatL;(z) is maximized, we let the first
gradient. Intuitively, we can imagine that a two-dimensibn gerivate ofL;(z) be zero:
function is represented as a surface in a three-dimensional dLi(2)
space, and the maximum point (also called peak) holds a =0
zero gradient. The goal of the gradient descent method is dz )
to find a shortest path to reach the peak from a selected herefore, we get the following result:
starting point. Usually the path consists of many iteration g(z) = @i
steps, and at each step, the choice of the direction is where m
the function increases most quickly. The whole proceskeés li ' When g(z) is complicated, we can use the table-lookup
hill climbing, and the goal is to reach the top of the hill usin approach to find: given a; andm, namely, we pre-calculate
the minimal amount of steps. To reduce the computation cogl:) for various values of, and store the table of results in
numerous optimization schemes have been proposed to fgathsor's memory. Oncé: is known after the deployment, a
a shortest path to the maximum point. One method is tkensor can find by looking up the value of from the table.
conjugate gradient method [2], which usually convergetefasif the accuracy requirement onis not so high, the amount
to the maximum point than the gradient descent method. Thefsememory needed for such a table is not so large.
optimizations are beyond the scope of this paper. In our work As we will see from the next subsection, using regression,
we only focus on the most basic gradient descent method.we can approximatg(z) using a Gaussian distribution. There-
The gradient descent method, if used improperly, can fare, findingz from a; andm is quite simple.
computationally intensive, and thus not suitable for reseu  Once we get the distance of the sensor from three deploy-
constrained sensor nodes. The cost of the gradient desgeett points, we can find the location of the sensor using the
method in our scheme can be significantly affected by tleordinates of these deployment points. The computation of
selection of the starting point and the computation of théis scheme is quite efficient.




where fr(¢ | n, € G;) is defined as the following Gaussian

; distribution:
g R
z z 1 2

i o i [ frll|n; € Gy) = 277026 202,

Using geometry knowledge, it is not difficult to derive the
following equation forL,,..(¢, z, R):
02+ 22 — R?
20z ’

(a) i is outside of the circle (z > R) (b) 7 is inside of the circle (z < R)

Lare(l, 2, R) = 20 cos™* (

Fig. 4. Probability of nodes residing within a circle.

We defineg(z | n; € G;) as the probability that the sensor

3) Small area search approach: In the above geometric ap_node.ni from groupi resides within the9—circ|_e, wherez is
proach, because we only considered three deployment poilfi§ distance betweehand the deployment point of grou.
the accuracy might not be desirable, especially when theTO calculateg;(z [ n; € G;), we integrate the probabilities
number of the neighbors from the other deployment points ¥€r all the ring areas (for differen) within the ¢-circle.
not negligible. That is, the location we find might not be théherefore, whern: > R (as shown in Figure 4.a),
maximum point of the likelihood functio.(#). To improve
the accuracy, we use the po{¥, Y,) found by the geometric R
approach as an initial point, and then conduct a search in the :/ fr(l|n; € Gy) - Lare(€, 2, R) df.
nearby locations to find the maximum &f{6), i.e., the value #—R
of L(#) will be computed on the following points:

g(z | n; € Gy)

When z < R (as shown in Figure 4.b),

Y=Yy+j*xLEN —RG<j<RG, R—z
_ / 02 fr(t) de
where LEN is the length of each step (e.g. we can set it to 2 sz
to 5 meters), and RG determines the search range. We use the +/ fr(l|ni € Gy) - Laye(l, 2, R) de.
number of steps along each direction to represent the range. R—z
We will pick the point the has the maximum df(f)  putting bothz > R andz < R cases together, we have the

as the node’s estimated location. The computational costgfiowing:

the search depends on the number of steps and the step

length. This approach will bring better result than the damp g(z | n; € Gy)
geometric scheme at the cost of computations. A performance _(R—2)?
comparison will be given later in Section V. = He< B} [1 —e 2 }

z+R
B. Computing g;(6) +/ . fr(€|n; € Gi) - Lare(l, 2, R) d, (4)

