

T

Experimental Study of Artificial Neural
Networks Using a Digital Memristor Simulator

Vasileios Ntinas, Ioannis Vourkas, Member, IEEE, Angel Abusleme, Member, IEEE, Georgios Ch.
Sirakoulis, Member, IEEE, and Antonio Rubio, Senior Member, IEEE

Abstract—This paper presents a fully digital implementation of

a memristor hardware simulator, as the core of an emulator,
based on a behavioral model of voltage-controlled threshold-type
bipolar memristors. Compared to other analog solutions, the
proposed digital design is compact, easily reconfigurable,
demonstrates very good matching with the mathematical model
on which it is based, and complies with all the required features
for memristor emulators. We validated its functionality using
Altera Quartus II and ModelSim tools targeting low-cost yet
powerful field programmable gate array (FPGA) families. We
tested its suitability for complex memristive circuits as well as its
synapse functioning in artificial neural networks (ANNs),
implementing examples of associative memory and unsupervised
learning of spatio-temporal correlations in parallel input streams
using a simplified STDP. We provide the full circuit schematics
of all our digital circuit designs and comment on the required
hardware resources and their scaling trends, thus presenting a
design framework for applications based on our hardware
simulator.

Index Terms—associative memory, computing, emulator,

memristor, neural network, neuromorphic, resistive switching

I. INTRODUCTION

HE existence of the 4th fundamental circuit element was
postulated by Chua in 1971 and was termed “memristor”

(short for “memory resistor”) [1]. Today, the term
“memristor” usually refers to any resistance-switching (RS)
device that complies with a particular set of requirements
known as memristor “fingerprints” [2], regardless of the
fabrication details [3]. The hysteretic RS properties of oxides
sandwiched between metal electrodes was well known though

even from the 60s, as seen in relevant publications by
Hickmott and Argall [4], [5]. Chua’s theory of the
memristor was however connected with experimental
devices only in 2008 by Hewlett-Packard Laboratories and
their work on TiO2 RS devices [6]. Memristors are now
considered a rapidly emerging technology [7] that creates
opportunities to realize innovative circuits and systems with
applications such as nonvolatile memory [8], [9],
adaptive circuits [10], [11],
signal processing [12], and logic/computing [13-15].

The memristor has also been proposed as the
electronic analog of biological synapses [16], [17]. It is
essentially a resistor with memory; it is nonvolatile
(although volatile devices have been also reported [18] and
the specific theory can be found in [19]), its response
depends on its whole dynamical history, and it

demonstrates a continuous set of resistance values, making
it ideal for tuning synaptic weights of artificial neural
networks (ANNs) [20-22]. An ANN is a data-processing
model based on the biological nervous system, implemented
as a parallel and distributed network of simple nonlinear
processing units [23]. Hardware (HW) implementation of
ANNs is an important step toward obtaining human-brain-like
functionalities at circuit level. The basic components of
ANNs are neurons and synapses, whose circuit realization
should mainly be compact to make scaling up to approach
the total biological device numbers (~1011 neurons and ~1015

synapses in human brain) feasible.
As typically happens with all new electronic devices,

modeling and simulation are the first steps to exploring
memristors’ general attributes, verifying theoretical aspects,
and understanding the effect of different model parameter
values. In this context, several either behavioral or physics-
based (usually SPICE-compatible) models have been
developed [24-27]. Lab experiments with fabricated
memristors are the next step. However, memristor technology
is still in progress and device fabrication implies considerable
costs and difficulties. Furthermore, the memristors
commercially available to date are quite expensive and still
not very reliable [28]. Consequently, research and
development have largely focused on various (mostly analog)
HW emulators [29-31] that facilitate the experimental
exploration of memristive behavior.

According to [30], the required features for a memristor
emulator are: i) a wide memristance range; ii) nonvolatility;
iii) initial state configurability; iv) floating operation; v)
operability for high-frequency and continuous input signals;

and vi) support interconnection with other components.
Taking these six electrical requirements into account, in this
paper we build upon our previous work in [32] and develop a
fully digital memristor hardware simulator based on a
behavioral model of voltage-controlled threshold-type bipolar
memristors [27]. The presented electronic module constitutes
the core of a digital memristor emulator, which further
requires interface circuitry to permit connection to external
circuits as a two terminal element, such as in [27], [31]. We
conducted all the required verification tests and validated its
functionality using Altera Quartus II and ModelSim software
(SW), targeting low-cost yet powerful field programmable
gate array (FPGA) families. The FPGAs are reconfigurable
electronic platforms well-suited to implement ANNs [33], [34]
owing to their HW flexibility, which allows rapid prototyping
of different ANN topologies and implementation strategies. In
this context, we chose the FPGA as the target electronic
platform and showed that our design is suitable for FPGA-
based ANNs. Our motivation was to design and implement
digital HW electronic synapses particularly based on
memristive dynamics and prove their suitability and
applicability to a variety of ANN-based applications.
Compared to other emulation approaches from the recent
literature, this digital design is compact, easily reconfigurable,
demonstrates excellent matching with the memristor model on
which it is based [27], and complies with all the
aforementioned electrical requirements (i to vi). Moreover, we
tested its suitability for anti-serial memristive interconnections
[35] and proved its synapse functioning in single-layer
perceptron, implementing examples of associative memory
and a simplified variation of spike timing dependent plasticity
(STDP) [36] unsupervised learning of spatio-temporal
correlations in parallel input streams, following previous
demonstrations in [31] and [37], respectively. We present the
schematics of our digital circuit designs and comment on the
required HW resource scaling, thereby providing a complete
design framework for such memristor emulator-based ANNs.

II. MEMRISTOR DIGITAL HARDWARE SIMULATOR

A. The Behavioral Memristor Model
Even though any mathematical model [25] could serve as a

basis of our digital implementation, the developed digital
simulator is based on (and meets all the characteristics of) the
behavioral threshold-type bipolar memristor model proposed
in [27], described by the following equations:

Fig. 1. Qualitative graph for the memristance change rate in (2) as a function
of the applied voltage.

