14,304 research outputs found

    Low-Voltage Ultra-Low-Power Current Conveyor Based on Quasi-Floating Gate Transistors

    Get PDF
    The field of low-voltage low-power CMOS technology has grown rapidly in recent years; it is an essential prerequisite particularly for portable electronic equipment and implantable medical devices due to its influence on battery lifetime. Recently, significant improvements in implementing circuits working in the low-voltage low-power area have been achieved, but circuit designers face severe challenges when trying to improve or even maintain the circuit performance with reduced supply voltage. In this paper, a low-voltage ultra-low-power current conveyor second generation CCII based on quasi-floating gate transistors is presented. The proposed circuit operates at a very low supply voltage of only ±0.4 V with rail-to-rail voltage swing capability and a total quiescent power consumption of mere 9.5 ”W. Further, the proposed circuit is not only able to process the AC signal as it's usual at quasi-floating gate transistors but also the DC which extends the applicability of the proposed circuit. In conclusion, an application example of the current-mode quadrature oscillator is presented. PSpice simulation results using the 0.18 ”m TSMC CMOS technology are included to confirm the attractive properties of the proposed circuit

    Design of a single-chip pH sensor using a conventional 0.6-μm CMOS process

    Get PDF
    A pH sensor fabricated on a single chip by an unmodified, commercial 0.6-/spl μm CMOS process is presented. The sensor comprises a circuit for making differential measurements between an ion-sensitive field-effect transistor (ISFET) and a reference FET (REFET). The ISFET has a floating-gate structure and uses the silicon nitride passivation layer as a pH-sensitive insulator. As fabricated, it has a large threshold voltage that is postulated to be caused by a trapped charge on the floating gate. Ultraviolet radiation and bulk-substrate biasing is used to permanently modify the threshold voltage so that the ISFET can be used in a battery-operated circuit. A novel post-processing method using a single layer of photoresist is used to define the sensing areas and to provide robust encapsulation for the chip. The complete circuit, operating from a single 3-V supply, provides an output voltage proportional to pH and can be powered down when not required

    Study of Adjustable Gains for Control of Oscillation Frequency and Oscillation Condition in 3R-2C Oscillator

    Get PDF
    An idea of adjustable gain in order to obtain controllable features is very useful for design of tuneable oscillators. Several active elements with adjustable properties (current and voltage gain) are discussed in this paper. Three modified oscillator conceptions that are quite simple, directly electronically adjustable, providing independent control of oscillation condition and frequency were designed. Positive and negative aspects of presented method of control are discussed. Expected assumptions of adjustability are verified experimentally on one of the presented solution

    Experimental study of artificial neural networks using a digital memristor simulator

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a fully digital implementation of a memristor hardware simulator, as the core of an emulator, based on a behavioral model of voltage-controlled threshold-type bipolar memristors. Compared to other analog solutions, the proposed digital design is compact, easily reconfigurable, demonstrates very good matching with the mathematical model on which it is based, and complies with all the required features for memristor emulators. We validated its functionality using Altera Quartus II and ModelSim tools targeting low-cost yet powerful field programmable gate array (FPGA) families. We tested its suitability for complex memristive circuits as well as its synapse functioning in artificial neural networks (ANNs), implementing examples of associative memory and unsupervised learning of spatio-temporal correlations in parallel input streams using a simplified STDP. We provide the full circuit schematics of all our digital circuit designs and comment on the required hardware resources and their scaling trends, thus presenting a design framework for applications based on our hardware simulator.Peer ReviewedPostprint (author's final draft

    A frequency-based RF partial discharge detector for low-power wireless sensing

    Get PDF
    Partial discharge (PD) monitoring has been the subject of significant research in recent years, which has given rise to a range of well-established PD detection and measurement techniques, such as acoustic and RF, on which condition monitoring systems for highvoltage equipment have been based. This paper presents a novel approach to partial discharge monitoring by using a low-cost, low-power RF detector. The detector employs a frequency-based technique that can distinguish between multiple partial discharge events and other impulsive noise sources within a substation, tracking defect severity over time and providing information pertaining to plant health. The detector is designed to operate as part of a wireless condition monitoring network, removing the need for additional wiring to be installed into substations whilst still gaining the benefits of the RF technique. This novel approach to PD detection not only provides a low-cost solution to on-line partial discharge monitoring, but also presents a means to deploy wide-scale RF monitoring without the associated costs of wide-band monitoring systems

    Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology

    Get PDF
    The presented paper includes the design and implementation of a 65 nm CMOS low-noise amplifier (LNA) based on inductive source degeneration. The amplifier is realized with an active balun enabling a single-ended input which is an important requirement for low-cost system on chip implementations. The LNA has a tunable bandpass characteristics from 4.7 GHz up to 5.6 GHz and a continuously tunable gain from 22 dB down to 0 dB, which enables the required flexibility for multi-standard, multi-band receiver architectures. The gain and band tuning is realized with an optimized tunable active resistor in parallel to a tunable L-C tank amplifier load. The amplifier achieves an IIP3 linearity of -8dBm and a noise figure of 2.7 dB at the highest gain and frequency setting with a low power consumption of 10 mW. The high flexibility of the proposed LNA structure together with the overall good performance makes it well suited for future multi-standard low-cost receiver front-ends

    Teaching Memory Circuit Elements via Experiment-Based Learning

    Full text link
    The class of memory circuit elements which comprises memristive, memcapacitive, and meminductive systems, is gaining considerable attention in a broad range of disciplines. This is due to the enormous flexibility these elements provide in solving diverse problems in analog/neuromorphic and digital/quantum computation; the possibility to use them in an integrated computing-memory paradigm, massively-parallel solution of different optimization problems, learning, neural networks, etc. The time is therefore ripe to introduce these elements to the next generation of physicists and engineers with appropriate teaching tools that can be easily implemented in undergraduate teaching laboratories. In this paper, we suggest the use of easy-to-build emulators to provide a hands-on experience for the students to learn the fundamental properties and realize several applications of these memelements. We provide explicit examples of problems that could be tackled with these emulators that range in difficulty from the demonstration of the basic properties of memristive, memcapacitive, and meminductive systems to logic/computation and cross-bar memory. The emulators can be built from off-the-shelf components, with a total cost of a few tens of dollars, thus providing a relatively inexpensive platform for the implementation of these exercises in the classroom. We anticipate that this experiment-based learning can be easily adopted and expanded by the instructors with many more case studies.Comment: IEEE Circuits and Systems Magazine (in press

    Electronically Tunable Resistorless Mixed Mode Biquad Filters

    Get PDF
    This paper presents a new realization of elecÂŹtronically tunable mixed mode (including transadmittance- and voltage-modes) biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA), a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pass, high-pass, band-stop and all-pass. The proposed filter circuit offers the following attractive feature: no requirement of invert-ing type input signal which is require no addition circuit, critical component matching conditions are not required in the design, the circuit parameters ω0 and Q can be set orthogonally or independently through adjusting the bias currents of the VDTAs, the proposed circuit employs two active and minimum numbers of passive components. Fur-thermore, this filter was investigated from the point of view of limited frequency range, stability conditions, effects of parasitic elements and effects of non-ideal and sensitivity. Thus, taking these effects and conditions into consideraÂŹtion, working conditions and boundaries of this filter are determined. We also performed Monte Carlo, THD and noise analyses. Simulation results are given to confirm theoretical analyses
    • 

    corecore