We usez to represent the distance from poifitto the . - .
deployment point of groups;. We define¥ as the set of where1{-} is the set indicator f?*.”c“d‘“
all deployment groups in the KPS scheme. We draw tWé'.) Therefore, g;(6), the probablllt_y _that a n_ode from the
circles. The first circle has a radius and is centered at, eployment groupC:; can I_and within Fhe_ neighborhood  of
the deployment point of grougr;. We call this circle thei- paint ¢, can be computed in the following:
circle. The second c@rcle_ has a rat_jiﬂs and is centered at 9:(0) = g(\/(x — )2+ (y—u)? | ni €Gy).
6 = (x,y). We call this circle the-circle. When two circles
intersect, we call thé-circle’s arc within thed-circle theL,,., For the sake of simplicity, we usg(z) to represeny(z |
and we usd.,.(¢, z, R) to represent the length of the arc. Wei; € G;) in the rest of this paper, when it is obvious to see
now consider an infinitesimal ring arda,..(¢, z, R) - d¢. The from the context that we are referring to the nodes in griGup
bold areas in Figure 4.a and 4.b show the infinitesimal ring The formula forg(z) is quite complicated, and we cannot
areas. afford to compute it using Equation (4) in sensor networks.
Based on the two-dimensional Gaussian distribution, ti®mplifying the analytical representation gfz), if possible,
probability that a node:; from groupi € ¥ with deployment is difficult and beyond the scope of this paper. In this paper,

point (x;,y;) resides within this small ring area is propose two approaches to improve the computations. The firs
) is the table-lookup approach, and the second is the regressi
2
¢ 357 - Love(l, 2, R) - dl approach.
2mo? ”
= fr(l|n; € G;)  Lare(€,2,R) - dl, 1The value of1{-} is 1 when the evaluated condition is trugotherwise.



C. Smpllfyl ng g(Z) Table—lOOkUp Approach s g‘(z) is pe‘rfectly n‘natched‘with the‘ gaussi‘onfunction with 0 = 54.05
Sinceg(z) only depends o ando, which are known prior 7
to the deployment, we can pre-calculgte) offline for each
z value, and store the results as a table in sensor's memories. 0ar
When a sensor needs the result for a specific value, &.g.,
it can usez, as the index to look up the value 9fz,) from
the table. The computation takes only constant time. g ozf

Although the range of is from 0 to +oo, the values ofy(z)
beyond certain range is negligible (our analysis shows that
g(z) is an exponentially decreasing function). lcetepresent o1f
the size of the range, in whigj(z) has non-negligible values.
We divide this range inte, equal-size sub-ranges, and store
the w + 1 dividing points into a table. When a sensor needs S I ST ARy (I A~ o
to computeg(z), it first finds the sub-range that contains z
by looking up the table; then it treats the two end-points of
the sub-range as the two ends of a straight line, and finds the
value corresponding teg on that line. The sensor uses this
value fOfg(Zo). ’ = Avera;ge Regr‘essing Iérror

As we can see that the precision of this approach depends +_Regressing Error standard deviation
on the size of the sub-range, the smaller the size is, the 1
better. However, smaller sub-range also means more memory
is needed for the whole table. Assume each valugy(af
can be represented by two bytes, then we ri#gd bytes of
memory to store the table if we divide the range intWo
pieces. In fact, in our experiments, when the range is divide
into 200 pieces (i.e., usind00 bytes of memory), the accuracy
is almost not affected.

Note thatg(z) does not depend on the deployment points; WL
therefore, as long as the deployment follows the same p.d.f.
the sameg(z) table can be used, regardless of how the
deployment points are arranged.

Fig. 5. Gaussian function witkk=54.05 really matches the g(z)

Regression Error (%)
© ~ o
- T

nN
T

D. Smplifying g(z): Regression Approach Fig. 6. Regression Errors

In the regression approach, we want to find a much simple
representation fog(z). Such representation does not need to

produce the exact same values as the origjita), as long as \51yes of R (Figure 6). The figure shows that whenis not

it is a reasonable approximation. too large, the regression is quite accurate.
After plotting g(z), we have observed that the shape of

g(z) is very much like a Gaussian distribution with mean The aboye simplification can s'ignificantly reduce the costs
zero. Therefore we use the following Gaussian distributeon 107 computing L(¢); however, being able to compute(¢)
conduct the regression (the Guaissian distribution issiil efficiently is not sufficient. If the gradient descent meth®tb

by multiplying 7 R2): be used to find the maximum d@f(¢), we should also be able
) to compute the first derivative af(9) efficiently? Let 22 =
_ —22/20%\ | p2 x —x;)% + (y — y;)?, where(z;,v;) is the deployment point
g(2) (27_‘_926 )-mR*. ( )?+ (Y —wi) (@i, y:) oL) ploy p

of group G;. The first derivative on:, =5.~, can be derived
The goal of the regression is to find out the standaid the following (the first derivative ory can be similarly
deviation(2 of the regressed Gaussian distribution, such thaérived):

the error betweeg(z) and the regressed distribution function
is minimized. We get the foII02Wing relationships:

n dgi(6 n 0gi (0
7 0x = gi(0) 1—g:(0)

