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Abstract: The rapid growth of the world’s population has put significant pressure on agriculture
to meet the increasing demand for food. In this context, agriculture faces multiple challenges, one
of which is weed management. While herbicides have traditionally been used to control weed
growth, their excessive and random use can lead to environmental pollution and herbicide resistance.
To address these challenges, in the agricultural industry, deep learning models have become a
possible tool for decision-making by using massive amounts of information collected from smart
farm sensors. However, agriculture’s varied environments pose a challenge to testing and adopting
new technology effectively. This study reviews recent advances in deep learning models and methods
for detecting and classifying weeds to improve the sustainability of agricultural crops. The study
compares performance metrics such as recall, accuracy, F1-Score, and precision, and highlights the
adoption of novel techniques, such as attention mechanisms, single-stage detection models, and new
lightweight models, which can enhance the model’s performance. The use of deep learning methods
in weed detection and classification has shown great potential in improving crop yields and reducing
adverse environmental impacts of agriculture. The reduction in herbicide use can prevent pollution
of water, food, land, and the ecosystem and avoid the resistance of weeds to chemicals. This can
help mitigate and adapt to climate change by minimizing agriculture’s environmental impact and
improving the sustainability of the agricultural sector. In addition to discussing recent advances, this
study also highlights the challenges faced in adopting new technology in agriculture and proposes
novel techniques to enhance the performance of deep learning models. The study provides valuable
insights into the latest advances and challenges in process systems engineering and technology for
agricultural activities.

Keywords: weed detection; deep learning; weed classification; support decision-making algorithm;
fruit detection; disease detection; CNN; performance metrics; agriculture

1. Introduction

The world population began growing rapidly during the industrial revolution, mainly
due to medical advances and increases in agricultural productivity. Currently, it is estimated
that the population increases dramatically, by an average of 80 million per year. With any
type of projection, there is a degree of uncertainty; however, the United Nations predicts
that there will be 8.1 billion people on the planet by 2025 [1–3].

In this era, the highest rates of population growth occur mainly in developing countries
reflecting their higher fertility rates and an increase in longevity. Furthermore, urbanization
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has been increasing, and by 2050 over 70% of the world’s population will live in urban
areas, dependent on food produced by others [2].

Given the increasing demand for food, the level of production should increase by
70% [1,3]. However, agriculture faces tremendous challenges including climate change,
drought, pests, weeds, diseases, pollution, soil deterioration, pump irrigation costs, rising
groundwater, the switch from a fuel-based to a bio-based transition economy, and finally,
the decreasing availability of freshwater as demand rises [4].

According to [4], weeds directly compete with fruit or vegetable crops for water,
growing space, nutrients, and sunlight, leaving the crops susceptible to insects and diseases,
which results in productivity losses of 34% on average.

Water is one of the most important resources in crop growth. Amongst other issues,
weeds can steal water from the field and prevent crop growth. Furthermore, climate change
is directly connected with the changes in average global temperature. This contributes
to the reduction of available water and, therefore, producers need to adopt water-saving
practices, and keep the fields free of weeds [5].

One of the most essential factors in agricultural yield is weed management, and hand
weeding is the oldest method. However, it has a high labor cost, and is inefficient and
time-consuming. Mechanical weeding techniques are far more effective and labor-saving
than hand weeding; however, they can easily cause crop damage [4].

One of the solutions for weed control is the application of herbicides. Although these
chemicals can eliminate weeds efficiently, they can also pollute water supplies or food.
Thus, to neutralize these problems, many European nations have started to restrict the use
of pesticides in farming [6].

Due to these problems, weed management must become more environmentally
friendly. Precision agricultural technology needs to be used to minimize the negative
effects of herbicides on the environment and to optimize their usage [7,8].

Precision agriculture (PA) is the most favorable key to these problems. Using a
variety of cutting-edge information, communication, and data analysis approaches, PA is
a management strategy that aids in improving crop output while minimizing water and
fertilizer losses, as well as enabling a better environmental impact [9].

The development of decision-making algorithms has placed a lot of emphasis on artifi-
cial intelligence (AI). AI includes any method that allows robots to learn from experience,
adjust to new inputs, and emulate human behavior [10]. The sub-field of artificial intelli-
gence known as machine learning (ML) employs computational algorithms to transform
data from the real world into usable models and decision-making guidance. Finally, deep
learning (DL) is a section of machine learning [11].

Remote sensing has been used frequently to map weed patches in agricultural fields
for Site-Specific Weed Management (SSWM). Weeds can be identified or separated from
cultivated plants based on their distinctive spectral signatures. Over the past few years,
picture categorization using machine learning methods has proven to be very accurate and
effective for weed mapping [9].

Convolution Neural Networks (CNNs) are now the most widely used deep learning
method for the agriculture industry. Convolutional neural networks belong to a class of
deep neural networks, usually employed to analyze visual imagery [12].

It is expected that these technologies will change agribusiness since they allow for
decision-making in days rather than weeks. Additionally, they guarantee a significant drop
in expenses and an increase in productivity [13].

In conclusion, to identify new approaches, difficulties, and potential fixes for employ-
ing deep learning in agriculture, this study will evaluate published studies. The objective
of this paper is to give an overview of current work and to point out difficulties in the
collection and preparation of data for deep learning models; to review the current DL
model methods used in agriculture; to emphasize the challenges in model training; to
evaluate the novel edge devices utilized to implement the trained models, as well as the
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difficulties involved in using them in the real world. This review will not cover vegetation
recognition methods based on radar/microwave sensors.

The remainder of this paper is structured as follows. Materials and methods, including
information about the eligibility of the articles reviewed, are presented in Section 2. Section 3
gives an overview of deep learning as well as a review of the papers. The major challenges
in this research are detailed in Section 4, while Section 5 concludes the article.

2. Materials and Methods

Since the evolution of weeds and the uncontrolled use of herbicides are hot and rising
topics of the present times, a comprehensive literature review was conducted to collect,
verify, analyze, and describe the scientific facts on the goals, difficulties, and constraints
of weed detection and categorization, while putting people at the center of productive
processes and systems.

As a result, the purpose of this systematic review is to research the philosophies of
and approaches to deep learning in agriculture for purposes of detection and classification,
with a focus directed to the problem of weeds.

Finally, this study was carried out using a four-phase flow diagram and PRISMA’s
standards, also known as a systematic review and meta-analysis statement.

2.1. Focus Questions

Deep learning emerges as a complement to agricultural production as a resource cen-
tered on the human being, where fruit and vegetable production is prioritized, to maintain
productive and sustainable performance in respect of the supply of healthy foods [10].

This technique, due to its benefits, including strong feature extraction ability and
excellent identification accuracy, is commonly employed in image recognition.

Future prospects for food generation are to reduce the number of plants that emerge by
themselves in regions where the population maintains their crops. However, the objective
is to do this sustainably and efficiently, contributing to the reduction of the uncontrolled
use of herbicides.

That said, it is important to research and evaluate the deep learning approaches,
introducing and evaluating the ideas and philosophies behind weeds, their detection, and
classification, to achieve a sustainable and resilient system, especially for the worker. This
led us to our research questions:

(1) What types of models can be applied for deep learning for detection or classification
in agriculture?

(2) Which model is better for detection and/or classification?
(3) What type of metrics can be used to evaluate the model?

2.2. Sources of Information and Methods Used to Obtain Data

Initial data screening and collection for this systematic literature review article began in
September 2022, and for the bibliographic study, three electronic databases, Science Direct,
ResearchGate, and Google Scholar, were employed. Pre-determined keywords connected
to the study’s main emphasis were utilized for the database search: weed detection and
weed classification. The keywords were chosen to be comprehensive and not to condition
or restrict the study.

Therefore, all information and data that would be pertinent to the inquiry were in-
cluded. The screening titles’ keywords included “deep learning” together with one of
the following keywords: “agriculture”, “weeds”, “precision agriculture”, “weeds detec-
tion”, “weeds classification”, and “crop classification”. The language search was always
conducted in English.
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2.3. Eligibility Criteria

In this analysis, the evolution of distinct strategies for weed, disease, and fruit detection
and classification are explored, as well as their classification employing performance metrics.
Based on article titles and abstracts, the writers initially performed a preliminary selection
and exclusion process. For eligibility, the following inclusion and exclusion criteria were
used. Only research published in English with text available, including research articles
and review articles, was included. Furthermore, given the recent development of the
technologies for weed detection and classification under consideration here, a study period
between 2015 and 2022 was chosen.

In addition to these inclusion factors, articles should describe and explore at least one of
the two focus subjects of the study: artificial intelligence and weeds detection/classification.
Moreover, other features were added such as results, sustainability, and the algorithms
associated with deep learning for detection or classification. Additionally, some of the other
applications include the detection of plant and leaf diseases and detection and classification
of fruits or vegetables were introduced. Articles before 2015, with a non-exclusive focus on
classification or detection, and those not considering deep learning were excluded. The
following aspects were considered while analyzing the articles:

• The process used to gather the dataset and the difficulties encountered when using it
to train the model.

• The performance of the models and the DL models/architectures employed in the paper.
• The measures that were used for the model’s evaluation.
• The model’s inference time (if specified), as this is a crucial factor in the use of the

model in real-time applications.
• The examination of the model’s failure prediction.
• Whether the trained model was deployed using a low-cost device developed by

the authors.

3. Review of Extracted Research
3.1. Principal Findings

To perform this review, a four-phase flow diagram PRISMA were applied. Thus, the
procedure employs four phases, of which the first is the identification of the papers. The
second phase is the screening. Following this, the eligibility is considered, and the number
of papers is determined.

This literature research obtained an aggregate of 175 articles: 35 from Science Direct,
53 from ResearchGate, and 87 from Google Scholar. Of these articles, 12 were not available
for full-text reading and 59 were duplicates or triplicates among the three databases, and
for that reason were excluded.

Thus, when the non-eligible articles were excluded, 104 articles remained. Upon
reviewing the titles and abstracts of the papers, 62 papers were eliminated in the following
stage, leaving 42 articles. The 42 publications were then subjected to a full-text analysis to
determine their eligibility, during which 9 were disqualified since they did not match the
current study’s objectives (Figure 1).

This literature study comprised analysis of the remaining 33 publications.
Dates and numbers of papers were the focus of the first examination. As can be seen

in Figure 2, despite the publications’ recent publication dates (from 2015 to 2022), there has
been a marked increase in research into the notion of deep learning for weed categorization
and detection.

The second study goal was to validate the genre of recently themed articles that were
being written and distributed. Among the 33 articles, four dealt with plant diseases, four
with fruit detection, fourteen with weed detection, and eleven with weed categorization.
This is represented in Figure 3.
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3.2. An Overview of Deep Learning

The brain’s neural networks in humans served as an inspiration for DL models. The
phrase “deep” refers to how many covert levels the data is converted through. To produce
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predictions, the models pass the input across a deep network with several layers, each of
which employs a hierarchy to extract certain characteristics from the data at various sizes
or resolutions and combine them into a higher-level feature [11]. DL models are broken
down into three categories: reinforcement learning, unsupervised learning, and supervised
learning. The process of learning a function using labelled training data is known as
supervised learning. In supervised learning, each pair of data in the dataset represents the
intended output value and an input item. The purpose of reinforcement learning (RL) is to
determine how an agent should behave in each environment to maximize rewards.

A model of supervised learning is the CNN model, created primarily for segmentation,
classification, and detection.

Convolutional layers, pooling layers, nonlinear operations, and fully linked layers
make up a CNN model. A convolutional layer is a method for obtaining characteristics
from inputs and has a series of kernels, the parameters of which must be learned. The dot
product between each kernel entry and each point in the input is calculated as each kernel
is moved over the input’s height and width [11].

A nonlinear activation function is utilized to include nonlinear characteristics in the
model after each convolutional layer. Rectified Linear Units (ReLU) are the most popular
activation function in DL models since they are state-of-the-art. Between two convolutional
layers, a pooling layer is typically employed to decrease the number of parameters and
prevent overfitting [11]. The subsequent layers are made up of completely interconnected
layers that use the features that the preceding layer retrieved to provide class probabilities
or scores. All the neurons in these layers are linked to this layer [11].

3.2.1. Segmentation by CNN

CNN models can also be used to complete the segmentation task. Segmentation
is the division of an image into groups of pixels and the assignment of a class to each
group. DeepLab, Mask R-CNN, and Fully Convolutional Networks (FCN) are DL models
for segmentation [11].

3.2.2. Detection by CNN

The CNN model may also be used for object detection. You Only Look Once (YOLO),
Single Shot Multi-box Detector (SSD), and LedNet are examples of single-stage detectors.
Current object detection algorithms come in two varieties. Two-stage detectors include R-
CNN, Fast R-CNN, and Faster R-CNN, for instance. The first stage of the two-stage detector
establishes regions of interest using the Region Proposal Network (RPN). The suggested
regions are then put to the test for item classification using bounding box regression and
convolutional layers. In contrast, bounding boxes and object categorization are instantly
provided by a single feed-forward convolutional network in single-stage detectors [11].

3.2.3. Classification by CNN

Regression or classification problems can be resolved using the CNN model. When
performing classification or regression tasks, the last layer of the model is chosen as a
completely connected layer with a SoftMax activation function, and as a fully connected
layer, frequently with a linear function. AlexNet, GoogleNet, VGG, and ResNet are among
the most often used CNN designs for classification, along with more contemporary, lighter
models such as MobileNet and EfficientNet [11].

