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ABSTRACT

IMPROVING THE PERFORMANCE AND EVALUATION OF
COMPUTER-ASSISTED SEMEN ANALYSIS

by
Ji Won Choi

Semen analysis is performed routinely in fertility clinics to analyze the quality of semen

and sperm cells of male patients. The analysis is typically performed by trained technicians

or by Computer-Assisted Semen Analysis (CASA) systems. Manual semen analysis

performed by technicians is subjective, time-consuming, and laborious, and yet most

fertility clinics perform semen analysis in this manner. CASA systems, which are designed

to perform the same tasks automatically, have a considerable market share, yet many studies

still express concerns about their accuracy and consistency. In this dissertation, the focus

is on detection, tracking, and classification of sperm cells in semen images, key elements

of CASA systems. The objective is to improve existing CASA algorithms and systems by

applying validated computer vision, tracking, and computational intelligence algorithms.

The first step of the study is the development of simulation models for generating

synthetic images of semen samples. The images enable the assessment of CASA systems

and their algorithms. Specifically, the simulation models generate time-lapse images of

semen samples for various sperm image categories and include ground truth labels. The

models exploit standard image processing operations such as point spread functions and

2D convolutions, as well as new models of sperm cell swimming, developed for this study.

They embody multiple studies of sperm motility in the form of parameterized motion

equations. Use cases are presented to use the swimming models and the simulated images

to assess and compare algorithms for sperm cell segmentation, localization, and tracking.

Second, a digital washing algorithm is presented for unwashed semen samples.

Digital washing has the potential to replace the chemical washing techniques used by

fertility clinics at present, which are costly, time-consuming, and unfriendly to the



environment. The digital washing algorithm extracts features from moving sperm cells

in an image, and uses these features to identify all sperm cells (moving and stationary)

within each studied image (simulated or real). The effectiveness of the digital washing

algorithm is demonstrated by comparing the performance of the proposed algorithm to

other cell segmentation and detection techniques.

Third, a classification algorithm for sperm cells is developed, based on their

swimming patterns. The classification algorithm uses K-means clustering on a subset

of motility parameters of sperm cells selected by the Artificial Bee Colony (ABC)

algorithm. Results of classification and clustering are shown, using simulated and real

semen images. Swimming pattern classification has the potential to increase understanding

of the relationship between the distribution of sperm cell swimming modes in a patient’s

semen image and the fertility of that patient.

Lastly, a new method is presented to calculate motility parameters from sperm

tracks. The movement of sperm cell is modeled as a sinusoidal traveling wave (“traveling

sinusoid”). The amplitude and average path of a moving cell are estimated using an

extended Kalman filter (EKF). The states estimated by the EKF include position, velocity,

amplitude, and frequency of the traveling wave. The motility parameters calculated from

this approach are shown to be superior to those calculated by other existing methods in

terms of their accuracy and consistency.

CASA developers will find in this study (and in the software made available) new

tools to improve the performance of their designs, and to compare and contrast different

proposed approaches and algorithms.
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CHAPTER 1

INTRODUCTION

Semen analysis is an essential assessment tool for evaluating fertility. It is usually

performed manually by technicians, or by using an computer-assisted semen analysis

(CASA) system. Some of the major parameters collected during semen analysis include

sperm concentration (the number of sperm per milliliter of semen), percentage of motile

sperm, and the morphology of sperm cells. In the case of CASA systems, motility

parameters are also calculated from the sperm cells, which thereby quantifying the charac-

teristics of how the sperm cells move in the semen sample. The motility parameters include

curvilinear velocity (VCL), straight linear velocity (VSL), average path velocity (VAP),

linearity (LIN), wobble (WOB), straightness (STR), amplitude of lateral head displacement

(ALH), and mean angular displacement (MAD) [1].

In manual analysis, the technicians count or label cells in each frame of the image.

This process is labor-intensive, time-consuming, and subjective (analysis may differ from

technician to technician). On the other hand, computer-assisted semen analysis (CASA)

systems are known to be fast, consistent and repeatable [2]. In CASA systems, semen

sample video frames are analyzed to evaluate each specimen using image processing and

particle tracking. Several studies have shown that CASA systems have comparable results

to those of manual analysis by technicians with proper calibration and system parameter

selection [3, 4]. However, other studies expressed caution, and suggested to wait for

further development of CASA algorithms before automatic algorithms replace manual

measurements [5, 6].

In this study, several methods and algorithms that tackle existing challenges with

CASA systems are presented. The problems include the following:

• Lack of tools to assess and compare different CASA system algorithms.
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• Semen samples need to be washed chemically to remove debris and extraneous
material, a process which is costly and environmentally unfriendly.

• Lack of methods to classify the sperm cells in the semen sample meaningfully,
possibly for clinical use.

• Inconsistency of motility parameter calculation between CASA instruments of
different manufacturers.

In the following Chapters 2-5, the study attempts to address these challenges.

Chapter 2 describes a method of simulating a semen sample for assessment of

Computer-Assisted Semen Analysis (CASA) systems and algorithms. The simulation is

able to generate an image with known qualities and provide the ground truth location of

each cell in the image. We believe this is the first simulation tool of its kind available to

CASA developers. It required the development of new models for the image and swim

modes of sperm cells.

Chapter 3 describes a method of washing an unwashed semen sample digitally. In a

typical semen analysis, the semen goes through a washing process, which removes debris

and non-sperm cells present in the semen sample. The washing algorithm attempts to

”wash” away the debris and non-sperm cells through digital filtering means, eliminating the

need to wash semen samples physically. Moreover, unlike chemical washing, the digital

washing process does not wash away many sperm cells (ideally it does not wash away any).

Chapter 4 describes a method of classifying sperm cells in semen samples using

motility parameters calculated from the track history. Sperm cells exhibit certain distinct

modes of swimming, which include linear mean, circular, hyperactive, or immotile. The

study classifies the cells by their swim types. The method involves the use of K-means

clustering and the Artificial Bee Colony (ABC) algorithm. The ABC algorithm searches

through different combinations of a subset of motility parameters to find the most distinct

clusters for the different classes (swim type) of sperm cells.

Chapter 5 describes a method for calculating motility parameters using an extended

Kalman filter (EKF). The EKF assumed that the track of sperm cell is a “traveling
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sinusoid.” By using EKF, one is able to obtain estimates of position, velocity, frequency,

and amplitude of the traveling wave. From this information, motility parameters for sperm

cells can be calculated with high accuracy and consistency. The motility parameters

calculated using the “traveling sinusoid” EKF tracking method are compared to the motility

parameter calculated from the existing methods and shown to have the highest accuracy and

consistency.

Table 1.1 summarizes the challenge/subject and outcome covered in each chapter of

the dissertation.

Table 1.1 Summary of each Chapter in the Dissertation
Chapter Challenge/Subject Outcome

2 Lack of true ground truth for
semen samples for objective
testing of CASA systems and
algorithms

A new semen sample simulation models are
provided for consistent testing and comparison of
CASA systems and algorithms

3 Unwashed semen samples
require expensive and
environmentally unfriendly
chemical washing

A new digital washing algorithm is presented for
detection of sperm cellsand removing debris and
extraneous objects

4 Classification of sperm cells in
semen analysis

K-means clustering based classification is
performed, driven by iterative search algorithm,
Artificial Bee Colony (ABC)

5 Inconsistent motility parameter
calculations in existing systems

EKF based tracking for accurate and consistent
calculation of motility parameters is presented
through the estimation of position, velocity,
frequency, and amplitude of swimming of sperm
cells

6 End notes -

Original contributions of this dissertation:

1. A new method of generating sperm cell images.

2. New mathematical models for the progressive swimming modes of sperm cells
(linear mean and circular).

3. A new method of digital washing for unwashed semen samples.

4. A new method of classifying sperm cells by their swimming modes.

5. A new model for tracking sperm cells (“traveling sinusoid”) and a new method of
calculating motility parameters.
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CHAPTER 2

AN ASSESSMENT TOOL FOR COMPUTER-ASSISTED SEMEN ANALYSIS
SYSTEMS AND ALGORITHMS

In this chapter, a method of simulating a time-lapse image of a semen sample is introduced,

along with several use-cases for the simulation, demonstrating how it can help in assessing

and comparing Computer-Assisted Semen Analysis (CASA) algorithms and systems.

2.1 Background

The focus of this chapter is on the simulation of semen images for testing and validating

Computer-Assisted Semen Analysis (CASA) systems and their algorithms. These systems

continue to be of great interest to clinicians and andrology researchers [7]. Modern CASA

systems “have been designed to objectively and quantitatively measure several aspects of

sperm structure and function, aiming to provide high levels of intra- and inter-laboratory

consistency” [7, 8]. To achieve this aim, methods of noise filtering, image segmentation,

localization, multi-object tracking, and machine learning were employed [9–21].

A major challenge in developing and validating CASA systems is the accurate

assessment and comparison of the resulting semen analysis methods to the ground truth.

This process needs to take place across a representative sample of the expected images.

For real-life samples, the ground truth is often unknown, motivating the use of high-quality

image simulations with modifiable parameters for the validation of CASA systems and

CASA algorithms. Simulations of this kind have the potential to help in developing

automated semen analysis systems, and comparing different candidate algorithms to each

other.

To generate a simulation of a semen sample video for assessment and validation,

one needs the following: (1) a model for the image of a sperm cell (to generate sperm cells

in the simulated semen image) and (2) a model for the sperm cell movement that defines

how the semen image changes over time. The development of sperm cell models in this

4



chapter mirrors similar work that was done for other cell types [22–27]. The development

of sperm cell swim models is informed by several existing approaches. Some of these

use a set of nonlinear equations of motion ([28] and Chapter 6 in [10]). Others use fluid

dynamics to develop a more refined description of cell movements [29–37]. However,

most existing simulation models of cell dynamics [31–37] did not integrate multiple cells

into a comprehensive image such as the ones used in practice by CASA systems [38, 39].

Integration of these single cell descriptions into full-scale multi-cell images is required

before relevant image simulations can be developed and used.

Figure 2.1 (a) Image of real human semen sample. (b) Image of simulated semen sample.

In this chapter, the models for the image of a sperm cell and for four (4) different

swimming modes of sperm cells (circular, linear mean, hyperactive, and immotile) are

provided. The computational requirements to simulate these models and integrate them

into multiple-cell image are relatively low, allowing for the generation of multiple images

in a format similar to the images used by the CASA system. As an example, a snapshot

of a real semen image and a simulated image are shown side by side in Figure 2.1. Figure

2.1a is an image of semen sample at 200× magnification. Figure 2.1b is a simulated semen

image generated by using parameters estimated from the semen image on the left.
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The chapter is organized as follows. In Section 2.2, models of a sperm cell and

of the swimming modes are presented. In Section 2.3, the experimental setup and the

performance metric used for assessment is explained. In Section 2.4, a use case for testing

of segmentation and localization is demonstrated. In Section 2.5, use cases for testing of

tracking algorithm is demonstrated. This chapter is accompanied by simulation software

which is publicly available at [40] (as a stand-alone software and as MATLAB codes).

2.2 Methods

Figure 2.2 Diagram of a human sperm cell. (Top) Main components of a sperm cell.
(Bottom) Front and side view of sperm head and midpiece.

The human sperm cell (see Figure 2.2, public domain: [41]) has two main parts, the

head and the flagellum. The flagellum is composed of midpiece, tail (also called principal
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piece), and end piece. The flagellum moves in a wave-like motion to propel the cell [42].

The following sections describe the two-dimensional (2-D) image of the head and the

flagellum of a sperm cell, and the models of sperm movements.

2.2.1 Simulating a Sperm Cell

The head and the flagellum of a sperm cell are generated separately and combined

afterward. The models of the head and the flagellum of sperm cells follow the morphology

of sperm cells discussed in the WHO laboratory manual for the examination and processing

of human semen [1]. The normal shape of the human sperm head is generally oval. The

tail, or the principal piece, of the flagellum is a thin cylinder of uniform calibre. In the

simulation, the flagellum is modeled as the tail only, the simulation does not consider the

midpiece or the endpiece for the simulation model since they are often too small to be

observed separately.

Figure 2.3 Flowchart of sperm image generation process. Images I1 and I2, and point
spread functions f1, f2, and f3 are the inputs. The output I9 is the simulated sperm image.
Details of each process is shown in Figures 2.5, 2.7, 2.8, 2.9, and 2.10. Image I7 shows
the image of sperm head (Output of process C). Image I8 shows the image of flagellum
(Output of process D). Image I9 shows the image of sperm head (Output of process E).
Color bars next to I7-I9 indicate the corresponding grayscale intensity values. Resulting
grayscale image of simulated sperm cell below the colored plot of I9.
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The flowchart of the process of generating the sperm image is shown in Figure

2.3. The inputs of the process are images I1 (corresponding to the sperm head) and I2

(corresponding to the curve of the flagellum), and point spread functions f1, f2, and f3.

The image of sperm head center I5 and membrane I6 are generated using the operations

labeled Process A and B, respectively. The inputs for Process A are image I1 and point

spread function f1, and the inputs for Process B are image I1 and point spread function f2.

The images of sperm head center I5 and membrane I6 are merged in Process C, producing

a final image of sperm head I7. Processes A-C are therefore the sperm head generation

process. The final image of the flagellum I8 is generated using Process D, whose inputs are

image I2 and point spread function f3. Lastly, the image of sperm head I7 and flagellum I8

are merged in Process E, producing the complete image of the sperm cell, I9. A grayscale

image of the simulated sperm cell is shown on just below the full-color simulated cell image

in Figure 2.3.

I1 is an image of N by N pixels where

I1(x, y, t) =


255 (x, y) ∈ {(xHC

(t), yHC
(t)), (xHL

(t), yHL
(t)),

(xHH
(t), yHH

(t)), (xHI
(t), yHI

(t))}

0 otherwise.

(2.1)

N is the size of the frame of the simulation image. Here, {(xHC
, yHC

), (xHL
, yHL

),

(xHH
, yHH

), (xHI
, yHI

)} are the locations of sperm heads of cells engaged in circular

swimming, linear mean swimming, hyperactive swimming, or no swimming (immotile

cells), respectively. I2 is also an image of N by N pixels where
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I2(x, y, t) =



255 (x, y) ∈ {(xtailC (k, t), ytailC (k, t)), (xtailL(k, t), ytailL(k, t)),

(xtailH (k, t), ytailH (k, t)), (xtailI (k, t), ytailI (k, t))},

k = 1, 2, 3, ...,M,

0 otherwise.

(2.2)

Figure 2.4 Simulated sperm image with points for the location of the head (green) and
the arc of the flagellum (blue).

Here, {(xtailC , ytailC ), (xtailL , ytailL), (xtailH , ytailH ), (xtailI , ytailI )} are the points

along the curve of sperm flagellum of circular swimming, linear mean swimming, hyper-

active, and immotile cells, respectively. Each flagellum consists of M points (typically

M = 200). The detailed placing of the sperm head ({(xHC
, yHC

), (xHL
, yHL

), (xHH
, yHH

),

(xHI
, yHI

)}) and the points along the curve of sperm flagellum ({(xtailC , ytailC ), (xtailL , ytailL),

(xtailH , ytailH ), (xtailI , ytailI )}) are provided in Section 2.2.2.

An image of a simulated sperm cell is shown in Figure 2.4 with the points for the

location of the sperm head (where I1(x, y) = 255) and the curve of the flagellum (where

I2(x, y) = 255) shown in green and blue, respectively. In the simulation, grayscale values

are used in the range between 0 to 255 (256 levels). In the Sections 2.2.1.1-2.2.1.5, the

five processes (A-E) are explained in detail. The flowcharts of processes (A-E) are given in
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Figures 2.5, 2.7-2.10. Images of I3-I9 are accompanied by numbered colorbar that can be

used to convert the image to grayscale.

Figure 2.5 Flowchart of sperm head (center) image generation process. Image I1 and
point spread function f1 are the inputs. The output is the simulated image of sperm head
center I5. I1 and f1 is convolved and then scaled by C1 to generate I3 (Processes A-1 and
A-2). The image I3 is complemented to generate the image I4 (Process A-3). Lastly, the
background is added to image I4, generating an image of sperm head center I5 (Process
A-4).

Figure 2.6 Point Spread Functions used in sperm cell image generation process; (a) f1,
(b) f2, (c) f3.

2.2.1.1 Process A: Sperm Head (Center) Generation (Part 1). The flowchart of the

Process A is shown in Figure 2.5. To generate the oval-like structure of the sperm head,

image I1 is convolved with a 2-D normal distribution filter f1 (Process A-1); the filter is

used as a point spread function (Chapters 3-5 in [43]). The point spread function f1, a 2-D

normal distribution, is defined as

f1(x, y) =
1

2πσxG
σyG

exp

(
−

[
( x
σxG

)2 + ( y
σyG

)2

2

])
. (2.3)
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The 3-D surface plot of f1 is shown in Figure 2.6a. Standard deviations σxG
and σyG control

the length and width of the cell. In the examples shown in this section, σxG
= 1.86 px and

σyG = 2.86 px. The size of the filter f1 is 25 × 25 px (x and y ranges from -12 to 12).

The resulting output image is then scaled by a constant C1 to set the peak intensity value

to be 255 and is denoted I3 (Process A-2 in Figure 2.5). Constant C1 can be changed to

control the intensity value of the cell head. The image I3 is complemented to produce the

image of dark-oval-like center on a white background (Process A-3). In Process A-4, the

background for the simulation image is added. LetBL be the background that will be added

to the simulated image. The size ofBL isN byN . In the examples in this section, a uniform

background is assumed, where every value in the pixel is equal to 204 (BL(x, y) = 204,

80% of 255). The value 255 − BL is subtracted from the image I4 and any value below 0

is set to 0. The resulting image is denoted image I5 (I5 = max[0, I4 − (255−BL)]).

Figure 2.7 Flowchart of the image generation process of the sperm membrane. Image I1
and point spread function f2 are the inputs. The output is the simulated image of sperm
membrane I6. I1 and f1 is convolved and then scaled by C1 to generate I6 (Processes B-1
and B-2).

2.2.1.2 Process B: Sperm Head (Membrane) Generation (Part 2). The flowchart of

Process B is shown in Figure 2.7. In typical semen image samples, one can observe a halo-

like membrane surrounding the sperm head, as shown on the left of Figure 2.1 (referred to

as “a horseshoe-shaped halo” in [9]). To generate this halo-like membrane around the cell,

a modified version of Laplacian of the 2-D normal distribution filter is used as the second

point spread function on image I1. The Laplacian of the 2-D normal distribution filter is
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defined as

g(x, y) = ∇2

(
1

2πσxL
σyL

exp

(
−

[
( x
σxL

)2 + ( y
σyL

)2

2

]))
. (2.4)

The point spread function f2 is defined as

f2(x, y) = max(0, g(x, y)), (2.5)

The resulting point spread function f2 is shown in Figure 2.6b. Standard deviations σxL

and σyL control the length and width of the cell membrane. In the examples in this section,

σxL
= 2.79 px and σyL = 4.29 px. The size of the filter f2 is 25 × 25 px (x and y ranges

from -12 to 12). The point spread function f2 is convolved with image I1, generating the

image of a membrane (Process B-1). The resulting output image is then scaled by constant

C2 (Process B-2) to set the peak intensity to be 51 (peak intensity value of cell membrane,

20% of 255). This image of the membrane is denoted I6. Constant C2 can be changed to

control the intensity value of the cell membrane.

2.2.1.3 Process C: Sperm Head Generation (Part 3). The flowchart of Process C is

shown in Figure 2.8. In Process C, the images of the sperm head center I5 and the image of

the flagellum I6 are added to complete the image of the sperm head. The resulting sperm

head image is shown in Figure 2.8 and is denoted I7.