Fig. 2. Compact memristor hardware simulator block diagram.

state-dependent Ohm’s Law, where i(t) is the flowing current
and v(t) is the voltage drop on the memristor, whereas R is the
memristance and, at the same time, the system’s only state
variable. Equation (2) depends only on v(t) and R. As shown
in Fig. 1, its value changes at different rates when the applied
voltage is either higher or lower than the threshold voltage vT,
limited by upper and lower boundaries, namely RON and ROFF

(i.e., RMIN and RMAX). The latter is accomplished with the use
of the step function θ() in (2), which indicates that R can
change only between its limiting values. The resistance change
rate of threshold-type switching memristors is very fast above
(and negligibly slow below) the threshold vT, which here, for
the purposes of simplicity, is considered symmetric for both
the SET (ROFF→RON) and RESET (RON→ROFF) transitions.
The constants α and b in (2) define this change rate when |v(t)|
< vT or |v(t)| > vT, respectively, with α, b < 0 and |α|<|b|. Thus,
the resistance decreases when the memristor is forward-biased
and increases when it is reverse-biased. Hereinafter we will
refer to a memristor being forward/reverse-biased when the
voltage at the top/bottom terminal is higher than that on its
bottom/top terminal; the bottom terminal is denoted by the
thick black line in the circuit schematic (see Fig. 2).

i(t) = R−1 ⋅ v(t)

R& = b ⋅ v +
1 (a − b) ⋅ (| v + v

| − | v − v |)

(1)
B. Circuit Implementation

Fig. 2 shows the compact block diagram of the memristor
module. The input signals include: the top and bottom

2 T T (2) electrode voltage (VTE and V BE), these being the basic two

⋅ θ (R − RON) ⋅ θ (ROFF − R).

It is a behavioral model of a voltage-controlled time-
invariant memristor whose memristance change rate is given
by the piece-wise linear equation (2). Equation (1) reflects the
inputs of the block, the initial memristance value (RINIT),
which is loaded when reset = ‘1’, and two 2-bit flag signals
to denote whether its terminals are properly connected, i.e.,

whether the applied voltage is valid or has been left floating
(the need for two bits instead of one is explained in Section

Fig. 3. Detailed memristor hardware simulator block diagram.

TABLE I
FPGA IMPLEMENTATION LOGIC DATA

Family / Device Cyclone II / EP2C70F672C6
Total Logic Elements 3266 (5%)

Total Registers 32 (<1%)

IV). Unlike in [32], in this version of the simulator design, the
output signal in most cases concerns the memductance G = R-1

because using G instead of R enables a simplified circuit
design, lower HW resource requirements, and greater
computational precision, as shown in the following sections.
The model-specific parameters α, b, vT, RMIN, and RMAX are
defined as internal constants (stored in memory) since we
assume they are device/module-specific. Preferring power-of-
2 values for such internal constants and for all the auxiliary
variables used in multiplications/divisions significantly
minimizes the required HW resources.

Fig. 3 shows a more detailed implementation block
diagram. The input voltage is used to compute the derivative
of R as in (2) and multiply it by a properly selected integration
time step Δt, which also defines the maximum supported input
signal frequency. The result is added to the current R value
and, once the out-of-bound and floating terminal controls have
been performed (the number (2)10 = (10)2 shown at the bottom
left of Fig. 3 corresponds to the case of a floating connection),
is stored in the corresponding register. The result of such
controls are selection bits in multiplexers, i.e. blocks that
conditionally pass always one of the inputs to the output
according to the selection bit. For data representation, we use
up to 32-bit integers and thus guarantee a wide value range
and adequate precision for all important parameters (e.g., a
wide memristance range), while preventing under/overflow
during computations through the appropriate selection of α, b,
and Δt. In integer computations, the fractional part of any
result is truncated. Therefore, we represent resistance values in
mΩ instead of Ω (i.e., 5000 instead of 5), and voltages in µV
instead of V, to create the necessary precision. Moreover, the
use of an auxiliary variable (the max integer) is shown in the
last block in Fig. 3. In fact, this is a necessary transformation
to obtain a valid G value since inverting R in digital HW
would simply give zero as a result. Therefore, in order to keep
this information from the inversion, we shift the result via a

Fig. 4. Comparison between the mathematical model (Matlab) and the
hardware simulator response (VHDL). α = -2000 Ω/(V×s), b = -190000
Ω/(V×s), Δt = 0.0005s, vT = 1V, RMIN = 100Ω and RMAX = 10KΩ.

multiplication with a very large number defined as power of
two (i.e. if R = 104Ω, then it is 107mΩ and we compute G =
(231-1)/107) = 214S). The result is of course not the correct G
as the latter includes the shifting operation. However, this is
not really a problem and the practical meaning of this
transformation is further explained in Section IV. Generally
the use of such auxiliary variables is omitted in the block
diagrams for the sake of simplicity. Basic information about
the HW resources of the memristor module for a specific
FPGA, is given in Table I (% refers to the percentage of the
total available resources in the FPGA that are being used).

III. BEHAVIORAL VERIFICATION TESTS

This section presents the series of functional verification
tests carried out to prove the HW simulator’s proper
functioning and matching with the mathematical model, its
compliance with the characteristic fingerprints, the multi-level
tuning property required for analog applications, and its
suitability for complex interconnections. All the measurements

(a)

Fig. 5. (a) i-v and R-v plot concerning the response of the HW simulator for

Fig. 6. Multi-state programming feature. Comparison between the
mathematical base model (Matlab) and the HW simulator response (VHDL). α
= -2000 Ω/(V×s), b = -190000 Ω/(V×s), Δt = 0.0001s, vT = 1V, RMIN = 100Ω

various frequencies of the input voltage v(t) = 3sin(2πft) when R
INIT = RMAX. and RMAX=10KΩ, whereas the applied voltage was v(t) = ±3sin2(100πt).

(b) i-v plot for varying input amplitudes Vo of v(t) when f = 12 Hz and RINIT =
RMAX. (c) i-v plot for varying initial conditions (RINIT) when Vo = 3V and f =
12 Hz. In all scenarios we used α = -2000 Ω/(V×s), b = -190000 Ω/(V×s), Δt =
0.0001s, vT = 1V, RMIN = 100Ω and RMAX = 10KΩ.

for our design use the ModelSim HW simulation data for a
target FPGA device and 100MHz clock frequency. These data
were collected via proper Matlab scripts and compared with
the reference model data. The ModelSim input files were
prepared using the Matlab HDL coder. In all demonstrated
measurements, the reset phase when the system was initialized
was simply omitted.

A. Match with the Mathematical Memristor Model
It is important to guarantee an exact match between the HW

simulator’s response and data from the memristor model on
which it is based, regardless of the characteristics of the input
voltage. Fig. 4 shows a relevant comparison concerning a
triangular input voltage pulse. The HW simulator’s response
matches very well that of the model. The available precision
during computations with integer variables in our design
guarantees infinitesimal error. Such precise matching is
obtained for different input pulse types and frequencies,
provided that the selected model parameter values do not
cause under/overflow problems.