3.2.4. Vegetation Index

In precision agricultural applications involving remote sensing, vegetation indices
(VIs) are frequently utilized. In both qualitative and quantitative vegetation analysis,
they are regarded as being particularly useful for tracking the development and health of
crops. Vegetation indices are based on the vegetation’s ability to absorb electromagnetic
radiation [13]. There are modifications in the mathematics of electromagnetic spectrum
scattering and absorption in various bands depending on the type of vegetation. and
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these parameters can be determined using data from either each individual shot or after
the creation of orthophotos showing the whole crop. Several factors, including plant
biochemical and physical characteristics, ambient factors, soil background characteristics,
and moisture content impact the reflectance in different bands. Differences in reflectance can
provide accurate temporal and geographical information on the crops being monitored [13].

There are two primary categories for vegetation indices: vegetation indices created
on hyperspectral or multispectral data and those based on information from the visible
spectrum [13]. The capacity to identify bands of radiation of green (G), healthy vegetation
has been greatly enhanced by the development of simple vegetation indicators that can
integrate RGB (Red-Green-Blue) data with various spectral bands, such as NIR (Near-
infrared), and RE (Red Edge) [13].

The Ratio Vegetation Index (RVI), and Normalized Difference Vegetation Index (NDVI),
which are based on the NIR and bands of radiation of Red (R) channels of radiation, are
intended to give more pronounced contrast between the plant and the soil. The RVI, shown
in Equation (1), is one of the multispectral plant indices, which highlights the difference
between soil and vegetation. It is also susceptible to the visual characteristics of the ground.
The NDVI, shown in Equation (2), is a development of RVI and is determined by the visible
and near-infrared light reflected from the vegetation. It is the most well-known and often
used vegetation index. It provides a simple way to monitor the development and health of
many agricultural crops, since unhealthy or sparse vegetation reflects more visible light
and less near-infrared radiation [13].

The ratio of NIR to RE radiation is normalized by the Normalized Difference Red
Edge (NDRE), shown in Equation (3). The Green Normalized Difference Vegetation Index
(GNDVI) with NIR and Green (G) bands, is shown in Equation (4).

The most used indices when analyzing the VIs generated from RGB photos are Excess
Greenness Index (ExG) and Normalized Difference Index (NDI). ExG is predicated on the
idea that plants exhibit a superior level of greenness, and that soil is the only background
component. It is determined by the doubling the radiation in G channels minus the
radiation in Red (R) and Blue radiation (B) channels, as shown in Equation (5). The NDI
was suggested to use just green and red channels to differentiate plants from background
pictures of dirt and debris, as shown in Equation (6). Table 1 provides a selection of the
most used vegetation indices [13].

Table 1. Most applied vegetation indices.

Vegetation Index Abbreviation Formula Nº

Vegetation Indices derived from multispectral information

Ratio Vegetation Index RVI NIR
R (1)

Normalized Difference Vegetation Index NDVI NIR−R
R+NIR (2)

Normalized Difference Red Edge Index NDRE NIR−RE
RE+NIR (3)

Green Normalized Difference Vegetation Index GNDVI NIR−G
NIR+G (4)

RGB-based Vegetation Indices

Excess Greenness Index ExG 2·G-R-B (5)

Normalized Difference Index NDI G−R
G+R (6)

3.2.5. Data Acquisition

A large amount of labelled data is necessary for DL-based weed identification and
classification approaches. In the first step, it is important to acquire a useful quantity of
data for further analysis. Image acquisition can be defined as the act of obtaining an image
from different sources. Hardware systems such as cameras, encoders, and sensors can be
used for this. Different images can be captured depending on the type of camera, and
the type of sensor embedded. The sensors’ job is to take pictures with great temporal
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and spatial resolution, which can help with identifying a variety of vegetation-related
characteristics [14]. Different types of sensors deployed on a range of platforms are used
to capture various modalities of data. These pictures can be captured through unmanned
aerial vehicles (UAV), field robots (FR), all-terrain vehicles (ATV), micro aerial vehicles
(MAV), cameras, satellite images, and public datasets [7].

Datasets can also be obtained from free internet sources, such as the Broadleaf Dataset,
DeepWeed [15], Oilseed image, and Sugar Beets [16]. Each type of sensor can monitor
many aspects of the plant, including its color, texture, and geometric shape. Some sensors
can measure specific wavelengths of radiation. The information gathered by these sensors
may be further processed to track critical agricultural properties during the various growth
stages, including soil moisture, plant biomass, and vegetation health [13].

Nowadays, for agriculture, there are four types of sensors entrenched in cameras: hyper-
spectral, multispectral, RGB, and thermal sensors. Visible light sensors are the most popular
sensors for PA applications. They are economical, easy to use, and can capture high resolution
photographs. In addition, the information obtained needs straightforward processing [13].

RGB sensors are frequently adjusted to obtain information on radiation in other bands,
most commonly the Infrared (IR) or RE band. This is created by changing one of the original
optical filters for one that allows the perception of NIR [13].

In addition to collecting data using wavelengths that are visible, multispectral devices
also gather data using wavelengths that are invisible to the human eye, such as near-infrared
radiation, short-wave infrared radiation (SWIR), and others [3].

Hyperspectral sensors analyze a wide spectrum of light instead of just assigning
primary colors to each pixel, using wavelengths with a range of 400 to 1100 nm in steps
of 1 nm. Both multispectral and hyperspectral sensors can obtain data regarding the
vegetation’s spectral absorption and reflection on numerous bands [13].

Thermal infrared sensors detect the temperature of the materials and produce pictures
using this information instead of their visible properties. Thermal cameras employ infrared
sensors and an optical lens to collect infrared energy. In these cases, warmer items are
frequently shown as yellow and cooler ones as blue. However, this type of sensor is used
for very specific applications, for example, irrigation management [13]. Other types of
sensors, described in the literature, can be employed in addition to the ones indicated
above, such as light detection and range (LiDAR) sensors. These devices are also known as
“distance sensors”, and when used in conjunction with other sensors they could be used by
vehicles (such as robots) to navigate in the field [13].

3.2.6. Performance Metrics

The quality or efficiency of the model is assessed using measurement techniques
referred to as performance metrics or evaluation metrics. With the help of these performance
indicators, how well the simulation processed the given data can be assessed. It is feasible
to improve the performance of the model by changing the hyper-parameters [17]. The most
used metrics to determine the excellence of the model are shown in Table 2.

Table 2. Principal performance metrics used to evaluate the models.

Performance Metric Formula Nº

Precision TP
TP+FP (7)

Recall TP
TP+FN (8)

True Negative Rate TN
TN+FP (9)

F1-Score 2 P·R
P+R (10)

Kappa Coefficient Pa−Pr
1−Pr

(11)

Normalized mutual information I(X,Y)√
H(X)·H(Y)

(12)



Processes 2023, 11, 1263 9 of 40

The confusion matrix is a tabular representation of the ground-truth labels and model
predictions [18]. In the matrix, columns correspond to the predicted values, and rows
specify the actual values. Both ground truth and predicted values have two possible classes,
positive or negative. An assessment factor is represented by each cell in the confusion
matrix: True Positive (TP) denotes the number of positive class samples that the model
correctly predicted; True Negative (TN) is the number of negative class samples that the
model properly predicted; False Positive (FP) is the number of negative class samples that
the model erroneously predicted, while False Negative (FN) denotes the number of positive
class samples that the model incorrectly predicted [7,19].

Accuracy (ACC) corresponds to a percentage of correctly predicted events divided by
all predicted events; this means that it is the degree of closeness to the true value [7].

Precision (P) is the degree to which an instrument or process will repeat the same
value. It is the number of TP values, from all relevant findings, divided by the total number
of TP and false positives (FP), as shown in Equation (7) [7,17].

Recall (R), Positive Rate (TPR) or sensitivity, is fundamentally the percent of real
positives compared to all the ground truth’s positives. It is the number of TP values,
divided by the sum of TP and FN values, as shown in Equation (8) [17,20].

Specificity or True Negative Rate (TNR) is a test’s capacity accurate to identify negative
results. It is the number of TN values, divided by the sum of TN and FP values, as shown
in Equation (9) [19,20].

The F1-score is the harmonic mean between recall and precision. It is the fraction
given by the multiple of P and R divided by the sum of P and R, multiplied by two, as
shown in Equation (10) [19,20].

The Kappa Coefficient (k) measures the degree to which the projected values and the
real values accord [7]. Cohen’s Kappa is calculated as the probability of agreement (Pa)
minus the chance of random agreement (Pr) and then divided by one minus the probability
of random agreement, as shown in Equation (11), [7].

The area under the receiver operating characteristic curve (AU-ROC or AUC) rep-
resents a graph displaying a classification model’s effectiveness at different threshold
levels. The sensitivity and false-positive rate (FPR) are shown on a probability curve called
the ROC. The AUC calculates the performance across the thresholds and provides an
aggregate measure [21].

Intersection over union (IoU) is a metric used to estimate how well a predicted mask
or bounding boxes match the ground truth data, by dividing the area of overlap by the area
they cover as a union [17].

Mean Intersection over Union (mIoU) is the dataset’s average IoU for each class of
an item [7].

Normalized mutual information (NMI) is the accepted metric for assessing clustering
outcomes [15]. This statistic may be used to trade off the number of clusters vs the quality
of the clustering. Using two random variables (X and Y), the NMI is determined by
Equation (12). In this equation, H is entropy, and I is the mutual information metric.
This measurement is done by contrasting the labels assigned to the clusters with actual
labels [15]. Table 2 provides a selection of the most used performance metrics [7,11].

3.3. Brief Review of Papers
3.3.1. Disease Detection

Crop diseases reduce agriculture production and compromise global food security. A
deep learning system that clearly identifies the specific timing and location of crop damage,
leading to the spraying of herbicides only in affected areas can contribute to the moderation
of resource use and environmental impacts [11].
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Disease Detection in Individual Fruits

Afonso et al. [22] intended to categorize blackleg-diseased or healthy potato plants
using deep learning techniques. An industrial RGB camera was employed to capture color
pictures. Two deep convolutional neural networks (ResNet18 e ResNet50) were trained with
RGB images with diseased and healthy plants. A model that had already been trained on
the ImageNet dataset was employed to transfer learning for network weight initialization,
and the Adam optimizer for weight optimization. Both networks were trained with a mini-
batch size of 12 over a period of 100 epochs. The network ResNet18 was experimentally
superior, with 94% of the images classified correctly. In contrast, only 82% of the ResNet50
classifications were correct. Precision was 85% and recall was 83% for the healthy class. The
classifier used a rectified linear unit (RELU) activation to redefine the fully connected (FC)
layer after linearly aggregating the output of the FC layer into a vector of size. The final
network layer included a two-class linear classifier that enabled our binary classification
utilizing logarithmic SoftMax activation (healthy versus blackleg).

Assunção et al. [23] presented a deep convolutional network to operate on mobile
devices to categorize three peach disorders and healthy peach fruits (healthy, rot, mildew,
and scab). In this research, the authors used transfer learning, data augmentation, and
CNN MobileNetV2, which was trained on the ImageNet dataset to evaluate the outcomes
of the disease classification in our comparatively small dataset of peach fruit disorders.
The peach dataset was arranged with RGB images stored in the open website platform
Forestry Images, Appizêzere, PlantVillage, University of Georgia, as well as from the
Pacific Northwest Pest Management Handbooks, Utah State University. The ImageNet
dataset was used to train the model initially (source task). Scab disease had the highest
F1-score of 1.00, followed by the Rot and Mildew classes, each of which had a 0.96 F1-score.
The classification for the Healthy class was an 0.94 F1-Score. The average F1-score for
the model’s overall performance was 0.96. No disease class was incorrectly classified by
the model, which is crucial for disease study for control and infection. These successes
highlight the promise of CNN for classifying fruit diseases with little training data. The
model was also made to work with portable electronics.

According to Azgomi et al. [24], a low-cost method was created for the diagnosis of
apple disease in four different types, scab, bitter rot, black rot, and healthy fruits. The
investigation employed a multi-layer perceptron (MLP) neural network. This technique was
called Apple Diseases Detection Neural Network (ADD-NN). The images were captured
with a digital camera. For picture clustering, the k-means technique was utilized in the
study. Semi-automatic support vector machine (SVM) classification was carried out. After
that, the disease was found by analyzing the attributes of the chosen clusters. A neural
network was employed to enhance the procedure, make it completely automatic, and
test the viability of increasing the created system’s accuracy. Furthermore, the network
was trained with the Levenberg–Marquardt algorithm. The accuracy of the procedure
using various architectures for the neural network trained with 60% of the data was then
evaluated. The implementation of a two-layer formation with eight neurons in the first
layer and eight in the second layer produced a maximum accuracy of 73.7%, according to
the data. Figure 4 presents an input of an apple fruit, with both healthy and infected parts.
After processing, the affected area is shown as orange in the middle picture, and the healthy
area is then painted in yellow and the affected area in black, in the right-hand photo.

Disease Detection in Areas of Crops

Table 3 describes the features of research works in the field of disease detection.
In Kerkech et al. [25], the method proposed used a deep learning segmentation al-

gorithm on UAV photos to identify the mildew disease in vines. The data was collected
utilizing a UAV equipped with two MAPIR Survey2 camera sensors, comprising an infrared
sensor and a RGB sensor configured for automated lighting. The SegNet architecture was
used to divide visible and infrared pictures into four classes: symptomatic vine, ground,
shadow, and healthy. When a symptom is seen in both the RGB and infrared pictures, it is
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considered that the disease has been discovered, and this was named “Fusion AND”. In the
second scenario, referred to as “fusion by the union”, the symptom is declared identified
if it is visible in either the infrared or RGB picture and is denoted by the sign “fusion
OR”. The model trained with RGB images outperformed the model trained with infrared
images, with an accuracy of 85.13% and 78.72%, respectively. Moreover, the model fusion
OR outpaced the fusion AND with an accuracy of 92.23% and 82.80%, in that order. For
visible and infrared photos, SegNet’s runtime on a UAV image was estimated to be 140 s.
Less than 2 s are required for the merging of the two segmented pictures.
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Figure 4. Example of the input fruit, showing the separated infected and healthy parts [24].