2.2.1.4 Process D: Sperm Flagellum Generation. The flowchart of Process D is

shown in Figure 2.9. To generate the flagellum, image I2 (Equation (2.2)) is convolved

with point spread function f3 (Equation (2.6)) to generate the image of uniform calibre

look of the flagellum. The point spread function f3 is defined as the Laplacian of Gaussian

filter (equal to the Equation (2.4) with σxL
= σyL = σf ), namely

12



Figure 2.8 Diagram of sperm head image merging process. Images I5 and I6 are the
inputs. The output is the simulated image of sperm head I7. I5 and I6 are added to generate
I7 (Process C-1).

Figure 2.9 Flowchart of flagellum generation process. Image I2 and point spread function
f3 are the inputs. The output is the simulated image of flagellum I7. I2 and f3 is convolved
and then scaled by C1 to generate I7 (Processes D-1 and D-2).

f3(x, y) = ∇2

(
1

2πσ2
f

exp

(
−

[
( x
σf
)2 + ( y

σf
)2

2

]))
. (2.6)

The 3-D surface plot of f3 is shown in Figure 2.6c. Standard deviation σf control the width

of the flagellum. In the examples in this section, σf = 1.5 px. The size of the filter f3 is

25 × 25 px (x and y ranges from -12 to 12). The output image is then scaled by constant

C3 to set the peak intensity of the membrane as 13 (approximately 5% of 255). Constant

13



C3 can be changed to control the intensity of the flagellum. The resulting image of the

flagellum is a long membrane-like curve. The scaled image of the flagellum is denoted I8.

Figure 2.10 Diagram of sperm head and flagellum image merging process. Images I7 and
I8 are the inputs. The output is the simulated image of sperm cell I9. I7 and I8 are added
to generate I9 (Process E-1).

2.2.1.5 Process E: Sperm Head and Flagellum Merge. Finally in Process E, the

image of cell head, I7, and the image of the flagellum, I8, are added to generate the image

of a sperm cell (I9 in Figures 2.3 and 2.10). Process E is shown in Figure 2.10.
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Figure 2.11 Simulated swimming path of the four swimming modes: circular swim, linear
mean swim, hyperactive, and immotile. The color bar indicates the color of a track respect
to time. The duration of the movement is 4 seconds.

2.2.2 Swimming Models

In this section, the swim/movement models of the head and the flagellum of a sperm cell are

described. The swimming models describe how the position of the head and the flagellum

change over time. These positions define the points used to generate I1 (cell head, Equation

(2.1)) and I2 (cell flagellum, Equation (2.2)).

The sperm movements are categorized into these four swimming modes:

1. Circular swim (progressive),

2. Linear mean swim (progressive),
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3. hyperactivated (non-progressive),

4. Immotile, or dead.

Figure 2.11 shows simulated tracks for the four swimming modes for about 4 seconds. The

tracks indicate the location of the head of a cell and the arrow indicates the direction of

movement.

Sperm cell motility in 2-D images is often divided into progressive, non-progressive,

and immotile [1]. Cells with progressive movement actively propel themselves forward,

either linearly or on a large circle path. Examples of the two types of progressive

movements are (1) circular swim and (2) linear mean swim, as shown on top of Figure

2.11. The red arrow indicates the direction of movement for the cell. Non-progressive

movement refers to the motility exhibited by (3) hyperactivated sperm cells, which do

not travel significantly away from their initial location, and yet are described as vigorous,

“whiplash type”, or “frantic” [44, 45]. An example is shown in bottom left of Figure 2.11,

where the trace of a hyperactive sperm cell shows active movement, but the cell does not

progress much in any direction over time. (4) Immotile movements define cells which show

barley any movement at all (shown in the bottom right of Figure 2.11).

In Sections 2.2.2.1-2.2.2.3, each movement are described in detail.

2.2.2.1 Progressive Swimming Models. 2-D progressive sperm swimming patterns

were categorized as either circular or linear mean [39]. Based on the progressive sperm

tracks recorded in [9, 14, 35, 39, 46], the models to describe circular and linear mean

movements were synthesized.

2.2.2.1.1 Circular Swim Model. A sperm cell exhibiting a circular swim moves along

a circular path with oscillations about this path caused by the beatings of the flagellum [39].

This circular swim can be represented as a sinusoidal modulated circular path (Figure 2.12).

The equations used to model the movement of the head and the flagellum of a circular

16



Table 2.1 Equations for Simulating Circular Swimming Cell
Circular Swim Model - Head

xHC
(t) = (rc + a sin(2πfst)) cos(2πfct) + Cxc (2.7a)

yHC
(t) = (rc + a sin(2πfst)) sin(2πfct) + Cyc (2.7b)

Circular Swim Model - Flagellum

xTc(k, t) = b(k) sin

[
2π

(
k

M
− fst

)]
(2.8a)

yTc(k) = −λ k
M

(2.8b)

[
xtailC
ytailC

]
= R(2πfst)

[
xTc

yTc

]
+

[
xHC

yHC

]
(2.9)

R(·) =
[
cos(·) − sin(·)
sin(·) cos(·)

]
(2.10)

b(k) = a

(
α
λk

M
+ β

)
, α = 0.02, β = 0.8 (2.11)

Table 2.2 Nomenclature for Circular Swim Model
(xHC

, yHC
) : head position of circular swimming cell

rc : radius of the circular path
a : amplitude of the sinusoid modulated on the circular path
fs : frequency of the sinusoid modulated on the circular path (Hz)
fc : frequency of the circular cycle (cycle/sec)
(Cxc , Cyc) : vertical and horizontal offset constant
(xTailC , yTailC ) : a set of k points along the center of the flagellum of circular swimming
cell
λ : wavelength of flagellum (distance between the start and the end of the flagellum)
R(·) : rotation matrix
b(·) : local variation in beating amplitude along the flagellumm

swimming cell are given in Table 2.1. Detailed nomenclature for the variables used in

Table 2.1 are given in Table 2.2. The 2-D position of the cell’s head is determined by

Equations (2.7a), (2.7b). rc is the radius of the overall circular path, fs is the frequency

of the sinusoid modulated on the circular path (Hz), a is the amplitude of the sinusoid
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Figure 2.12 Trajectory of simulated circular swimming cell.

modulated on the circular path, and fc is the frequency of the circular cycle (cycle/sec).

Cxc and Cyc are horizontal and vertical offsets, respectively.

(xTc(k, t), yTc(k)) are cartesian coordinates of the points along the center curve of

the flagellum with k = 1, 2, 3, ...,M where M = 200. The flagellum of circular swimming

cells follow Dresdner’s model of sperm flagellum (Equation (2.8a)) [30]. Equation (2.8a)

determines the oscillation of the flagellum (xTc), and Equation (2.8b) determines the end to

end length (wavelength λ) of the flagellum (distance between the start and the end of the

flagellum). b(k) is the local variation in beating amplitude along the flagellum. The points

(xTc , yTc) are rotated using the rotation matrix R(·) to match the direction of movement

and shifted to the location of the sperm head (xHC
, yHC

) (Equation (2.9)); the points of the

flagellum of a circular swimming cell are denoted (xtailC , ytailC ). In the examples shown in

this chapter, the local variation in the beating amplitude, b(k), follows the affine function

b(k) = a
(
αλk

M
+ β

)
, with α = 0.02, β = 0.8 for circular swimming cell. Here, a is

the amplitude of a sinusoid modulated on the circular path, and λ is the wavelength of the

flagellum.

An example of a simulated flagellum of a circular swimming cell is shown in Figure

2.13. On the left is a simulated image of a circular swimming cell with the path shown in a
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Figure 2.13 (Left) Simulated image of circular swimming cell with past track shown in
blue. (Right) Plot of the flagellum of circular swimming cell. The example shows simulated
flagellum for wavelength (λ) = 40 pixels and amplitude (a) = 4 pixels.

blue line. On the right is a curve which represents the flagellum of that cell. The example

in this image uses amplitude of a = 4 pixels and wavelength of λ = 40 pixels.

Table 2.3 Equations for Simulating Linear Mean Swimming Cell - Head
Linear Mean Swim Model - Head[

xc
yc

]
=

[
V cos(θr)t+ CxL

V sin(θr)t+ CyL

]
(2.12)

P =

[
Px(t)
Py(t)

]
=

[ rv
2 sin(4πflt)

rhAc

2 [sin(2πflt) +Ahar sin(6πflt)]

]
(2.13)

Ac =
1

max
θ

(sin(θ) +Ahar sin(3θ))
(2.14)

[
xHL

yHL

]
= R(θr)P +

[
xc
yc

]
(2.15)

2.2.2.1.2 Linear Mean Swim Model. In the linear mean swim, a sperm cell moves

along a straight-line path, rolling side to side as it propels itself forward. This feature

causes a ribbon-like movement about the straight line. The equations used to model the

movement of the head and the flagellum of linear mean swimming cell are given in Tables

2.3 and 2.4.

The cell head movement (ribbon-like movement along a linear path) is generated

using Equations (2.12)-(2.15). The position along the linear path is denoted as (xc, yc) and

the position along the ribbon-like movement is denoted as (Px(t), Py(t)) The resulting path

is shown in Figure 2.14a.
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Table 2.4 Equations for Simulating Linear Mean Swimming Cell - Flagellum
Linear Mean Swim Model - Flagellum[

xo(k, t)
yo(k, t)

]
=

[
b1(k)xT (k, t)
b2(k)yT (k, t)

]
(2.16)

xT (k, t) =
rv
2
sin

(
4π

(
k

M
+ flt

))
(2.17a)

yT (k, t) =
rh
2
sin

(
2π

(
k

M
+ flt

))
(2.17b)

[
xLM (k, t)
yLM (k, t)

]
=

[
xo(k, t)
yo(k, t)

]
−
[
λk
M
0

]
(2.18)

yLM2(k, t) = yLM (k, t)− [Py(t)− yT (0, t)]b3(ψ) (2.19)[
xtailLM

ytailLM

]
= R(θr)

[
xLM
yLM2

]
+

[
xHL

yHL

]
(2.20)

b1(k) =
1

1 + e(αk/M+β)
(2.21a)

b2(k) = e−γ1k/M (2.21b)

b3(k) = 1− e−γ2k/M (2.21c)

Table 2.5 Nomenclature for Linear Swim Model
(xHL

, yHL
) : position of the sperm head of linear swimming cell

(CxL , CyL) : horizontal and vertical offset constant (pixels)
V : straight line path velocity (pixels/sec)
fl : rate of change in ribbon angle (Hz)
rh, rv : width and height of ribbon (pixels)
Ahar : user defined ratio between the first and the third harmonics
Ac : correction constant for defined width of the ribbon
θr : direction of the forward movement (radian)
(xTailLM

, yTailLM
) : a set of k points along the center of the flagellum of linear mean

swimming cell
b1(k), b2(k) : local horizontal and vertical variation in beating amplitude along the flagellum
b3(k) : flagellum position correction function

The straight-line path is a linear function of time twith initial positions of (CxL
, CyL).

The straight-line path is a line segment from initial positions (CxL
, CyL) to the point (xc, yc)

(as shown in Figure 2.14). The horizontal and vertical positions along the linear path

(xc, yc) change at the rate of horizontal and vertical velocity in the direction of forward
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Figure 2.14 (a) Trajectory of simulated linear mean swimming cell (Equations (2.12)-
(2.15)). (b) Ribbon-like oscillatory movement along the straight-line path of linear mean
swimming cells (Equation (2.13)).

movement θr (Equation (2.12)). The position along a “ribbon-like” path (Px(t), Py(t)) is

generated using Equations (2.13) and (2.14). The ribbon is shown in Figure 2.14b, where

rv is the height of the ribbon and rh is its width. Px(t) and Py(t) are periodic functions of

time t. Px(t) is a sinusoid with a frequency of 2fl and amplitude of rv
2

. Py(t) is a sum of

two sinusoids of frequencies of fl and 3fl and amplitudes of rhAc

2
and Ahar, respectively.

Ac is a correction constant to set the amplitude of function Py(t) as rh
2

(Equation (2.14)).

The resulting ribbon-like path is shown in Figure 2.14b. Ahar is the ratio between the two

sinusoids of function Py(t). The shapes of the ribbon for varying values of Ahar are shown

in Figure 2.15. The examples in this chapter use Ahar = 0.1.

The position of the cell along the ribbon, (Px(t), Py(t)), is multiplied by rotation

matrix R(·) resulting in a rotation by θr (Equation (2.15), R(θr)P ). Lastly, The position on

the ribbon-like path R(θr)P is added to the position along the straight-line path (xc, yc) to

define the position of the sperm head at all times (Equation (2.15)).

The flagellum is generated using Equations (2.16)-(2.21). Dresdner’s model is used

to define the horizontal and vertical oscillations in the flagellum (xo(k, t), yo(k, t)). xo(k, t)

and yo(k, t) are discrete set of points for k = 1, 2, 3, ...,M realized at time t. The value of

M in the simulation is 200. An example of simulated flagellum of linear mean swimming
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Figure 2.15 Effect of different values of Ahar on the shape of the ribbon of linear mean
swimming cells.

Figure 2.16 Example of sperm flagellum generation for linear mean swimming cell.
(Orange) Simulated flagellum. (Blue) Track of linear mean swimming cell.

cell is shown in Figure 2.16. The blue dots represent the successive location of the sperm

head. For one of these locations, the associated flagellum is shown in orange. The

fundamental frequencies of the ribbon in horizontal (2fl for Px(t)) and vertical directions
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(fl for Py(t)) are used to determine the movement of the flagellum (Equations (2.13) and

(2.17)). The local variation in beating amplitude for xT (k, t) and yT (k, t) are b1(ψ) and

b2(k), respectively (Equations (2.21a, 2.21b)).

The function b1(k) (Equation (2.21a)) is a transformed sigmoid function, where the

values of α and β determine the shift and the compression/expansion of the function; b2(k)

(Equation (2.21b)) is a decaying exponential function. Together, these functions provide

the desirable realistic visual effect.

The line segment from the head to the end of the flagellum is defined as f(k) =

−λk
M
, k = 1, 2, 3, ...,M . The oscillations xo(k, t) and yo(k, t) are added to this straight line

(Equation (2.18)).

The differences in the vertical location of the head Py(t) and the vertical position of

the flagellum yT (k, t) cause offset in placement of the flagellum because the model have

only considered the fundamental frequency component, fl, of Py(t) to generate (yT (k, t)).

This is corrected using Equations (2.19) and (2.21c).

Lastly, the flagellum is rotated to match the direction of movement and shifted to the

position of the cell head (Equation (2.20)). The constants in Equations (2.21a)-(2.21c) in

the example were set to: α = 22, β = −2, γ1 = 5, γ2 = 1.5.

2.2.2.2 Non-progressive Swim Model. Hyperactive swim, described to be non-progressive,

‘frantic’, and ‘vigorous’ is modeled through as Brownian motion to reflect the randomness

in the cell movement [47]. The equations used to model the movement of the head and the

flagellum of hyperactive swimming cell are given in Table 2.6.

For each dimension (x and y), the location of a cell is given in Equation (2.22), where

(µx, µy) are drift coefficients of Brownian motion, (σxb
, σyb) are diffusion coefficients of

Brownian motion, and W (t) is the standard 1-dimensional Brownian motion (W (t) ∼

N(0, t)). The simulation assumed no drift (µx = µy = 0), and the diffusion coefficients are

assumed to be the same for the horizontal (x) and the vertical (y) directions (σ2
xb

= σ2
yb

=
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Table 2.6 Equations for Hyperactive Cell
Hyperactive Swim Model - Head

x(t) = µxt+ σxb
W (t) and (2.22a)

y(t) = µyt+ σybW (t) (2.22b)

xHH
(t) = xHH

(t− T ) + σbW (T ) and (2.23a)
yHH

(t) = yHH
(t− T ) + σbW (T ), (2.23b)

Hyperactive Swim Model - Flagellum

(xtailH (k, t), ytailH (k, t)) =
Linear interpolation on a set of points
[(xHL

(0), yHL
(0)), (xHL

(1), yHL
(1)),

(xHL
(2), yHL

(2)), ..., (xHL
(n), yHL

(n))]

where xHL
(n) = xHH

(t− nT ),

yHL
(n) = yHH

(t− nT )

(2.24)

Table 2.7 Nomenclature for Hyperactive Cell Swim
(µx, µy) : drift coefficients of Brownian motion
(σxb

, σyb) : diffusion coefficients of Brownian motion
W (t) : standard 1-dimensional Brownian motion (W (t) ∼ N(0, t)
(xHH

, yHH
) : position of the sperm head of hyperactive cell

T : the difference in time between each simulation frame
(xTailH , yTailH ) : a curve along the center of the flagellum of hyperactive cell

σ2
b ). The location of the sperm head of hyperactive cell is defined by Equation (2.23), where

T is the difference in time between each simulation frame ( sec
frame ).

The flagellum of the hyperactive swimming cell is defined to be the linear interpo-

lation on a set of points [(xHL
(t), yHL

(t)), (xHL
(t−T ), yHL

(t−T )), (xHL
(t−2T ), yHL

(t−

2T )), ..., (xHL
(t− nT ), yHL

(t− nT ))] (a set of location of the cell from time t− nT to t,

Equation (2.24)). In the simulation, the value nT is set to 0.2 seconds.
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Table 2.8 Equations for Immotile Cell
Immotile Swim Model - Head

xHI
(t) = xHI

(0) and (2.25a)

yHI
(t) = yHI

(0) (2.25b)

Immotile Swim Model - Flagellum

(xtailI (k, t), ytailI (k, t)) =

Linear interpolation on a set of points

[(xIL(0), yIL(0)), (xIL(1), yIL(1)),

(xIL(2), yIL(2)), ..., (xIL(n), yIL(n))]

where xIL(n) = xHH
(−nT ),

yIL(n) = yHH
(−nT )

(2.26)

(xHI
, yHI

) : position of the sperm head of immotile cell
(xTailI , yTailI ) : a curve along the center of the flagellum of immotile cell

2.2.2.3 Immotile or Dead cell Model. Immotile or dead cells are simulated as non-

moving points. The equations used to model the movement of the head and the flagellum

of an immotile cell are given in Table 2.8.

Throughout the simulation, the head and the flagellum of the cell will not move

(Equations (2.25) and (2.26)). The flagellum is generated by taking a snapshot of the

flagellum of a hyperactive cell. The flagellum of the immotile cell is generated using

Equation (2.26).

In Figure 2.17, an example of the simulated semen sample is shown, where the cells

of four different swimming modes can be seen. The trajectories of each cell are shown in

blue lines.

2.3 Testing Setup and Assessment Metric

For testing, simulate images are based on real semen image samples. The parameters

extracted to simulate semen images were the image background BL, the noise variance σ2
N ,
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Figure 2.17 Example of simulated image with track of each cell shown in blue.

the size of sperm head, the number of cells in the image NC , and the number of non-moving

cells ND. The semen samples used for testing are available in [48].

Two possible use cases of the simulation were explored. First, five segmentation and

localization techniques are tested and their performances are assessed. The performance

of segmentation and localization was evaluated in terms of optimal subpattern assignment

(OSPA) distance (c = 20, p = 2) [49], precision and recall rates [50].

Second, the performance of four (4) different tracking algorithms were tested. The

four tracking algorithms are: nearest neighbor (NN), global nearest neighbor (GNN),

probabilistic data association filter (PDAF), and joint probabilistic data association filter

(JPDAF) [51]. The performance of the tracking algorithms were assessed in terms of

Multiple Object Tracking Precision (MOTP) and Multiple Object Tracking Accuracy

(MOTA) with cutoff distance of cT = 5 px [52].
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2.3.1 Semen Sample Collection and Preparation

The semen samples used in the study were collected by the In-Vitro Fertilization Laboratories

at Penn Fertility Care (part of Penn Medicine) in accordance with the policies of the

University of Pennsylvania. Each specimen was allowed to liquefy for 30-40 minutes

at room temperature and was washed in media. Washing separates sperm cells from

seminal plasma and consists of three cycles of centrifugation. First, ≤ 3 mL of semen

is layered onto a 1.0 mL preparation of density gradient media (0.9 mL PureSperm 100,

Spectrum Technologies and 0.1 mL Enhanced WG, modified human tubal fluid with HAS

and Gentamicin, Conception Technologies) and is centrifuged for 20 min at 400 g. The

pellet is resuspended in 2 mL Enhanced WG and centrifuged again for 5 min at 400 g.

