915 research outputs found

    Monocular Camera Viewpoint-Invariant Vehicular Traffic Segmentation and Classification Utilizing Small Datasets

    Get PDF
    The work presented here develops a computer vision framework that is view angle independent for vehicle segmentation and classification from roadway traffic systems installed by the Virginia Department of Transportation (VDOT). An automated technique for extracting a region of interest is discussed to speed up the processing. The VDOT traffic videos are analyzed for vehicle segmentation using an improved robust low-rank matrix decomposition technique. It presents a new and effective thresholding method that improves segmentation accuracy and simultaneously speeds up the segmentation processing. Size and shape physical descriptors from morphological properties and textural features from the Histogram of Oriented Gradients (HOG) are extracted from the segmented traffic. Furthermore, a multi-class support vector machine classifier is employed to categorize different traffic vehicle types, including passenger cars, passenger trucks, motorcycles, buses, and small and large utility trucks. It handles multiple vehicle detections through an iterative k-means clustering over-segmentation process. The proposed algorithm reduced the processed data by an average of 40%. Compared to recent techniques, it showed an average improvement of 15% in segmentation accuracy, and it is 55% faster than the compared segmentation techniques on average. Moreover, a comparative analysis of 23 different deep learning architectures is presented. The resulting algorithm outperformed the compared deep learning algorithms for the quality of vehicle classification accuracy. Furthermore, the timing analysis showed that it could operate in real-time scenarios

    Methods for Detecting and Classifying Weeds, Diseases and Fruits Using AI to Improve the Sustainability of Agricultural Crops: A Review

    Get PDF
    The rapid growth of the world’s population has put significant pressure on agriculture to meet the increasing demand for food. In this context, agriculture faces multiple challenges, one of which is weed management. While herbicides have traditionally been used to control weed growth, their excessive and random use can lead to environmental pollution and herbicide resistance. To address these challenges, in the agricultural industry, deep learning models have become a possible tool for decision-making by using massive amounts of information collected from smart farm sensors. However, agriculture’s varied environments pose a challenge to testing and adopting new technology effectively. This study reviews recent advances in deep learning models and methods for detecting and classifying weeds to improve the sustainability of agricultural crops. The study compares performance metrics such as recall, accuracy, F1-Score, and precision, and highlights the adoption of novel techniques, such as attention mechanisms, single-stage detection models, and new lightweight models, which can enhance the model’s performance. The use of deep learning methods in weed detection and classification has shown great potential in improving crop yields and reducing adverse environmental impacts of agriculture. The reduction in herbicide use can prevent pollution of water, food, land, and the ecosystem and avoid the resistance of weeds to chemicals. This can help mitigate and adapt to climate change by minimizing agriculture’s environmental impact and improving the sustainability of the agricultural sector. In addition to discussing recent advances, this study also highlights the challenges faced in adopting new technology in agriculture and proposes novel techniques to enhance the performance of deep learning models. The study provides valuable insights into the latest advances and challenges in process systems engineering and technology for agricultural activities

    Improving the performance and evaluation of computer-assisted semen analysis

    Get PDF
    Semen analysis is performed routinely in fertility clinics to analyze the quality of semen and sperm cells of male patients. The analysis is typically performed by trained technicians or by Computer-Assisted Semen Analysis (CASA) systems. Manual semen analysis performed by technicians is subjective, time-consuming, and laborious, and yet most fertility clinics perform semen analysis in this manner. CASA systems, which are designed to perform the same tasks automatically, have a considerable market share, yet many studies still express concerns about their accuracy and consistency. In this dissertation, the focus is on detection, tracking, and classification of sperm cells in semen images, key elements of CASA systems. The objective is to improve existing CASA algorithms and systems by applying validated computer vision, tracking, and computational intelligence algorithms. The first step of the study is the development of simulation models for generating synthetic images of semen samples. The images enable the assessment of CASA systems and their algorithms. Specifically, the simulation models generate time-lapse images of semen samples for various sperm image categories and include ground truth labels. The models exploit standard image processing operations such as point spread functions and 2D convolutions, as well as new models of sperm cell swimming, developed for this study. They embody multiple studies of sperm motility in the form of parameterized motion equations. Use cases are presented to use the swimming models and the simulated images to assess and compare algorithms for sperm cell segmentation, localization, and tracking. Second, a digital washing algorithm is presented for unwashed semen samples. Digital washing has the potential to replace the chemical washing techniques used by fertility clinics at present, which are costly, time-consuming, and unfriendly to the environment. The digital washing algorithm extracts features from moving sperm cells in an image, and uses these features to identify all sperm cells (moving and stationary) within each studied image (simulated or real). The effectiveness of the digital washing algorithm is demonstrated by comparing the performance of the proposed algorithm to other cell segmentation and detection techniques. Third, a classification algorithm for sperm cells is developed, based on their swimming patterns. The classification algorithm uses K-means clustering on a subset of motility parameters of sperm cells selected by the Artificial Bee Colony (ABC) algorithm. Results of classification and clustering are shown, using simulated and real semen images. Swimming pattern classification has the potential to increase understanding of the relationship between the distribution of sperm cell swimming modes in a patient’s semen image and the fertility of that patient. Lastly, a new method is presented to calculate motility parameters from sperm tracks. The movement of sperm cell is modeled as a sinusoidal traveling wave (“traveling sinusoid”). The amplitude and average path of a moving cell are estimated using an extended Kalman filter (EKF). The states estimated by the EKF include position, velocity, amplitude, and frequency of the traveling wave. The motility parameters calculated from this approach are shown to be superior to those calculated by other existing methods in terms of their accuracy and consistency. CASA developers will find in this study (and in the software made available) new tools to improve the performance of their designs, and to compare and contrast different proposed approaches and algorithms

    The State-of-the-Art Review on Applications of Intrusive Sensing, Image Processing Techniques, and Machine Learning Methods in Pavement Monitoring and Analysis

    Get PDF
    In modern transportation, pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians. Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users. Therefore, monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance, which in turn ensures public transportation safety. Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions. Advanced technologies can be employed for the collection and analysis of such data, including various intrusive sensing techniques, image processing techniques, and machine learning methods. This review summarizes the state-of-the-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    REGION-COLOR BASED AUTOMATED BLEEDING DETECTION IN CAPSULE ENDOSCOPY VIDEOS

    Get PDF
    Capsule Endoscopy (CE) is a unique technique for facilitating non-invasive and practical visualization of the entire small intestine. It has attracted a critical mass of studies for improvements. Among numerous studies being performed in capsule endoscopy, tremendous efforts are being made in the development of software algorithms to identify clinically important frames in CE videos. This thesis presents a computer-assisted method which performs automated detection of CE video-frames that contain bleeding. Specifically, a methodology is proposed to classify the frames of CE videos into bleeding and non-bleeding frames. It is a Support Vector Machine (SVM) based supervised method which classifies the frames on the basis of color features derived from image-regions. Image-regions are characterized on the basis of statistical features. With 15 available candidate features, an exhaustive feature-selection is followed to obtain the best feature subset. The best feature-subset is the combination of features that has the highest bleeding discrimination ability as determined by the three performance-metrics: accuracy, sensitivity and specificity. Also, a ground truth label annotation method is proposed in order to partially automate delineation of bleeding regions for training of the classifier. The method produced promising results with sensitivity and specificity values up to 94%. All the experiments were performed separately for RGB and HSV color spaces. Experimental results show the combination of the mean planes in red and green planes to be the best feature-subset in RGB (Red-Green-Blue) color space and the combination of the mean values of all three planes of the color space to be the best feature-subset in HSV (Hue-Saturation-Value)
    • …
    corecore