Figure 5 shows an example of segmentation by SegNet, and the fusion compared with
the ground truth (GT). The first set of images (a–h) does not show examples of the symptom
class, so it is healthy; it can be shown that the visible and infrared estimates and the fusion
are similar. However, in the second set (i–p), it can be observed that the ground truth in
both spectra, which depicts a region that is almost entirely polluted by mildew, is the same
except for the distinct color code.
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Figure 5. An illustration of segmenting and fusing a healthy region. Images in the following order:
(a) visible image, (b) infrared image, (c) visible GT, (d) infrared GT, (e) fusion GT, (f) visible SegNet
estimate, (g) infrared SegNet estimation, and (h) fusion of segmentation findings. An example of
segmenting and fusing a mold-infested region. For example, (i) stands for visible image, (j) for
infrared image, (k) for visible ground truth, (l) for infrared ground truth, (m) for fusion ground
truth, (n) for visible segmentation net estimation, (o) for infrared segmentation net estimation, and
(p) fusion of segmentation results (adapted from [25]).
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Table 3. Feature descriptions of publications in the field of “Disease Detection”.

References Application Data Used Model Used Metric Used Model Performance

Afonso et al. [22] Classify diseased
potato plants. RGB camera. Deep CNN: ResNet18,

ResNet50. Precision Recall

The findings of this study demonstrate that a
CNN, more especially ResNet18, may function
as a reliable detector for potatoes infected with
the blackleg disease in the field. The detection
performance can also be anticipated to
increase with larger datasets and
data augmentation.

Assuncão et al. [23] Detect peach disease. Six datasets from [23]. CNN F1-score

No disease class is incorrectly classified by the
model. These successes highlight the promise
of CNN for classifying fruit diseases with little
training data. The model is also made to work
with portable electronics.

Azgomi et al. [24] Detect apple disease. Digital camera. MLP
ANN Accuracy

The results showed a maximum accuracy of
73.7% for the implementation of a two-layer
structure with eight neurons in the first layer
and eight neurons in the second layer.

Kerkech et al. [25] Detect Esca disease
in grapevine.

UAV system with an
RGB sensor. CNN: SegNet. Accuracy

In comparison to the model trained using
infrared pictures, the RGB pictures gave better
performance. One of the research’s flaws is the
small size of the training sample, which
negatively impacted how well the deep
learning segmentation worked.
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3.3.2. Weed Detection

In addition to disease, weeds are seen as a common danger to food production. The
technologies described in this study may be used to power weed-detecting and weed-
eating robots [11].

Weed Detection in Individual Plants

In accord with Sujaritha et al. [26], fuzzy real-time classifiers were used to find weeds
in sugar cane fields. Using a Raspberry Pi microcontroller and appropriate input/output
subsystems including two different cameras, motors with power supplies, and tiny light
sources, a robotic prototype was created for weed detection. During the movement of
the robot, a divergence in the established course might occur due to obstacles in the field.
An automatic image classification system was constructed, and it used a fuzzy real-time
classification method and extracted leaf textures.

Among nine distinct weed species, the proposed robot prototype accurately recognizes
the sugarcane crop. With a processing time of 0.02 s, the system identified weeds with an
accuracy of 92.9%.

Milioto et al. [27] developed a new methodology for crop-weed classification using
data taken with a 4-channel RGB and NIR camera, which depends on a modified encoder-
decoder CNN. Three separate inputs were used to train the networks: RGB, RGB and near-
infrared (NIR) images, and 14 channels including vegetation indices RGB, Excess Green
(ExG), Excess Red (ExR), Color Index of Vegetation Extraction (CIVE), and Normalized
Difference Index (NDI). To supplement the CNN with additional inputs, the authors
first computed various vegetation indices and alternative interpretations that are often
employed in plant categorization.

The authors found that the model performed better when additional channels were
added to the input to the CNN. The network using RGB was 15% quicker to converge to
95% of the final accuracy than the network using the NIR channel. In terms of object-wise
performance, the model achieved an accuracy of 94.74%, a precision of 98.16% for weeds,
and 95.09% for crops. For recall, the system accomplished 94.79% for weeds and 94.17% for
crops. The intersection over the union was 80.8%.

Lottes et al. [28] designed a sequential model encoder-decoder FCN for weed identifi-
cation in sugar beet fields. The dataset was collected using a field robot, namely, BoniRob,
with a 4-channel RGB+NIR camera. The processing model used 3D convolution to analyze
five images in a series, creating a sequence code that was then used to learn sequential infor-
mation about the weeds in the five images in a series. With the help of an addition known
as the sequential module, it was possible to use picture sequences to implicitly encode
local geometry. Even if the optical appearance or development stage of the plant changes
between training and test time, this combination improves generalization performance.

The results indicated that, in comparison to the encoder-decoder FCN, the encoder-
decoder with a sequential model raised the module’s F1-score by around 11 to 14%. The
suggested model outperformed encoder-decoder FCN without a sequential model, with an
F1-score of 92.3.

Ma et al. [29] proposed an image segmentation procedure with SegNet for rice
seedlings and weeds at the seedling stage in the paddy field based on fully convolu-
tional networks (FCN). The model was then compared with another model, namely, U-Net.
In this study, RGB color images were captured in seedling rice paddy fields. SegNet was
developed using a symmetric structure for encoding and decoding, which was utilized to
extract multiscale features and increase feature extraction accuracy. This AI method can
directly extract the characteristics from the original RGB photos as well as categorize and
identify the pixels in paddy field photographs that belong to the rice, background, and
weeds. The primary goal of this study was to evaluate how well the suggested strategy
performed in comparison to a U-Net model.

The proposed method worked effectively in classifying the pixels in pictures of weeds
and shaped rice seedlings found in paddy areas. The U-Net and FCN techniques had an
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average accuracy rate of 89.5% and 70.8%, respectively. Figure 6 shows the experimental re-
sults for the FCN based on SegNet and U-Net compared with the original and ground truth
images; blue represents rice, brown represents weeds, and the grey scale is the background.
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Ferreira et al. [15] analyze the performance of unsupervised deep clustering algorithms
in real weeds datasets (Grass-Broadleaf dataset, and DeepWeeds), for the identification of
weeds in a soybean field. Deep Clustering for Unsupervised Learning of Visual Features,
and Joint Unsupervised Learning of Deep Representations and Image Clusters (JULE) are
two contemporary unsupervised deep clustering techniques (DeepCluster).

The DeepCluster model was built using AlexNet and VGG16 as a baseline to obtain
features, and K-means were implemented as the clustering algorithm.
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Analyzing the two clustering algorithms evaluated, JULE performed more poorly
than DeepCluster, in terms of the normalized mutual information (NMI), and accuracy. In
JULE, for the first dataset, the results of MNI and ACC were 0.28% and 65.6%, respectively,
for 80 clusters. In the second dataset, the results of MNI and ACC were 0.08% and 25.9%,
respectively, for 160 clusters. On the other hand, in DeepCluster for the first dataset, the
results of MNI and ACC were 0.41% and 87%, respectively, for 160 clusters. For the second
dataset, the results of MNI and ACC were 0.26% and 51.6%, respectively, for 320 clusters.

In Wang et al. [16], pixel-wise semantic segmentation of weed and crop was examined
using an encoder-decoder deep learning network. The two datasets used in the study,
specifically, sugar beet and oilseed, were collected under quite varied illumination condi-
tions. Three picture improvement techniques, Histogram Equalization (HE), Auto Contrast,
and Deep Photo Enhancer, were examined to lessen the impacts of the various lighting
situations. To improve the input to the network, several input representations, including
different color space transformations and color indices, were compared. The models were
trained with YCrCb and YCgCb color spaces and vegetation indices such as NDI, NDVI,
ExG, ExR, ExGR, CIVE, VEG, and MExG. The results demonstrated that while the inclusion
of NIR information significantly increased segmentation accuracy, images without NIR
information did not improve segmentation results, demonstrating the value of NIR for
accurate segmentation in low light conditions. The segmentation results for weed detection
obtained by applying deep networks and image enhancement techniques in this work
were encouraging. The model trained using NIR pictures attained a mIoU of 87.13% for
the sugar beetroot dataset. For the oilseeds’ dataset, the models were trained with RGB
images only, and outperformed the other models with a mIoU of 88.91%. The best accuracy
was 96.12%.

Kamath et al. [30] applied semantic segmentation models, namely, UNet, PSPNet, and
SegNet in paddy crops and two types of weeds. The paddy field image collection was
compiled from RGB photographs from two separate sources using two digital cameras.
Two datasets were then created; only weed plants were included in Dataset-1, whereas
paddy crop and photos of weeds were included in Dataset-2. A segmentation architecture
using the ResNet-50 base model was built in PSPNet. A feature map for PSPNet was
produced from the base network. On these pooled feature maps, convolution was used
before feature maps were upscaled and concatenated. The use of a final convolution
layer results in segmented outputs. The encoder-decoder framework used by the UNet
design was constructed using the ResNet-50 base model. This model used skip connections
which are additional connections that join down sampling layers with up sampling layers.
The rebuilding of segmentation boundaries with the aid of skip connection after down
sampling results in a more accurate output image. The VGG16 network and the encoder
network used by the SegNet model are topologically identical. Each encoder layer has a
matching decoder layer, and then each pixel receives class probabilities from a multi-class
SoftMax classifier.

Using the playment.io program, photos were annotated, and each pixel was labelled to
a categorization from one of four categories: Background-0, Broadleaved weed-1, Sedges-2,
and Paddy-3. PSPNet outperformed SegNet and UNet in terms of effectiveness. The mean
IoU for PSPNet was 0.72 and, the frequency weighted IoU was 0.93, whereas for SegNet and
UNet, the mIoU values were 0.82 and 0.60, respectively. Finally, the frequency weighted
IoU values were 0.74 and 0.38, respectively. Figure 7 represents the results of the proposed
model using PSPNet; the images of the first row correspond to the original images, the
second row represents the predicted output, and the last one is the ground truth image. The
first line relates to the paddy, and the second characterizes the broadleaved weed. After
that, the third shows the broadleaved weed (blue) and paddy (yellow), and the fourth,
the sedge weeds. Sedge weeds were difficult to identify, whereas broadleaved weeds and
paddy were clearly identified. This loss could be explained by how sedges and paddy
are alike.
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Figure 7. The results of PSPNet, the images of the first row, correspond to the original images, while
the second row represents the predicted output, and the last is the ground truth image. The first line
is the paddy, the second one is the broadleaved weed, the third one is the broadleaved weed (blue)
and paddy (yellow), and the last, is the sedge weed, (adapted from [30]).

Mu et al. [31] developed a project to identify weeds in photos of cropping regions
using a network model based on Faster R-CNN. Beyond that, another model combining the
first one with Feature Pyramid Network (FPN) was developed for improved recognition
accuracy. Images from the V2 Plant Seedlings dataset were used; this file includes photos
in different weather conditions. The Otsu technique was applied to transform the obtained
greyscale pictures into binary images to segregate the plants. Clear photos of the plants
were obtained after processing. The convolutional features are shared using the Faster
R-CNN deep learning network model, and feature extraction is done by fusing the ResNeXt
network with FPN, to improve the model’s weed identification detection accuracy. The
experimental results show that the Faster R-CNN-FPN deep network model obtained
greater recognition accuracy by employing the ResNeXt feature extraction network and
combining it with the FPN network. Both models achieved good results; however, the
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prototype with FPN reached an accuracy of 95.61%, a recall of 87.26%, an F1-value of
91.24, an IoU of 93.7, and a detection time of 330ms. The model without FPN achieved the
following results for the same metrics, 92.4%, 85.2%, 88.65%, 89.6%, and 319 ms.

Assunção et al. [32] explored the optimization of the weed-specific semantic segmen-
tation model at model DeeplabV3 with a MobileNetV2 backbone, as well as its impacts
on segmentation performance and inference time. In this study, the experiments were
conducted with DM = 1.0 and DM = 0.5. The OS hyperparameter is the ratio of the size of
the encoder’s final output feature map to the size of the input image. Values of 8, 16, and 32
were chosen for OS to explore the trade-off between accuracy and inference time since this
hyperparameter affects segmentation accuracy and inference time. There are three sections
to this piece. There were two datasets utilized in the first one. To train and test the models,
the Crop Weed Field Image Dataset (CWFID) dataset, which includes crops (carrots) and
weeds, was employed. The second section of the process utilized crop and weed photos
for the model’s training and validation. By choosing several model hyperparameters and
using model quantization, the model was optimized both before and after training. The
primary goal is to extract the characteristics of the input image.

To obtain the performance necessary for the application, the depth multiplier (DM)
and output stride (OS) hyperparameters of the MobilinetV2 were modified (i.e., light weight
and fast inference time). The checkpoint files were then transformed into a frozen graph
using a TMG framework tool (script). Finally, using the TensorRT class converter, the frozen
graph was modified (optimized) to operate on the Tensorflow Real-Time (TensorRT) engine.