Lastly, the supernatant is discarded and the pellet is resuspended in 0.5 mL Enhanced WG

and 5 µL is pipetted onto a 20 µm deep Vitrolife MicroCell chamber. A microscope stage

warmer is used to regulate the temperature of each sample at 37 ◦C during phase contrast

imaging. For a detailed explanation on the preparation process of the samples, please refer

to [10]. Specifically, the samples used in this chapter are sample ID005 (denoted as sample

1) and sample ID007 (denoted as sample 2).

2.3.2 Feature Extraction from Human Semen Samples

The key parameters were extracted from two real semen samples of 250 by 250 pixels with

a duration of 200 frames. The ground truth locations of each sperm cell in each image were

labeled manually by a human.

To obtain the image background BL, the mean of grayscale intensity values of each

pixel was calculated for the duration of 200 frames. Afterwards, the mean grayscale image

was convolved with a series of three 7 × 7 median filters (Chapter 3 in [43]). The output

of the 3-stage median filters was used as the image background BL for the subsequent

simulations. The flowchart of the background extraction process is shown in Figure 2.18a
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Figure 2.18 (a) Flowchart of the background extraction process. 3D surface plots of the
background model for (b) sample 1 - ID005 and (c) sample 2 - ID007.

and the obtained image background for sample 1 and sample 2 are shown in Figures 2.18b

and 2.18c, respectively.

To mimic the noise present in each human semen sample, the noise variance σ2
N for

each sample was calculated. First, the variance of each pixel for 200 frames was calculated.

Afterwards, the median value of the variance of all pixels in the sample was selected

to be the noise variance σ2
N for the simulation. The noise in the images was assumed

to be additive Gaussian. After the simulated images were generated, the images were

contaminated by additive Gaussian noise with zero mean and variance σ2
N .
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The size of the sperm head was obtained by segmenting the sperm heads in each

frame and finding the median length of the major and minor axes of the segmented heads

(Chapter 11 in [43]). To find the two radii of the sperm heads along the major (rM ) and

minor (rm) axis, the median length of each one of the major and minor axes was divided by

two. The values of σyG and σxG
of the 2-D Gaussian filter (of the form of Equation (2.3))

were equal to the lengths of radii along the major and minor axes (σyG = rM , σxG
= rm).

The values of σyL and σxL
of the 2-D LoG filter (of the form of Equation (2.4)) were equal

to 1.5 times the lengths of radii along major and minor axis (σyL = 1.5rM , σxL
= 1.5rm).

The value of σf for point spread function f3 was fixed at 1.5.

In each sample, the number of sperm cells was counted across 200 frames.

The number of cells NC in the simulated image was the maximum number of cells found

within 200 frames of each semen sample. The number of non-moving cells ND was the

number of dead/immotile cells found in each sample. The simulation parameters that were

extracted from the two samples are shown in Table 2.9. As shown in Table 2.9, sample 1

had three non-moving cells and sample 2 had no non-moving cells.

Table 2.9 Simulation Parameters for Segmentation and Localization Testing

Noise

Variance σ2N

Radius rM

(Major axis)

Radius rm

(Minor axis)

Number

of cells NC

Number of

non-moving cells ND

Sample 1 8.22× 10−6 2.86 px 1.86 px 10 3

Sample 2 1.03× 10−4 2.90 px 1.66 px 8 0

2.3.3 Performance Assessment Metrics for Segmentation and Localization

The performance of segmentation and localization algorithm on the images was assessed

using the optimal subpattern assignment (OSPA) distance [49], and the values of precision
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and recall. The equation of OSPA distance is given as

d
(c)

p (X, Y ) :=

(
1

n

(
min
π∈

∏
n

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

))(1/p)

, n ≥ m. (2.27)

Here, X is the set of true object locations (X = {x1, ..., xm}). Y is the set of estimated

object locations (Y = {y1, ..., yn}). The parameter p is the order. The parameter c is the

cut-off distance. m is the number of true objects. n is the number of detected objects.

d(c)(x, y) := min(c, d(x, y)) is the distance between x and y with cut-off c > 0. For

this study, p = 2 and c = 20 pixels. For n < m, d
(c)

p (X, Y ) := d
(c)

p (Y,X). The OSPA

distance is “large” if (1) the distance between the detection and the ground truth is large, and

(2) if the difference in number of detections and ground truth objects are large. A perfect

segmentation and localization algorithm would have OSPA distance of 0 (no difference

between the ground truth and the detections). A poor algorithm would have distance value

close to the cut-off distance c = 20 (large differences between the ground truth and the

detections).

Precision is defined as TP/(TP + FP ) and recall is defined as TP/(TP + FN),

where TP, FP, and FN refer to true positive, false positive, and false negative, respectively.

True positive is defined to be the number of matches in detection and ground truth within

the cutoff distance (c = 20 pixels), false positive is defined to be the number of false

alarms, and false negative is defined to be the number of missed detections. The ground

truth locations of real semen samples were manually labeled by human, and the ground

truth locations of simulated images were provided by the simulation software.
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2.3.4 Performance Assessment Metrics for Tracking

The performance of the tracking was assessed using multiple object tracking precision

(MOTP) and multiple object tracking accuracy (MOTA) metrics proposed by Bernardin

[52].

MOTP is defined as

MOTP =

∑
i,k d

i
k∑

k ck
, (2.28)

where dik is the distance between the object oi and its corresponding hypothesis. k is the

frame index and ck is the number of matched pairs in frame k. The cutoff distance for track

matching was 20 pixels. MOTP is the total error in estimated position for the matched pairs

(distance d) over all frames. If the distance between the estimated track and the ground truth

track was beyond the cutoff distance (cT = 5), it was not considered as a matching track.

When there were multiple estimated tracks at a given time for a single ground truth track,

the Hungarian algorithm was performed to find the most optimal pair based on the distance

between the estimate and the ground truth positions [53]. The unit of MOTP is in pixels

(px).

MOTA is defined as

MOTA = 1−
∑

k FPk +Mk +MMEk∑
k gk

, (2.29)

where Mk, FPk, and MMEk represents the number of missed sequence, false positives,

and mismatches in frame k, respectively. gk is the number of ground truth objects in

frame k. MOTA is derived from three different error ratios: false positive rate FP , missed

detection rate M , and mismatch rate MME.
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False positive rate FP is the total number of false alarms over the total number of

objects present over all frames:

FP =

∑
k FPk∑
k gk

.

Missed detection rateM is the total number of misses over the total number of objects

present over all frames:

M =

∑
kMk∑
k gk

.

Mismatch rate MME is the total number of mismatches (change in match of ground

truth track to detected track) over the total number of objects present over all frames:

MME =

∑
kMMEk∑

k gk
.

2.4 Applying the Simulation to Assess Segmentation, Localization, and Tracking

The real semen image and the simulated images were tested using five (5) different

algorithms for detection (segmentation and localization). These algorithms were the

following:

1. (Otsu) Binarization of image using Otsu’s thresholding followed by morphological
enhancements (closing, dilation and erosion) [54].

2. (Adaptive) Binarization of image using the adaptive thresholding method of Bradley
[55] with the sensitivity defined to be 0.8 followed by morphological enhancements
(closing, dilation and erosion).

3. (Spot-enhancement) Binarization of spot-enhanced image using Otsu’s thresholding
followed by morphological enhancements (closing, dilation and erosion) (method
proposed in [9]).

4. (Edge-detection) Edge detection of median-filtered image using Sobel operator
(modified algorithm proposed in [11]) followed by morphological enhancements
(dilation, closing, and erosion).
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5. (GMM) Motion detection algorithm using Gaussian mixture model (GMM) with the
number of training frames set to 20, number of Gaussian modes in the mixture model
set to 3, learning rate set to 0.005, and background ratio set to 0.7 [17, 56] followed
by by morphological enhancements (closing, dilation and erosion).

The flowchart of five (5) different algorithms is shown in Figure 2.19. The algorithms

consist of 3 stages, binarization, morphological enhancement, and localization. Figure

2.19b shows the binarization methods of the five (5) different algorithms. Figure 2.19c

shows the morphological enhancement for each algorithm. If a blob (using 8-connectivity)

in the morphologically enhanced image consisted of 5 or more pixels, it was considered to

be a detected sperm cell.

Corresponding to each sample, 20 different simulated images were generated for

testing, for a total of 40 images. In the simulated images, the non-moving cells were

modeled as immotile cells. The moving cells (NC − ND) were modeled as either linear

mean swimming (50%) or circular swimming (50%) cells. The algorithms were tested on

real and simulated images with zero-mean Gaussian noise with variance ranging from 0 to

1225 (standard deviation of 35 in grayscale).

The OSPA distance, precision, and recall rates for five different algorithms for

varying levels of noise are shown in Figures 2.20 and 2.21. Figures 2.20a and 2.21a show

the OSPA distances for real images of samples 1 and sample 2, respectively. Figures 2.20d

and 2.21d show the mean OSPA distances of 20 simulated images of samples 1 and sample

2, respectively. Figures 2.20b and 2.21b show the precision rates for varying levels of noise

of real samples 1 and 2, respectively. Figures 2.20e and 2.21e show the mean precision

rates of 20 different simulated images of sample 1 and sample 2, respectively. Figures

2.20c and 2.21c show the recall rates for varying levels of noise of real samples 1 and 2,

respectively. Figures 2.20f and 2.21f show the mean recall rates of 20 different simulated

images of sample 1 and sample 2, respectively.

As shown in Figures 2.20 and 2.21, the five different algorithms show similar

qualitative performance on the real sample and the simulated images for each sample. In
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Figure 2.19 Flowcharts segmentation and localization algorithms used in the simulation
study. (a) Overall segmentation and localization algorithm. (b) Binarization (segmentation)
stage of (1) Otsu, (2) Adaptive, (3) Spot-enhancement, (4) Edge detection, and (5) GMM
algorithms. (c) Morphological enhancement stage that precedes localization algorithm.
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Figure 2.20 OSPA distance, precision and recall rates of sample 1 for varying levels of
additive Gaussian noise ((a,b,c) real, (d,e,f) simulation).

Figure 2.21 OSPA distance, precision and recall rates of sample 2 for varying levels of
additive Gaussian noise ((a,b,c) real, (d,e,f) simulation).
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sample 1, one can observe that the Adaptive algorithm shows the best performance in terms

of OSPA (lowest values) under low noise levels (noise variance approximately below 600),

followed by the Spot-enhancement algorithm, the Edge-detection algorithm, the GMM

algorithm, and the Otsu algorithm, respectively (Figures 2.20a and 2.20d). In sample 2,

one can observe that the Adaptive algorithm shows the best performance in terms of OSPA

under low noise level (noise variance approximately below 500), followed by the GMM

algorithm, the Spot-enhancement algorithm, the Edge-detection algorithm, and the Otsu

algorithm, respectively (Figures 2.21a and 2.21d).

One can observe the differences in OSPA distances for the GMM algorithm on the

two samples. The GMM algorithm is a motion detection algorithm. If the object is not

in motion, the algorithm would not be able to detect the object. Sample 1 has three non-

moving cells. As a result, a higher OSPA distance value and lower recall rate are observed

for sample 1 than for sample 2 using the GMM algorithm as shown in Figures 2.20 and

2.21.

In terms of precision, a sharp loss in performance is observed for the Otsu

algorithm and the Spot-enhancement algorithm when the noise level increases beyond

the noise variance of 100 and 300, respectively. Precision for the Adaptive algorithm

and the Edge-detection algorithm also decreases as the noise level increases, where the

Edge-detection shows degradation in performance much earlier, but becomes more robust

in high levels of noise (approximately above noise variance of 600). The GMM algorithm

shows the highest level of robustness, having almost no degradation in performance in

precision (small number of false alarms).

In terms of recall, almost no change is observed between the noise level of 0 to

1225 for the Adaptive algorithm, the Spot-enhancement algorithm, and the Edge-detection

algorithm. These algorithms were less likely to have missed detections. On the other hand,

the Otsu algorithm and the GMM algorithm showed degradation in performance when the

noise level increased, the Otsu algorithm showing a sharp decline around noise variance of
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0.01 and the GMM algorithm showing a gradual decline between noise variance value of 0

to 1225.

In conclusion, the Adaptive algorithm shows the overall best performance in

localization and segmentation for low noise levels (below noise variance of 600). The Otsu

algorithm showed the worst performance in the presence of noise. The study concludes

that the GMM algorithm is the best performing algorithm in terms of precision (least likely

to make false alarms).

Observing the precision and recall rates of real and simulated samples in Figures

2.20 and 2.21, one can also observe that the precision and recall rates of the five different

algorithms show similar trends for the real sample image and its corresponding simulated

images. As shown in the results, the simulation shows strong potential to be used as a

testing ground for segmentation and localization algorithms in place of real semen samples

that do not have ground truth labels.

2.5 Applying the Simulation to Assess Tracking

Using the simulation, the performances of the four tracking algorithms (NN, GNN, PDAF,

and JPDAF) were tested. The codes for tracking algorithms were written by Urbano and

are provided in [57]. The output of each tracking algorithm is the track information of all

the detected cells in the semen image.

The performances of NN, GNN, PDAF, and JPDAF algorithms were evaluated for

varying numbers of cells. Each simulated image consisted of 20, 40, 100, or 200 cells.

Each cell in each image was assigned to a swim type using equal probabilities: linear mean

swim (1
4
), circular swim (1

4
), hyperactive swim (1

4
), and immotile (1

4
). The size of the frame

was 500×500 px. The framerate was set at 15 FPS and a total of 10 seconds of each image

was used for tracking. 20 different scenarios were generated for each number of cells for

a total of 100 images. The background intensity level was 204 (80% of 255) and no noise

was added to the video images. Ground truth tracks for each image were provided by the
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simulation and were compared to the estimated tracks calculated by NN, GNN, PDAF, and

JPDAF algorithms.

For the test cases, the parameters used for the swimming types are shown in Table

2.10. The background intensity level was 204 (80% of 255) and no noise was added to

the video. The values of variables of standard deviations for the each of the point spread

functions f1, f2, and f3 used in track algorithm testing are the same as the values for sample

1 in Section 2.3.2. Ground truth tracks were provided by the simulation and the estimated

tracks were provided by the tracking algorithms.

Table 2.10 Simulation Parameters for Tracking Assessment
Parameter value

rc 80 pixel

fc 50 deg/s

fs 4 Hz

a 3 pixel

fl 3 Hz

rh 12 pixel

rv 8 pixel

Ahar 0.1

V 50 pixel/s

σxb
, σyb 10 pixel

The performance of the algorithms was assessed for varying numbers of cells.

Each simulated image consisted of 20, 40, 100, or 200 cells. The cells in each image

were assigned to a swim type: linear mean swim, circular swim, hyperactive swim, and

immotile. The swim types were identically distributed among the cells (1:1:1:1). 20

different scenarios were generated for the different number of cells for a total of 100

images. The framerate was set at 15 FPS and a total of 10 seconds of each image was

used for tracking.
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Table 2.11 Tracking Performance of NN Algorithm on Varying Number of Cells
NN

# of cells MOTP FP M MME MOTA

20 1.4 px 0.2101 0.0941 0.0003 0.6955

40 1.4 px 0.2935 0.1143 0.0012 0.5910

100 1.4 px 0.3593 0.1609 0.0030 0.4768

200 1.4 px 0.4140 0.2163 0.0061 0.3635

Table 2.12 Tracking Performance of GNN Algorithm on Varying Number of Cells
GNN

# of cells MOTP FP M MME MOTA

20 1.4 px 0.0690 0.0812 0.0012 0.8487

40 1.4 px 0.0920 0.0886 0.0028 0.8165

100 1.4 px 0.1317 0.1090 0.0070 0.7524

200 1.5 px 0.1810 0.1343 0.0144 0.6703

Table 2.13 Tracking Performance of PDAF Algorithm on Varying Number of Cells
PDAF

# of cells MOTP FP M MME MOTA

20 1.4 px 0.2076 0.0994 0.0003 0.6927

40 1.4 px 0.2934 0.1292 0.0009 0.5765

100 1.4 px 0.3636 0.1956 0.0027 0.4381

200 1.5 px 0.4448 0.2748 0.0049 0.2754

Table 2.14 Tracking Performance of JPDAF Algorithm on Varying Number of Cells
JPDAF

# of cells MOTP FP M MME MOTA

20 1.4 px 0.0714 0.0817 0.0012 0.8457

40 1.4 px 0.0969 0.0907 0.0026 0.8098

100 1.4 px 0.1291 0.1099 0.0058 0.7553

200 1.5 px 0.1717 0.1352 0.0118 0.6813
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The mean MOTP, FP , M , MME, and MOTA values for 20 different scenarios for

each type of images (20, 40, 100, and 200 cells) are shown in Tables 2.11, 2.12, 2.13, and

2.14 for NN, GNN, PDAF, and JPDAF, respectively. The values of multi-object tracking

precision (MOTP) for the four tracking algorithms were approximately equal regardless of

the number of cells in the image. As the number of cells increased, the value of multi-object

tracking accuracy (MOTA) decreased and the false positive rate (FP ), miss detection rate

(M ), and mismatch rate (MME) increased.

For a large number of cells, GNN and JPDAF algorithms performed better than NN

and PDAF tracking algorithms in terms of MOTA. The major factor for this difference was

in the false positive rate (FP ). Comparing NN and PDAF, MOTA for PDAF was lower

than NN for all of the testing cases (20, 40, 100, and 200 cells). The GNN and JDPAF

tracking algorithms showed similar performance in terms of MOTA. Overall, GNN and

JPDAF showed the best performance, which was followed by NN. The PDAF tracking

algorithm had the worst performance.

2.6 Conclusion

This chapter presented a model of a 2-D (top-down) view of the sperm cell and the model

of 4 different swimming modes generated by observing the swimming paths of real human

sperm cells. The simulation opens up various opportunities to study and test different sperm

processing algorithms, including segmentation, localization, and tracking algorithms. In

the examples, five different segmentation and localization algorithms were tested. The

simulation was used to rank the algorithms by their performance and the obtained ranking

with simulation was similar to the ranking using real images. In addition, the performance

of four different tracking algorithms (NN, GNN, PDAF, and JPDAF) were tested on

the simulated images using MOT metrics and were ranked by their performance. The

simulation models and the software presented in this chapter serve as a powerful new tool

for developing and enhancing CASA systems and algorithms. Using this new tool, stronger
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and more robust CASA systems can be developed. The use of such systems can remove

the necessity of manual semen assessments, which are time-consuming, labor intensive,

and subjective.
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CHAPTER 3

DIGITAL WASHING OF UNWASHED HUMAN SEMEN SAMPLE

In this chapter, a digital washing algorithm for processing of unwashed semen samples for

the detection of sperm cells is given.1It offers an alternative to chemical washing of semen

samples, the currently used procedure. Digital washing is quicker, less expensive, and more

environmentally friendly than chemical washing. Also, unlike chemical washing, it does not

wash away many sperm cells (ideally it does not wash away any). To assess the new digital

washing algorithm, we compared its performance (segmentation and localization) on the

same unwashed samples to the performance of several other segmentation and localization

algorithms.