B. Compliance with the Characteristic Fingerprints
We proved that our HW simulator indeed behaves as a

memristor by testing its compliance with memristor
fingerprints [3]. Fig. 5(a) shows a set of current-voltage
curves, along with the memristance-voltage curves, for
different frequencies of the input sinusoidal voltage. All
curves in the i-v plane are pinched at the origin (i, v) = (0, 0),
i.e., there is no phase shift between the i(t) and v(t)

 (c)

 (b)

waveforms. This is valid for all amplitudes and frequencies of
the input signal (see Fig. 5(b)), and for any possible initial
condition of memristor (see Fig. 5(c)), as seen in the R-v and
i- v planes. Moreover, the so-called single-valued function
limiting phenomenon is confirmed with the collapsing
hysteresis loops in the i-v graph of Fig. 5(a). As the sweep
frequency f increases, the area of each lobe of the
pinched hysteresis loop shrinks, such that the memristance
function degenerates to a straight line (tends to a single
value) as f increases towards infinity.

C. Multi-State Tuning Capability
One of the main reasons why memristors have been

proposed as the electronic analog of biological synapses is
because they demonstrate a continuous set of resistance values
and are thus ideal for representing synaptic weights. Such
multi-level tuning capability is crucial for analog applications.
Therefore, we tested the multi-state tuning capability of
our design, which is required to model synapse functioning.
The relevant HW simulation results are shown in Fig. 6.
Multiple continuous states are obtained via successive
short voltage pulses of the same polarity. In our case, we
show seven distinct memristance levels achieved with a
±Vosin2(100πt) pulse train (Vo = 3V). Since higher applied
voltages cause faster switching, decreasing the pulse
amplitude while ensuring it remains above the threshold
results in much closer distinct memristance levels.
Shortening the pulse duration while maintaining the same
amplitude has a similar effect. As shown in Fig. 6, in all
such cases the module’s multi-level switching response
matches very well the reference model.

(a)

(b)

Fig. 7. Anti-serial connected memristors. (a) Block diagram showing the
interconnection of the electronic modules and the additional components for
the computation of the voltage divider equation. The inset shows the
equivalent circuit using the memristor symbol. (b) Simulation results showing
the applied voltage VIN and the voltage drop on the two memristors, the
composite i-v plot, and the HW simulators’ memristance evolution with time
and with the input voltage, respectively. α = -2000 Ω/(V×s), b = -190000
Ω/(V×s), Δt = 0.0005s, vT = 1V, RMIN = 100Ω and RMAX = 10KΩ.

D. Complex Device Interconnection
In keeping with the electrical requirements for memristor

emulators mentioned in the Introduction, this verification test
checked the possibility of interconnection with other

Fig. 8. Generic implementation scheme for a single-layer ANN with n input
neurons Ni (i = 1,…, n) connected to an output neuron No via n memristors. Go

is a small conductance used in the Kirchhoff’s Current Law computation.

components, i.e., whether the developed HW simulator can be
connected to other devices or emulators, which is essential for
it to be used in more sophisticated circuit configurations. It is
worth mentioning that unless an interface circuit is added,
such as for example an ADC and a digital potentiometer,
similar to that shown by Pershin and Di Ventra in [27] and
[31], then our implementation cannot be electrically connected
to an external circuit as a complete digital memristor emulator.

To this end, we studied the suitability of the simulator for
the complementary resistive switch (CRS) configuration [35].
A CRS consists of two memristors connected in series but
with opposite polarities (anti-serially), hereinafter called the
forward-polarized memristor (FPM) and the reverse-polarized
memristor (RPM). The CRS is a comprehensive enough test,
also easy to implement, which allows to confirm both the
interconnection property and the polarity-dependent switching
of multiple such modules combined together. Memristors with
opposite polarities demonstrate reverse behavior to the applied
signal; i.e., during one period of the AC input voltage,

complementary devices reciprocally change their states.
Fig. 7(a) shows the block diagram of the CRS

configuration. For simplicity, we have defined the output of
the simulators as the memristance R instead of the
memductance G shown in Fig. 3. Apart from the two
memristor modules, the system requires a combinational part
to calculate the voltage VC on the common intermediate node
of the memristors, i.e., to compute the voltage divider
equation. The latter receives VIN as input and uses the current
state of the two memristors (R1 and R2) to drive them with the
corresponding VTE value. The sum of R1 and R2 is computed
first and then the fraction, which is multiplied by the input
voltage, as shown in the inset. A MUX is used to prevent
invalid results by division with zero. The flag inputs “01”
denote there are no floating electrodes. The two modules are
set to the FPM/RPM = ROFF/RON state during initialization.
The inset shows the equivalent circuit schematic for such
connection, using the memristor symbol for clarity.

Fig. 7(b) shows the HW simulation results. The positive

(a)

(c)

(b)

Fig. 9. (a) Compact and (b) detailed block diagram of the neuron module
based on the model described in [31]; (c) HW simulation results for the
neuron’s behavior for different amplitudes of the input voltage VIN. For the
purposes of clarity, the inset in the output plot focuses on a specific excitation
cycle.

part of the triangular input VIN creates the necessary
conditions first to change the state of the FPM (R2) from ROFF

to RON and, later, that of the RPM (R1) from RON to ROFF,
resulting in a flipped resistive configuration. The memristors
then exhibit an ohmic behavior until the applied voltage
exceeds the respective negative thresholds and forces them to
successively switch to their initial states. In Fig. 7(b) we also
show the perfectly symmetric composite i-v curve. Overall,
the results confirm the reproduction of the CRS operation.

IV. MEMRISTIVE ARTIFICIAL NEURAL NETWORKS

A. Circuit Implementation
In this section we use the developed hardware simulator as

a synapse and present an implementation scheme for the
perceptron topology shown in Fig. 8. All the additional
electronic modules, like the previously presented for
memristor, concern digital designs easily tuned and
generically built to facilitate the development of single- or
multi-layer ANNs on FPGA devices for several applications.