The semantic segmentation model was utilized in the most recent test of the robotic
orchard rover created by Veiros et al. (2022). In this study, the accuracy and viability of
a computer-vision framework were evaluated using a system for spraying pesticide on
weeds. A Raspberry Pi v2 camera module with an 8-megapixel Sony IMX219 sensor was
used to take the video pictures. The actuators that the Jetson Nano device controls are the
herbicide container, pressure motor, a DC motor that applies pressure to it, manipulator
motor, a stepper motor that moves the axis of the Cartesian manipulator, nozzle relay, a
relay that opens and closes the spray valve, and spray nozzle.

According to the study results of the second test, segmentation performance mean
intersection over union (mIOU) declined by 14.7% when employing a model hyperparam-
eter DM of 0.5 and the TensorRT framework compared to a DM of 1.0 and no TensorRT.
The model with the best segmentation performance has a 75% mIOU for OS = 8 and
DM = 1.0. The model with a DM of 0.5 and OS of 32 had the lowest performance, which
was 64% mIOU.

In addition, with the CWFID and weeds dataset, the outcomes were also contrasted
with the initial segmentation work. The test with OS = 8 and DM = 1.0 achieved a mIOU
of 75%, and an OS = 32 and DM = 0.5 accomplished a mIOU of 64%. Figure 8 displays
the relevant segmentation quality outcomes. Different hyperparameters for DM and OS
caused variations in segmentation performance (quality).

In Figure 9, a version of non-weeds segmentation is in the upper-left corner. The
subsequent pictures display the input weed picture along with the associated segmenta-
tion outcomes (output). In the middle of each segmented region are the green dots that
represent the weeds’ center of gravity. The findings demonstrate the method’s viability and
outstanding spraying precision. Given that the trade-off between segmentation accuracy
and inference time can be managed via the hyperparameters DM and OS, DeepLabV3
has shown to be an incredibly flexible model for segmentation tasks. Weed spraying in
real-time was also precise and practical. The system correctly positioned the nozzle at all
target weeds and sprayed the spray, as seen in the video demonstration. This outcome
demonstrates the possibility of improvements for creating compact models with high
predictive accuracy.
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Figure 9. Segmentation of weeds as result of the application in real time [32].

Weed Detection in Areas of Crops

Peña et al. [33] created a study to evaluate the effectiveness and constraints of remotely
sensed imagery captured by visible and multispectral cameras in an unmanned aerial
vehicle (UAV), for early weed seedling detection. The objectives of the work were: to choose
the best sensor for enhancing vegetation (weed and crop) and bare soil class discrimination
as affected by the vegetation index applied; to design and test an algorithm object-based
image analysis (OBIA) technique for crop and weed patch detection; and to determine the
best arrangement of the UAV flight for the altitude, the type of sensor (visible-light + near-
infrared multispectral cameras vs. visible-light), and the date of flight.

The OBIA procedure combined object-based characteristics such as spectral values,
position, and orientation, as well as hierarchical relationships between analysis levels. As a
result, the system was designed to identify crop rows with high accuracy using a dynamic
and self-adaptive classification process and to label plants outside of crop rows as weeds.

The maximum weed detection accuracy, up to 91%, was found in the color-infrared
pictures taken at 40 m and on date 2 (50 days after seeding), when plants had 5–6 true
leaves. The images taken earlier than date 2 performed significantly better than the ones
taken subsequently at this flight level. With a higher flight altitude, the multispectral
camera had superior accuracy, while the visible light camera had higher accuracy at lower
altitudes. The errors are due to the higher altitudes as a consequence of the spectral mixture
between bare soil elements and sunflowers that occurred at the perimeters of the crop-rows.
Figure 10 shows a comparison of results. The first line (A) presents on-ground photographs,
while the second line (B) shows manual categorization of observed data. The third line
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(C) shows the image classification achieved by the OBIA algorithm. The model results
were divided into four types: the number of correct frames (1); underestimated weeds (2),
namely, frames with weed infestations in which the OBIA system spotted some weed plants
but missed others; false negative frames (3), with weed-infested frames in which no weeds
were detected; and false positive frames (4), in which weeds were overestimated.
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Figure 10. Example of the four sample frames’ outcomes. (A) On-ground images; (B) manual classifi-
cation of observed data; and (C) image classification conducted by the OBIA algorithm. (1) Correct
categorization; (2) underestimation of weeds; (3) negative errors; (4) false positive errors [33].

Huang et al. [34] used photos from a UAV Phantom 4 to create an accurate weed cover
map in rice fields, to detect weeds and rice crops. The Fully Convolutional Network (FCN)
approach was proposed for preparing a weed map of the captured images. In the training
phase, the image-label pairings from the training set that correlates pixel-to-pixel are fed
into the FCN network. The network converts the input picture into an output image of the
same size, and the output image is applied to calculate the loss as an objective function
together with the ground truth label (GT label).

According to the investigational results, the performance of the FCN technology was
very effective. The general accuracy of the system reached 0.935, its weed detection accuracy
reached 0.883, and an IoU 0.752, indicating that this algorithm can provide specific weed
cover maps for the UAV images under consideration. In Figure 11, it is possible to observe
the results of the FCN with different pre-trained CNNs. In (a), the real UAV images are
presented; (b) is the ground truth representation; and images from (c) to (e) show results
obtained by FCN-AlexNet, FCN-VGG16, and FCN-GoogLeNet, respectively.

Bah et al. [35] developed a completely automated learning technique for weed detection
in bean and spinach fields using UAV photos utilizing ResNet18 with a selection of unsu-
pervised training datasets. This algorithm created super-pixels based on k-mean clustering.

A simple linear iterative clustering (SLIC) algorithm was used to construct a marker
and define the plant rows after the Hough transform was used to determine the rate
of plant rows on the skeleton. Super pixels were produced by this technique using k-
mean clustering.
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Figure 11. Classification results of the FCN with distinct pre-trained CNNs. (a) Real UAV im-
age; (b) Ground truth results; (c–e) Results acquired by FCN-AlexNet, FCN-VGG16 and FCN-
GoogLeNet, respectively [34].

Other models, namely, SVM and RF, were used to compare the model’s performance.
ResNet18 performs better overall than SVM and RF in supervised and unsupervised
learning techniques. The model achieved an accuracy of 0.945 and a kappa coefficient of
0.912. Figure 12 shows two examples of image classification with models produced by
unsupervised data in spinach fields at the top (a,b), and bean fields at the bottom (c,d). The
samples acquired using a sliding window, without a crop line or any background details,
are shown on the left (a,c). The weeds found after applying crop line and background
information are shown on the right in red (b,d). The plants are designated as being crops,
weeds, or ambiguous decisions by the red, blue, and white dots, respectively.
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Figure 12. Examples of unmanned aerial vehicle (UAV) picture categorization using unsupervised
data models in spinach, and bean fields. (a) Sample of a spinach field acquired using a sliding
window, without a crop line or any background details; (b) Sample from spinach field acquired after
applying crop line and background information; (c) Sample of a been field acquired using a sliding
window, without a crop line or any background details; (d) Sample from been field acquired after
applying crop line and background information. Crops are represented in blue, weeds in red, and
uncertain decisions in white [35].

In line with Osorio et al. [8], three different weed estimation methods were proposed
based on deep learning image processing and multispectral images captured by a drone.
An NDVI index was used in conjunction with these techniques. The first technique uses
histograms of oriented gradients (HOG) as a feature descriptor and is based on SVM. The
ground and other aspects that are unrelated to vegetation are covered by a mask that is
created by NDVI. These objects’ characteristics are retrieved using HOG and are then used
as inputs by a support vector machine that has already been trained. The SVM determines
whether the identified items fall into the lettuce class. The second approach employed a
CNN based on YOLOv3 for object detection. An algorithm removes crop samples from the
image using model’s bounding box coordinates after it has been trained to recognize the
crop. After that, a green filter binarizes the picture, turning the pixels that do not have any
vegetation into black and the ones that the green filter accepts into white. Finally, vegetation
that does not match the crop is highlighted, making it easier to calculate the percentage
of weeds in each image. The last method was to apply masks on the CNN, to obtain an
instance segmentation for each crop. RCNN extracts 2000 areas from the picture using
the “selective search for object recognition” method. They feed data into the Inception V2
CNN in this case, and it extracts characteristics used by an SVM to categorize the item into
the appropriate category. Centered on the metrics that were used, the F1-scores for crop
detection using this approach were 88%, 94%, and 94%, respectively. The accuracy was
79%, 89%, and 89%. The sensitivity was 83%, 98%, and 91%. The specificity was 0%, 91%,
and 98%. Finally, the precision was 95%, 91%, and 94%.

Considering the version of the YOLO model used, it is important to say that there
are currently more up-to-date versions. YOLOv4 is an advanced real-time object detection
model that was introduced as an improvement over the previous versions of YOLO. Devel-
oped by a team at the University of Washington, YOLOv4 boasts a significantly improved
performance in terms of accuracy and speed compared to its predecessors. It includes a
new architecture that incorporates spatial pyramid pooling and a backbone network based
on CSPDarknet53. This architecture allows for more efficient use of computing resources,
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resulting in faster processing times and improved accuracy. Additionally, YOLOv4 uses a
combination of anchor boxes and dynamic anchor assignment to improve object detection
accuracy and reduce false positives. Another notable feature of YOLOv4 is its use of a
modified loss function that includes a term to penalize incorrect classifications of small
objects. This leads to better performance on small object detection tasks [36].

YOLOv5 is a state-of-the-art object detection and image segmentation model intro-
duced by Ultralytics in 2020. It builds on the success of previous YOLO models and
introduces several new features and improvements. One of the key innovations in YOLOv5
is its use of a new, more efficient architecture based on a single stage detection pipeline. This
pipeline uses a feature extraction network combined with a detection head, which allows
for faster processing times and improved accuracy. Additionally, YOLOv5 introduces a
range of new anchor-free object detection methods, including the use of center points,
corner points, and grids [36].

YOLOv8 is an advanced object detection and image segmentation model that was de-
veloped by Ultralytics. It is an improvement over previous YOLO versions and has gained
popularity among computer vision researchers and practitioners due to its high accuracy,
speed, and versatility. One of the main strengths of YOLOv8 is its speed, which enables it
to process large datasets quickly. Additionally, its accuracy has been improved through a
more optimized network architecture, a revised anchor box design, and a modified loss
function. This results in fewer false positives and false negatives, leading to better overall
performance. Overall, YOLOv8 is an excellent tool for computer vision applications and
offers many advantages over previous models. Its speed, accuracy, and versatility make it
an ideal choice for a broad range of tasks, including object detection, image segmentation,
and image classification [37].

Islam et al. [14] used three types of approaches, namely, KNN, RF, and SVM to detect
weeds in crops. The images were acquired from an RGB camera coupled in a UAV, in an
Australian chilli farm, and then pre-processed using image processing methods. Red, green,
and blue bands’ reflectance was extracted, and from there, the authors deduced vegetation
indicators such as the normalized red band, normalized green band, and normalized blue
band. The pre-processed pictures’ features were extracted using MATLAB, which was also
utilized to simulate machine learning-based methods. The experimental findings show
that RF outperformed the other classifiers. In light of this, it is clear that RF and SVM
are effective classifiers for weed detection in UAV photos. RF, KNN, and SVM each had
accuracy results of 0.963, 0.628, and 0.94. Recall and specificity were 0.951 and 0.887, 0.621
and 0.819, and 0.911 and 0.890 with RF, KNN, and SVM, respectively. With RF, KNN, and
SVM, respectively, the accuracy, false positive rate (FPR), and kappa coefficient were 0.949,
0.057, and 0.878; 0.624, 0.180, and 0.364; and 0.908, 0.08, and 0.825.

Table 4 describes the feature of research works in the field of Weed Detection.

3.3.3. Weed Classification

Another crucial component of agricultural management is the categorization of species
(such as insects, birds, and plants). The conventional human method of classifying species
takes time and calls for subject-matter experts. Deep learning can analyze real-world data
to provide quicker, more accurate solutions [11].

Weed Classification in Individual Plants

According to Dyrmann et al. [38], a convolutional neural network was developed to
recognize plant species in color images. The images originated from six different datasets
namely, Dyrmann and Christiansen (2014), Robo Weed Support (2015), Aarhus University—
Department of Agroecology and SEGES (2015), Kim Andersen and Henrik Midtiby, Søgaard
(2005), Minervini, Scharr, Fischbach, and Tsaftaris (2014). The six datasets include all
pictures taken during lighting-controlled events and photographs taken on mobile devices
while out in the field during varying lighting circumstances.
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Table 4. Feature descriptions of publications in the field of “Weed Detection”.

References Application Data Used Model Used Metric Used Model Performance

Sujaritha et al. [26] Weeds in sugar cane
fields’ detection. Two digital cameras. Fuzzy real

time classifier. Accuracy

The prototype distinguished between nine different
weed species with greater precision and a shorter
processing time. The field obstructions provoked the
robot to deviate from the planned path while it
is moving.

Milioto et al. [27]
Crop-weed sugar
beet detection
(VIs added to the input).

4-channel RGB and
NIR camera. Mask R-CNN.

Accuracy IoU
Precision

Recall

By including a new channel at its input, the model’s
performance improved. Compared to the NIR channel
network, the RGB channel network converges 15%
more quickly to the final accuracy of 95%.

Lottes et al. [28] Crop and weed detection in
the sugar field.

FR with a 4-channel
RGB+NIR camera.

Encoder–Decoder FCN:
DenseNet. F1-score

The suggested model was able to robustly identify
crops in all growth phases and outperformed
encoder-decoder FCN without a sequential model, RF,
and vanilla FCN with an F1-score of 92.3.

Ma et al. [29] Detection of weeds and
rice seedlings. RGB images. FCN: SegNet. Accuracy

The suggested technique successfully classified the
pixels in images of weeds and distinctively shaped rice
seedlings discovered in paddy regions. The SegNet
approach produced a good accuracy classification.