3.1 Background

Semen analysis may be performed on unwashed or washed semen samples. In unwashed

semen samples, non-sperm cells can be present in the fluid. Some examples of non-sperm

cells are immature germ cells, leukocytes (also known as white blood cells, WBC), and

epithelial cells. The concentration of the non-sperm cells is normally less than 15% of

the sperm concentration [58]. In specific cases, such as pyospermia, one can have a high

concentration of non-sperm cells that may affect male fertility. In addition, immature sperm

cells can also be found in semen, and possible causes for their presence range from infection

to imbalance of hormones [59].

To get rid of these debris (non-sperm cells) before performing sperm analysis, the

semen samples can go through a process of washing. On chemically washed samples that

are free from debris and extraneous objects, Computer-Assisted Semen Analysis (CASA)

systems have shown to perform very well [5]. However, analyzing unwashed samples

1This work is a collaboratory work between Ji Won Choi (the author of dissertation) and Ludvik
Alkhoury. Both are PhD candidates in NJIT’s ECE department under the advisement of Dr. Moshe
Kam.
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Figure 3.1 An image of an unwashed semen sample that contains sperm and non-sperm
cells.

is problematic. The presence of non-sperm cells or immature sperm cells can cause

difficulties in assessing the movements of sperm cells. An image of an unwashed semen

sample with non-sperm cells is shown in Figure 3.1 as an example where some sperm cells

are marked in black arrows and the non-sperm cells/debris are marked with red arrows.

Clearly, for computer systems, the task of segmenting, localizing, and classifying sperm

cells from the unwashed sample would be a challenge.

In this chapter, a digital washing algorithm is presented, which takes the image of

an unwashed semen sample and ”washes” the sample. As a result, After washing, one can

obtain the location of sperm cells with significantly fewer false alarms (detecting non-sperm

cells as sperm cells).
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Figure 3.2 Flowchart of digital washing algorithm. (Blue) Step 1: Motile Cell
Segmentation (2D-SGM). (Yellow) Step 2: Non-moving Object Segmentation. (Green)
Step 3: Object Feature Extraction. (Red) Step 4: Classification.

3.2 Methods

Figure 3.2 shows the overall flowchart of the digital washing algorithm. The algorithm

performs of following steps:

• Step 1 - Motile Cell Segmentation (2D-SGM),

• Step 2 - Non-moving Object Segmentation (immotile cells or debris),

• Step 3 - Feature Extraction, and

• Step 4 - Classification of Immotile Cells.

The input to the system is the semen image. The input image is used to detect

(1) motile cells and (2) non-moving objects (Steps 1 and 2). The motile cells are segmented

using an algorithm named 2D-SGM algorithm (modified version of the Gaussian mixture

model (GMM) algorithm) [56]. The features from the motile cells and the non-moving

objects are calculated (Step 3). The features that are calculated from each object

are radii length of the object along the major and minor axes [43] and a feature calculated

from the Hu moments [60]. The calculated features from the motile cells are then used

to identify non-moving sperm cells among the non-moving objects in the image (Step
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4). In Sections 3.2.1-3.2.4, each step is described in detail: (1) motile cell segmentation,

(2) non-moving object segmentation, (3) feature extraction, and (4) classification.

3.2.1 Step 1: Motile Sperm Cell Detection

In step 1 of digital washing algorithm, the input is the semen image and the outputs are

(1) segmented regions of moving sperm cells and (2) locations of detected moving sperm

cells. The digital washing algorithm uses a motion detection algorithm to find the moving

objects in the semen image sample. The algorithm assumes that the sperm cells are the

only active moving objects in the image. By detecting the moving objects, the algorithm

will be able to detect the locations of sperm cells with high precision. In the motion

detection algorithm, the foreground refers to the segmented regions of moving objects and

the background refers to the approximately static image environment (non-moving).

3.2.1.1 Gaussian Mixture Model. The developed motion detection algorithm is based

on the idea of the Gaussian mixture model (GMM) proposed by Stauffer [56]. The GMM

algorithm models the values of each pixel instead of modeling all the pixels together. The

recent history of each pixel {X(0), X(T ), ..., X(t− T ), X(t)} is modeled as a mixture of

K Gaussians:

P (X(t)) =
K∑
i=1

ω(i, t) ∗ η(X(t), µ(i, t),Σ(i, t)) (3.1)

where K : the number of distributions,

ωi(t) : an estimate of the weight of ith Gaussian in the mixture at time t,

µi(t) : the mean value of ith Gaussian in the mixture at time t,

Σi(t) : the covariance matrix of the ith Gaussian in the mixture at time t (assume Σi(t) =

σ2
i (t)I (approximation)),

σ2
i (t) : the variance of the pixel value of the ith Gaussian in the mixture at time t,
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I : identity matrix of size D ×D, and

T : period between each frame (sec).

η(X(t), µ,Σ) is a Gaussian probability density function given as:

η(X(t), µ,Σ) =
1

(2πD/2|Σ|1/2)
e

1
2
(X(t)−µ)TΣ−1(X(t)−µ) (3.2)

and D is the dimension of pixel value X(t) (D = 3 if using red, green, and blue (RGB)).

Typical value of K is between 3 and 5. The pixel values in each dimension are assumed to

be independent and have equal variance (Σi(t) = σ2
i I). A large weight ωi(t) infers that the

Gaussian distribution belongs to the background, a small weight infers that the Gaussian

distribution belongs to the foreground (moving object).

With each new frame of an image, a new pixel value is checked to see if the value is

within 2.5 standard deviations away from the mean of each Gaussian. If a match is found,

the prior weights of each Gaussian distributions at time t are updated as follows:

ωi(t) = (1− α)ωi(t− T ) + α(Mi(t)) (3.3)

where α is the learning rate and Mi(t) is an one-hot encoded variable (equal to 1 for the

matched distribution and 0 for other distributions). Additionally, the mean and variances

of the matching distribution are updated as follows:

µi(t) = (1− ρi)µi(t− T ) + ρiX(t), and (3.4)

σ2
i (t) = (1− ρi)σ

2
i (t− 1) + ρi(X(t)− µi(t))

T (X(t)− µi(t)), (3.5)
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where

ρi = αη(X(t)|µi, σi). (3.6)

If the new pixel does not belong to any distribution, then the Gaussian distribution with the

smallest weight is replaced. The new Gaussian distribution has the mean µ equal to the

current value of the pixel and the variance set to a user specified value σ2
InitGMM

.

Afterwards, the Gaussians are ordered by the value of the ratio between the weight

ωi and the standard deviation σi (ωi/σi) in descending order. The first B distributions are

chosen as the background model, where B is defined as

B = argminb

(
b∑

i=1

ωi > ωT

)
. (3.7)

ωT is the threshold for the minimum background ratio. If the value of ωT is very small,

then the Gaussian with the highest ratio (ωi/σi) is the only Gaussian distribution that will

Figure 3.3 (Left) A scenery image taken by a standard camera. (Right) A microscopy
image of human semen sample.
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represent the background (assumes that the background model is unimodal). All the other

distributions will be considered a foreground. If ωT is large, more distributions are included

in the background model.

3.2.1.2 Motion Detection using Single Gaussian Model (2D-SGM). The use of

multiple Gaussian distributions for background modeling in images can deal with changing

or moving backgrounds such as lighting changes, moving clouds, or swaying trees. This

characteristic makes the GMM algorithm very powerful. However, the GMM algorithm

was not designed for detecting motion in microscopy images. The GMM algorithm has

therefore been modified by us to account for the differences in standard surveillance images

and microscopy images.

Figure 3.3 shows two images. On the left, an image of a scene is taken, where many

complex objects are present. This image is an example in which GMM algorithm was

intended to be used for motion detection. On the right, an microscopy image of a human

semen sample is shown. Unlike the image on the left of Figure 3.3, the background of the

microscopy image is simple. In standard images, many different sources of background

exist (moving clouds, moving grass/trees, changes in lighting). However, in microscopy

images, only one source of background exists. In the modified algorithm, the expected

number of Gaussians in the GMM model is reduced to one. This simplifies the GMM

algorithm to be a t-test. The modified motion detection algorithm proposed here is shown in

Figure 3.4. The motion detection algorithm has two main components denoted as operation

A (segmentation) and B (localization).

The input of the motion detection algorithm is a semen image. The output of the

algorithm is the segmented regions and locations of moving objects in the semen image.

In operation (A), segmentation is performed (produces image IB). In operation (A-1),

a median filtered image is generated (using 3 × 3 median filter [43]). In 3 × 3 median

filtering, the value of the pixel is replaced with the median value within 3 by 3 window
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Figure 3.4 Motion detection algorithm (2D-SGM) for segmenting and localizing motile
sperm cells.

around the pixel. An example of median filtering is shown in Figure 3.5. On the left, there

are nine values within the shaded 3 by 3 region. When ordered from lowest to the highest

value, the values are: 16, 18 ,20, 32, 42, 52, 56, 62, 98. The median value of this set is 42.

The center of the shaded region is replaced with the median value, 42.

Figure 3.5 Example of 3× 3 median filtering.

In operations (A-2) and (A-3), the mean and the variance of 20 past grayscale

values of each pixel are calculated from the original image and the median filtered image.
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Calculating the mean and variance for every new frame are computationally costly (if the

image is 480 by 480 pixels, then one needs to calculate the mean and variance for a total of

230,400 pixels every frame). To reduce the computational load, Welford’s online algorithm

has been implemented to update the mean and variance [61].

x̄n = x̄n−1 +
xn − x̄n−1

n
(3.8)

s2n = s2n−1 +
(xn − x̄n−1)

2

n
−

x2n−1

n− 1
(3.9)

xn is the nth value of the pixel. x̄n is the mean of n values of the pixel. s2n is the variance of

n values of the pixel. When a new value of a pixel is introduced, the oldest value is removed

and the new value is added to calculate the new mean and variance by using Equations (3.8)

and (3.9) (maintaining data length of 20).

In operations (A-4) and (A-5), the current value of the pixel is compared to the means

and variances calculated in operations (A-2) and (A-3). If the new value of the pixel is more

than C standard deviations away from the mean, then the pixel is considered to be part of

the foreground (moving object). If the pixel is considered to be a part of the foreground, it

is 1, and if the pixel is considered to be a part of the background, it is 0. The performance

of the algorithm with a small value of C would be more sensitive to finding values away

from the mean. The performance of the algorithm with a large value of C would be less

sensitive. For example, C = ∞ will result in all pixels to be part of the background and

C = 0 will result in all pixels that are not equal to the mean to be the foreground. The

foreground image of the original image is notated as IA1 , and the foreground image of the

median filtered image is notated as IA2 . In operation (A-6), an AND operator is used on

IA1 and IA2 to generate the output of the motion segmented image IB = IA1IA2 . AND
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operator is a logic operator that produces the output of 1 only if both of the inputs are 1.

Otherwise, the output is 0. The use of the AND operator on IA1 and IA2 lower the amount

of noise and false detection.

In operation (B), the segmented foreground image is enhanced using dilation and

erosion morphological operators with a disk structuring element with a radius of 7 [43]

and the locations of the moving cells/objects are labeled. The groups of pixels are labeled

assuming eight-connectivity (if any surrounding pixel has the value 1, the pixels are in the

same group). Any group that contained 5 or more pixels was considered to be a sperm cell.

The motion detected image is denoted as I2 in Figure 3.2. This motion detection algorithm

is denoted as 2D-SGM (2-Dimensional Single Gaussian Model).

To demonstrate the effectiveness of the 2D-SGM algorithm in detecting moving

sperm cells, the 2D-SGM algorithm was tested for three real human semen images. These

three samples were samples ID005, ID006, and ID007 (description of image collection

process is given in Section 2.3.1). The frame rate for samples ID005 and ID006 was 15

FPS and the frame rate for sample ID007 was 30 FPS. A total of six scenes was taken

for testing. Three (3) scenes were from 15 FPS samples (two from ID005 and one from

ID006) and the other three (3) scenes were from 30 FPS sample (ID007). Each scene was

200 frames long and all of the samples used in this example were washed samples (no

debris or non-sperm cells).

A total of six (6) different algorithms were tested for their ability to detect and

localize sperm cells. The six algorithms were: (1) 2D-SGM, (2) Otsu’s thresholding

[54], (3) Adapative algorithm by Bradley [55], (4) Urbano’s segmentation algorithm [9],

(5) Abbiramy’s segmentation algorithm [11], and (6) Gaussian Mixture Model (GMM) [56]

detection algorithm. The performance of detection was assessed in terms of precision and

recall. The ground truth locations of sperm cells in each sample was labeled by human.

Precision is defined as TP/(TP + FP ) and recall is defined as TP/(TP + FN),

where TP, FP, and FN refer to true positive, false positive, and false negative, respectively.
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True positive is defined to be the number of matches in detection and ground truth within

10 pixels, false positive is defined to be the number of false alarms, and false negative

is defined to be the number of missed detections (the same definition used in Chapter 2).

The 2D-SGM algorithm was designed to detect moving cells with high precision (small

number of false alarms). Recall rates of 2D-SGM are expected to be lower than the other

cell segmentation and localization algorithms due to the 2D-SGM algorithm’s inability to

detect non-moving sperm cells.

The performance of the 2D-SGM algorithm for varying values of C for three samples

(ID005, ID006, and ID007) are shown in Figures 3.6-3.11. Samples contained different

numbers of immotile sperm cells. For example, sample ID005 contained immotile cells

and Sample ID007 contained very few immotile cells. Top of Figures 3.6-3.11 shows

scatter plot of precision and recall values of motion detection algorithm for varying values

of C. The bottom left shows the curve for precision and C (notated as std threshold) and

the bottom right shows the curve for recall and C. For the GMM algorithm, different

operating points for varying values of the threshold ωT , minimum background ratio, are

shown. The values of ωT were between 0 to 1. The GMM algorithm was applied using the

vision.ForegroundDetector function in MATLAB. The learning rate was 0.005, the number

of Gaussians was 5, the number of training frames was set to 20. For the adaptive algorithm,

adaptthresh function in MATLAB was used with the sensitivity value of 0.8.
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Figure 3.6 (Top) Precision and recall plot for the six different segmentation algorithms
for sample ID005 (Scene 1). (Bottom left) Precision and standard deviation threshold C
curve for motion detection algorithm in Section 3.2.1.2. (Bottom right) Recall and standard
deviation threshold C curve for motion detection algorithm in Section 3.2.1.2.
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Figure 3.7 (Top) Precision and recall plot for the six different segmentation algorithms
for sample ID005 (Scene 2). (Bottom left) Precision and standard deviation threshold C
curve for motion detection algorithm in Section 3.2.1.2. (Bottom right) Recall and standard
deviation threshold C curve for motion detection algorithm in Section 3.2.1.2.
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Figure 3.8 (Top) Precision and recall plot for the six different segmentation algorithms
for sample ID006 (Scene 1). (Bottom left) Precision and standard deviation threshold C
curve for motion detection algorithm in Section 3.2.1.2. (Bottom right) Recall and standard
deviation threshold C curve for motion detection algorithm in Section 3.2.1.2.
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Figure 3.9 (Top) Precision and recall plot for the six different segmentation algorithms
for sample ID007 (Scene 1). (Bottom left) Precision and standard deviation threshold C
curve for motion detection algorithm in Section 3.2.1.2. (Bottom right) Recall and standard
deviation threshold C curve for motion detection algorithm in Section 3.2.1.2.
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Figure 3.10 (Top) Precision and recall plot for the six different segmentation algorithms
for sample ID007 (Scene 2). (Bottom left) Precision and standard deviation threshold C
curve for motion detection algorithm in Section 3.2.1.2. (Bottom right) Recall and standard
deviation threshold C curve for motion detection algorithm in Section 3.2.1.2.
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Figure 3.11 (Top) Precision and recall plot for the six different segmentation algorithms
for sample ID007 (Scene 3). (Bottom left) Precision and standard deviation threshold C
curve for motion detection algorithm in Section 3.2.1.2. (Bottom right) Recall and standard
deviation threshold C curve for motion detection algorithm in Section 3.2.1.2.
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Table 3.1 Precision and Recall Rates of the Six Different Segmentation Algorithms for
Six Different Scenarios (Real Human Samples)

ID005:1-200 ID005:1000-1200

Algorithm Name Precision Recall Algorithm Name Precision Recall

2D-SGM 0.9709 0.3963 2D-SGM 0.9667 0.4604

Otsu 0.7684 0.8563 Otsu 0.9899 0.9101

Adaptive 0.9849 0.8494 Adaptive 0.9754 0.9194

Urbano 0.9903 0.8229 Urbano 0.9964 0.9064

Abbiramy 0.5902 0.7613 Abbiramy 0.8056 0.7492

GMM 0.7692 0.6517 GMM 0.6911 0.5582

ID006:500-700 ID007:700-900

Algorithm Name Precision Recall Algorithm Name Precision Recall

2D-SGM 0.9794 0.5923 2D-SGM 0.9611 0.9759

Otsu 0.4853 0.8074 Otsu 0.5538 0.9790

Adaptive 0.9849 0.8697 Adaptive 0.7696 0.9977

Urbano 0.7544 0.8652 Urbano 0.7518 0.9728

Abbiramy 0.3500 0.7985 Abbiramy 0.6461 0.9418

GMM 0.6343 0.4819 GMM 0.5872 0.8275

ID007:1000-1200 ID007:1300-1500

Algorithm Name Precision Recall Algorithm Name Precision Recall

2D-SGM 0.9641 0.8630 2D-SGM 0.9707 0.9746

Otsu 0.3302 0.9593 Otsu 0.3585 0.9789

Adaptive 0.6802 0.9906 Adaptive 0.6079 0.9967

Urbano 0.7596 0.9524 Urbano 0.7002 0.9691

Abbiramy 0.4071 0.8905 Abbiramy 0.4623 0.9395

GMM 0.5875 0.7151 GMM 0.7048 0.7993

The precision and recall rates for the six different scenarios are shown in Table

3.1. In this table, C = 3 and ωT = 0.7. The best performing values for each scenario

were underlined. In most of the testing cases, the adaptive algorithm and Urbano’s

algorithm showed the best recall rates. In the presence of immotile cells (ID005 and

ID006), the 2D-SGM algorithm and the GMM algorithm contained missed detections since
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these algorithms are based on detecting motion (low recall rates). However, the 2D-SGM

algorithm has shown high precision rates in all of the six cases (precision rate above 0.96).

Unlike the other segmentation algorithms, the 2D-SGM algorithm is less likely to make

false alarms due to noise. In all of the cases, one can also observe that the proposed

2D-SGM algorithm performs better than GMM algorithm in terms of precision. By using

the 2D-SGM algorithm, one is able to extract the images of motile cells with low false

alarms (non-sperm cells). In the following steps of the digital washing algorithm, the image

of the motile cell will be used to identify the sperm cells from the non-moving cells/debris

in the image (resulting in an increase in recall rate, or a lower number of missed detections).

3.2.2 Step 2: Non-moving Object Segmentation using Spot-enhancement

In step 2 of the digital washing algorithm, the input is the semen image and the output is

the segmented regions of objects (cells/debris) in the semen image. For step 2, the digital

washing algorithm uses Urbano’s segmentation algorithm [9]. After segmenting out all

the object in the image, the regions of motile cells is subtracted to obtain the regions of

non-moving objects in the image.

The Urbano’s segmentation algorithm consists of the following stages: (1) noise

reduction, (2) spot-enhancement, (3) intensity thresholding/binarization, and (4) morpho-

logical enhancement. The flowchart of the segmentation algorithm is shown in Figure 3.12.