For example, whem? = 40, ¢ = 50, the value ofQ) =
54.05. We plot bothg(z) and our regression result in Figure 5.
The results show that the regression IS Ve'_’y accurateifer 2Although we can approximately calculate the first derivatifeg(z) at
40 anq o = 50. We also plot the mean difference betW_eeBOint 2o by using 7"(2;1):2520), wherez; is another point close teg, the
the originalg(z) values and the regression results for variousmputation is less accurate than the direct calculation.



whereaga"—f) can be calculated in the following: is equivalent tom, the number of nodes deployed in each
9:(0) R group (because we have fixed the deployment area and the
9i

— _46—((m—m7,>2+(y—yi)2)/292 (x — ;) number of deployment groups). Therefore, in this experimen
Oz _29_1 we investigate how the estimation error changes when

= gi(e)@(m — ;). changes.
Combining the above two equations together (and also u
applying the similar method tg), we get the following: -

o 12p
OL(O) 1 ~a;—mgi(0), g

Ox B @ el 1-— gl(e) (‘L 1'1)7 gm,

OL(O) 1 @ —moi(®) s |
dy 02 21— g,(0) v g

d o

Therefore, once we know how to compute), we can also
compute the first derivative of(#). To further improve the
performance, we can use the table-lookup approach to store ar
the table of the Gaussian distribution into sensor's memory

However, our experiments show onl9% of the performance Io w0 a0 a0 o w0 70 sw o0 10w
improvement. This is because the computatiory0n) is not m
the major cost. Fig. 7. Estimation errors vsn (R = 40, 50, and60).

V. EVALUATION . .
For each experiment, we fix = 50, and then change

This section provides a detailed quantitative analysis-evgom 100 to 1000. We repeat the same experiment for= 40,
uating the performance of our beacon-less location disgove;n, and 60. The simulation results are depicted in Figure 7.
scheme. The obvious metric for the evaluation is the lobatiqhe figure shows that our estimation is quite accurate. For
estimation error. We have conducted a variety of experimeriyample, whenn = 400 and R = 40, the estimation error is
to cover different system configurations including varythg only 8 meters, which equals2R. The figure also shows that
node density and varying the transmission range. We hayg accuracy of the location estimation becomes better when

also investigated how the boundary effects affect the aogur ,, increases, i.e., each sensor can observe more nodes in its
of the location estimation. Moreover, we have compared th@ighborhood.

performance of the three approaches described in Sectldn V- | practice, if we do not have enough sensors to deploy

In our experiments, the deployment area is a square plagereach the desired node density, we can still achieve the
of 1000 meters by1000 meters. In this paper, we only usedesired density by deploying dummy nodes along with the
the square grid pattern for our deployment: namely, theeplagensor nodes. A dummy node is a low-cost node, whose only
is divided into10 x 10 grids of size100m x 100m; centers fynctionality is to broadcast its group identity to its riefgprs.
of these grids are chosen as deployment points. Figurealgummy node does not need to find its own location, nor
shows our deployment strategy. Similar experiments can Bges it need to carry out sensing or computing tasks. Its only
conducted for other deployment patterns. goal is to increase the sample size, such that the sensors in

We still usem to represent the number of nodes in eacifs neighborhood can estimate their location more acclyrate

group, R to represent the transmission range. We setdheTherefore, the cost of a dummy node can be much lower than
of the Gaussian distribution t80 in all of the experiments. 5 sensor node.

We then randomly generate the sensor networks based on the ) o
deployment model. B. Estimation Error when Varying Transmission Range
In the experiments we calculat®Z, the average distance Another way to increase the sample size is to increase
between a node’s actual position and estimated position. e transmission rang&. When R increases, the number of
use AZ as the average estimation error of KPS. In oureighbors for each sensor will increase. In this experiment
simulation, we estimate the locations for all the nodes & thve investigate howr affects the estimation accuracy. We fix
plane, and then we calculate the average errors. The nuheric = 400, and vary R from 40 meters to120 meters. The
approach used in all the experiments is gradient desceassinisimulation results are depicted in Figure 8.
it says otherwise. The figure shows an interesting trend: wh&nincreases
o ) ) from 40 to 90, the estimation error decreases without a
A. Estimation Error when Varying Node Density surprise. However, starting fronk = 90, the estimation
Because KPS is based on statistical methods, the samg@lor increases. This can be intuitively explained using an
size is critical to the accuracy of the estimation. In KP® thextreme-case example: assume tat= oo, which means
sample size is decided by the density of the network, whithat all the sensor nodes can observe exactly the same set of
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Fig. 8. Estimation errors vsR (m = 400). Fig. 9. Boundary R = 40 ando = 50).