Ferreira et al. [15]
Detection of weeds in a
soybean field
(unsupervised clustering).

Two datasets from [15]. JULE; DeepCluster. Accuracy NMI

Performance-wise, DeepCluster outperformed JULE.
The outcomes from these datasets point to a viable use
of clustering and unsupervised learning for
agricultural issues.

Wang et al. [16] Detection of crops of sugar,
weeds, and oilseeds. Two datasets from [16]. Encoder-decoder CNN. Accuracy

IoU

The outcomes show how useful NIR information is for
exact segmentation in low-light settings. The accuracy
of segmentation was greatly increased by the addition
of NIR data.

Kamath et al. [30] Weed detection in
paddy crops. Digital camera. PSPNet, UNet,

and SegNet. IoU

In terms of efficiency, PSPNet fared better than SegNet
and UNet. The frequency weighted IoU falls between
80% and 90%, with the mean IoU lying between 70%
and 80%.
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Table 4. Cont.

References Application Data Used Model Used Metric Used Model Performance

Mu et al. [31]
Weed identification in
maize, sugar beet, and
wheat crops.

Dataset: V2 Plant Seedlings,
from [31].

FPN;
Faster R-CNN:

ResNeXt.

Accuracy
Recall

F1-Score
IoU

The experimental findings demonstrate that by
merging the ResNeXt feature extraction network with
the FPN network, the Faster R-CNN-FPN deep
network model achieves a higher recognition accuracy.

Assunção et al. [32] Weed detection using
semantic segmentation. Five datasets from [32].

TMG
DeepLabV3

MobilenetV2.
mIOU

Given that the trade-off between segmentation
accuracy and inference time can be managed via the
hyperparameters OS and DM, DeepLabV3 has been
shown to be an incredibly flexible model for
segmentation tasks.

Peña et al. [33] Weed seedlings in
sunflower field detection.

Visible-light and
multispectral cameras in

a UAV.
OBIA. Accuracy

While the visible light camera performed better at
lower flight altitudes, the multispectral camera proved
more accurate at higher altitudes. The spectrum
mixing of flowers and bare soil components caused
some mistakes in the higher elevations.

Huang et al. [34]
Weed cover maps to detect
weeds and crops in
rice fields.

UAV with a digital camera. FCN. Accuracy
IoU

The FCN technology performed well in terms of
efficiency and accuracy for weed identification. Since
FCN is a supervised algorithm, it necessitates a lot of
manual labelling effort because it needs a large
amount of labelled pictures for training and updating.

Bah et al. [35] Weed detection in bean and
spinach fields. Drone with a digital camera. CNN: Resnet18. Accuracy

Given the disparities between supervised and
unsupervised labelling’s accuracy, the unsupervised
one may be a preferable option for weed detection,
especially when crop rows are widely spaced.

Osorio et al. [8]
Weed detection in lettuce
crops (VIs added to the
input).

Mavic Pro with a
multispectral camera.

SVM+ HOG;
Mask R-CNN;

YOLOv3.

F1-Score Accuracy
Precision Recall

Specificity

The HOG-SVM approach was shown to work quite
well, and given that it requires less processing power,
it is an excellent choice for IoT systems. As compared
to the other two, the YOLO approach overestimates
the high values of weed coverage.

Islam et al. [14] Weed detection. RGB camera coupled in
a UAV.

RF;
KNN;
SVM.

Accuracy Recall
Precision FPR Kappa

The experimental results indicate that RF
outperformed the other classifiers. The efficiency of RF
and SVM as classifiers for weed detection from UAV
pictures is noteworthy.
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To identify green pixels, a straightforward excessive green segmentation was em-
ployed. After that, batch normalization makes sure that the inputs to layers always fall
within the same range. The network’s activation function (ReLu) adds non-linear decision
boundaries. Max pooling is a procedure that shrinks a feature map’s spatial extent and
gives the network translation invariance. In this study, the network’s layering was decided
upon by assessing the network’s filtering power and coverage.

The training was ended after 18 epochs to get the maximum accuracy feasible without
over-fitting the network. With an average accuracy of 86.2%, the network’s categorization
accuracy varied from 33% to 98%. With accuracy rates of 98%, 98%, and 97%, respectively,
Thale Cress (A. thaliana), Sugar Beet (B. vulgaris), and Barley (H. vulgare L.) were frequently
accurately diagnosed. However, Broadleaved Grasses (Poaceae), Field Pansy (Viola arvensis),
and Veronica (Veronica) were frequently misclassified. Just 46%, 33%, and 50% of these three
species received the proper classification. Overall, the classes with the greatest number of
species also had the greatest categorization accuracy. As a result, classes with fewer picture
samples made a smaller total loss.

Andrea et al. [39] demonstrated the creation of an algorithm capable of classifying
and segmenting images. It uses a convolutional neural network (CNN) to separate weeds
from maize plants in real-time. This discrimination was performed using four types of
CNN, namely, AlexNet, LeNet, sNet, and cNet. A multispectral camera was used to acquire
RGB and NIR images for segmentation and classification. A dataset created during the
segmentation phase was used to train the CNN. Each of the four CNN models was trained
using the same dataset and solver of type Adam after being selected.

The most successful algorithms offer great potential for real-time autonomous systems
for categorizing weeds and plants. The network that produced the best results was the cNET
of 16 filters. It had a training accuracy of 97.23% and used a dataset of 44,580 segmented
pictures from both classes.

Gao et al. [40] proposed a hyperspectral NIR snapshot camera for classifying weeds
and maize by measuring the spectral reflectance of an interest zone (ROI). The aim of this
work was to identify the relevant spectral wavelengths and key features for classification,
investigate the viability of weed and maize classification using a near infrared (NIR)
snapshot mosaic hyperspectral camera, and provide the best parameters for a random
forest (RF) model construction. In that work, 185 features were retrieved using vegetation
indices (VIs), specifically, NDVI and RVI.

According to the findings, the ideal random forest model with 30 crucial spectral properties
can successfully identify the weeds Convolvulus arvensis, Rumex, and Cirsium arvense, as well as
the crops Zea mays. It was demonstrated that Z. mays can be identified with 100% recall
(sensitivity) and 94% precision (positive predictive values). The model accomplished preci-
sion and F1 scores of 0.940 and 0.969, 0.959 and 0.866, 0.703 and 0.697, and 0.659 and 0.698,
for crop Zea mays and weeds Convolvulus arvensis, Rumex and Cirsium arvense, respectively.

Bakhshipour and Jafari [41], using shape characteristics, utilized a Support Vector
Machine (SVM) and an artificial neural network (ANN) classifier to categorize four different
species of weeds and a sugar beet crop. Pictures were captured by using a weed robot with
a camera, providing RGB images. Multi-layer feed-forward perceptron ANN was created
using the Levenberg–Marquardt (LM) back-propagation learning method and two hidden
layers. Principal Component Analysis (PCA) was employed as a feature selection method
to reduce the initial 31 feature expressions into four components. The PCA values were
then employed in SVM.

Both ANN and SVM correctly classified the sugar plants, with an accuracy of 93.33%
and 96.67%, respectively. Compared to the sugar beet crop, the weeds were correctly
identified by ANN and SVM 92.50% and 93.33% of the time, respectively. With an overall
accuracy of 92.92% and 95%, respectively, both ANN and SVM were able to detect the
shape-based patterns and categorize the weeds quite well. The results of the SBWD
algorithm at various levels are shown in Figure 13. The initial RGB image is shown in (a);
(b) shows the EXG method for segmenting plants; (c) demonstrates the image created using
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morphological techniques (noise removal, area thresholding for removing small plants,
and edge erosion for removing touching overlaps); (d) shows the SBWD algorithm for
segmenting sugar beets; (e) shows the subtraction of the result of greenness from image
(c) from image (b) showing the weeds; and, finally (f) displays the result of the SBWD
algorithm showing weeds, sugar beet, and false negatives; red pixels indicate weeds,
green pixels indicate sugar beet plants, and yellow pixels show areas that were incorrectly
identified as undesirable objects.
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Sa et al. [42] performed weed and sugar beet classification using a CNN with multi-
spectral images collected by a MAV. These images were converted to SegNet format. The
information gathered from this field was divided into photographs with only crops, pure
weeds, or a combination of crops and weeds. For improved class balance, the frequency of
appearance (FoA) for every single class is modified depending on the training dataset. With
changing input channel sizes and training settings, the authors trained six distinct models,
assessed them quantitatively using AUC and F1-scores as metrics, and then compared
the results.

The learning rate for the training model was set to 0.001, the batch size was 6, the
weight delay rate was 0.005, and the maximum iterations were 640 epochs. This model was
able to achieve an average accuracy of 80% using the test data, with an average F1-score of
0.8. However, spatiotemporal inconsistencies were found in the model due to limitations in
the training dataset.

Yang et al. [43] investigated deep learning techniques for hyperspectral image classifi-
cation. The authors designed and developed four deep learning models: a two-dimensional
CNN (2-D-CNN); a three-dimensional CNN (3-D-CNN); a region-based 2-dimensional
CNN (R-2-D-CNN); a region-based 3-dimensional CNN (R-3-D-CNN). The objective was
that a 2-D-CNN worked in the spatial context, while a 3-D-CNN worked in both spectral
and spatial factors of the hyperspectral images retrieved from six datasets, viz., Botswana
Scene, Indian Pines Scene, Salinas Scene, Pavia Center Scene, Kennedy Space Center, and
Pavia University Scene.

The patch and feature extraction and the label identification steps make up the 2-D-
CNN model. The primary distinction is that the 3-D-CNN model contains an additional
reordering step. The D hyperspectral bands are rearranged in this phase in ascending order.
A multiscale deep neural network is used by the R-2-D-CNN model to fuse numerous
shrinking patches into multilevel instances, which are then used to make predictions. The
primary distinction is that the 3-D-CNN model makes use of 3-D convolution operators
whereas the R-2-D-CNN model do so use their 2-D equivalents.
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An effective hyperspectral image classification process should consider both the
spectral factor and the spatial factor since both have an impact on the class label prediction
of a pixel. With this knowledge, the proposed deep learning models, namely the R-2-D-
CNN and the R-3-D-CNN, achieved better results. The best results of the first network,
in one of the datasets, were 99.67% and 99.89%, which correspond to values of average
accuracy of each class (AA), and overall accuracy of all classes (OA), respectively. In the
second model, the best results were 99.87% and 99.97%, for the same metrics.

Yashwanth et al. [44] implemented an image Classification System using the Deep
Learning function. KERAS API in combination with the Tensorflow backend has been
used in Python. Images of nine different crops and their respective weeds have been col-
lected (wheat-Parthenium; Soybean-Amaranthus Spinosus; Maize-Dactyloctenium Aegyptium;
Brinjal-Datura Fatuosa; Castor-Portulaca Oleracea; Sunflower-Cyperus Rotundus; Sugarcane-
Convolvulus Arvensis; Paddy-Chloris Barbata; Paddy-Echinochloa colona. In the first stage,
images that will be used to train the neural network are pre-processed. The input layer
stores the image’s pixels in the form of arrays. The “ReLU” activation function is used in
the next step to obtain the image’s corrected feature map. To accomplish edge detection,
pooling is employed. The matrix gets flattened after using this flattened function. The
thick layer receives this feeding. The object in the image is recognized by a completely
linked layer.

The model was tested using nine different types of crops and the corresponding
weeds, and the highest accuracy was found to be 96.3%. The provided photos were
correctly categorized as either plants or weeds.

Jin et al. [45] created an algorithm for robotic weed eradication in vegetable farms
based on deep learning and image processing. Images were captured in the field using
a digital camera. Bounding boxes were drawn on the vegetable in the input photos as a
manual annotation. In CenterNet, each item is represented by a single point, and object
centers are predicted using a heatmap. Estimated centers are obtained from the heatmap’s
peak values using a Gaussian kernel and an FCN. Using a Gaussian kernel and focal loss,
each ground truth key point is transformed into a smaller key-point heatmap to train the
network. A color index was established and assessed using Genetic Algorithms (GAs) in
accordance with Bayesian classification error to extract weeds from the background.

The trained CenterNet earned an F1-score of 0.953, an accuracy of 95.6%, and a recall
of 95.0.

In El-Kenawy et al. [46], a new methodology based on metaheuristic optimization
and machine learning was proposed, which aims to classify weeds based on wheat images
acquired by a drone. Three models were proposed, specifically, artificial neural networks
(NNs), support vector machines (SVMs), and the K-nearest neighbors’ algorithm (KNN).
The ANN was trained across a public dataset, through transfer learning and feature ex-
traction. According to AlexNet, a binary optimizer is further suggested to improve the
feature selection procedure and choose the optimal collection of features. A collection
of assessment criteria is used to evaluate the efficacy of the feature selection algorithm
to analyze the performance of the suggested technique. The suggested model used two
more different types of machine learning models, namely, SVM and KNN, to improve
the parameters. This classifier is improved by a brand-new optimization approach that
combines grey wolf (GWO) and sine cosine optimizers (SCA). These suggested classifiers
contribute to a creation of a hybrid algorithm.

The results demonstrate that the recommended technique works better than other
alternatives and enhances classification accuracy, with a detection accuracy of 97.70%, an
F1-score of 98.60%, a specificity of 95.20%, and a sensitivity of 98.40%.