Specifically in the single-layer ANN example shown in Fig.
8, the input neurons Ni (i = 1, …, n) are connected with an

output neuron No via synapses (memristors), while the output
signal OUT is determined by the applied input signals INi and
the strength of the synaptic connections Gi, which weigh the
potentials Vi. Biological neurons generally have receptor
(synaptic) and action potentials. When the receptor potential at
the input of an idle (not firing) neuron exceeds a given
threshold, the neuron is excited and starts firing, i.e. starts
emitting forward and backward fixed-amplitude action pulses.
As we will show in the following ANN examples, the back-
propagating pulses are responsible for synaptic tuning and,
therefore, for continuous re-learning. For the purposes of our
experiments, we developed a digital electronic version of a
neuron model as described next and in more detail in [31].

Figs. 9(a) and 9(b) show the compact and detailed block
diagrams of the developed neuron module, which receives two
inputs. VIN is the receptor potential, which is constantly
monitored; once it exceeds a threshold value VT (defined as an
internal constant, i.e., stored in memory), forward and
backward fixed-amplitude action pulses are generated.
However, the computed pulse separation (the waiting/idle
time) varies according to the strength of the receptor input
stimulus and a random parameter, which is the module’s

(a)
(b)

Fig. 10. (a) Compact and (b) detailed block diagram of the Kirchhoff’s Current Law (KCL) computation (weighted summation) module giving the voltage at
node Vo of Fig. 8. We set Go = (231-1)/Ro, and assumed a large resistance Ro ≈ 1MΩ.

second input. The output VOUT of the neuron is only indicating
whether the neuron is excited or idle. There are three possible
cases for the memristor terminals to be considered since,
according to [31], when a neuron is idle (not firing), its output
terminal (e.g., Vi for input neuron Ni in Fig. 8) becomes
floating. However, while still in idle state, its input terminal
(i.e. the common node of all the synapses, Vo for output
neuron No in Fig. 8) may still be connected and receiving
input stimuli caused by the pre-synaptic pulses in case one of
the input neurons is firing. Therefore, defining Vo simply
floating due to the neuron being idle, is incorrect. We
overcame this requirement via local bit-processing in-between
the VOUT of a neuron module and the Valid_VTE/BE flag of a
memristor module, thereby driving two bits to the flag inputs,
enough to model the three possible cases (connected, floating,
and connected while neuron is idle, as explained in Table II).
This enabled us to keep the implementation of neurons general
and their complexity low.

Moreover, the fixed amplitude of the action pulses is not
defined inside the neurons but rather is set externally and thus
applied directly to the corresponding terminal of every
memristor, as shown below. Unlike in our previous work [32],
here we included a second neuron output VSIGN indicating
whether the back-propagating pulses have a negative sign. As
we will show below in our ANN examples, unlike in [31],
[32], this important added property makes it possible both to
increase and decrease the synaptic weights through the
simplified STDP scheme implemented here, previously
proposed in [38] (although action potentials resembling more
the true spike waveforms found in biological neural systems,
as presented in [36], [39], [40], could be implemented as well
by more HW resources). When both input and output neurons
are firing, the resulting voltage drop (e.g., Vi - Vo in Fig. 8) on
the memristors is of constant amplitude but different
durations, depending on the timing of the voltage signals at the
two sides of the synapses. On the other hand, when the output

TABLE II

 POSSIBLE SITUATIONS FOR OUTPUT NEURON’S TERMINALS

Neuron’s state Input terminal (Vo) Output terminal (OUT)
Idle Connected

(VOUT of KCL module) Floating
Excited Connected

(±VPULSE)
Connected
(VPULSE)

neuron is not firing, then Vo varies depending on the state of
input neurons and their synapses.

More specifically, according to Fig. 9(b), the neuron
operation is determined based on two counters defining the
total excitation time steps and the pulse separation time,
mentioned before. We arbitrarily set the excitation time to 100
clock steps. This duration is defined by the step counter
(bottom left in the figure), which starts counting when the
neuron becomes excited. Inside the neuron, the number of
steps when the VSIGN is ‘1’ is also defined as VSIGN_TIME which
is assumed to be 20 steps in Fig. 9(b), a value chosen based on
trial and error to improve the results obtained in the
application examples shown next; for the rest of the excitation
cycle steps, VSIGN is ‘0’. The hold register is responsible for
keeping the neuron excited (i.e. neuron’s output VOUT = ‘1’)
for 100 steps. Moreover, when the step counter starts, the dt
register stores the idle/waiting time, which is computed
according to a formula proposed in [31] and converted to true
simulation time via multiplication with the integration time
step Δt. When the step counter reaches 100, the hold register
becomes ‘0’ but the dt enabled becomes ‘1’, thereby
activating the dt counter, which is responsible for keeping the
neuron idle for a waiting time (refractory period) equal to dt.
When dt counter = dt, then the dt enabled becomes ‘0’. A
positive difference VIN-VT can activate the neuron provided
that the dt enabled register is ‘0’, i.e., that the neuron is not in
refractory period. Adjusting the VSIGN_TIME during module
instantiation makes it possible to create the desired time ratio

Fig. 11. Block-level circuit topology implementing the linear perceptron with three neurons and two synapses, according to [31], using the neuron, the memristor,
and the weighted summation (KCL) electronic modules. The small gear driving the memristor Valid_VTE inputs denotes local bit-processing mentioned in text.

of negative and positive back-propagating action pulses during
excitation, as proposed in [38]. HW simulation results of the
neuron’s behavior are shown in Fig. 9(c). We present the
action potentials caused by different amplitudes of the input
VIN, whereas for the rand input we use a series of randomly
generated integers ∈	[0, 10]. When VIN<VT there is no firing.
Otherwise, the average pulse separation decreases as the input
amplitude increases. The effect of the rand input on the dt
computation is more evident at higher firing rates. Fig. 9(c)
also shows the VSIGN output, which, in this simulation
scenario, is ‘1’ for the first 20 of the 100 excitation time steps.