3.2.2.1 Noise Reduction. The noise present in the original image is removed by using

a series of Gaussian filters. The filter is applied by using 2D convolution on the image

f(x, y) and the filter h(x, y):

g(x, y) = f(x, y)⊗ h(x, y) =
∞∑

m=−∞

∞∑
n=−∞

f(x, y)h(x−m, y − n), (3.10)
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Figure 3.12 Cell segmentation algorithm by Urbano. The original image is filtered
with series of five Gaussian filters to reduce the noise present in the image. The nosie
reduced image is then filtered using Laplacian-of-Gaussian (LoG) filter to generate the
spot-enhanced image. The spot-enhanced image is then thresholded using the Otsu’s
method and morphologically enhanced. The output of the system is the cell segmented
image.

where g(x, y) is the filtered image. The Gaussian filter hG(x, y) is defined as

hG(x, y) =
1

2πσ2
G

e
−x2+y2

2σ2
G (3.11)

in 2D, where σG is the standard deviation of the Gaussian. The original image is filtered

5 times in sequence using the Gaussian filter as shown in Figure 3.12. The value of the

standard deviation used in the study was σG = 1.

3.2.2.2 Spot-enhancement. The noise reduced image was filtered using the Laplacian

of Gaussian (LoG) filter. The Laplacian of Gaussian filter hL(x, y) is defined as

hL(x, y) = − 1

πσ4
L

[
1− x2 + y2

2σ2
L

]
e
−x2+y2

2σ2
L (3.12)
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where σL is the standard deviation of the LoG. The LoG filter highlights the differences

between the background, cell membrane, and the sperm head. As shown in the bottom right

of Figure 3.12, the location of the cell heads contains large values, where the background

pixels show small values. The value of the standard deviation used in the study was σL =

0.9.

3.2.2.3 Intensity Thresholding. The spot-enhanced image was binarized using the

threshold calculated using the Otsu’s thresholding algorithm [54]. The Otsu’s algorithm is

an algorithm that searches for the threshold that minimizes intra-class variance σ2
ω, which

is the weighted sum of the variances of the two classes (background and foreground):

σ2
ω(k) = ω0(k)σ0(k) + ω1(k)σ

2
1(k). (3.13)

Here, k is the value of the threshold (boundary that determines the two classes). The group

of pixels that contains grayscale values under or equal to k is class 0 and the group of pixels

that contains grayscale values above k is class 1. The weights of the two classes are ω0 and

ω1. The weights are the probabilities of class occurrence,

ω0(k) = Pr(C0) =
k∑

i=1

pi = ω(k), (class 0), and (3.14)

ω1(k) = Pr(C1) =
L∑

i=k+1

pi = 1− ω(k), (class 1), (3.15)

62



where pi is defined as the ratio of the number of pixels with ith grayscale value to the total

number of pixels in the frame (grayscale value in this case are assumed to be between 0 to

255 for a total of 256 grayscale levels)

pi =
ni

N
, pi ≥ 0,

L∑
i=1

pi = 1. (3.16)

Here, ni is the number of pixels with ith grayscale value, and N is the total number of

pixels in the frame; the total number of grayscale levels is L (L = 256); the variances of

the two classes are σ2
0 and σ2

1 . In Urbano’s algorithm, this threshold k is multiplied by a

constant, where value is 1.1 (knew = 1.1k). This study follows the same steps.

3.2.2.4 Morphological Enhancement. The regions that were segmented by thresh-

olding were enhanced by morphological enhancement techniques. This enhancement

includes erosion and dilation with 5×5 and 3×3 diamond structuring element, respectively

[43]. As a result, the segmented image of cells in the image is obtained (example shown in

the bottom left of Figure 3.12). The resulting image is I3 marked in Figure 3.2.

3.2.2.5 Region Subtraction for Segmentation of Immotile Cells/debris. In step 3 of

the digital washing algorithm, the image of segmented regions of moving sperm cells I2

and the image of segmented regions of cells/debris in a semen sample I3 are the inputs and

the outputs are (1) the segmented regions of non-moving cells/debris in a semen image I4

and (2) locations of non-moving cells/debris.

Figure 3.13 shows each steps of immotile cell or debris segmentation. Figure 3.13a

is the image of semen sample. From the semen sample, the regions of motile cell I2 and

regions of all possible cells and debris I3 are obtained (Figure 3.13a and Figure 3.13b,

respectively). By subtracting I2 from I3, the regions of immotile cells and debris I4 is

found (Figure 3.13d). Figure 3.13e shows the original image with the detected motile
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Figure 3.13 Segmentation of cell/debris in unwashed human semen sample. (a) Frame of
semen sample image. (b) Regions of motile sperm cells segmented using motion detection
algorithm in Section 3.2.1.2. (c) Segmented Cell regions using Urbano’s segmentation
algorithm. (d) Regions of immmotile cell and debris obtained from subtracting motile cell
region (b) from the segmented cell regions (c). (e) Original image with detections labeled.
(Green circle) Detected immotile cells and debris. (Red square) Detected motile sperm
cells.
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sperm cells and detected immotile cells and debris marked by red squares and green circles,

respectively. Afterwards, the groups of pixels in image I4 were labeled assuming eight-

connectivity. Any group that contained 5 or more pixels was labeled as an immotile cell or

debris.

Figure 3.14 Feature extraction process. Input is 30 × 30 pixel image of a cell or debris.
The first step of the process is image enhancement. This consists of (1) image resizing,
(2) image sharpening, (3) binarization, and (4) morphological enhancement.

3.2.3 Step 3: Feature Extraction

In step 3, the inputs are (1) segmented regions of moving sperm cells (I2) and (2) segmented

regions of immotile cells/debris (I4). The outputs of step 3 are features of the each

segmented object in images I2 and I4. The feature extraction from the detected cells

comprised of two steps:

1. Image enhancement of detected region of cell/debris,

2. Calculation of features: radii length of detected blob along the minor and major axes

(features 1 and 2), and Hu-moments-based feature (feature 3).

The flowchart of the feature extraction process is shown in Figure 3.14. The results

within the stages of feature extraction are shown in Figure 3.15.

3.2.3.1 Image Enhancement of Detected Region of Cell/debris. The 30 × 30 pixel

around each of the detected cell/debris was presented for feature calculation. Let the 30×
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Figure 3.15 Results of stages within the Feature extraction process. (a,e) 30 × 30
pixel image of a cell. (b,f) Enlarged and sharpened image of (a,e). (c,g) Binarized and
morphologically enhanced image of (b,f) with fitted ellipse shown in red. (d,h) Original
image with red ellipse plotted on top of the detected cell. The calculated features listed
below.

30 image be denoted Iα. Prior to feature extraction, the images of the cell/debris were

enhanced. The enhancement step consisted of (1) image resizing, (2) image sharpening,

(3) binarization, and (4) morphological enhancement. The process is shown in Figure 3.14.

1. Image resizing: the images were resized by a factor of 10 using bicubic interpolation
(image interpolation algorithm, Section 2.4 in [43]). The bicubic interpolation was
performed using imresize function in MATLAB. The resulting image is 300 × 300
pixel image and is denoted as Iβ .

2. Image sharpening: the enlarged image is sharpened using the unsharp mask [43].
First, the low-pass filtered image Iβlp

is generated by filtering the image IB by a
Gaussian filter. The equations of the operation are given in Equations (3.10) and
(3.11). The unsharp mask is defined as

Imask = Iβ − Iβlp
. (3.17)

Imask is an image that contains high-pass (frequency) content of the image. The mask
is scaled by a factor k and added to the original image I , generating a sharpened
image:

Iγ = Iβsharp
= IB + kImask. (3.18)

The value of k determines how much of the high-pass content one is adding to the
original image. In this study, σ = 50 and k = 2. The sharpened image is denoted
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as Iγ . Figures 3.15b and 3.15f show a result of resizing and sharpening of Figures
3.15a and 3.15e.

3. Image binarization: the sharpened image is then binarized using the Otsu’s thresh-
olding method [54]. This image is denoted as Iδ.

4. Morphological enhancement: the binarized image is dilated and eroded with 15× 15
diamond structuring element [43]. This process preserves the overall size of the
detected region, but connects the regions that may have been disconnected during
the binarization phase. Figures 3.15c and 3.15g show the result of binarization and
morphological enhancement of Figures 3.15b and 3.15f. This image is denoted as Iϵ.

3.2.3.2 Calculation of Features. Three features are calculated from Iγ and Iϵ in

the image enhancement process. These features are a Hu-moments-based feature and

length of radii along the major and minor axes of ellipsoid drawn on the detected cell.

• Hu-moment-based feature: Hu moments are features of a two-dimensional image
which are invariant with respect to scale, translation, and rotation [60]. Hu moments
are derived from moments and central moments of the image. The Hu moments are
calculated from Iγ (sharpened image). The moments are defined as

Mij =
∑
x

∑
y

xiyiIγ(x, y), (3.19)

where Iγ(x, y) is the image intensity value at pixel at location (x,y). The central moments
are defined as

ηpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qI(x, y), (3.20)

where x̄ and ȳ are the coordinates of the centroid, computed as:

x̄ =
M10

M00

, (3.21)

ȳ =
M01

M00

. (3.22)

The normalized central moments can be obtained as follows:

µpq =
ηpq

η
( p+q

2
)

00

. (3.23)

The seven Hu moments are defined as:
H1 = µ20 + µ02

H2 = (µ20 − µ02)
2 + 4(µ11)

2

H3 = (µ30 − 3µ12)
2 + (µ03 − 3µ21)

2
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H4 = (µ30 + µ12)
2 + (µ03 + µ21)

2

H5 = (µ30 − 3µ12)(µ30 + µ12)((µ30 + µ12)
2 − 3(µ21 + µ03)

2) + (3µ21 − µ03)(µ21 +
µ03)(3(µ30 + µ12)

2 − (µ03 + µ21)
2)

H6 = (µ20 − µ02)((µ30 + µ12)
2 − (µ21 + µ03)

2) + 4µ11(µ30 + µ12)(µ21 + µ03)
H7 = (3µ21 − µ03)(µ30 + µ12)((µ30 + µ12)

2 − 3(µ21 + µ03)
2) + (µ30 − 3µ12)(µ21 +

µ03)(3(µ30 + µ12)
2 − (µ03 + µ21)

2)

In [62], Al-Azzo et al. used the sum of the seven Hu moments for classification of
human actions. The similar approach is taken here for classification of sperm cells.
The Hu-moments-based feature PHu used for classification is defined as

PHu =
7∑

i=1

log10(|Hi|), (3.24)

where | · | is the absolute value function.

• Length of radii: Each detected region is approximated by an ellipse using Iη
(enhanced image). This approximation is performed by finding an ellipse that has
the same second central moments as the region that is being approximated (Section
11.4 of [43]). In Figure 3.15c and Figure 3.15g, the approximated ellipse is shown
in red. The length of major and minor axes is divided by 2 to calculate the length of
the radii (rMajor and rMinor).

These three features (length of radii and Hu-moments-based feature) are calculated

for the moving sperm cells and non-sperm cells/debris. The mean and standard deviation

for the three features of the moving sperm cells are calculated. The mean and the standard

deviation of rMinor are denoted as µ1 and σ1, respectively. The mean and the standard

deviation of rMajor are denoted as µ2 and σ2, respectively. The mean and the standard

deviation of PHu are denoted as µ3 and σ3, respectively.

Figure 3.16 shows the histograms of the three features. The red vertical line

represents the mean (µn) of the distribution of each histogram and the black dotted vertical

lines represent different standard deviation (σn) values away from the mean (µn ±Nσn for

N = {1, 2, 3, 4}).

3.2.4 Step 4: Classification - Immotile Sperm Cell Detection

The three features (length of radii and Hu-moments-based feature) are calculated from

each of the detected non-moving sperm cell/debris. There are three local detectors for each
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Figure 3.16 Histogram of three features of moving sperm cells. Mean value shown
with vertical red line. (Top) Histogram of radius along the minor axis rMinor. (Middle)
Histogram of radius along the major axis rMajor. (Bottom) Histogram of Hu-moments-
based feature PHu.

69



feature. Each local detector checks if the values of three features are within the range of

[µn −Nσn, µn +Nσn] as shown in Figure 3.17. The local decisions, D1, D2, and D3, are

defined as

Figure 3.17 Sperm cell classification process.

D1 =


1, if µ1 −Nσ1 ≤ rMinor ≤ µ1 +Nσ1

0, otherwise
, (3.25)

D2 =


1, if µ2 −Nσ2 ≤ rMajor ≤ µ2 +Nσ2

0, otherwise
, (3.26)

D3 =


1, if µ3 −Nσ3 ≤ PHu ≤ µ3 +Nσ3

0, otherwise
, (3.27)
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The global decision D0 is defined as

D0 = D1 ∧D2 ∧D3, (3.28)

where ∧ is an AND operation. The global decision, D0, is “1” (or sperm cell) if all local

detectors decide that the detected cell is a sperm cell and “0” (or non-sperm cell) otherwise.

The value of the decision boundary parameter “N” is critical to the overall performance of

the algorithm. If N is too large, then all the detected non-moving objects will be labeled as

sperm cells, which will cause false detections. If N is too small, then none of the detected

non-moving objects will be labeled as sperm cells, which will cause missed detections. In

our studies, the value of N = 1.2 was shown to be the most suitable (see Section 3.2.6).

3.2.5 Performance Metric

Precision, recall, and Fβ-score are used to assess the performance of detection for the

five (5) algorithms. The five algorithms are Otsu, Adaptive, Urbano, Abbiramy, and

Digital Washing (proposed algorithm). The definition of precision and recall are the same

as in Section 3.2.1.2. Fβ-scores are calculated as

Fβ =
(1 + β2)(Precision)(Recall)

β2(Precision) +Recall
, (3.29)

Similar to our previous testing with the motion detection algorithm in Section 3.2.1.2, the

cutoff distance between the ground truth and detection location is c = 10 pixels. Fβ-score

is a weighted average of precision and recall. For example, if β = 2, the weight of the

precision is lower than the recall, if β = 0.5, the weight of the recall is lower than the

precision, and if β = 1, the weight of the recall and precision are equal.
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3.2.6 Parameter Selection for Digital Washing

An important parameter for the digital washing algorithm is the decision boundary

parameter N . N determines the range that identifies the non-moving object as a sperm

cell or a non-sperm cell. In our experiments, the ground truth locations of each cell were

labeled manually. Using the ground truth, the value of precision and recall were calculated

for different values of N . The primary goal of the digital washing algorithm is to reduce

the number of false detections (considering debris or other cells as sperm cells). While

not eliminating genuine sperm cells, the performance of the algorithm is shown for the

value of N that the maximizes value of F0.5 (higher weight for precision). The value of

the boundary decision parameter is N = 1.2 as shown in Figure 3.18. If the three features

computed on a non-moving cell object within the range [µn − 1.2σn, µn + 1.2σn], then

the non-moving object is classified as sperm cell. Otherwise, the non-moving object is

classified as non-sperm cell. In practice, the ground truth locations of sperm cells are not

given and we recommend N = 1.2 based on our experiments.

3.3 Experimental Results

The performance of the digital washing algorithm was compared to that of other cell

segmentation and localization operating on the same images. We studied Otsu’s algorithm

[54], adaptive algorithm by Bradley [55], Abbiramy’s algorithm [11], and Urbano’s

algorithm [9]. We compared precision, recall, and Fβ-score for β = 0.5, 1, and 2. The three

metrics (precision, recall, and Fβ-score) were computed for two samples (Sample ID019

and ID021). The collection process of these samples are the same as the process described

in the Section 2.3.1 without the semen sample washing process (unwashed samples). There

are five (5) scenes for sample ID019 and four (4) scenes for sample ID021. The length of

each scene is 200 frames.

The mean and standard deviation for the nine (9) different testing sets are shown

in Table 3.2. The best performing average values are underlined. In this table, one can
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Figure 3.18 Values of F0.5 for varying values of boundary decision parameter N .

observe that the digital washing algorithm obtains the highest precision, F0.5 score, and F1

score. For the recall rate, Abbiramy’s algorithm showed the highest performance at the rate

of 92.55%. For F2 score, Urbano’s algorithm showed the highest performance at the value

of 78.60. While the recall rate for the digital washing algorithm was lower compared to

the recall rates of the other segmentation and localization algorithms, the digital washing

algorithm was shown to be the best algorithm to reduce the rate of false alarm (removing

the detection of non-sperm cells and debris by “washing” the semen sample).

In addition, two-sample t-tests are performed for the performance of the digital

washing algorithm to the four cell segmentation algorithm on precision and F0.5-score

(α = 0.1). The tested hypotheses on precision and F0.5-score with their corresponding

p-values are shown in Tables 3.3 and 3.4, respectively. As shown in Tables 3.3 and 3.4,

the performances of the digital washing algorithm is higher than the four cell segmentation

algorithms in terms of precision and F0.5 scores (statistically significant).
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Table 3.2 Precision, Recall, and Fβ-score for the Five Different Cell Segmentation
Algorithm (Values of Mean µ and Standard Deviation σ for Nine (9) Different Scenes
of Unwashed Samples (N = 1.2))

Otsu Adaptive Urbano Abbiramy Digital Washing

µ σ µ σ µ σ µ σ µ σ

Precision 71.03 15.36 73.36 14.10 57.88 13.70 46.20 11.73 86.21 8.81

Recall 68.82 11.87 63.99 16.62 88.19 7.45 92.55 4.34 59.86 11.76

F0.5 69.64 11.14 70.31 12.24 61.64 12.71 51.01 11.59 78.27 4.94

F1 68.53 7.72 67.09 12.65 68.72 10.61 60.7 10.49 69.55 6.34

F2 68.39 9.03 64.97 14.84 78.60 7.40 75.85 6.65 63.21 9.70

Table 3.3 One Sided Hypothesis Testing on Precision on the Performance of Digital
Washing Algorithm to Four Other Cell Segmentation Algorithms (N = 1.2)

Hypothesis p-value

Test I:
H0: Prec(Digital Washing) - Prec(Otsu) = 0

Ha: Prec(Digital Washing) - Prec(Otsu) > 0
0.01652

Test II:
H0: Prec(Digital Washing) - Prec(Adaptive) = 0

Ha: Prec(Digital Washing) - Prec(Adaptive) > 0
0.02451

Test III:
H0: Prec(Digital Washing) - Prec(Urbano) = 0

Ha: Prec(Digital Washing) -Prec(Urbano) > 0
0.0004

Test IV:
H0: Prec(Digital Washing) - Prec(Abbiramy) = 0

Ha: Prec(Digital Washing) -Prec(Abbiramy) > 0
0.00002

To show the different operating points for the digital washing algorithm, precision,

recall, and Fβ scores are calculated for different boundary decision values N (Fβ as a

function of N ). The values of N are argmax
N

Fβ(N), β = 0.5, 1, and 2. The results

are provided in Table 3.5 and the highest value in each row has been underlined. In Table

3.5, one can observe the performance of the digital washing algorithm for different weights

for precision and recall. When the weight for precision is higher than recall, the digital

washing algorithm reaches a precision rate of 86.21% (β = 0.5). When the weight for

the recall is higher than precision, the digital washing algorithm can reach a recall rate of
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Table 3.4 One Sided Hypothesis Testing on F0.5 Scores on the Performance of Digital
Washing Algorithm to Four Other Cell Segmentation Algorithms (N = 1.2)

Hypothesis p-value

Test I:
H0: F0.5(Digital Washing) - F0.5(Otsu) = 0

Ha: F0.5(Digital Washing) - F0.5(Otsu) > 0
0.03318

Test II:
H0: F0.5(Digital Washing) - F0.5(Adaptive) = 0

Ha: F0.5(Digital Washing) - F0.5(Adaptive) > 0
0.05401

Test III:
H0: F0.5(Digital Washing) - F0.5(Urbano) = 0

Ha: F0.5(Digital Washing) - F0.5(Urbano) > 0
0.00321

Test IV:
H0: F0.5(Digital Washing) - F0.5(Abbiramy) = 0

Ha: F0.5(Digital Washing) - F0.5(Abbiramy) > 0
0.00009

Table 3.5 Precision, Recall, and Fβ Scores of Digital Washing Algorithm for Different
Values of N (Boundary Decision Parameter) for Maximizing Fβ-score for β = 0.5, 1, 2

argmax
N

F0.5(N) argmax
N

F1(N) argmax
N

F2(N)

Precision 86.21 75.96 60.01

Recall 59.86 79.46 90.51

F0.5 78.27 75.90 63.82

F1 59.55 76.50 70.97

F2 63.21 77.95 80.89

90.51% (β = 2). When the weights are equal, the algorithm is able to reach precision

and recall rates of 75.96% and 79.46%, respectively. The maximum values of Fβ(N) for

β = 0.5, 1, and 2 are 78.27%, 76.50%, and 80.89%, respectively.