Sunil et al. [47] analyzed the performance of a deep learning model for weed detection
in photos with non-uniform and uniform backgrounds. Four Canon digital cameras were
used to capture the weed and crop shots, namely, Palmer amaranth, horseweed, redroot
pigweed, waterhemp, ragweed, and kochia, and crop species of sugar beets and canola.
Weed classification models were developed using deep learning architectures, namely,
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Convolutional Neural Network (CNN) based on a Residual Network (ResNet50), and
Visual Group Geometry (VGG16). The uniform background scenario data, non-uniform
background scenario data, and combined-datasets scenarios created after combining both
scenarios’ data were trained using the ResNet50, and VGG16.

With an average f1-score of 82.75% and 75%, respectively, the VGG16 and ResNet50
models built from non-uniform backdrop pictures performed well on the uniform background.
The performance of the VGG16 and ResNet50 models, which were built using uniform
backdrop photos, did not fare as well, with average f1-scores of 77.5% and 68.4%, respectively,
on non-uniform background images. The f1-score value of 92% to 99% was achieved by a
model that was trained using fused information from two background circumstances.

Sunil et al. [48] compared the classification models of Support Vector Machine (SVM)
and deep learning-based Visual Group Geometry 16 (VGG16) utilizing RGB picture texture
information to categorize weeds and crop species. Six crop species as well as four weeds
(horseweed, kochia, ragweed, and waterhemp) were classified using the SVM and VGG16
deep learning classifiers (the crop species were black bean, canola, corn, flax, soybean, and
sugar beets). Gray-level co-occurrence matrix (GLCM) features and local binary pattern
(LBP) features are two different categories of texture characteristics that were retrieved
from the grayscale picture. After this, a machine learning classifier was built by operating a
SVM and VGG16.

All SVM model classifiers have fallen short in comparison to the VGG16 model
classifiers. The findings showed that the VGG16 model classifier’s average F1 results varied
from 93% to 97.5%, while the average F1-score results of SVM ranged from 83% to 94%. In
the VGG16 Weeds-Corn classifier, the corn class achieved a F1-score value of 100%.

Table 5 summarizes the features of research works in the field of weed classification.

3.3.4. Fruit Detection

Fruit quality detection is a technique for automatically evaluating the quality of fruits
based on several aspects of a picture, such as color, size, texture, and form, among others.
The main element preventing adverse health issues in people is fruit quality. In the food
business and agriculture specifically, automatic detection is crucial.

Fruit Detection in Individual Plants

Mao et al. [49] proposed a Real-Time Fruit Detection model (RTFD), a simple method
for edge CPU devices that can identify fruit, specifically strawberries and tomatoes. The
PicoDet-S model-based RTFD enhances the efficiency of real-time detection for edge CPU
computing devices by enhancing the model’s structure, loss function, and activation func-
tion. Two datasets were used with pictures taken in different conditions; the tomato dataset
was compiled using the publicly accessible Laboro Tomato dataset, while the strawberry
dataset was acquired from the publicly available StrawDI dataset. The technical path was
divided into two objectives: model training, and model quantization and deployment. In
the first, the RTFD model’s performance was improved using the CIoU bounding box loss
function, the ACON-C activation function, and the three-layer LC-PAN architecture.

The RTFD model was quantitatively trained for fruit detection. After being trans-
formed into a Paddle Lite model and integrated into a testing Android smartphone app,
the RTFD model performed extremely accurately in terms of real-time detection.

It is anticipated that edge computing will successfully implement the idea of redesign-
ing the model structure, loss function, and activation function, as well as training by
quantization, to expedite the detection of deep neural networks. The proposed RTFD
has enormous potential for intelligent picking machines. For the strawberry and tomato
datasets, PicoDet-S has an average accuracy of 94.2% and 76.8%, respectively. It is antici-
pated that edge computing will successfully implement the idea of redesigning the model
structure, loss function, and activation function, as well as training by quantization, to
expedite the detection using deep neural networks. The proposed RTFD has enormous
potential for intelligent picking machines.
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Table 5. Feature descriptions of publications in the field of “Weed classification”.

References Application Data Used Model Used Metric Used Model Performance

Dyrmann et al. [38] Weed classification in 22
different crops. Six databases from [38]. CNN. Accuracy

In general, the classes with the highest number
of species also had the greatest categorization
accuracy. As a result, classes with fewer picture
samples made a smaller total loss.
The network’s classification precision varied
from 33% to 98%, with an average precision
of 86.2%.

Andrea et al. [39]
Image segmentation and
classification of weeds in
maize fields.

Multispectral camera to
acquire RGB and

NIR images.

CNN: LeNet, AlexNet,
cNet, and sNet. Accuracy

Based on its accuracy and processing speed, the
network cNET provided the greatest
training outcomes.

Gao et al. [40] Weed and maize classification
(VIs added to the input).

Hyperspectral snapshot
camera sensor. RF.

Precision
Recall

F1-score

The RF model that was used to create classifiers
using various spectral feature combinations
performed well. Vegetation indices are useful
techniques for developing important aspects for
the categorization of crops and weeds.

Bakhshipour and Jafari. [41] Classification of sugar beet
crop and weeds. RGB camera. SVM;

ANN. Accuracy Both ANN and SVM properly identified the
effectiveness of sugar plants and weeds.

Sa et al. [42] Classification of sugar beet
and weeds.

Multispectral images
collected by a MAV. CNN. Accuracy

F1-score

Most of the weeds were classified well. Due to
restrictions in the dataset the model was trained
on, certain spatiotemporal discrepancies
were identified.

Yang et al. [43] Classification of weeds in
crops and landscapes. Six datasets from [13].

CNN:
2-D-CNN,
3-D-CNN,

R-2-D-CNN,
R-3-D-CNN.

Accuracy

For most of the data sets, the suggested
R-3-D-CNN model performs better than most of
the current models and can also converge more
quickly. Nevertheless, compared to
conventional machine learning techniques,
these models need more training samples.

Yashwanth et al. [44] Image classification of weeds
in nine different crops. Digital camera. Keras API;

TensorFlow. Accuracy

The model was tested using nine different types
of crops and the corresponding weeds, and the
greatest accuracy was determined to be 96.3%.
All the provided photos were correctly
categorized as either plants or weeds.
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Table 5. Cont.

References Application Data Used Model Used Metric Used Model Performance

Jin et al. [45] Weed identification in
cabbage fields. Digital camera. CNN: CenterNet.

Precision
Recall

F1-score

The recommended approach has application
value for the sustainable development of the
vegetable sector and is suited for ground-based
weed detection in vegetable agricultural land
under diverse circumstances, lighting, and
complicated backdrops, as well as various
growth phases.

El-Kenawy et al. [46] Weed classification in
wheat crops.

Images captured by
a drone.

NN;
SVM;
KNN;
GWO;
SCA.

Accuracy
F1-score
Recall

Specificity

The research shown that the suggested strategy
outperforms existing methods and improves
classification accuracy, with a detection accuracy
of 97.70%, an F1-score of 98.60%, a specificity of
95.20%, and a sensitivity of 98.40%.

G C et al. [47] Weed classification in
sugar beets.

Four Canon
digital cameras.

CNN:
VGG16, ResNet50. F1-Score

The VGG16 and ResNet50 models, which were
created using non-uniform backdrop photos,
performed well on the uniform background,
with average f1-scores of 82.75% and 75%,
respectively. Employing non-uniform
backgrounds led to poorer results. The model
that was trained using combined datasets from
two background scenarios performed better
than any.

Zhang et al. [48]
Weed classification in black
bean, canola, corn, flax,
soybean, and sugar beets.

RGB camera. SVM;
VGG16. F1-score

All SVM model classifiers have failed in
comparison to the VGG16 model classifiers. The
results demonstrated that the range of the
VGG16 model classifier’s average F1-scores was
between 93% and 97.5%. The range of SVM
average F1 scores was 83 to 94 percent. In the
VGG16 Weeds-Corn classifier, the corn class
scored 100% F1.
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Figure 14 shows the results of strawberry and tomato detection. The picture contains
varied colored borders that reflect separate categories. The blue arrows serve as suggestive
indication symbols, and the blue circles highlight regions of faulty or missing detections.
The red, orange/yellow, and light blue correspond, respectively, to mature strawberries,
half-mature strawberries, and immature strawberries.

Processes 2023, 11, x FOR PEER REVIEW 33 of 43 
 

 

Figure 14 shows the results of strawberry and tomato detection. The picture contains 

varied colored borders that reflect separate categories. The blue arrows serve as sugges-

tive indication symbols, and the blue circles highlight regions of faulty or missing detec-

tions. The red, orange/yellow, and light blue correspond, respectively, to mature straw-

berries, half-mature strawberries, and immature strawberries. 

 

Figure 14. The impact of RTFD model detection on the tomato and strawberry datasets. The blue 

circles denote locations of inaccurate or missing detections, while the blue arrows act as suggestive 

indicator symbols. The red, orange/yellow, and light blue corresponded, respectively to mature 

strawberries, half-mature strawberries, and immature strawberries [49]. 

In line with Pereira et al. [50], six grape types that predominate in the Douro Region 

were automatically identified and classified using a methodology based on the AlexNet 

architecture and transfer learning scheme. Two natural vineyard image datasets, taken in 

various parts of Douro, were called Douro Red Grape Variety (DRGV), and GRGV_2018. 

For picture managing, different image processing (IP) methods were applied, such as in-

dependent components filter (ICFs), leaf segmentation algorithm (LSA) with four-corners-

in-one, leaf patch extraction (LPE), LPE with ICF, LPE with canny edge detector (CED), 

and LPE with Gray-scale morphology processing (GMP). These new datasets, with pre-

processed and augmentation pictures were then trained in the AlexNet CNN. 

The suggested method, four-corners-in-one, supplemented by the leaf segmentation 

algorithm (LSA), revealed success in reaching the best classification accuracy in the set of 

performed experiments. With a testing accuracy of 77.30%, the experimental results indi-

cated the suggested classifier to be trustworthy. The algorithm took roughly 6.1 ms to 

identify the grape variety in a picture. 

Fruit Detection in Areas of Crops 

Santos et al. [51] estimated grape wine production from RGB photos including deep 

learning algorithms and computer vision models. Pictures were taken of five distinct 

grape varietals, using a Canon camera and a smartphone. Mask R-CNN, YOLOv2, and 

YOLOv3 models from deep learning (DL) were trained to recognize and separate grapes 

in the photos. After that, spatial registration was carried out using the Structure from Mo-

tion (SfM) image processing technique, incorporating the information produced by the 

CNN-based stage. To prevent counting the same clusters across many photos, the clusters 

found in distinct images were removed using the CV model’s outputs in the final phase. 

While the Mask R-CNN outperformed YOLOv2 and YOLOv3 in terms of object de-

tection, the YOLO model outperformed it in terms of detection time. Using YOLOv3, the 

poorest performance was attained. With an intersection over union (IoU) of 0.300, Mask 

R-CNN achieved an average accuracy of 0.805, a precision of 0.907, a recall of 0.873, and 

an F1-score of 0.890. YOLOv2 achieved an average accuracy of 0.675, a precision of 0.893, 

a recall of 0.728, and an F1-score of 0.802. In last place, YOLOv3 achieved an average ac-

curacy of 0.566, a precision of 0.901, and a recall of 0.597, and an F1-score of 0.718. 

Figure 14. The impact of RTFD model detection on the tomato and strawberry datasets. The blue
circles denote locations of inaccurate or missing detections, while the blue arrows act as suggestive
indicator symbols. The red, orange/yellow, and light blue corresponded, respectively to mature
strawberries, half-mature strawberries, and immature strawberries [49].

In line with Pereira et al. [50], six grape types that predominate in the Douro Region
were automatically identified and classified using a methodology based on the AlexNet
architecture and transfer learning scheme. Two natural vineyard image datasets, taken in
various parts of Douro, were called Douro Red Grape Variety (DRGV), and GRGV_2018.
For picture managing, different image processing (IP) methods were applied, such as
independent components filter (ICFs), leaf segmentation algorithm (LSA) with four-corners-
in-one, leaf patch extraction (LPE), LPE with ICF, LPE with canny edge detector (CED),
and LPE with Gray-scale morphology processing (GMP). These new datasets, with pre-
processed and augmentation pictures were then trained in the AlexNet CNN.

The suggested method, four-corners-in-one, supplemented by the leaf segmentation
algorithm (LSA), revealed success in reaching the best classification accuracy in the set
of performed experiments. With a testing accuracy of 77.30%, the experimental results
indicated the suggested classifier to be trustworthy. The algorithm took roughly 6.1 ms to
identify the grape variety in a picture.

Fruit Detection in Areas of Crops

Santos et al. [51] estimated grape wine production from RGB photos including deep
learning algorithms and computer vision models. Pictures were taken of five distinct
grape varietals, using a Canon camera and a smartphone. Mask R-CNN, YOLOv2, and
YOLOv3 models from deep learning (DL) were trained to recognize and separate grapes
in the photos. After that, spatial registration was carried out using the Structure from
Motion (SfM) image processing technique, incorporating the information produced by the
CNN-based stage. To prevent counting the same clusters across many photos, the clusters
found in distinct images were removed using the CV model’s outputs in the final phase.