In short, looking back at Fig. 8, we can conclude that when
the input neurons are firing, the memristors receive positive
action potentials Vi at their TE, whereas when they are idle,
these terminals are assumed to be floating. On the other hand,
when the output neuron is firing, the memristors receive either
positive or negative action potentials Vo at their BE, but when
the neuron is idle, the receptor potential Vo at its input
terminal needs to be calculated (see Table II). We saw a
similar problem before in the CRS example. Whenever there
is a shared node among many interconnected memristors, an
additional module responsible for computing the instant
potential at that node is required. Therefore, for the purposes
of our experiments, we developed an electronic version of the
Kirchhoff’s Current Law (KCL) computation (weighted
summation) shown in Fig. 10. As can be seen in Fig. 10(a),
this module receives the current memductance of every
memristor Gi (which includes the shifted operation as
explained previously) and a series of bits Vi, which are the
outputs of the input neurons (VOUT). The output (i.e., the Vo

potential in Fig. 8) is updated using the KCL equation when
the input VBACK is ‘0’, i.e., when the output neuron is not

excited and there is thus no back-propagating pulses.
Otherwise, i.e. when the output neuron is firing, the output
becomes equal to the predefined amplitude ±VPULSE depending
on the VSIGN input. VPULSE is the fixed amplitude assumed for
both the forward and backward action pulses in our ANNs. As
shown in Fig. 10(b), we built this module in a generic manner
in order to receive an arbitrary number of inputs, provided that
the internal KCL computations do not cause overflow.
According to the KCL formula Vo = (V1G1 + V2G2 + … +
VnGn) / (Go + G1 + G2 + … + Gn), first we sequentially
compute the conditional sum of all Gi (depending on the
corresponding Vi which serves as MUX selection bit) and Go.
Then we compute the fraction and eventually multiply it by
the fixed amplitude VPULSE. Since this formula has G both in
the numerator and denominator, the previous shifting
transformation is inherently removed and does not affect the
result of this computation. The reason we prefer G instead of
R is to simplify the implementation of the KCL block as
several more divisions are required if R is used in this
formula, while we also noted even a better precision. In the
next section, we use all these modules and present two ANN
example configurations for two different applications.

B. ANN Example for Associative Memory
Following [31], which demonstrates a neural network

implementing the famous “Pavlov’s dog” experiment [41],
here we present a similar ANN implementation as a proof of
concept of associative memory. Fig. 11 presents the block-
level circuit topology implementing the linear perceptron with
two input neurons and one output neuron connected via two
synapses. A few details about the Pavlov’s dog target
experiment [31], [41]: Initially, a dog salivates only at the

Fig. 12. HW simulation results for the circuit in Fig. 11. Parameter values of the memristor model (α = 0 Ω/(V×s), b = -15000 Ω/(V×s), Δt = 0.0001s, vT = 4V,
RMIN = 675Ω and RMAX = 10KΩ.), the voltage amplitudes, and the time duration of the experiment were set following the experiment in [31], for the purposes of
comparison. The graphs of the top plot show the output voltage VOUT of the three neurons and the input voltage VIN of the salivation neuron (combination of a
positive amplitude receptor potential and of a negative amplitude back propagating action potential). The top three curves in the plot were displaced vertically for
clarity. The bottom plot shows the synapse memristance evolution with time.

sight of food. However, if the sight of food is accompanied by
a particular sound for a certain period of time, then the dog
learns to associate the sound with food; hence, thereafter
salivation can be triggered using only the sound (Hebbian
learning rule). The values for the amplitude of the action
pulses (2.5V), the internal threshold of the neurons (1.5V), and
the initial synapse memristance are all set as in [31] for the
purposes of comparison. The amplitude of the action
potentials is set directly at the VTE terminal of every memristor
emulator. The food and sound 2.5V input pulse trains define
the receptor potential of the input neurons, whose output VOUT

is driven to the TE flag input of the corresponding memristor
modules (after undergoing local bit-processing), as well as to
the weighted summation (KCL) module. The latter also
receives the current memductance G of the memristors. Thus,
the memristor VBE voltage is in fact the output of the KCL
module, which is also driven to the input terminal of the
salivation neuron. In order to properly consider the cases
shown in Table II and correctly define whether the memristor
terminals are floating or not, Table III explains the small gear
box bit processing operation, shown in Fig. 11. Practically, b0

is the output of the neuron and b1 is a bit we append defining
whether this is an output neuron (b1 = 0) or input neuron
(b1=1). Hence, inside the memristor module, only the
combination “10” denotes a floating TE.

In this ANN, the VSIGN output of the neurons is not used
because only negative backward action pulses are required, so
the VSIGN input of the KCL module is constantly set to ‘1’.
The output VOUT of the salivation neuron is driven to the
VBACK input of the KCL module. Regarding the rand input of
the neurons, in [31], this input was driven by a random value
created within a microcontroller. However, in the absence of
any particular pseudo-random number generation module here
and in order to avoid the prior preparation of random values at
software level, we instead used a 0-10 counter (the circuit

TABLE III

 2-BIT ENCODING OF VALID TE/BE FLAGS

Memristor
electrode

Connected
neuron’s state

Representation as
“b1b0”

Valid_VTE
Idle “10” (Floating)

 Excited “11” (Not Floating)

Valid_VBE
Idle “00” (Not Floating)

 Excited “01” (Not Floating)

within a dashed line box in Fig. 11), which we purposely
initialized at a different value for every neuron (i.e., at 0, 4,
and 9, respectively). Hence, we created a different sequence of
rand input values for each neuron, which still affected the
neuron waiting time dt satisfactorily for the purposes of our
experiments.

Fig. 12 shows the HW simulation results, which are very
much in line with the results published in [31] and confirm the
development of associative memory. During the first probing
phase, it is evident that salivation is uniquely caused by the
sight of food neuron. This happens due to the initial high
conductance of the connecting synapse, which permits the
pulse at the input of the salivation neuron to exceed the
internal activation threshold. There is no synapse state change
in this phase as it can be observed in the plot at the bottom
showing the memristance evolution with time. This happens
because the sight of food synapse is already in RON, whereas
the sound neuron is idle while the salivation neuron is excited,
meaning that the TE of the sound synapse is floating. Next,
during the learning phase, we simultaneously stimulate both
the uncorrelated sight of food and sound neurons. The
overlapping of the backward action pulses of the salivation
neuron with the forward action pulses of the sound neuron
thus create a voltage drop higher than the switching threshold

(a)

(b) (c)

Fig. 13. HW simulation results. (a) Snapshots of the input images (first row) and the synaptic weights (second row) in the HW at the beginning, the middle, and
the end of the 60s training period, respectively. White corresponds to low conductance and blue to high conductance. In the plot at the bottom, a dot corresponds
to a firing neuron. (b) Time evolution of the mean square error of synaptic weights. (c) Time evolution of the average conductance of the target ON pixels of
every pattern. The parameter values of the memristor emulator are set as in the previous example with α = -8Ω/(V×s), b = -128Ω/(V×s).

of the sound synapse (3V), hence causing its resistance to drop
quickly. The final association of the two input neurons is
demonstrated in the final probing phase, when any stimulus
coming from either of the input neurons causes salivation. The
different salivation neuron firing rate noticed in the last
probing phase is simply attributed to the different conductance
of the synapses (the sound synapse is being reinforced during
this stage as its resistance keeps decreasing), causing an
increasing VIN value to the salivation neuron (see Fig. 9(c))
which consequently decreases the wait time of that neuron.
Apparently, with a longer training phase the memductance of
the sound neuron would eventually reach the GON value, so no
change in the firing rate of the salivation neuron would be
noted.