neighbors (i.e., all the other nodes in the network). Theresf
the estimated location for all the sensors will be the sa
(actually it will be the center of the deployment area).

cost is most expensive. The geometric approach is the least
rTé?pensive one, but it produces the worst estimation error.
The small-area-search approach is in the middle. In this

¢ Th]f iXtrfrTe'C?fse ::A_xample |nd!ﬁa_tes that Wﬁegcrea;es experiment, we quantitatively compare the computatiort cos
o infinite, the estimation error will increase, and evefiyua _ 4 o accuracy of these three approaches.

will converge to a constant, when the center of the deploymen . _ )
area is selected as every sensors estimated location. Thid) Computation Cost: The algorithms for the three ap-

is largely due to the boundary effects that we are going &goaches are tested on a PC with Intel P4 2.8G hz CPU and
discuss in the next experiment. Namely, whEBnincreases, 1G memory. We sef? = 40 andm = 10(,)' We measure .
more and more nodes will be affected by the boundary effed€ @verage time for a sensor to find its location. Their
because their neighboring areas cover the areas outsitie off€rformance comparisons are shown in Table |I.

deployment area, where the node density is close to zero.
Therefore, for those nodes, the difference of their obdema
becomes smaller and smaller while the difference of their

TABLE |
COMPARISON OF THETHREE NUMERICAL APPROACHES

locations is still constant. We will further investigateeth l Algorithm [ Computation Expensé
boundary effects in our experiments. Geometric Method 0.02ms
The fact that Figure 8 has a minimum point tells us we Small Area Search (1 step 0.05ms
should choose the proper R in practice; just increasing Rtwon Small Area Search (2 steps) 0.14ms
| . better results Small Area Search (3 steps) 0.26ms
always give us pette : Small Area Search (4 steps) 0.32ms
Gradient Decent 0.68ms

C. Estimation Error vs. Boundary Effects

Boundary is also a factor we must consider. Because there h lati _ h laorithms |
are less nodes on the boundaries, the variance of a node’dN€ relative comparison among these algorithms is more

neighbors is large compared to the nodes near the center.f8Bortant than their absolute values. We can find that the
it's less accurate for nodes to determine their positiorth wicOmMputational cost of the gradient descendstimes more
their observations. expensive than the geometric method. Given the fact that the

In the experiment, we calculate the errors in two differef€0metric method is very simple (its cost is almost neglgib

ways: one includes the nodes on the boundary, and the otfBF the location discovery is only conducted once, the gradi

does not. The boundary nodes are defined as those th‘,ﬂc(ijﬁ\s_‘,cent method is also affordable for sensor networks. Also
within 50 meters of any of the four borders0(is chosen as we mentioned before, implementing the optimization-tech

becauser — 50). The results are shown in Figure 9. It idhologies such as table-lookup in the sensor system will make
clear that nodes deployed near the boundary will make tiidnore realistic to use the gradient descent algorithm.

estimation error larger. 2) Estimation Accuracy: From Figure 10, we see that the
) _ ) gradient descent approach supplies the best results and the
D. Comparison of Three Find-Maximum Methods geometric approach produces the worst results. The small-

As we have discussed in Section IV-A, we propose to usgea-seach scheme becomes more and more accurate when the
three different approaches to find the maximum point of thumber of steps increases. The figure shows that the accuracy
likelihood function. Among these three approaches, gradieof the 2-step method is already close to the gradient decent
descent can provide the best accuracy, but its computatimethod.
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= Geometry Algorithm B. Robustness and Security
-+ Small Area Search Algorithm (2 steps)
+*- Small Area Search Algorithm (4 steps) || . .
= Gradient Descent Algorithm In the beacon-based schemes, the localization accuracy
largely depends on a small number of beacon nodes. When
some of these nodes fail to function or when they are tampered
with by adversaries (for example, some compromised beacon
nodes might report false positions), a significant number of
sensors can be affected, i.e., their derived locations @n b
much far away from their actual locations.

In contrast, the beacon-less KPS scheme is much more ro-
bust and secure. In KPS, each sensor depends on its neighbors
to find its own location. When one or a few neighbors falil,

o me  we  wo  mo w0 7o s0  sw oo the localization results will not be affected much. When some

m compromised neighbors intentionally send out false group
memberships, their lies cannot be arbitrary, because &die t
deviates too much from the deployment knowledge can reveal
anomalies. Therefore, the KPS scheme can even tolerate node
compromise to certain degree. Further analysis regardiisg t
r%roperty is undergoing.
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Fig. 10. Comparison of different numerical approaéh=£ 40).