While the Mask R-CNN outperformed YOLOv2 and YOLOv3 in terms of object
detection, the YOLO model outperformed it in terms of detection time. Using YOLOv3, the
poorest performance was attained. With an intersection over union (IoU) of 0.300, Mask
R-CNN achieved an average accuracy of 0.805, a precision of 0.907, a recall of 0.873, and
an F1-score of 0.890. YOLOv2 achieved an average accuracy of 0.675, a precision of 0.893,
a recall of 0.728, and an F1-score of 0.802. In last place, YOLOv3 achieved an average
accuracy of 0.566, a precision of 0.901, and a recall of 0.597, and an F1-score of 0.718.
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Figure 15 shows an example of the detection of the five grape varieties with the three
neural networks employed, viz., Mask R-CNN, YOLOv2, and YOLOv3, as well as the
ground truth images. In the image it is possible to observe several object identification
results, where the color does not indicate correlation. In this example, it is possible to
observe the difference between the models and better understand visually the results from
performance metrics.
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In Assunção et al. [52], for a real-time peach fruit identification application, a tensor
processing unit (TPU) accelerator was created with a Raspberry Pi target device, to give a
lightweight and hardware aware MobileDet detector model. Three fruit peach cultivars— Royal
Time, Sweet Dream, and Catherine—were combined into one picture dataset. A RGB
camera was used to capture the pictures. The following components make up the hardware
platform (edge device) utilized to execute inferences: a Raspberry Pi 4 microcontroller
development kit; a Raspberry Pi Camera Module 2, a Coral TPU accelerator, a DC-to-DC
converter, and three Li-ion batteries. As a detector, the single-shot detector (SSD) model
was applied. The backbones underwent SSD modifications. In this paper, a MobileNet
CNN was used as the basis for the SSD model in experiments to look at the trade-off
between detection accuracy and inference time. MobileNetV1, MobileNetV2, MobileNet
EdgeTPU, and MobileDet were the backbones that were utilized.

In comparison to the other models, SSD MobileDet excelled, achieving an average
precision of 88.2% on the target TPU device, according to the data. The model with
the least performance degradation (drop) was SSD MobileNet Edge TPU, which had a
decrease of 0.5%; the model with the most impact, SSD MobileNetV2, experienced a drop
of 1.5%. SSD MobileNetV1 has the smallest latency at 47.6 ms (average). The authors have
contributed to the field by expanding the applications of accelerators (the TPU) for edge
devices in precision agriculture. Figure 16 shows an example of detection samples of the
three cultivars, with Catherine at the left, Sweet Dream in the middle, and Royal Time at
the right.

Table 6 summarizes the features of research work in the field of fruit detection.
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Table 6. Feature descriptions of publications in the field of “Fruit Detection”.

References Application Data Used Model Used Metric Used Model Performance

Mao et al. [49] Identify tomatoes and
strawberries.

Two datasets: StrawDI;
Laboro Tomato, from [21]. PicoDet-S. Accuracy

The proposed RTFD has enormous potential
for intelligent picking machines, and it is
anticipated that edge computing will
successfully implement the idea of
redesigning the model structure, loss function,
and activation function, as well as training by
quantization to expedite the detection of deep
neural networks.

Pereira et al. [50] Identify and classify grapes. Two datasets: DRGV
And DRGV_2018, from [23].

LSA; CED; GMP; LPE; ICF;
and CNN: AlexNet. Accuracy

With a testing accuracy of 77.30%,
the experimental findings proved the
suggested classifier’s trustworthiness. The
algorithm took roughly 6.1 ms to identify the
grape variety in a picture.

Santos et al. [51] Identify grapes and estimate
grape wine yield. RGB camera. Mask R-CNN; YOLOv2;

YOLOv3.

Precision
Recall

F1-score

The YOLO model beat the Mask R-CNN in
terms of detection time, while the Mask
R-CNN outperformed YOLOv2 and YOLOv3
in terms of object detection. Using YOLOv3,
the poorest performance was attained.

Assunção et al. [52] Identify peaches. RGB camera.

MobileDet;
MobileNet Edge TPU;

MobileNetV2;
MobileNetV1.

Precision

The model performed at 19.84 frames per
second (FPS) with an average precision (AP)
of 88.2% and a 640 × 480 picture size.
According to the results, the TPU accelerator
can be a great replacement for processing at
the cutting edge in precision agriculture.
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4. Discussion

According to the research analyzed here, the following conclusions of each study as
well as specific challenges can be indicated.

In ref. [8], the authors employed three models, namely, SVM-HOG, Mask R-CNN,
and YOLOv3. Images were captured by a multispectral camera and used the following
performance metrics: F1-Score, accuracy, specificity, precision, and recall. The HOG-SVM
approach was shown to work quite well, and given that it requires less processing power,
it is an excellent choice for IoT systems.

In ref. [14], the authors used three models, namely, RF, KNN, and SVM. Images were
captured by a RGB camera and used the following performance metrics: accuracy, k, FPR,
precision, and recall. The findings of this study indicate that RF outperformed the other
classifiers. Furthermore, the efficiency of RF and SVM as classifiers for weed detection from
UAV pictures is noteworthy.

Another model was employed in ref. [15], with JULE and DeepCluster. In this study,
images were taken from two datasets, and the authors choose accuracy and normalized mu-
tual information. The model achieved better performance with DeepCluster. Furthermore,
the outcomes from these datasets point to a viable use of clustering and unsupervised
learning for agricultural issues.

In ref. [16], an encoder-decoder CNN was employed, with pictures from two datasets,
and working with accuracy and IoU to evaluate the model. The results demonstrate the
effectiveness of NIR information for precise segmentation under low lighting conditions,
while VIs without NIR information did not improve the segmentation results.

In ref. [22], the authors employed a deep CNN, with pictures from a RGB camera, and
used the following performance metrics: precision and recall. The findings of this study
demonstrate that a CNN, more especially ResNet18, may function as a reliable detector for
potatoes infected with the blackleg disease in the field. However, with larger datasets and
data augmentation, the performance can be increased.

In ref. [23], a CNN was used, with pictures from five datasets, and an F1-Score was
applied as a performance metric. The findings of this study demonstrate that the CNN did
not classify any disease incorrectly.

A MLP with an ANN model was developed in ref. [24], pictures were taken with a
digital camera, and the model was evaluated in terms of accuracy. The implementation of a
two-layer structure with eight neurons in the first layer and eight neurons in the second
layer produced a maximum accuracy of 73.7%.

In ref. [25], a CNN was employed, with accuracy as a performance metric. Images
were captured by a RGB sensor. The findings of this study demonstrate that the model
trained with RGB photos performed better than the model trained with infrared images.
The limited size of the training sample is one of the research study’s weaknesses.

A fuzzy real time classifier was created in ref. [26], and two digital cameras were
utilized, while accuracy was used for classifying the model. The prototype distinguished
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weed species with greater precision and a shorter processing time. However, the field
obstructions provoked the robot to diverge from the planned path while it was moving.

A Mask R-CNN was applied in ref. [27], with RGB and NIR images; the model
was evaluated through accuracy, IoU, precision, and recall. The model achieved better
performance by adding an extra channel at the input of the model.

In ref. [28], an encoder- decoder CNN was evaluated, and the authors used RGB and
NIR images, with the F1-Score as a classification metric. The suggested model was able to
robustly identify crops in all growth phases and outperformed encoder-decoder FCN.

An FCN with RGB images was developed in ref. [29]. Once again, accuracy was used
as a metric. The suggested technique successfully classified the pixels in images of weeds.

Four different models of the CNN were utilized in ref. [30], a digital camera was
used, and this model was evaluated by IoU. The results showed that in terms of efficiency,
PSPNet fared better than SegNet and UNet.

In ref. [31], two models were studied, FPN, and Faster R-CNN, where images were
from a dataset, and accuracy, recall, F1-Score, and IoU were used as metrics. The exper-
imental results show that the Faster R-CNN-FPN deep network model obtains greater
recognition accuracy by employing the ResNeXt feature extraction network and combining
the FPN network.

In ref. [32], five datasets were used in the following models: TMG, DeepLabv3, and
MobileNetv2. The results show that the trade-off between segmentation accuracy and
inference time can be managed via the hyperparameters OS and DM. DeepLabV3 has
shown itself to be an incredibly flexible model for segmentation tasks.

In ref. [33], an OBIA model was used, with images from a visible-light and multi-
spectral camera. Accuracy was used to evaluate the system. The findings of this study
demonstrate that the multispectral camera was more accurate at higher flight altitudes,
whereas the visible light one was better at lower altitudes. However, the spectrum mixing
of flowers and bare soil components caused some mistakes at higher elevations.

In ref. [34], the authors employed an FCN, with pictures from a digital camera, and
used the performance metrics of accuracy and IoU. The findings of this study demonstrate
that the FCN technology performed well in terms of accuracy and efficiency for weed
identification. On the other hand, it necessitates a great deal of manual labelling effort
because it needs a large number of labelled pictures for training and updating.

In ref. [35], a CNN was developed, images were taken from a digital camera, and the
authors used accuracy as a metric. In terms of adaptability and flexibility, this method
is attractive since a model may be simply trained on a dataset. On the other hand, it
necessitates a great deal of manual labelling.

In ref. [38], the authors used six datasets in a CNN, the model was evaluated using
accuracy. The model achieved an accuracy of 86.2%. However, classes with fewer picture
samples made a smaller total loss.

Different models of CNN were employed in ref. [39]. Images were taken by RGB and
NIR cameras, and, once again, accuracy was used as the key metric. Based on its accuracy
and processing speed, the network cNET provided the greatest training outcomes.

An RF model was developed in ref. [40]; the authors used hyperspectral images, and
evaluated the model using precision, recall, and F1-Score. The results showed that the RF
model performed well, and the vegetation indices are also useful techniques for developing
important aspects of the categorization of weeds and crops.

In ref. [41], a SVM and an ANN were created with RGB images, using accuracy as a
performance metric. The results showed that both models properly identified weeds and
sugar plants.

In ref. [42], a CNN was designed, multispectral images were used, and the model was
evaluated using accuracy, and F1-Score. The results showed that most of the weeds were
classified well. However, spatiotemporal inconsistencies were found in the model due to
limitations in the training dataset.
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Four models of CNN were employed in ref. [43], and six datasets were used, as well as
accuracy as a performance metric. The results showed that the proposed R-3-D-CNN model
frequently outperforms existing models for most of the data sets and can also converge
more quickly. However, these models require more training samples.

In ref. [44], a model with Keras API, and Tensorflow was implemented, and a digital
camera was used to take the pictures. Accuracy was the evaluation metric. The crops and
weeds were correctly detected, achieving the greatest accuracy.

In ref. [45], genetic algorithms were implemented with CenterNet. A digital camera
was used as well as, and precision, recall, and F1-Score were applied to evaluate the
model. The suggested method is suitable for ground-based weed identification in vegetable
agricultural land under various conditions, illumination, complex backgrounds, as well as
various growth stages.

In ref. [46], three models were developed, NN, SVM, and KNN, and these versions
were evaluated with the genetic algorithms, GWO, and SCA. The research showed that the
proposed technique performs better than other methods and increases classification accuracy.

A CNN model was implemented with CGG16, and ResNet50 in ref. [47]. Four digital
cameras were used to take the images, and the model was evaluated by F1-score. The results
showed that the model that was trained using combined datasets from two background
scenarios performed best. Furthermore, the models which were built using non-uniform
backdrop pictures behaved well on the uniform background. Those trained on a uniform
background functioned poorly

In ref. [48], the researchers created a model with SVM, and VGG16, where RGB images
were applied. The results showed that the VGG16 model classifiers outperformed all SVM
model classifiers.

A Mask R-CNN, with a YOLOv2, and YOLOv3 were employed in ref. [51]. In this
model, RGB images were used, and authors utilized precision, recall, and F1-Score to
evaluate the model. The results showed that the YOLO model beat the Mask R-CNN in
terms of detection time, while the Mask R-CNN outperformed YOLOv2 and YOLOv3 in
terms of object detection.

A picoDet-S CNN model was engaged in ref. [49]. Two datasets were used, and
accuracy was the performance metric. The proposed RTFD has enormous potential for
intelligent picking machines, and it is anticipated that edge computing will successfully im-
plement the idea of redesigning the model structure, loss function, and activation function,
as well as training by quantization to expedite the detection of deep neural networks.

In ref. [50], a CNN model with optimizing algorithms was developed. Two datasets
were used, as the accuracy as a performance metric. The results demonstrate that the model
classifiers are trustworthy with an accuracy of 77.30%.

In ref. [52], a MobileNet with TPU model was employed, the research used RGB
images, and the model was evaluated using precision as a performance metric. According
to the results, the TPU accelerator can be a great replacement for processing at the cutting
edge in precision agriculture.

The papers under examination highlight the following difficulties. The most critical
point involves the datasets. Even with transfer learning and data augmentation, training the
model may still need a substantial quantity of data, and an insufficient dataset for training
the model might result in substantial failures [22,25,43]. Datasets with more samples will
be able to perform better. Furthermore, the quality of the datasets is also a problem; images
with bad quality will perform worst [42]. As a result, the first and most crucial phase is
gathering real field data and photos under various circumstances.

Agricultural image datasets are also more complex due to outdoor conditions, the
fact that the object of interest typically occupies a very small and off-center portion of the
image, the similarity between objects and background, the obstruction of the object by
leaves and branches, the presence of multiple objects in one image, and a variety of other
factors. The dataset must, however, accurately reflect the condition of the environment for
it to be useful in the actual world [49,51,52]. Furthermore, datasets with LED pictures will
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have a low accuracy [38]. Data augmentation may also be useful in some circumstances,
such as fluctuating illuminance.

Another important challenge is the large amount of data that needs to be labelled. This
task is expensive and time-consuming. Moreover, some tasks can only be carried out by
experts in the industry, such as tasks involving plant diseases. Supervised learning needs a
huge number of labelled images, for training and updating the models [34,35].

Data augmentation and transfer learning, as observed in multiple works, are ap-
proaches to avoid labelling a huge dataset, although labelling a small dataset still takes
time. Unsupervised and semi-supervised learning techniques can be very beneficial but
still require further research [12].