C. ANN Example for Unsupervised STDP Spatio-Temporal
Pattern Learning

Following [37], which presents a correlation detector ANN
applied in continuous STDP re-learning of spatio-temporal
noisy patterns, we evaluated the developed ANN on a set of
5×5 pixel binary images used as input stimuli to 25 input
neurons consecutively connected (row by row, starting from
the top left pixel) to the 25 input pixels. Consequently there
were 25 synapses connected to a single output neuron.
Because of the simplified unsupervised STDP learning
mechanism applied here [38], we show that in our HW ANN,
the interaction between input and output neurons finally

develops selectivity to particular features found in the noisy
input image patterns. The ANN topology is very similar to that
shown in Fig. 11 but now includes 25 input neurons (see Fig.
8). Unlike in the associative memory example, here it is also
necessary to decrease the synaptic weights. Therefore, the
VSIGN output of the output neuron is now directly driven to the
VSIGN input of the KCL module to create negative and positive
successive back propagating potentials. Moreover, according
to [37], when the input neurons are not firing, the TE
memristor terminals are considered grounded instead of
floating. Here, the Valid_VTE flag input of the memristor
modules is thus constantly driven by value ‘1’ to denote that it
is not floating. Also, the VOUT output of the input neurons is
used as the selection bit of an intermediate multiplexer whose
inputs are 2V and 0V, corresponding to an ON (dark) or OFF
(white) pixel, respectively, and its output is driven to the VTE

memristor input. In short, when the output neuron fires, it
applies a succession of a negative and a positive back
propagating potential (see Fig. 9(c)). So, during the positive
part, if there is no PRE pulse applied to the TE of a memristor
(i.e., if it is grounded) there is a reverse voltage drop of
amplitude VPOST > VT, which decreases the synapse weight.
Likewise, the synapse weight increase is performed in the
same manner as in the associative memory example, when the
forward voltage drop VPRE-VPOST is higher than VT.

In our experiment we consecutively presented temporally

Fig. 14. FPGA HW resource scaling trends. KCL module only and ANN Total
Registers/Logic Elements normalized to the 2-input case. The plot highlights
the linear relationship of the KCL resources and the total ANN resources.

encoded signals derived from images of the letters ‘D’, ‘U’,
‘T’, and ‘h’, each for a training period of 60s, following the
timescale of the original experiment in [37]. The input patterns
are applied at time instances drawn from a Poisson distribution
@1Hz rate. Furthermore, every pattern includes 20%
Poissonian noise. Nevertheless, the correlated synapses
progressively get potentiated, whereas the uncorrelated
synapses are subject to depression. Thus, due to the simplified
STDP learning, the ANN is finally able to extract the input
pattern correctly. Moreover, when the input pattern changes,
the ANN eventually re-learns the new information.

Fig. 13(a) presents the time-lapse sequence of the learning
procedure for the four target patterns. The first row concerns
the actual noisy input pattern and the second row corresponds
to the actual weight values at that moment. For each letter we
show the synapse weights at the beginning, middle, and end of
the 60s training process. The plot at the bottom presents the
state of the input neurons at every time step of the entire
experiment, according to the applied input pattern. This plot
highlights the effect of noise, also obvious in the first row of
images. The results show that the ANN always learns the
correlated features of the inputs even in the presence of
important noise. Using such a simple STDP approach, the
synaptic weights continuously store and update the learned
information. Following [37], in Fig. 13(b) we show the time
evolution of the mean square error (MSE) between each
synapse weight and the target weight of the corresponding
pixel of the input pattern. The highest MSE is seen at the
beginning of the training process; however, it decreases to less
than 1-2% by the time the training process is finished.
Likewise, Fig. 13(c) shows the time evolution of the average
conductance of the synapses corresponding only to the target
ON pixels of every pattern. As can be seen, it approaches the
maximum value during the training process. It decreases
significantly when the input pattern changes due to changes in
the ON pixels of interest. The local oscillations noticed during
its evolution were simply attributed to the decrease in synapse
weights due to noise; without noise, the average conductance
monotonically increases during training.

D. FPGA HW Resource Scaling
This section aims to examine the HW resource scaling

trends of the developed ANN FPGA implementations, as well

TABLE IV
 FPGA IMPLEMENTATION LOGIC DATA

Cyclone II
(EP2C70F672C6)

No of Inputs
2 4 8 16 32 64

KCL
only

Registers 22 22 22 22 22 22
Logic Elements 1338 1465 1721 2239 3260 5313

Full
ANN

Registers 132 190 306 538 1002 N/A
Logic Elements 2964 3227 3751 4789 6875 N/A

as the required KCL module itself. This is because it would
make little sense to consider memristive ANNs simulated on
FPGAs if the KCL resources were predominant or if the total
resources scaled unfavorably with regard to the number of
ANN inputs.

To this end, we collected the implementation data (total
registers and logic elements) for the KCL only and for the
complete ANN (see Fig. 10 and Fig. 11) with 2, 4, 8, 32, and
64 inputs for the Cyclone II target FPGA device, as shown in
Table IV. However, unlike in Table I, here we used an
optimized implementation using up to 14-bit registers for all
the required variables, given that their value-range allowed
this. Based on Table IV, Fig. 14 shows each data series
normalized to its value for the 2-input ANN case, which is
taken as a reference. Notably, as the number of inputs
increases, the graphs clearly demonstrate a linear relation for
all cases and, most importantly, with a small slope. Moreover,
when comparing the KCL-only case with that of the full ANN,
containing all the relevant presented modules, we noticed a
ratio of less than 0.5 for the logic elements, and just a small
constant number of registers required by the KCL.