3.4 Conclusion

In this chapter, an algorithm for digital washing of unwashed semen samples was

presented. The algorithm consists of four parts, motile cell segmentation, non-moving

object segmentation, feature extraction, and classification of sperm cells.

The algorithm is based on the assumption that sperm cells are the only cells that

will be actively moving in the semen sample. The motion detection (2D-SGM) algorithm
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based on single Gaussian distribution for each pixel is proposed for the detection of motile

sperm cells. Using the washed semen samples, the ability of 2D-SGM algorithm to achieve

high precision (or low false alarm rate) was compared to other segmentation algorithms

and to a well-studied motion detection algorithm. The digital washing algorithm uses the

similarities in the features of the immotile objects and the features of motile sperm cells to

identify the immotile objects. The algorithm segments and classifies the immotile sperm

cells from the scene.

The digital washing algorithm was compared to other algorithms that perform

segmentation and detection (namely, Otsu [54], adaptive algorithm by Bradley [55],

Abbiramy [11], and Urbano [9]) in terms of precision, recall, and Fβ scores. Our study

concludes that at a significance level α = 0.1, the digital washing algorithm is statistically

better than the four cell segmentation algorithms for detecting sperm cells in unwashed

semen samples in terms of precision and F0.5 score. It should be noted that the four

cell segmentation algorithms we used for comparison were not designed for washing of

unwashed semen samples. The digital washing algorithm proposed in this chapter may

enhance the capabilities of computer-assisted semen analysis systems by making them able

to process unwashed semen samples. This capability removes therefore removing the need

to pre-process/wash the semen samples.

For future studies, one can explore the methods to classify the cell/debris in the

unwashed sample to get a count of not only sperm cells but other non-sperm cells in

the semen sample. As the concentration of non-sperm cells can be an indicator of a

cause of infertility, the study of non-sperm objects may hold some value. In addition,

the algorithm suggests a new method of segmentation and localization of the sperm cells.

For the calculation of motility, one is able to explore different methods of tracking to obtain

the tracks of detected sperm cells in unwashed samples.
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CHAPTER 4

CLASSIFICATION OF SPERM CELL SWIM TYPE

In this chapter, a method of classifying a sperm cell by performing a parameter subset

search is presented. The Artificial Bee Colony (ABC) algorithm and the K-means clustering

algorithm were used on motility parameters of sperm cells in a sample (simulated and real)

to classify and cluster the different swim types.

4.1 Background

The significance of sperm concentration and percent of motile sperm is clear in male

fertility analysis. However, the significance of some sperm motility parameters is a subject

of on-going research [63]. Several studies have used clustering methods to assist in this

line of investigation. The clustering methodology proposed in this study is motivated by

the review of clustering on motility parameters of CASA systems by Martinez-Pastor et

al. [63]. The fully automated multi-sperm tracking algorithm introduced by Urbano et

al. [9, 10] is used to explore the clustering task of human sperm swim subpopulation.

Sperm cell movements can be divided into three major categories: progressive,

non-progressive, and immotile [1]. Immotile movements define cells which show no

movement at all, and non-progressive movements are defined by motility that lacks

progression, where the sperm head shows little displacement over time. Progressive

movements characterize actively moving sperm cells. Two-dimensional progressive sperm

swimming patterns observed by Babcock et al. [39] were categorized as linear mean and

circular.

The two progressive movements, linear mean and circular, differ by the presence

and absence of head rolling. The examples can be seen in Figures 4.1 and 4.2. In

Figures 4.1a and 4.1b, which show snapshots of linear mean swim, one can observe

the orientation of the head is changing during swimming, representing head roll during
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Figure 4.1 (a) Snapshot of sperm A during linear mean swim. (b) Frame-by-frame
snapshots of sperm A during linear mean swimming from frame 38 to 45 (observed at
30 FPS).

Figure 4.2 (a) Snapshot of sperm B during circular swim. (b) Frame-by-frame snapshots
of sperm B during circular swimming from frame 158 to 165 (observed at 30 FPS).

the swim. In Figures 4.2a and 4.2b, which show snapshots of circular swim, one can

observe that the orientation of the head stays the same. From this set of observations,

the sperm cells of different movements are assumed to have a different range of values of
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motility parameters in the proposed approach. Using this assumption, K-means clustering

is performed on the motility parameters to identify and classify the sperm swimming

types (subpopulation analysis). To increase the accuracy of classification, a computational

intelligence algorithm, the Artificial Bee Colony (ABC) algorithm, is used to search

through different subsets of motility parameters that provide a distinct set of clusters for

classification.

This chapter is organized as follows. In Section 4.2, the motility parameter

calculation, sperm track data extraction, and sperm track clustering of simulated and real

sperm swimming data are described. In Sections 4.3.1 and 4.3.2, results of clustering on

simulated data and on two (2) human sperm samples are shown, respectively.

4.2 Methods

4.2.1 Specimen Video Collection and Track Data Extraction

Video clips of human semen specimens prepared and collected by the In-Vitro Fertilization

laboratories at Penn Fertility Care were used in this study. The video clips are 200×

magnified images of 640×480 pixel resolution (0.857 µm/pixel). The sperm swim track

data have been obtained from the video clips by segmentation, localization, and track data

association algorithms. The flowchart of the system is shown in Figure 4.3.

Figure 4.3 Flowchart of the automated sperm cell detection and tracking system proposed
by Urbano et al.
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Following [9], in the segmentation phase, the image was convolved with 11×11 pixel

Gaussian filters five times to reduce image noise. Then, the image was convolved with 9×9

Laplacian of Gaussian (LoG) filter to produce spot-enhance image. Using Otsu’s method

[54], the intensity threshold was calculated for the image, and the image was binarized. The

binarized image then went through morphological enhancements, erosion, and dilation, to

reduce spurious detection due to noise. Finally, the sperm cells were “localized” by labeling

any group with more than or equal to 5 pixels as a detected sperm head.

As the final step of track data extraction, using the joint probability density

association filter (JPDAF) [51], the particle location data were used to track the particles

throughout the video clip. By using JPDAF, the probability of missed detection and track

mismatch during head collisions in sperm cells was reduced, giving more accurate tracking

results compared to other popular track association methods such as the Nearest Neighbor

algorithm [9, 10]. For detailed information regarding the procedures of segmentation,

localization, tracking, and track data association, see [9].

4.2.2 Motility Parameter Calculation

In the standard CASA systems, the eight different motility parameters are calculated from

a track segment, which is the observed path over time Ts.

1. VCL: Curvilinear velocity.

2. VSL: Straight-line velocity.

3. VAP: Average path velocity.

4. ALH: Amplitude of lateral head displacement.

5. LIN: Linearity of the curvilinear path the sperm head (VSL/VCL).

6. WOB: Wobble (VAP/VCL).

7. STR: Straightness (VSL/VAP).

8. MAD: Mean angular displacement.

80



The curvilinear velocity (VCL) is a measure of rate of travel of sperm cell over time

Ts.

V CL(k) =
1

Ts

k∑
i=k−n

||z(i+ 1)− z(i)|| (4.1)

|| · || is denotes the magnitude (length) of a vector. n is the number of points in the

track segment. The value of n is given as

n =
Ts
T
, (4.2)

where T is the period or time interval of data (time between each frame or data). Straight

line velocity (VSL) is a measure of rate of travel between the first point (z(k − n)) and the

last point (z(k)) in the track segment.

V SL(k) =
1

Ts
||z(k)− z(k − n)|| (4.3)

Average path velocity (VAP) is a measure of rate of travel of a sperm cell over the “average

path.” Here, the average path (ẑ(k)) is an estimated path traveled by the sperm cell without

the oscillations caused by the beating of the flagellum. The value of VAP is given by

V AP (k) =
1

Ts

k∑
i=k−n

||ẑ(i+ 1)− ẑ(i)||. (4.4)
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The progression ratios that are used to described the motility of sperm cells are

Linearity (LIN), Strightness (STR), and Wobble (WOB). These ratios are calculated as

integer percentages:

LIN =
V SL

V CL
× 100, (4.5)

STR =
V SL

V AP
× 100, (4.6)

WOB =
V AP

V CL
× 100. (4.7)

Mathematical estimation of amplitude of lateral head displacement (ALH) is given

by

ALH(k) =
2

Ts

k∑
i=k−n

||z(i+ 1)− ẑ(i)|| (4.8)

where the distance between the smoothed path and the corresponding position along the

curvilinear path is averaged and doubled. Lastly, the mean angular displacement (MAD)

is defined as average angle between successive locations along the curvilinear path of the

sperm head. The angle θ is between two segment (a and b) can be found as

θ = cos−1 a · b
||a||||b||

(4.9)

where · is a dot product operator.

The motility parameters are obtained by processing successive 1-second long track

segments (Ts = 1). For the task of classification and clustering, the parameters of each
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particle are then averaged. The median of the parameter measurements was used, as the

median has shown better performance in clustering than the mean; the median is less

impacted by outliers.

4.2.3 K-means Clustering

In a clustering problem, there is a set of N data points {x1, x2, ..., xN}. The goal of

a clustering algorithm is to find a method of identifying points that would belong to K

clusters. K-means clustering is a type of unsupervised learning algorithm that is popularly

used for the task of clustering [64]. In K-means clustering, the algorithm initializes a set

of points {µ1, µ2, ..., µK}, which are “initial” proposed “centers” of K clusters. Each data

point in a set {x1, x2, ..., xN} is assigned to one of K clusters. Usually, this assignment is

based on the least squared Euclidean distance

rnk =


1 if k = arg minj||xn − µj||2

0 otherwise,

(4.10)

where k = 1, 2, .., K. Afterwards, the “center” points are updated by calculating the mean

of each clusters

µk =

∑N
n=1 rnkxn∑N
n=1 rnk

. (4.11)

This process of assignment (data point to cluster) and update (center cluster) continues until

convergence (no change is observed).
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Figure 4.4 Process Flowchart. Time-lapse image is the input and the subset of parameters
that provide most distinct clusters is the output.

4.2.4 Sperm Track Clustering and Artificial Bee Colony Algorithm Design

In attempt to find the subset of motility parameters for K-means clustering that will provide

distinct clusters of each swimming type, the Artificial Bee Colony (ABC) algorithm was

used. ABC algorithm is a computational intelligence algorithm based on the foraging

behavior of the honeybee swarm, proposed by Karaboga [65]. The main goal of the ABC

algorithm is to find the optimal “food source” or optimal solution for a given problem. ABC

algorithm accomplishes this task by using three types of bees: employed bees, onlooker

bees, and scout bees.
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After gathering food at a food source, bees return to a “dance floor” within the hive.

On the “dance floor,” each of the bees performs a waggle dance. The dance provides

information to the other bees, such as the direction, distance, and “richness” of the food

source [66]. The duration of the dance is longer for richer food sources. In the ABC

algorithm, the richness of a food source is referred as the fitness of a solution.

For the design of the ABC algorithm, each of the possible subsets of motility

parameters (VCL, VSL, VAP, ALH, LIN, WOB, STR, and MAD) is considered a food

source, which will be evaluated by bees. The aim of the algorithm would be to find a subset

of motility parameters that will produce the most distinct clusters by K-means clustering.

Distinctiveness of clusters is measured by the silhouette values [67].

A “silhouette value” is a measure of similarity between different data points within

the same cluster. The silhouette value for particle i is

Sn =
bn − an

max(an, bn)
, (4.12)

where an stands for the average distance from data point n to other data points within the

same cluster, and bn is the minimum distance from data point n to other data points in other

clusters.

The sum of silhouette values is high for “good” clustering, and low for “poor”

clustering. For the ABC algorithm, fitness value (the “richness” of the food source) was

defined as the sum of silhouette value for all the data used in clustering (Equation (4.13)).

The fitness function for “food source” s for K clusters, with cluster j containing nj data

points is defined as

F (s) =
c∑

j=1

(

nj∑
n=1

Sn). (4.13)
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The first type of bees, employed bees, exploit the known food sources. These

employed bees return to their hive, and “dance” on the dance floor. Onlooker bees observe

the dance, and decide on their destination. The duration of the dance is proportional to the

richness of the food source; the bees that have been to a rich food source will dance longer

than the bees who have been to a poor food source. Therefore, it is more likely for the

onlooker bees to sight the bee that has been to a rich food source. As a result, the onlooker

bees have more chance of going to a rich food source. Scout bees perform a random search

in order to find even better food sources. These three types of behavior of bees drive the

ABC algorithm.

In the ABC algorithm, the bees are first sent to random locations to search for food.

Each bee evaluates each food source, and returns to the hive with a fitness value. Few of

the “best” sources are chosen as candidate locations for employed bees and onlooker bees

to exploit. Next, the algorithm goes through three phases (employed, onlooker, and scout

bees), and repeats until a termination requirement has been met. For the design, the ABC

algorithm is terminated at the user-defined iteration.

In the proposed application of the ABC algorithm, possible initial solutions or food

sources are proposed in the first step of the ABC algorithm. These food sources are assessed

and ranked based on their “fitness” or richness of the food source. Based on these rankings,

a list of the best food sources is generated (initialization stage). The employed bees are sent

to the food sources that are on the list of best food sources. The employed bees look at the

neighboring site to see if any of the neighboring sites contain a better food source than

the food sources listed in the current list of best food sources. If any of the bees find a

food source that is better, the new site replaces the worst food source listed in the best food

source list. Next, the onlooker bees choose their destination by observing the dances of the

employed bees. For the onlooker bees, a roulette wheel with the selections proportional to

the fitness values in the best food source list is used to select a destination. The probability

of choosing food source sm from the total number of best food sources so is defined to as
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pt(sm) =
F (sm)∑s0
k=1 F (sk)

. (4.14)

Afterwards, the onlooker bees observe the neighboring sites, and update the best food

source list if any better food source was found. Lastly, during the scout bee phase, the scout

bees are sent to random locations to evaluate food sources, and the best food source list is

updated if any better food source was found. The scout bees enable a global search, creating

a possibility of avoiding convergence to a local maximum. The process is represented as a

flowchart in Figure 4.4.

In the context of this problem, every possible subset of motility parameters is a

possible food source for the bees to exploit. In the design, an 8-bit binary word was

generated to indicate which motility parameters are used. Only the motility parameters

corresponding to a “1” are selected for the subset used later in K-means clustering. Initial

random food sources are selected by choosing a random binary number between 00000000

and 11111111. The neighboring “food source” is determined by flipping one of the bits in

the food source word randomly.

Clustering of the subset of parameters was performed through the unsupervised-

learning based K-means clustering method. Specifically, the built-in function for K-means

clustering in MATLAB was used, which is the K-means++ algorithm by Arthur [68]. It was

assumed that there were three (3) distinct clusters in the processed data, with the three (3)

clusters representing each of the sperm swim categories, namely the linear mean, circular,

and non-progressive (including immotile). Each K-means clustering has been repeated five

times to reduce the probability of finding a local minimum.

4.3 Results

In this section, the results of classification and clustering is shown using the simulated

images and real human semen images. The simulated images were generated using the
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swim tracks observed in the real human semen images. The classification and clustering

results (simulated and real) are shown for two samples (sample ID005 and sample ID007).

Samples ID005 and ID007 are denoted as sample 1 and sample 2, respectively. The frame

rate of sample 1 is 15 FPS and the frame rate of sample 2 is 30 FPS. The details of the

semen image collection process are described in the Section 2.3.1.

4.3.1 K-means Clustering of Synthetic Sperm Swim Tracks with the ABC Algorithm

Using the mathematical models described in Section 2.2.2, simulated images of sperm

cells were generated. The tracks were categorized as (1) circular, (2) linear mean, or

(3) immotile/dead. From tracks of each category of samples 1 and 2, swimming parameters

were extracted and averaged. The height of the ribbon rv in linear mean swim was

approximated to be 2
3

of width of the ribbon rh (see Section 2.2.2). The simulation

parameters extracted from the two samples are found in Table 4.1.

Table 4.1 Simulation Parameters Extracted from Samples 1 and 2
Swim Type Circular (Table 2.1) Linear mean (Table 2.3)

Variables rc fc (Hz) fs (Hz) a V fl (Hz) rh rv

Sample 1 180.88 0.1030 11.51 2.89 91.85 10.55 9.00 6.00

Sample 2 251.59 0.0368 3.54 6.62 29.11 1.87 12.11 8.07

Synthetic swim track data for 100 cells for the three swimming types ((1) circular,

(2) linear mean, and (3) immotile/dead) was generated. For testing, the simulation

parameters for each swim type were randomly selected from a normal distribution with

the parameters specified in Table 4.1 as the mean. Multiple scenes were generated at which

the standard deviation for the normal distribution ranged from pσ = 0 to 25 percent of the

mean value. In addition, it was assumed that all the particles were disturbed by a small

additive Brownian motion (to model the influence of the movement of the fluid). The

Brownian motion was equal to σBW (t) where W (t) is a standard 1-dimensional Brownian

motion (W (t) ∼ N(0, t)). The value of σB was set to 5 (σB = 5). The duration of the
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simulated swim was for 15 seconds. The frame rate for data for sample 1 was set to 15 FPS

and the frame rate for sample 2 was set to 30 FPS to match the sample that the simulation

parameters were extracted from. A total of 20 different scenarios for samples 1 and 2 were

generated.

For the ABC algorithm, ten (10) employed bees, five (5) onlooker bees, and five (5)

scout bees were used for 50 iterations. Accuracy was used to assess the performance of the

classification algorithm. Accuracy is defined to be the sum of correct classifications divided

by the total number of classifications. To observe the effectiveness of the classification

algorithm based on ABC search, the accuracy of classifying swim types based on K-means

clustering using additional three motility parameter subsets is shown. These three subsets

are:

1. {VCL, VSL} (subset 1),

2. {VCL, VSL, ALH} (subset 2), and

3. {VCL, VSL, ALH, LIN} (subset 3).

Figure 4.5 Accuracy of clustering for synthetic tracks generated using sample 1 and
sample 2. (Blue) Subset selected using ABC search. (Orange) VCL and VSL used for
clustering. (Yellow) VCL, VSL, and ALH used for clustering. (Purple) VCL, VSL, ALH,
LIN used for clustering.

The results are shown in Figure 4.5. The curves show mean accuracy for 20 scenarios

generated for both samples. For samples 1 and 2, the ABC search based clustering have
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shown the best performance out of the four methods. Clustering based on {VCL, VSL,

ALH, LIN} has performed the worst for both samples, suggesting that the increase in the

number of parameters for clustering does not always improve clustering performance.

Figure 4.6 Clustering results on synthetic tracks generated parameters extracted from
sample 1. (a, d) Scatter plots (VCL vs. VSL) of three swim types (ground truth) for
pσ = 0.25 for simulated images of samples 1 and 2, respectively. (b, e) Scatter plots (subset
parameters selected using ABC search) of three swim types (ground truth) for pσ = 0.25 for
simulated images of samples 1 and 2, respectively. (c, f) Scatter plots (subset parameters
selected using ABC search) of three swim types (result of clustering) for pσ = 0.25 for
simulated images of samples 1 and 2, respectively.