The performance of the model is impacted by the type of input [23,24,27,28,33]. The
model’s performance is affected by background removal from images [46], using various
color spaces and vegetation indices as input [27], and crop detection at various growth
stages [45]. The altitude when images are taken is also important for the input [33]. Finding
the ideal input set for a given activity is therefore difficult.

In addition, field obstructions are a problem for the use of field robots. When robots
find some obstacle in their path, they diverge from the planned path [26]. To solve this
problem, instead of robots, drones can be applied. Another solution is that farmers can
have the field clean and plain.

Accuracy and inference time must be traded off when selecting a model for a task.
The model can be selected based on the application. In the field of agriculture, no setting is
exactly comparable to another, and each environment and problem has its unique dataset;
therefore, the DL model could not be relevant in all situations. The model performance
could suffer because of the variations in the visual quality of the photos in the training and
test datasets [38]. Retraining the already learned model using a tiny dataset from the new
environment is one technique to get around the problem [11].

Moreover, the performance of these models depends on the choice of hyperparameters,
loss functions, and optimization algorithms. Algorithms such as Bayesian optimization can
help to find the right hyperparameters [11,23].

The models’ capacity to be applied in real-time presents another difficulty. Most deep
learning models need to be trained on many parameters, and once trained, the model’s
inference is not made in real time. Time inference is crucial in some applications, such
as employing a robot for harvesting. However, there are still several issues with imple-
mentation on devices such as smartphones that must be considered, including memory
usage and performance. Deep Learning models may now be used in practical and real-
world applications because of the emergence of edge devices such as the Raspberry Pi
and Jetson Nano, lightweight categorization models such as MobileNet, and cloud com-
puting. The model size may be compressed, and the detection speed increased using the
quantization approach [11,23].

5. Conclusions

The manuscript discusses the use of deep learning in agriculture and biodiversity and
identifies certain difficulties in the field. It is suggested that reduced herbicide administra-
tion, minimal pesticide use, organic farming, suitable crop rotations, small-scale fields, and
preservation of natural gaps between agroecosystems may contribute to more sustainable
agriculture and the development of biodiversity in agricultural systems.

Additionally, the latest IoT technologies in conjunction with the most recent biodi-
versity algorithms and Artificial Intelligence models can be used to detect, classify, and
eradicate specific weed species, as well as locate and identify fruits and vegetables, detect
diseases, and boost ecosystem productivity without resorting to activities that harm the
environment. Deep learning is already employed in several aspects of agriculture, but
its application is still far from widespread. The most popular deep learning model in
agriculture is the CNN. The adoption of novel techniques, such as attention mechanisms,
new lightweight models, and single-stage detection models, can enhance the model’s
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performance. Performance metrics include accuracy, precision, recall, and F1-Score, and
usually, precision, recall, and F1-Score are used together. The type of data that researchers
employed the most is pre-existing datasets and from cameras.

In the future, crop management decision-support models for farmers may be created
or enhanced to recommend the best course of action. Digital tools could be added that can
instantly categorize weeds. The implementation of new sustainable practices backed by
deep learning models and biodiversity monitoring will aid in managing the farm more
efficiently and with less human labor.

Author Contributions: Conceptualization, P.D.G. and K.A.; methodology, A.C., E.A. and K.A.;
validation, E.A., K.A. and N.P.; formal analysis, A.C., P.D.G., E.A., K.A. and N.P.; investigation, A.C.
and K.A.; resources, A.C., E.A. and K.A.; data curation, E.A., K.A. and N.P.; writing—original draft
preparation, A.C., E.A., K.A. and N.P.; writing—review and editing, P.D.G.; supervision, P.D.G.;
project administration, P.D.G.; funding acquisition, P.D.G. All authors have read and agreed to the
published version of the manuscript.

Funding: The work is supported by the R&D Project BioDAgro—Sistema operacional inteligente de
informação e suporte á decisão em AgroBiodiversidade, project PD20-00011, promoted by Fundação
La Caixa and Fundação para a Ciência e a Tecnologia, taking place at the C-MAST—Centre for
Mechanical and Aerospace Sciences and Technology, Department of Electromechanical Engineering
of the University of Beira Interior, Covilhã, Portugal.

Data Availability Statement: Not applicable.

Acknowledgments: P.D.G. acknowledges Fundação para a Ciência e a Tecnologia (FCT—MCTES)
for its financial support via the project UIDB/00151/2020 (C-MAST).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tripathi, A.D.; Mishra, R.; Maurya, K.K.; Singh, R.B.; Wilson, D.W. Estimates for World Population and Global Food Availability for

Global Health. In The Role of Functional Food Security in Global Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–24. [CrossRef]
2. United Nations. Population. Available online: https://www.un.org/en/global-issues/population (accessed on 8 November 2022).
3. European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally Friendly Food System. Communication from

the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions.
COM/2020/381 Final. Document 52020DC0381; European Commission: Bruxels, Belgium, 2020.

4. Wang, A.; Zhang, W.; Wei, X. A review on weed detection using ground-based machine vision and image processing techniques.
Comput. Electron. Agric. 2019, 158, 226–240. [CrossRef]

5. United Nations. Water. Available online: https://www.un.org/en/global-issues/water (accessed on 8 November 2022).
6. Wato, M.A.T. The Agricultural Water Pollution and Its Minimization Strategies—A Review J. Resour. Dev. Manag. 2020, 64,

10–22. [CrossRef]
7. Hasan, A.S.M.M.; Sohel, F.; Diepeveen, D.; Laga, H.; Jones, M.G.K. A survey of deep learning techniques for weed detection from

images Comput. Electron. Agric. 2021, 184, 106067. [CrossRef]
8. Osorio, K.; Puerto, A.; Pedraza, C.; Jamaica, D.; Rodríguez, L. A Deep Learning Approach for Weed Detection in Lettuce Crops

Using Multispectral Images. AgriEngineering 2020, 2, 471–488. [CrossRef]
9. Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020,

12, 3136. [CrossRef]
10. Littman, L.M.; Ajunwa, I.; Berger, G.; Boutilier, C.; Currie, M.; Doshi-Velez, F.; Hadfield, G.; Horowitz, M.C.; Isbell, C.;

Kitano, H.; et al. Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel
Report; Stanford University: Stanford, CA, USA, 2021; Available online: http://ai100.stanford.edu/2021-report (accessed on 6
November 2022).

11. Alibabaei, K.; Gaspar, P.D.; Lima, T.M.; Campos, R.M.; Girão, I.; Monteiro„ J.; Lopes, C.M. A review of the challenges of using
deep learning algorithms to support decision-making in agricultural activities. Remote Sens. 2022, 14, 638.

12. Espejo-Garcia, B.; Mylonas, N.; Athanasakos, L.; Fountas, S. Improving weeds identification with a repository of agricultural
pre-trained deep neural networks. Comput. Electron. Agric. 2020, 175, 105593. [CrossRef]

13. Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019,
10, 349. [CrossRef]

14. Islam, N.; Rashid, M.M.; Wibowo, S.; Xu, C.Y.; Morshed, A.; Wasimi, S.A.; Moore, S.; Rahman, S.M. Early Weed Detection Using
Image Processing and Machine Learning Techniques in an Australian Chilli Farm. Agriculture 2021, 11, 387. [CrossRef]

https://doi.org/10.1016/B978-0-12-813148-0.00001-3
https://www.un.org/en/global-issues/population
https://doi.org/10.1016/j.compag.2019.02.005
https://www.un.org/en/global-issues/water
https://doi.org/10.7176/JRDM/64-02
https://doi.org/10.1016/j.compag.2021.106067
https://doi.org/10.3390/agriengineering2030032
https://doi.org/10.3390/rs12193136
http://ai100.stanford.edu/2021-report
https://doi.org/10.1016/j.compag.2020.105593
https://doi.org/10.3390/info10110349
https://doi.org/10.3390/agriculture11050387


Processes 2023, 11, 1263 39 of 40

15. Ferreira, A.D.S.; Freitas, D.M.; da Silva, G.G.; Pistori, H.; Folhes, M.T. Unsupervised deep learning and semi-automatic data
labeling in weed discrimination. Comput. Electron. Agric. 2019, 165, 104963. [CrossRef]

16. Wang, A.; Xu, Y.; Wei, X.; Cui, B. Semantic Segmentation of Crop and Weed using an Encoder-Decoder Network and Image
Enhancement Method under Uncontrolled Outdoor Illumination. IEEE Access 2020, 8, 81724–81734. [CrossRef]

17. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [CrossRef]
18. Sunasra, M. Performance Metrics for Classification Problems in Machine Learning. Medium. 11 November 2017. Available online: https:

//medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
(accessed on 6 December 2022).

19. Javatpoint. Performance Metrics in Machine Learning. Available online: https://www.javatpoint.com/performance-metrics-in-
machine-learning (accessed on 6 December 2022).

20. Swift, A.; Heale, R.; Twycross, A. What are sensitivity and specificity? Evid. Based Nurs. 2020, 23, 2–4. [CrossRef] [PubMed]
21. Rushikanjaria. Classification Model Performance Evaluation Using AUC-ROC and CAP Curves. Geek Culture. 5 July 2021.

Available online: https://medium.com/geekculture/classification-model-performance-evaluation-using-auc-roc-and-cap-
curves-66a1b3fc0480 (accessed on 7 December 2022).

22. Afonso, M.; Blok, P.M.; Polder, G.; van der Wolf, J.M.; Kamp, J. Blackleg detection in potato plants using convolutional neural
networks. IFAC-Pap. 2019, 52, 6–11. [CrossRef]

23. Assuncao, E.; Diniz, C.; Gaspar, P.D.; Proenca, H. Decision-making support system for fruit diseases classification using Deep
Learning. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer,
Bahrain, 8–9 November 2020; pp. 652–656. [CrossRef]

24. Azgomi, H.; Haredasht, F.R.; Motlagh, M.R.S. Diagnosis of some apple fruit diseases by using image processing and artificial
neural network. Food Control 2023, 145, 109484. [CrossRef]

25. Kerkech, M.; Hafiane, A.; Canals, R. Vine disease detection in UAV multispectral images using optimized image registration and
deep learning segmentation approach. Comput. Electron. Agric. 2020, 174, 105446. [CrossRef]

26. Sujaritha, M.; Annadurai, S.; Satheeshkumar, J.; Sharan, S.K.; Mahesh, L. Weed detecting robot in sugarcane fields using fuzzy
real time classifier. Comput. Electron. Agric. 2017, 134, 160–171. [CrossRef]

27. Milioto, A.; Lottes, P.; Stachniss, C. Real-time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots
Leveraging Background Knowledge in CNNs. arXiv 2018, arXiv:1709.06764.

28. Lottes, P.; Behley, J.; Milioto, A.; Stachniss, C. Fully Convolutional Networks with Sequential Information for Robust Crop and
Weed Detection in Precision Farming. IEEE Robot. Autom. Lett. 2018, 3, 2870–2877. [CrossRef]

29. Ma, X.; Deng, X.; Qi, L.; Jiang, Y.; Li, H.; Wang, Y.; Xing, X. Fully convolutional network for rice seedling and weed image
segmentation at the seedling stage in paddy fields. PLoS ONE 2019, 14, e0215676. [CrossRef]

30. Kamath, R.; Balachandra, M.; Vardhan, A.; Maheshwari, U. Classification of paddy crop and weeds using semantic segmentation.
Cogent Eng. 2022, 9, 2018791. [CrossRef]

31. Mu, Y.; Feng, R.; Ni, R.; Li, J.; Luo, T.; Liu, T.; Li, X.; Gong, H.; Guo, Y.; Sun, Y.; et al. A Faster R-CNN-Based Model for the
Identification of Weed Seedling. Agronomy 2022, 12, 2867. [CrossRef]

32. Assunção, E.; Gaspar, P.D.; Mesquita, R.; Simões, M.P.; Alibabaei, K.; Veiros, A.; Proença, H. Real-Time Weed Control Application
Using a Jetson Nano Edge Device and a Spray Mechanism. Remote Sens. 2022, 14, 4217. [CrossRef]

33. Peña, J.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.; López-Granados, F. Quantifying Efficacy and Limits of Un-
manned Aerial Vehicle (UAV) Technology for Weed Seedling Detection as Affected by Sensor Resolution. Sensors 2015, 15,
5609–5626. [CrossRef]

34. Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Zhang, L. A fully convolutional network for weed mapping of unmanned aerial
vehicle (UAV) imagery. PLoS ONE 2018, 13, e0196302. [CrossRef]

35. Bah, M.; Hafiane, A.; Canals, R. Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV
Images. Remote Sens. 2018, 10, 1690. [CrossRef]

36. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [CrossRef]
37. BioD’Agro. E 3.3 Arquitetura, Desenvolvimento e Testagem do Algoritmo de Análise de Dados. BioD‘Agro Project Report. March

2023. Available online: https://biodagro.wearespaceway.com/biblioteca-e-eventos/entreg%C3%A1veis (accessed on 13 April
2023). (In Portuguese)

38. Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 2016,
151, 72–80. [CrossRef]

39. Andrea, C.-C.; Daniel, B.B.M.; Misael, J.B.J. Precise weed and maize classification through convolutional neuronal networks.
In Proceedings of the 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017;
pp. 1–6. [CrossRef]

40. Gao, J.; Nuyttens, D.; Lootens, P.; He, Y.; Pieters, J.G. Recognising weeds in a maize crop using a random forest machine-learning
algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosyst. Eng. 2018, 170, 39–50. [CrossRef]

41. Bakhshipour, A.; Jafari, A. Evaluation of support vector machine and artificial neural networks in weed detection using shape
features. Comput. Electron. Agric. 2018, 145, 153–160. [CrossRef]
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