The total HW resources for large ANNs are also target
device-specific, whereas scaling will be much better in ASICs
but here the focus is on FPGA devices, preferably for the
reconfigurability they offer and the accessibility in academia,
at considerably low costs. Our experiments showed that
several n inputs-to-1 output (n×1) ANNs implemented on the
same FPGA would require proportionally more HW.
However, we found that ANNs with more than 32 inputs
significantly increased the required FPGA resources. Fig. 14
does not include ANN data for 64 inputs as the synthesis
would never be completed on the Cyclone II FPGA. This is
attributed to the fact that such an FPGA has only 4 LUT
inputs. Using a target device with more LUT inputs (e.g., one
of the Cyclone V family), we implemented ANNs much larger
than 64×1 without problem.

Thus, although we do not expect that the developed HW
modules can be used to scale up the resulting ANNs to
approach true brain density, owing to their simplicity, quite
large ANNs can be implemented on proper target FPGAs
using the modules developed here and thus achieve several
ANN functionalities in various applications of interest.

V. CONCLUSIONS

The developed digital memristor HW simulator perfectly
matches the mathematical model. Being the core of a true
memristor digital emulator, it is interesting that it complies

with all the desired emulator requirements. Moreover, it can
be readily used in complex circuit configurations and ANNs.
It supports connection with other digital circuit modules due to
the floating node flags and the use of additional HW, which
computes the required node voltages (KCL module). Using an
interface circuit will enable its connection with external
circuitry, thus truly replacing a real memristor. The HW
resource requirements are small and are linearly related to the
number of ANN inputs. Passing from simulation in SW to
emulation and execution in HW offers the major advantage of
near-real time response. Following the presented approach,
complex memristor circuit configurations and reasonably large
ANNs can be easily implemented digitally for different
applications. For this reason, all the corresponding VHDL
descriptions are available to be used in research and/or in
under/post-graduate student projects to enable an emulation-
assisted HW exploration of memristive dynamics.

REFERENCES

[1] L. O. Chua, “Memristor - The Missing Circuit Element,” IEEE Trans.
Circuit Theory, vol. 18, no. 5, pp. 507-519, 1971

[2] L. O. Chua, “If it's pinched it's a memristor,” Semicond. Sci. Technol.,
vol. 29, no. 10, pp. 104001, 2014

[3] S. D. Ha and S. Ramanathan, “Adaptive oxide electronics: a review,” J.
Appl. Phys., vol. 110, no. 7, pp. 071101, 2011

[4] T. W. Hickmott, “Low-Frequency Negative Resistance in Thin Anodic
Oxide Films,” J. Appl. Phys., vol. 33, no. 9, pp. 2669, 1962

[5] F. Argall, “Switching phenomena in titanium oxide thin films,” Solid
State Electron., vol. 11, no. 5, pp. 535-541, 1968

[6] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80-83, May 2008

[7] “International Technology Roadmap for Semiconductors (ITRS),” 2013.
[Online]. Available: http://www.itrs.net/. [Accessed June 2014]

[8] I. Vourkas and G. Ch. Sirakoulis, “Memristive Crossbar-Based
Nonvolatile Memory,” in Memristor-Based Nanoelectronic Computing
Circuits and Architectures, 1st ed., Switzerland: Springer Int.
Publishing, 2016, pp 101-147

[9] H.-S. P. Wong, et al., “Metal-Oxide RRAM,” IEEE Proc., vol. 100, no.
6, pp. 1951-1970, 2012

[10] S. Paul and S. Bhunia, “A scalable memory-based reconfigurable
computing framework for nanoscale crossbar,” IEEE Trans.
Nanotechnol., vol. 11, no. 3, pp. 451-462, 2012

[11] F. L. Traversa, Y. V. Pershin, and M. Di Ventra, “Memory Models of
Adaptive Behavior,” IEEE Trans. Neural Netw. and Learning Syst., vol.
24, no. 9, pp. 1437-1448, 2013

[12] A. Adamatzky and L. Chua (eds.), “Memristor Networks,” Springer Int.
Publishing, 2014, Switzerland, doi: 10.1007/978-3-319-02630-5

[13] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nat. Nano., vol. 8, pp. 13–24, 2013

[14] A. Siemon, et al., “Realization of Boolean Logic Functionality Using
Redox-Based Memristive Devices,” Adv. Funct. Mater., vol. 25, no. 40,
pp. 6414–6423, 2015

[15] I. Vourkas and G. Ch. Sirakoulis, “Emerging Memristor-based Logic
Circuit Design Approaches: A Review,” IEEE Circ. and Syst. Mag, vol.
16, no. 3 (3rd quarter), pp. 15-30, 2016

[16] M. P. Sah, H. Kim, and L. O. Chua, “Brains are made of memristors,”
IEEE Circ. and Syst. Mag., vol. 14, no. 1, pp. 12-36, 2014

[17] D. Kuzum, S. Yu, and H-S P. Wong, “Synaptic electronics: materials,
devices and applications,” Nanotechnology, vol. 24, no. 38, pp. 382001,
2013

[18] D. Lin, S. Y. Hui, and L. O. Chua, “Gas Discharge Lamps Are Volatile
Memristors,” IEEE Trans. Circ. Syst. I, Reg. Papers, vol. 61, no. 7, pp.
2066-2073, 2014

[19] L. Chua, “Everything You Wish to Know About Memristors But Are
Afraid to Ask,” Radioeng., vol. 24, no. 2, pp. 319-368, 2015

[20] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,”
NANO Lett., vol. 10, pp. 1297-1301, 2010

[21] S. Saighi, et al., “Plasticity in memristive devices for spiking neural
networks,” Front. Neurosci., vol. 9 (51), March 2015

[22] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman,
“Memristor Crossbar-Based Neuromorphic Computing System: A Case
Study,” IEEE Trans. Neural Netw. and Learning Syst., vol. 25, no. 10,
pp. 1864 -1878, 2014

[23] S. Haykin, “Neural Networks: A Comprehensive Foundation,” 2nd ed.,
Prentice Hall, NJ, USA, 1998

[24] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Memristor
SPICE Modeling,” in Advances in Neuromorphic Memristor Science
and Applications, 1st ed., Springer Netherlands, 2012, pp. 211-244

[25] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, “Memristor Model
Comparison,” IEEE Circ. and Syst. Mag., vol. 13, no. 2, pp. 89-105,
2013

[26] I. Vourkas, A. Batsos, and G. Ch. Sirakoulis, “SPICE modeling of
nonlinear memristive behavior,” Int. J. Circ. Theor. Appl., vol. 43, no. 5,
pp. 553–565, 2015

[27] Y. V. Pershin and M. Di Ventra, “Practical Approach to Programmable
Analog Circuits With Memristors,” IEEE Trans. Circ. Syst. I, Reg.
Papers, vol. 57, no. 8, pp. 1857-1864, 2010

[28] Bio Inspired Technologies, “Neuro-bit: the world's first commercially
available memristor,” [Online]. Available: http://www.bioinspired.net/
[Accessed 15 December 2015]

[29] D. Biolek, “Memristor Emulators,” in Memristor Networks, A.
Adamatzky, L. Chua (Eds.), Springer Int. Publishing, pp. 487-503, 2014

[30] C. Yang, H. Choi, S. Park, M. Pd Sah, H. Kim, and L. Chua, “A
memristor emulator as a replacement of a real memristor,” Semicond.