To show the clustering results using the ABC search algorithm, scatter plots of

ground truth clusters and ABC search based clusters are shown in Figure 4.6 for samples

1 and 2. Parts (a, d) of Figure 4.6 show scatter plots (VCL vs. VSL) of three swim types

for pσ = 0.25 for simulated images of samples 1 and 2, respectively. Parts (b, e) of Figure

4.6 show scatter plots (subset parameters selected using ABC search) of three swim types

for pσ = 0.25 for simulated images of samples 1 and 2, respectively. The scatter plots

of parts (a, b, d, e) of Figure 4.6 have been labeled with ground truth. Points belonging to

circular swimming tracks are represented in red, points belonging to linear mean swimming

tracks are represented in green, and points belonging to immotile swimming tracks are

represented in blue. Part (c, f) of Figure 4.6 show scatter plots (subset parameters selected
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using ABC search) of three swim types for pσ = 0.25 for simulated images of samples

1 and 2, respectively. The colors of each point represent the assignments to one of the

clusters. The ABC search algorithm searches for the subsets that would result in high fitness

value (distinct clusters). As shown in Figures 4.5 and 4.6, ABC search based clustering has

shown the ability to classify swimming types with high accuracy in existence high variation

in swimming behaviors.

4.3.2 K-means Clustering of Human Sperm Swim Tracks with ABC Algorithm

Ten (10) employed bees, five (5) onlooker bees, and five (5) scout bees were used in the

ABC algorithm. For real sperm data, 100 iterations are used to reduce the likelihood of

converging to a local maximum. Clustering results are shown for two different samples,

one at 15 FPS (frames per second) and the other at 30 FPS (both observed for 10 seconds).

Figure 4.7 Sample 1 clustering result (15 FPS, 10 seconds)
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Figure 4.8 Sample 2 clustering result (30 FPS, 10 seconds)

4.3.2.1 Clustering Results - Sample 1. In sample 1, 36 sperm swim tracks were

observed. Motility parameters used for this clustering were VSL, VAP, and MAD.

• Cluster 1: 27 tracks with low straight-line velocity and average path velocity. Linear
mean progressive tracks can be observed in this cluster. Few tracks show small linear
progression. Due to the very small speed, they have been clustered with the dead or
immotile cells.

• Cluster 2 (circular): 3 tracks with high value of straight-line velocity and average
path velocity. Tracks show circular swimming path, with small lateral displacement.

• Cluster 3 (linear mean): 6 tracks with smaller straight-line and average path velocity
compared to Cluster 2. Tracks show approximate linear swimming paths with
jagged-like patterns.

4.3.2.2 Clustering Results - Sample 2. In sample 2, 21 sperm swim tracks were

observed. Motility parameters used for this clustering were LIN, WOB, and STR.
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• Cluster 1: 3 tracks with very low values of LIN, WOB, and STR.

• Cluster 2 (circular): 9 tracks with high values of LIN, WOB, and STR. Tracks show
circular swimming path, with small lateral displacement.

• Cluster 3 (linear mean): 9 tracks with high values of STR and smaller LIN and WOB
values compared to Cluster 2. Tracks show approximate linear swimming path with
jagged-like patterns.

4.4 Discussion

To assess the accuracy of the proposed clustering and classification method, simulated

and real human samples were tested. In the simulation testing, sperm swim tracks were

generated using a real human sample. The performance of ABC algorithm driven clustering

was compared to predefined subsets of motility parameters. In the result, the proposed

method has shown the best classification performance. In addition, it was observed that

using more parameters did not provide better clusters (shown in Figure 4.5). It was found

that clustering on a “good” subset of motility parameters showed better classification results

than using a large number of motility parameters. It was also noted that each image

used a subset of parameters that was different based on the swimming parameters of each

simulated sample (shown in Figure 4.6). The proposed method was able to propose a

unique subset of parameters that were used to cluster and classify the sperm cells based on

their swimming types. The ABC algorithm driven clustering was also applied to images of

human semen samples where the algorithm has also shown high accuracy in clustering and

classification based on swimming modes (shown in Figures 4.7 and 4.8). The proposed

method, the ABC driven clustering, has shown to be an effective method to identify the

sperm cells based on the types of the swimming movements.

4.5 Conclusion

K-means clustering guided by the ABC algorithm (for parameter selection) provided

distinct clusters of the different sperm swimming types. The algorithm produced clusters

of moving sperm swim types characterized by the presence or absence of sperm head roll.
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The ability to categorize sperm swim movement could provide a tool that will lead to a

better understanding of the qualities of a semen sample.

94



CHAPTER 5

ROBUST EXTRACTION OF MOTILITY PARAMETERS FROM TIME-LAPSE
SEMEN IMAGES

In this chapter, a method of calculating the motility parameters is presented. The Extended

Kalman filter (EKF) uses the track of sperm cell, assuming that the cell exhibit sinusoidal

traveling wave behavior. Motility parameters are calculated from the estimates of the EKF.

The method is compared to existing motility parameter calculation methods using simulated

sperm swim tracks.

5.1 Background

In Computer-Assisted Semen Analysis (CASA) systems, parameters that describe the

motility of sperm cell are calculated and provided. The main motility parameters include

[1]:

1. VCL: Curvilinear velocity. Velocity of a sperm head moving along the curvilinear
path.

2. VSL: Straight-line velocity. Velocity of a sperm head along the straight line path
between the first detected point to its last.

3. VAP: Average path velocity. Velocity of a sperm head along its average path [69].

4. ALH: Amplitude of lateral head displacement about its average path.

5. LIN: Linearity of the curvilinear path the sperm head (VSL/VCL).

6. WOB: Wobble. Measure of oscillation of the curilinear path about the average path
(VAP/VCL).

7. STR: Straightness. Linearity of the average path of the sperm head (VSL/VAP).

8. MAD: Mean angular displacement. Average angle between successive locations
along the curvilinear path the moving sperm head.

An illustration in Figure 5.1 shows visual representation of four motility parameters (VCL,

VSL, VAP, and ALH).
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Figure 5.1 Illustration of motility parameters (VCL, VSL, VAP, ALH) measured by
CASA systems. (Black) Curvilinear path of sperm head. (Red) Average path of sperm
head.

Motility parameters provide important insights on how sperm cells move. The

motility parameters can be used to quantify useful parameters to assess the quality of the

semen sample. These include percent of motile cells, percent of non-progressive cells,

percent of immotile cells, percent of rapid moving cells, and percent of slow moving cells.

In this dissertation, we have also provided a use case of motility parameters, which is the

classification and clustering algorithm proposed in Chapter 4. In this classification and

clustering algorithm, the motility parameters are used to classify sperm cells based on their

swimming modes.

While these motility parameters provide valuable information on the semen sample,

the parameters calculated from some commercial CASA systems have been known to be

inconsistent [70, 71]. The primary factors causing the inconsistencies in the calculation of

motility parameters are erroneous estimations of the average path and the frame rate.

In order to calculate the motility parameters accurately and consistently, an accurate

estimation of calculation of the average path is needed. Several methods of calculating the

average path were proposed in the literature. Fixed length running average (FLRA) and

adaptive running average (ADRA) are the most common methods [69, 72]. The 5-point
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averaging method using FLRA is often suggested for images of 30 FPS and the 11-point

averaging method is suggested for images of 60 FPS.

However, these average path calculation algorithms often lead to errors because the

frequency of beating in sperm cells varies from a sperm cell to another. To properly

calculate the average path, the length of the fixed length averaging method should be

approximately the same as the period of the beating of a sperm cell (period = 1
frequency

).

The suggested methods (5-point averaging method for 30 FPS or 11-point averaging

method for 60 FPS) assume that the frequency of beating in sperm cells is approximately 6

Hz (30
5

or 60
11

) or higher. When this assumption is wrong, the estimation of the average path

is incorrect.

In Figures 5.2 and 5.3, examples of average path using 5-point averaging method and

11-point averaging method are shown. The blue line shows the original path (curvilinear

path) of the sperm head; the red line shows the “average path” calculated from 5-point

averaging method; the black line shows the “average path” calculated from 11-point

averaging method. The original tracks shown in Figures 5.2 and 5.3 were taken from

images with framerate of 15 FPS. Figure 5.2 shows a good example where both averaging

methods were able to estimate the average path correctly (shows the overall progressive

path without the oscillations). Figure 5.3 shows an example where the 5-point average path

calculation algorithm fails. With 5-point smoothing, the oscillations in the sperm track are

still present in the average path (red line). Here, the 11-point averaging method seems to

provide a reasonable estimation of the average path.

To resolve this type of error, namely the inability to suppress the oscillations, the

adaptive running average (ADRA) was proposed and used [72]. In the adaptive running

average method, one estimates the period of the oscillation and provides an approximate

length of the average filter for average path calculation. However, distortions, noise in

observation, and changes in frequency of the oscillations can cause difficulties in estimating

the period of the path (causing difficulties in estimating the length by the ADRA). Both
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Figure 5.2 Example 1 of 5-point and 11-point average path calculation methods. (Blue)
Original path of a sperm cell observed at 15 FPS. (Red) Average path calculated using 5-
point averaging method. (Black) Average path calculated using 11-point averaging method.
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Figure 5.3 Example 2 of 5-point and 11-point average path calculation methods. (Blue)
Original path of a sperm cell observed at 15 FPS. (Red) Average path calculated using 5-
point averaging method. (Black) Average path calculated using 11-point averaging method.
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FLRA and ADRA may therefore provide incorrect estimations of the average path under

some circumstances.

The incorrect estimation of the average path affects the value of average path velocity

(VAP), amplitude of lateral head displacement (ALH), wobble (WOB), and straightness

(STR). The average tracks shown in Figure 5.3 for 5-point averaging and 11-point

averaging methods were different; the estimated average path calculated using 5-point

averaging was much longer than the average path calculated using the 11-point averaging.

This difference results in an overestimate of VAP when VAP is calculated through the

using 5-point averaging method. WOB is a ratio between VAP and VCL and STR is a

ratio between VSL and VAP. When the value of VAP is incorrect, the values of WOB and

STR are also incorrect. The value of ALH, amplitude of the lateral head displacement, is

calculated by observing the differences between the curvilinear path and the average path.

When ALH was calculated through the average path calculated using the 5-point averaging

method (in example shown in Figure 5.3), the value of ALH was much smaller than the true

amplitude of lateral head displacement (the height of the oscillations in the sperm track) of

the original track (oscillations are still present in the average path).

Another source of estimation error is the differences in frame rates, which causes the

values of motility parameters VCL and MAD to be inconsistent. In Figure 5.4, a sinusoid

with a frequency of 1 Hz is shown. The top plot shows a sinusoid sampled at 5 Hz (FPS)

and the bottom plot shows a sinusoid sampled at 100 Hz (FPS). To connect the discrete

set of points, linear interpolation has been used to estimate the curve of the sinusoid. The

curve obtained from a sinusoid sampled at 5 FPS is shorter than the curve obtained from a

sinusoid sampled at 100 FPS. As a result, the curvilinear velocity (VCL) calculated from

5 FPS data will be smaller than VCL calculated from 100 FPS data. In addition, the mean

angular displacement (MAD) is much larger for the curve observed at 5 FPS compared to

the curve observed at 100 FPS, as the direction of change is going to be much larger for

curves observed at the lower sampling rate.
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Figure 5.4 Sinusoids with frequency of 1 Hz captured at two different sampling rate.
(Top) A sinusoid captured at 5 FPS (5 Hz). (Bottom) A Sinusoid captured at 100 FPS (100
Hz).

To address the difficulties of existing methods for path estimation, a new calculation

method for the motility parameter is presented in this chapter. The swim path of a sperm

cell is assumed to be a “traveling sinusoid.” The “traveling sinusoid” model approximates

the track as a forward-progressive moving cell (approximately linear) with oscillations,

which are assumed to be sinusoidal. An Extended Kalman filter (EKF) is used to estimate

the average path, velocity along the average path, frequency, and amplitude of the traveling

sinusoid. This new proposed algorithm can calculate the 8 different motility parameters

with accuracy and consistency. The new EKF-based method approach is compared to

existing tracking and average path estimation algorithms and is shown to outperform them.

5.2 Methods

In this section, existing methods of tracking and tracking using the “traveling sinusoid”

model are explained. In addition, a method of extracting motility parameters from the

estimated track using the “traveling sinusoid” model is presented.
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5.2.1 Kalman Filter (KF)

The state-space model of a linear time invariant discrete-time system is

x(k + 1) = Fx(k) +Gu(k) + v(k), (5.1)

where x(k) is an n-dimensional state vector, u(k) is an n-dimensional input vector, and

v(k) is a zero-mean white Gaussian process noise. F is state-transition matrix and G is

defined to be control-input matrix. The covariance matrix of the process noise is

E[v(k)v(k)′] = Q(k). (5.2)

where ′ denotes matrix transpose operation. The measurement available from the system is

z(k) = H(k)x(k) + w(k), (5.3)

where z(k) is anm-dimensional observation vector and w(k) is assumed to be a zero-mean

white Gaussian observation noise. H is the observation matrix. The covariance matrix of

the observation noise is

E[w(k)w(k)′] = R(k). (5.4)

In most target tracking scenarios, the states are the position, velocity, and accel-

eration. If one can assume a linear kinetic target model, the Kalman filter can be used to

effectively estimate the “states” x̂ of a target. The Kalman filter is the optimal minimum
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mean square error (MMSE) state estimator for linear kinematic models [73]. The state

prediction (error) covariance matrix of the Kalman Filter is denoted here as P . A flowchart

of a single iteration of the Kalman filter is shown in Figure 5.5.

Figure 5.5 Flowchart of a single iteration of a Kalman Filter.

One can divide the single step of the Kalman filter into two major steps: (1) prediction

and (2) update. In the prediction step, the estimated state of a target is calculated as

x̃(k + 1) = F (k)x̂(k) +G(k)u(k). (5.5)

At this stage, the estimated state x̃(k + 1) is a state estimate calculated from the previous

estimate without taking the consideration of the observation z(k). This estimated state is

often denoted as x̂(k + 1|k) to state that this is the intermediate estimate before the state

estimate update stage.
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From the estimated state x̃(k + 1), the estimate of the observation is calculated

ẑ(k + 1) = H(k + 1)x̃(k + 1). (5.6)

The state prediction (error) covariance matrix is estimated as

P̃ (k + 1) = F (k)P (k)F (k)′ +Q(k). (5.7)

where P̃ (k + 1) is the state prediction covariance matrix without taking account of the

observation z(k). It is also often denoted as P (k + 1|k).

In the update step, the observation z(k + 1) is used to update the state estimate. The

innovation υ(k + 1), or measurement residual, is the difference between the observation

and the estimated observation

υ(k + 1) = z(k + 1)− ẑ(k + 1). (5.8)

The updated state estimate is given by

x̂(k + 1) = x̃(k + 1) +W (k + 1)υ(k + 1), (5.9)

where W (k + 1) is the Kalman gain used to update the state estimate. The Kalman gain

W (k + 1) is defined as

W (k + 1) = P̃ (k + 1)H(k + 1)′S(k + 1)−1, (5.10)
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where S(k + 1) is the innovation covariance defined as

S(k + 1) = R(k + 1) +H(k + 1)P̃ (k + 1)H(k + 1)′. (5.11)

Along with the state estimate, the updated state prediction covariance matrix is given by

P (k + 1) = P̃ (k + 1)−W (k + 1)S(k + 1)W (k + 1)′. (5.12)

5.2.2 Linear Motion Models for Tracking Sperm Cells

Several models for the movement of sperm and other cells were proposed. Among

them, the Brownian motion model (random walk) and constant velocity (with white noise

acceleration, WNA) models are the most popular. In this section, we use the subscripts k

and k + 1 to denote that the values are of time k and k + 1, respectively.

5.2.2.1 Brownian Motion Model. The Brownian motion model is a common model for

cell tracking and simulation of cell motion [28, 74]. The 2-dimensional Brownian motion

model assumes that the displacement of a target vk (2 × 1 process noise) is a zero-mean

white sequence.

Xk = [xk yk]
′ (5.13)

Xk+1 =

xk+1

yk+1

 = FXk + vk =

xk
yk

+ vk =

1 0

0 1


xk
yk

+ vk (5.14)
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There is no input v(k) (v(k) = 0). The covariance matrix of the process noise Q is

Q = E[vkv
′
k] =

σ2
vx 0

0 σ2
vy

 , (5.15)

where the process noise in the horizontal direction x and y are independent of each

other. The variances of process noise are σ2
vx and σ2

vy for horizontal and vertical positions,

respectively. The observation Zk is defined to be

Zk =

zk1
zk2

 = HXk + wk =

1 0

0 1


xk
yk

+ wk. (5.16)

Here, zk1 and zk2 are horizontal and vertical position of the observation, respectively,

and wk is the 2×1 observation noise. The observation noise covariance matrixR is defined

as

R = E[wkw
′
k] =

σ2
w1

0

0 σ2
w2

 , (5.17)

where σ2
w1

and σ2
w2

is the noise variance for the observation (zk1 and zk2). The observation

noise in the horizontal position is assumed independent of the observation noise in the

vertical position.

5.2.2.2 Discrete White Noise Acceleration (DWNA) Model. Sperm cells and aquatic

animals move by passing waves of lateral displacement down the body. As a result, the

sperm cells and aquatic animals show sinusoidal-like movement as they propel themselves

forward. To track these types of movement, constant velocity (also known as white noise
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acceleration (WNA)) models have been used in the literature [9, 10, 75, 76]. The discrete

white noise acceleration (DWNA) model is often suggested for discrete time data. In the

2-dimensional DWNA model, the state vector Xk holds the positions and velocities along

the horizontal and vertical directions,

Xk = [xk ẋk yk ẋk]
′. (5.18)

The model assumes constant velocity, where the process noise is zero-mean white

acceleration sequence. The change in the state Xk is defined as

Xk+1 =



xk+1

ẋk+1

yk+1

ẏk+1


=



xk + ẋkT

ẋk

yk + ẏkT

ẏk


+ vk = FXk +

Γvk1
Γvk2

 =



1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1





xk

ẋk

yk

ẏk


+



vk1T
2/2

vk1T

vk2T
2/2

vk2T



(5.19)

where the process noise covariance matrix Q is defined as

Q = E[vkv
′
k] =

Γσ2
vxΓ

′ 02,2

02,2 Γσ2
vyΓ

′

 , Γ =

T 2/2

T

 (5.20)

There is no input v(k) (v(k) = 0). The observation Zk is defined as
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Zk =

zk1
zk2

 = HXk + wk =

1 0 0 0

0 0 1 0




xk

ẋk

yk

ẏk


+ wk (5.21)

where the observation noise wk is a 2× 1 vector with covariance matrix R is defined as

R = E[wkw
′
k] =

σ2
w1

0

0 σ2
w2

 . (5.22)

5.2.3 Extended Kalman Filter (EKF)

The kinematic model of an object will not always be linear. In such case, one can sometimes

write the state equation as

x(k + 1) = f [k, x(k), u(k)] + v(k), (5.23)

where f [k, x(k), u(k)] is an assumed function of k, x(k), u(k), differentiable in x and u.

The observation (measurement) equation can be written as

z(k + 1) = h[k + 1, x(k + 1)] + w(k), (5.24)

where h[k + 1, x(k + 1)] is a function of k + 1 and x(k + 1), assumed differentiable in x.

When the state equation and the observation equation are non-linear, one can sometimes

linearize the state equation and the observation equation at each time step k. This approach
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leads to the Extended Kalman filter (EKF). One iteration of the EKF is shown in Figure

5.6.

Figure 5.6 Flowchart of a single iteration of an Extended Kalman Filter.

The operation of the EKF is similar to the process of the KF. The difference is that the

state prediction covariance (P̃ and P , Equations (5.7) and (5.12)), filter gain (W , Equation

5.10), and innovation covariance (S, Equation (5.11)) are updated with Jacobians of the

state equation F and the observation equation H . The Jacobians of the state equation and

the observation equation are given as
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F (k) =
∂f(k)

∂x
|x=x̂(k), H(k + 1) =

∂h(k + 1)

∂x
|x=x̃(k+1). (5.25)

Many of the theoretical guarantees developed for the Kalman filter do not extend

automatically to the EKF, or may require various restrictions on the functions f(·) and

h(·).