VI. COMPARISONS WITH EXISTING SCHEMES

In this section, we compare our KPS scheme with t
existing beacon-based location schemes. Because KPS and
its assumptions are significantly different from the exigti C- Limitation of the KPS Scheme
beacon-based schemes, comparing the localization ageuracajthough KPS achieves localization without using expen-
is not much meaningful. Therefore our comparisons mainye pheacon nodes, it does have its limitations. First, Beac
focus on cost, robustness, security, and mobility. based schemes support mobile sensor networks. Namely nodes
A. Cost analysis can obtain their locations even if they are mobile. However,
KPS depends on the distribution of the node deployment;
concern in sensor networks. For the beacon-based lodatiza®"®® & node moves, the distribut_ion cannot be maintained.
schemes, communication cost is very low, because sen gprefore, KRS can only be used na static sensor networks.
nodes only need to receive signals from the beacon nod g;con_d, Iocatlo_ns Of_ deployment points are cr|_t|cal. Thegim .
there is no interaction between sensor nodes. The KPS sch e(_estlmated W'th high accuracy. Although this can be easily
depends on the knowledge of neighbors, it requires eath |eved_ for an airborne dgployment becguse GPS can be used
node to broadcast (only one-hop broadcasting) a messaged" airplane, the 90?!' is hard to achlevg for other types
to its neighbors. However, this broadcasting is necessmryP deployment. In addition, KPS also requires an accurate
neighbor discovering that is required by other functiciesi m_odelmg of deployment knOV\_/Ied_ge. _In our future work, we
of sensor networks, such as routing. Therefore, the KF\‘\éII _study the accuracy of localization if the a_ctgal_dep‘rm@/nt
localization scheme does not introduce extra communitratif:1>e\/'ate.S from the model. Due to these. Ilmltatlons, we do
cost. not claim that KPS can replace the existing beacon-based

2) Computation and Storage Cost: Compared with the localization schemes in all applications. Our KPS scheme

beacon-based location scheme, the calculation of KPS pirsowdes an less-expensive alternative in those appiieai

more complex, so the computation cost of KPS is muénat satisfy our assumptions. We believe §ucr_1 assumptiens a
higher than most of the beacon-based localization schem@ésonable in many sensor network applications.

Most computation burden comes from the Find-Maximum

methods. However, our simulation results have shown treat th. Summaries

computation C(.)St IS ‘?’t'" realistic. . The comparisons of the KPS scheme and beacon-based
As we mentioned in IV-C, to reduce the computation cos1t

i ; Jcalization schemes are summarized in Table I
we can store some pre-calculated table in sensor's memoaory.

1) Communication Cost: Communication cost is a major

The size of the table can be limited to several kilobytes. TABLE Il
3) Device Cost: The cost of device on beacon-based COMPARISON OFKPS AND BEACON-BASED SCHEMES
schemes is much higher than the KPS scheme. KPS is sensitive
to node density. If the node density of the sensor networks is - - - EPS beacLon'baseC
H : H . H ommunication overheag ow ow
hlgh enough, no extra device is needed; if the node density Computation cost High Low
is too low, cheap dummy nodes can be deployed to help Device cost Low High
achieve acceptable localization accuracy. However, beaco Robustness/Security | High Low
Mobility None Good

based schemes must depend on special beacon nodes, which
are much more expensive than normal sensor nodes.

10



VII. CONCLUSION AND FUTURE WORK [14]

In sensor networks, traditional localization schemes ese b
cons as the reference points to help sensors find their twsati [15]
We present KPS, a beacon-less localization scheme, in which
sensors use the deployment distribution and the position [0f]
deployment points to find the locations. The major advantage
of the KPS scheme is that we do not need the expensive beagep
nodes, while achieving comparable location discoveryltesu
We have conducted extensive evaluation. Our results shB#®
that when the node density is high, the location estimati%]
error achieved by KPS can be less than a few meters. These
results show that the accuracy provided by KPS is suffic'rﬂent[t2 0
support various applications in sensor networks. In owrrgut
work, we plan to study how the inaccuracy of the deployment
knowledge can affect the accuracy of the location discovefyll
Our motivation is that in practice, the deployment knowlkedg
that we know prior to the deployment might not be quite2]
accurate. It will be interesting to know how KPS is affected
by that. We also plan to provide more analytical evaluatiqg3]
results on KPS.
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