Sci. Technol., vol. 30 (015007), 2015
[31] Y. Pershin and M. Di Ventra, “Experimental demonstration of

associative memory with memristive neural networks,” Neural Netw.,
vol. 23, no. 7, pp. 881-886, 2010

[32] I. Vourkas, V. Ntinas, A. Abusleme, G. Ch. Sirakoulis, and A. Rubio,
“A Digital Memristor Emulator for FPGA-Based Artificial Neural
Networks,” 2016 IEEE Int. Verification and Security Workshop (IVSW),
Sant Feliu de Guixols, Catalunya, Spain, July 4 - 6, pp. 65-68

[33] J. Liu and D. Liang, “A Survey of FPGA-Based Hardware
Implementation of ANNs,” 2005 Int. Conf. Neural Networks and Brain
(ICNN&B), vol. 2, Oct. 13-15 2005, Beijing, China, pp. 915 - 918

[34] A. R. Omondi and J. C. Rajapakse (Eds.), “FPGA Implementations of
Neural Networks,” Springer, Dordrecht, The Netherlands, 2006

[35] I. Vourkas and G. Ch. Sirakoulis, “Nano-Crossbar Memories
Comprising Parallel/Serial Complementary Memristive Switches,”
BioNanoSci., vol. 4, no. 2, pp. 166-179, 2014

[36] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and
B. Linares-Barranco, “STDP and STDP Variations with Memristors for
Spiking Neuromorphic Learning Systems,” Front. Neurosci., vol. 7, no.
2, pp. 1-15, 18 Feb. 2013

[37] S. Wozniak, T. Tuma, A. Pantazi, and E. Eleftheriou, “Learning Spatio-
Temporal Patterns in the Presence of Input Noise using Phase-Change
Memristors,” 2016 IEEE Int. Symp. Circuits and Syst. (ISCAS),
Montreal, Canada, May 22-25, pp. 365 - 368

[38] D. Querlioz, O. Bichler, and C. Gamrat, “Simulation of a Memristor-
Based Spiking Neural Network Immune to Device Variations,” 2011 Int.
Joint Conference on Neural Networks (IJCNN), San Jose, CA, USA, Jul.
31 - Aug. 5, pp. 1775-1781

[39] Q. Yu, H. Tang, K. Chen Tan, and H. Li, “Rapid Feedforward
Computation by Temporal Encoding and Learning With Spiking
Neurons,” IEEE Trans. Neural Netw. and Learning Syst., vol. 24, no. 10,
pp. 1539-1552, 2013

[40] J. Hu, H. Tang, K. C. Tan, and H. Li, “How the Brain Formulates
Memory: A Spatio-Temporal Model,” IEEE Comp. Intelligence Mag.,
vol. 11, no. 2, pp. 56-68, 2016

[41] I. Pavlov, “Conditioned reflexes: an investigation of the physiological
activity of the cerebral cortex,” Oxford University Press, London, 1927

Vasileios Ntinas received his M. Eng. Diploma and M.Sc. in
electrical and computer engineering from Democritus
University of Thrace (DUTh), Xanthi, Greece, in 2015 and
2017, respectively. He is currently a Ph.D. student in the
Electrical and Computer Engineering Department at DUTh.
His thesis focuses on the design and simulation of bio-inspired
memristor-based computing circuits and systems.

Ioannis Vourkas (S’12-M’16) received his M. Eng. diploma
and Ph.D. in electrical and computer engineering (ECE) from
Democritus University of Thrace (DUTh), Xanthi, Greece, in
2008 and 2014, respectively. He is currently faculty member
of the Department of Electronic Engineering, Universidad
Técnica Federico Santa María, Valparaíso, Chile, where he is
also PI in the project CONICYT FONDECYT Postdoctorado
No. 3160042.

His current research emphasis is novel nano-electronic
circuits and architectures comprising memristors. His research
interests include unconventional computing, software and
hardware aspects of parallel complex computational (bio-
inspired) circuits and systems, and cellular automata. He is
associate editor of Elsevier Microelectronics Journal.

He has also been a scholar at the Greek BODOSSAKI
Foundation (2011 to 2014).

Angel Christian Abusleme Hoffman (M’01) was born in
Santiago de Chile in 1975. He earned his diploma and M.SC.
in electrical engineering from Pontificia Universidad Católica
de Chile (PUC Chile) in 2000, and his Ph.D. in
microelectronics from Stanford University, CA, USA, in 2011.
He is currently an Associate Professor of Electrical
Engineering at PUC Chile. His research has focused on
instrumentation circuits for particle physics experiments.

Georgios Ch. Sirakoulis (M’95) received his M. Eng.
diploma and Ph.D. in electrical and computer engineering

(ECE) from Democritus University of Thrace (DUTh),
Greece, in 1996 and 2001, respectively.

He is a Tenured Professor in the ECE Department at DUTh
(2017-today). He has participated as a PI in more than 20
scientific programs and projects funded from the Greek
government and industry and the EU Commission. His
research interests include emergent electronic circuits and
systems, memristors, green and unconventional computing,
cellular automata, complex systems, and bio-inspired
computation/bio-computation.

He serves as an associate editor of several peer reviewed
international journals. He was General Co-Chair of the 2014
International Conference on Cellular Automata for Research
and Industry (ACRI), and several other conferences, including
ACRI 2012.

Antonio Rubio (SM’96) received his M.Sc. and Ph.D. from
the Industrial Engineering Faculty, Polytechnic University of
Catalonia (UPC), Barcelona, Spain.

He has been an Associate Professor in the Electronic
Engineering Department, UPC, and a Professor in the Physics
Department, Balearic Islands University. He is currently a
Professor of electronic technology in the Telecommunication
Engineering Faculty, UPC. His research interests include
VLSI design and test, device and circuit modeling, high-speed
circuit design, and new emerging nanodevices and
nanoarchitectures.