5.2.3.1 Motion Model. Many studies, through observation and simulation, have shown

that aquatic animals and sperm cells, which propel themselves forward by passing waves of

lateral head displacement, exhibit sinusoidal-like paths [29, 36, 38, 39, 72, 75–82]. Instead

of using the Brownian motion model or the DWNA model for tracking sperm cells, the

proper model for tracking of sperm cells should therefore be a “traveling sinusoid.” In this

model, there are eight (8) stages, namely

Xk = [Ak ϕk ωk θk rk ṙk lk l̇k]
′. (5.26)

Here,

• A is the amplitude of the wave,

• ϕ is the angle of the sinusoid

• ω is the frequency of the sinusoid

• θ is the angle of rotation

• r and l are the horizontal and vertical positions of the average path

• ṙ and l̇ are the horizontal and vertical velocity along the average path

The observation Zk is assumed to be a function of the states Xk, of the form
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Zk =

zk1
zk2

 = h(Xk) + wk =

rk
lk

+

cos θk − sin θk

sin θk cos θk


 0

Ak sin(ϕk)

+ wk

=

rk − Ak sin(ϕk) sin θk

lk + Ak sin(ϕk) cos θk

+ wk

. (5.27)

In this model, the sinusoid Ak sinϕk is rotated by angle θk and added to the position rk and

lk. The state equation is

Xk+1 =



Ak+1

ϕk+1

ωk+1

θk+1

rk+1

ṙk+1

lk+1

l̇k+1



= FXk + vk =



Ak

ϕk + ωkT

ωk

θk

rk + ṙkT

ṙk

lk + l̇kT

l̇k



+



vkA

Γvkϕ

vkθ

Γvkr

Γvkl



=



1 0 0 0 0 0 0 0

0 1 T 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 T 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 T

0 0 0 0 0 0 0 1





Ak

ϕk

ωk

θk

rk

ṙk

lk

l̇k



+



vkA

vkϕT
2/2

vkϕT

vkθ

vkrT
2/2

vkrT

vklT
2/2

vklT



, Γ =

T 2/2

T



. (5.28)
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In this state equation, the amplitudeAk and the rotation angle θk follow the Brownian

motion model, and the angle of sinusoid ϕ and position r, l follow the DWNA model

(constant velocity and frequency). The state noise covariance matrix Q is defined as

Q = E[vkv
′
k] =



σ2
A 0 0 0 0 0 0 0

0 σ2
ϕT

4/4 σ2
ϕT

3/2 0 0 0 0 0

0 σ2
ϕT

3/2 σ2
ϕT

2 0 0 0 0 0

0 0 0 σ2
θ 0 0 0 0

0 0 0 0 σ2
rT

4/4 σ2
rT

3/2 0 0

0 0 0 0 σ2
rT

3/2 σ2
rT

2 0 0

0 0 0 0 0 0 σ2
l T

4/4 σ2
l T

3/2

0 0 0 0 0 0 σ2
l T

3/2 σ2
l T

2



,

(5.29)

The model assumes that the amplitude A, the rotation angle θ, the frequency ω, and the

velocity (ṙ, l̇) are independent of each other and of any combination of the other variables.

The amplitude A and rotation angle θ follow state noise covariance of the Brownian

motion model. The frequency ω and velocity (ṙ, l̇) follow state noise covariance of the

DWNA model. The model assumes the observation noise in the horizontal position zk1 is

independent of the observation noise in the vertical position zk2 .

R = E[wkw
′
k] =

σ2
w1

0

0 σ2
w2

 (5.30)

The state equation of the model is linear (Equations (5.23) and (5.28), f [k, x(k), u(k)]

= F (k)x(k)). Therefore, Jacobian of f [k, x(k), u(k)] is matrix F in Equation (5.28). The

observation equation is nonlinear. The Jacobian of h[k, x(k)] is
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h′(Xk) =
∂h(Xk)

∂Xk

= Hk =



− sin(ϕk) sin θk sin(ϕk) cos θk

−Ak cos(ϕk) sin θk Ak cos(ϕk) cos θk

0 0

−Ak sin(ϕk) cos θk −Ak sin(ϕk) sin θk

1 0

0 0

0 1

0 0



′

. (5.31)

In this chapter, the Extended Kalman filter assuming “traveling sinusoid” model is

referred as the traveling sinusoid EKF. Accordingly, the Kalman filter assuming DWNA

model is referred as the DWNA KF and the Kalman filter assuming the Brownian motion

model is referred as the Brownian KF.

5.2.4 Advantages of using “Traveling Sinusoid” EKF Model

In this section, the advantages of using the “traveling sinusoid” model are presented. In an

image of a semen sample, a large number of sperm cells can be observed. As the sperm

cells swim, a sperm cell can collide with the other cells. Figure 5.7 shows an example

where two different particles (cells) moving as “traveling sinusoids.” Figure 5.7a shows a

result of tracking using traveling sinusoid EKF, Figure 5.7b shows a result of tracking using

DWNA KF, Figure 5.7c shows a result of tracking using Brownian motion KF, and Figure

5.7d shows the mean error (distance) between the ground truth tracks and the estimated

tracks.

In multi-object tracking, a decision process is required to choose which observation

or observations belong to each track. Among the methods to accomplish this association
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Figure 5.7 An example of tracking two traveling sinusoids with different types of Kalman
filters. (a) “Traveling Sinusoid” EKF tracking. (b) DWNA KF tracking. (c) Brownian
motion KF tracking. (d) Mean error between ground truth tracks and estimated tracks.

task, the nearest-neighbor (NN) is one of the simplest; the observation closest to a track

is used to update the KF or the EKF. For the DWNA KF and traveling sinusoid EKF,

track mismatches are less likely to occur, because the estimates are updated based on the

expected direction of travel (velocity). However, the Brownian motion KF does not take

into consideration the direction of movement of the target. The estimates of the Brownian

model, therefore, have a higher likelihood of mismatch between the observation and the

tracks.

Figure 5.7 shows a case of mismatch of tracks occurring for the Brownian motion KF.

The mean errors between the estimated track and the ground truth for the DWNA KF and

the traveling sinusoid EKF remain at a similar level. The mean error between the estimated

track and the ground truth for the Brownian KF, on the other hand, shows a gradual increase

at the index of approximately 80. This increase in mean error is caused by a track mismatch
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that occurs when the two tracks collide with each other. Due to the phenomenon of track

mismatch, the use of Brownian KF should be avoided for sperm tracking.

The DWNA KF models the track as a target with constant velocity. This assumption

causes the estimated track to be approximately linear. For sperm cells that move as

“traveling sinusoids,” the oscillations are considered to be part of the noise. However,

the oscillations are not caused by noise and as a result, the DWNA KF loses valuable

information about the sperm track. The “traveling sinusoid” EKF retains the oscillations

in the sperm track model, unlike the DWNA KF. This difference is illustrated in Figure

5.8. On the left hand side, Figure 5.8 shows the result of DWNA KF tracking. On the

right side of the Figure 5.8 shows the result of traveling sinusoid EKF. The estimated track

of DWNA KF was unable to track the oscillation of the traveling sinusoid, where as the

traveling sinusoid EKF retained the oscillation in the original track.

5.2.5 Motility Parameter Extraction from EKF Estimates

There are two main changes in the motility parameter calculations methods (previous

motility parameter calculation methods shown in Section 4.2.2). The traveling sinusoid

EKF estimates the amplitude of the track oscillation. This value of the amplitude can be

directly used as the estimate of ALH (amplitude of lateral head displacement). In addition,

the traveling sinusoid EKF estimates the positions rk and lk, which are the position of the

average path at time k. The availability of this estimate removes the need to use track

averaging algorithms such as the FLRA and ADRA. The average path estimated using the

EKF will directly impact the calculation of VAP (average path velocity), WOB (wobble),

and STR (straightness).

Lastly, the proposed method for track estimation also uses a linear interpolation of the

state estimates Xk for values between samples at time steps k and k + 1. The observation

estimate can be found as ẑ(n) = h(n, x̂(n)), where n is the time step between time steps

k and k + 1. The interpolation is done to minimize the differences in the value of VCL
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Figure 5.8 An example of tracking traveling sinusoid using DWNA KF and traveling
sinusoid EKF. (Red) The ground truth track. (Blue) The observed track. (Green) The
estimated track. (Left) DWNA KF. (Right) Traveling sinusoid EKF.
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(curvilinear velocity) and MAD (mean angular displacement) for data with different frame

rates.

5.3 Test Setup

To assess the performance of the traveling sinusoid EKF for accurate and consistent

calculation of motility parameters, four (4) test cases were generated. The four test cases

were:

1. “Traveling sinusoid” with observation noise
(X(k + 1) = Fx(k) and Z(k) = h(k, x(k)) + w(k)),

2. Rotating “traveling sinusoid” (similar to circular swim described in Chapter 2) with
observation noise
(X(k + 1) = Fx(k) + [0 0 0 0.05πT 0 0 0 0]′ and Z(k) = h(k, x(k)) + w(k)),

3. Rotating “traveling sinusoid” with process noise and observation noise
(X(k+1) = Fx(k)+v(k)+[0 0 0 0.05πT 0 0 0 0]′ and Z(k) = h(k, x(k))+w(k)),
and

4. Linear mean swimming cell (for the equations of the swim model see Section
2.2.2.1.2) with observation noise (Z(k) = h(k, x(k)) + w(k)).

The ground truth track and the observed track used for testing are shown in Figure 5.9. The

observation noise is assumed to be zero-mean white noise with a variance of 1 px. The

values of parameters used to generate the simulated paths are shown in Tables 5.1 and 5.2.

For test cases that involved rotation, the rotation was added to the track with a rate of 0.05π

rad/s.

Table 5.1 Initial State Values for Test Cases 1-3

Variable A ϕ ω θ r ṙ l l̇

Value 4 px 0 rad 12π rad/s π
6 rad 0 px 50 cos(π6 ) px/s -20 px 50 sin(π6 ) px/s

A total of six (6) different tracking and track averaging methods were tested in their

ability to provide accurate and consistent calculations of motility parameters. The six

tracking and track averaging methods are:
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Figure 5.9 Test cases for motility parameter calculation performance assessment.
(1) “Traveling sinusoid.” (2) Rotating “traveling sinusoid.” (3) Noisy rotating “traveling
sinusoid. (4) Linear mean swim.

Table 5.2 Parameter Values Used to Generate Test Case 4 (Linear Mean Swimming Path)

Variable rv rh fl θr V Ahar

Value 4 px 8 px 12π rad/s π
6 rad 50 px/s 0.1

1. Raw measurements (denoted as nearest-neighbor (NN) in the results) with 5-point
averaging,

2. Raw measurements (NN) with 11-point averaging,

3. DWNA KF tracking with 5-point averaging,
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4. DWNA KF tracking with 11-point averaging,

5. “Traveling sinusoid” EKF tracking, and

6. “Traveling sinusoid” EKF tracking with interpolated states.

Tracking and track averaging methods are tested were 30, 40, 60, and 120 FPS. The ground

truth motility parameters were calculated from the ground truth track (no observation noise)

at 120 FPS.

5.4 Results

The motility parameters calculated from the six tracking and track averaging methods are

shown in Figures 5.10, 5.12, 5.14, and 5.16. The percent error between the calculated

values of the motility parameters and the true values of the motility parameters (calculated

from the ground truth tracks at 120 FPS) for the four test cases are shown in Figures 5.11,

5.13, 5.15, and 5.17. Percent error is defined as

Percent Error =
|Calculated− Truth|

Truth
× 100%. (5.32)

A good tracking and track averaging methods will (1) have small error between the ground

truth and the calculated motility parameter values and (2) have small or no change in

motility parameter values for different frame rates.

Figure 5.10 shows the values of motility parameters (VCL, VSL, LIN, ALH, VAP,

WOB, STR, and MAD) for the six tracking and track averaging algorithms for test case

1 at frame rates 30, 40, 60, and 120. Figure 5.11 shows the percent error between the

ground truth motility parameters to calculated motility parameters from the six tracking

and tracking algorithms. Observations:

• For VCL, one can observe that the NN tracking algorithms show change in the values
of VCL with the frame rate. Specifically, the value of VCL increases as frame rate
increases. For the DWNA KF tracking, one can observe VCL values close to 50,
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which is far from the true value of VCL (close to 100). On the other hand, the VCL
values calculated using the estimated track from traveling sinusoid EKF are very
close to the ground truth VCL values (small percent error).

• All the methods were able to accurately calculate the values of VSL (close to
the ground truth value). However, other than the traveling sinusoid EKF with
interpolation method, all the other algorithms seem to show small differences in the
VSL values calculated at different frame rates.

• The traveling sinusoid EKF was able to provide the most accurate values to the
ground truth values of LIN. One can observe that the LIN value for the DWNA KF
model was very close to 1. This is due to the model assuming a constant velocity
(movement close to a line) where the oscillations in the track are considered to
be noise. Similar to VCL, the NN tracking method also showed changes in the
calculated values of LIN when the frame rate changed.

• Values of ALH are inconsistent for the NN based tracking and DWNA KF based
tracking methods. The differences in the framerate and the averaging method cause
differences in the ALH values. In contrast, the value of ALH is close to the ground
truth for the traveling sinusoid EKF. The value of ALH calculated from traveling
sinusoid EKF is also less affected by frame rate compared to the other tracking and
track averaging methods.

• The calculated values of VAP are close to ground truth for DWNA KF and traveling
sinusoid based tracking methods. For NN methods, the values of VAP are heavily
affected by frame rate. The 11-point averaging method provides results that are close
to the ground truth up to the frame rate of 60. The 5-point averaging method provides
correct results only for 30 FPS.

• The WOB values calculated from DWNA KF and traveling sinusoid EKF tracking
methods are consistent for the frame rates 30, 40, 60, and 120. For NN method the
values of WOB change for with the frame rates. The values of WOB for traveling
sinusoid EKF methods are closest to the ground truth compared to the other methods.

• The STR values calculated from DWNA KF and traveling sinusoid EKF tracking
methods are consistent for the frame rates 30, 40, 60, and 120 with small percent
error. For NN methods the values of STR changes with the frame rates.

• THE MAD values calculated from DWNA KF and traveling sinusoid EKF -
interpolated tracking methods are consistent for the frame rates 30, 40, 60, and
120, with small percent error. NN tracking and traveling sinusoid EKF without
interpolation show large percent error and the value of MAD varies with the frame
rate.

Figure 5.12 shows the values of motility parameters (VCL, VSL, LIN, ALH, VAP,

WOB, STR, and MAD) for the six tracking and track averaging algorithms for test case
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2 at frame rates 30, 40, 60, and 120. Figure 5.13 shows the percent error between the

ground truth motility parameters to calculated motility parameters from the six tracking

and tracking algorithms. Observations are similar to the observations made for test case 1.

Figure 5.14 shows the values of motility parameters (VCL, VSL, LIN, ALH, VAP,

WOB, STR, and MAD) for the six tracking and track averaging algorithms for test case

3 at frame rates 30, 40, 60, and 120. Figure 5.15 shows the percent error between the

ground truth motility parameters to calculated motility parameters from the six tracking

and tracking algorithms. Observations are similar to the observations made for test case 1

for NN tracking and DWNA tracking methods. Compared to the percent errors observed in

test cases 1-2, the percent errors of motility parameters (VCL, LIN, ALH, and WOB) for

traveling sinusoid EKF are larger in test case 3.

Figure 5.16 shows the values of motility parameters (VCL, VSL, LIN, ALH, VAP,

WOB, STR, and MAD) for the six tracking and track averaging algorithms for test case

4 at frame rates 30, 40, 60, and 120. Figure 5.17 shows the percent error between the

ground truth motility parameters to calculated motility parameters from the six tracking

and tracking algorithms. Observations are similar to the observations made for test case 1

for NN tracking and DWNA tracking methods. Compared to the percent error observed in

test cases 1-3, the percent errors of motility parameters (VCL, LIN, WOB, and MAD) for

traveling sinusoid EKF are larger in test case 4.
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Figure 5.10 Motility parameters calculated from the six tracking and track averaging
methods for test 1.
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Figure 5.11 Percent error of motility parameters calculated from the six tracking and track
averaging methods for test 1.

123



Figure 5.12 Motility parameters calculated from the six tracking and track averaging
methods for test 2.
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Figure 5.13 Percent error of motility parameters calculated from the six tracking and track
averaging methods for test 2.
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Figure 5.14 Motility parameters calculated from the six tracking and track averaging
methods for test 3.
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Figure 5.15 Percent error of motility parameters calculated from the six tracking and track
averaging methods for test 3.
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Figure 5.16 Motility parameters calculated from the six tracking and track averaging
methods for test 4.
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Figure 5.17 Percent error of motility parameters calculated from the six tracking and track
averaging methods for test 4.

129



Overall, the “traveling sinusoid” EKF with interpolated states have shown the highest

level of consistency in motility parameter calculations in varying frame rate data with low

levels of percent error compared to the other methods. This fact is also illustrated in Figure

5.18, where a box and whiskers plots of the percent error between the motility parameters

calculated at 120 FPS to the motility parameters calculated at 30, 40, and 60 FPS for 50

scenarios of test case 3 (noisy traveling sinusoid). Percent error between the values A and

B are defined to be

Percent Difference =
|A−B|
(A+B)

2

. (5.33)

For VCL and LIN, the DWNA KF tracking methods show very small percent difference,

but this is because the tracks were modeled as a straight line (constant velocity model).

Although it is more consistent than the proposed traveling sinusoid EKF model, the percent

difference between the ground truth and the calculated values of VCL and LIN are large

for DWNA KF methods.

5.5 Conclusion

The use of Extended Kalman filter to estimate the sperm tracks enables consistent and

accurate motility parameters compared to existing methods of tracking. The sperm tracks

are modeled as a “traveling sinusoid” for tracking and the states are interpolated to reduce

the amount of error in calculation of motility parameters due to frame rate. Through the

test cases, the robustness of the approach was validated by comparing the result of motility

parameter calculation to other methods for tracking and track averaging. The ability

to calculate motility parameters with high consistency and accuracy provides a way for

existing and future CASA systems to provide more reliable values of motility parameters

and semen quality assessments.
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Figure 5.18 Box plots for the percent differences between the motility parameters
calculated at 120 FPS to the motility parameters calculated at 30, 40, and 60 FPS.
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CHAPTER 6

END NOTES

Four existing challenges in Computer-Assisted Semen Analysis (CASA) systems were

addressed. The new solutions include the development of an assessment tool for CASA

systems, a digital washing algorithm for unwashed semen samples, a classification

technique for sperm cell by swimming patterns, and calculation of motility parameters

in semen analysis.

Other challenges in the field exist, calling for further research. In semen analysis,

subpopulation analysis is of interest, namely detailed studies of subpopulation of a sperm

cohort, where the subpopulation is characterized by distinct characteristics, typically

determined through clustering analysis. There are so far no significant findings about

subpopulations [63]. Using the classification algorithm developed in this paper, it would be

worthwhile to quantify the distribution of swim types within subpopulations and observe

the characteristics of subpopulations whose members are known to share a swimming type.

Findings from a study of this kind may lead to a deeper understanding of the importance

of sperm swim types in semen analysis and in understanding symptoms and maybe even

causes for infertility.

Additionally, our study on digital washing can be expanded. In the digital washing

algorithm, we have used features of moving sperm cells to detect all sperm cells out of all

the objects in the semen image frame. Based on a database of different cell types, it would

be interesting to classify different objects or other cells in semen. In specific cases, such

as pyospermia (unusual amount of white blood cells in semen), a patient may have a very

high concentration of non-sperm cells. By identifying the different non-sperm objects or

cells in semen, one may be able to assist clinicians in understanding better the conditions

of their patients.
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