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Abstract—This paper presents a fully digital implementation of 

a memristor hardware simulator, as the core of an emulator, 
based on a behavioral model of voltage-controlled threshold-type 
bipolar memristors. Compared to other analog solutions, the 
proposed digital design is compact, easily reconfigurable, 
demonstrates very good matching with the mathematical model 
on which it is based, and complies with all the required features 
for memristor emulators. We validated its functionality using 
Altera Quartus II and ModelSim tools targeting low-cost yet 
powerful field programmable gate array (FPGA) families. We 
tested its suitability for complex memristive circuits as well as its 
synapse functioning in artificial neural networks (ANNs), 
implementing examples of associative memory and unsupervised 
learning of spatio-temporal correlations in parallel input streams 
using a simplified STDP. We provide the full circuit schematics 
of all our digital circuit designs and comment on the required 
hardware resources and their scaling trends, thus presenting a 
design framework for applications based on our hardware 
simulator. 

 
Index Terms—associative memory, computing, emulator, 

memristor, neural network, neuromorphic, resistive switching 
 

I.  INTRODUCTION 

HE existence of the 4th  fundamental circuit element was 
postulated by Chua in 1971 and was termed “memristor” 

(short   for   “memory   resistor”)   [1].   Today,   the   term 
“memristor” usually refers to any resistance-switching (RS) 
device that  complies  with a  particular  set  of requirements 
known  as  memristor  “fingerprints”  [2],  regardless  of  the 
fabrication details [3]. The hysteretic RS properties of oxides 
sandwiched between metal electrodes was well known though 

 
 

even from the 60s, as seen in relevant publications by 
Hickmott and Argall [4], [5]. Chua’s theory of the 
memristor was however connected with experimental 
devices only in 2008 by Hewlett-Packard Laboratories and 
their work on TiO2 RS devices [6]. Memristors are now 
considered a rapidly emerging technology [7] that creates 
opportunities to realize innovative circuits and systems with 
applications such as nonvolatile  memory  [8],  [9],  
adaptive  circuits  [10],  [11], 
signal processing [12], and logic/computing [13-15]. 

The memristor has also been proposed as the 
electronic analog of biological synapses [16], [17]. It is 
essentially a resistor with memory; it is nonvolatile 
(although volatile devices have been also reported [18] and 
the specific theory can be found in [19]), its response 
depends on its whole dynamical history, and it 

demonstrates a continuous set of resistance values, making 
it ideal for tuning synaptic weights of artificial neural 
networks (ANNs) [20-22]. An ANN is a data-processing 
model based on  the biological  nervous system, implemented 
as a parallel and distributed network of simple nonlinear 
processing units [23]. Hardware (HW) implementation of 
ANNs is an important step toward obtaining human-brain-like 
functionalities at circuit level. The basic components of 
ANNs are neurons and synapses, whose circuit realization 
should mainly be compact to make scaling up to approach 
the total biological device numbers (~1011 neurons and ~1015 

synapses in human brain) feasible. 
As typically happens with all new electronic devices, 

modeling and simulation are the first steps to exploring 
memristors’ general attributes, verifying theoretical aspects, 
and understanding the effect of different model parameter 
values. In this context, several either behavioral or physics- 
based (usually SPICE-compatible) models have been 
developed [24-27]. Lab experiments with fabricated 
memristors are the next step. However, memristor technology 
is still in progress and device fabrication implies considerable 
costs and difficulties. Furthermore, the memristors 
commercially available to date are quite expensive and still 
not very reliable [28]. Consequently, research and 
development have largely focused on various (mostly analog) 
HW emulators [29-31] that facilitate the experimental 
exploration of memristive behavior. 

According to [30], the required features for a memristor 
emulator are: i) a wide memristance range; ii) nonvolatility; 
iii) initial state configurability; iv) floating operation; v) 
operability for high-frequency and continuous input signals; 



 
 

 
and vi) support interconnection with other components. 
Taking these six electrical requirements into account, in this 
paper we build upon our previous work in [32] and develop a 
fully digital memristor hardware simulator based on a 
behavioral model of voltage-controlled threshold-type bipolar 
memristors [27]. The presented electronic module constitutes 
the core of a digital memristor emulator, which further 
requires interface circuitry to permit connection to external 
circuits as a two terminal element, such as in [27], [31]. We 
conducted all the required verification tests and validated its 
functionality using Altera Quartus II and ModelSim software 
(SW), targeting low-cost yet powerful field  programmable 
gate array (FPGA) families. The FPGAs are reconfigurable 
electronic platforms well-suited to implement ANNs [33], [34] 
owing to their HW flexibility, which allows rapid prototyping 
of different ANN topologies and implementation strategies. In 
this context, we chose the FPGA as the target electronic 
platform and showed that our design is suitable for FPGA- 
based ANNs. Our motivation was to design and implement 
digital HW electronic synapses particularly based on 
memristive dynamics and prove their suitability and 
applicability to a variety of ANN-based applications. 
Compared to other emulation approaches from the recent 
literature, this digital design is compact, easily reconfigurable, 
demonstrates excellent matching with the memristor model on 
which it is based [27], and complies with all the 
aforementioned electrical requirements (i to vi). Moreover, we 
tested its suitability for anti-serial memristive interconnections 
[35] and proved its synapse functioning in single-layer 
perceptron, implementing examples of associative  memory 
and a simplified variation of spike timing dependent plasticity 
(STDP) [36] unsupervised learning of spatio-temporal 
correlations in parallel input streams, following previous 
demonstrations in [31] and [37], respectively. We present the 
schematics of our digital circuit designs and comment on the 
required HW resource scaling, thereby providing a complete 
design framework for such memristor emulator-based ANNs. 

 
II. MEMRISTOR DIGITAL HARDWARE SIMULATOR 

A. The Behavioral Memristor Model 
Even though any mathematical model [25] could serve as a 

basis of our digital implementation, the developed digital 
simulator is based on (and meets all the characteristics of) the 
behavioral threshold-type bipolar memristor model proposed 
in [27], described by the following equations: 

 

 
 

Fig. 1. Qualitative graph for the memristance change rate in (2) as a function 
of the applied voltage. 

 

 
 

Fig. 2. Compact memristor hardware simulator block diagram. 
 

state-dependent Ohm’s Law, where i(t) is the flowing current 
and v(t) is the voltage drop on the memristor, whereas R is the 
memristance and, at the same time, the system’s only state 
variable. Equation (2) depends only on v(t) and R. As shown 
in Fig. 1, its value changes at different rates when the applied 
voltage is either higher or lower than the threshold voltage vT, 
limited by upper and lower boundaries, namely RON and ROFF 

(i.e., RMIN and RMAX). The latter is accomplished with the use 
of the step function θ() in (2), which indicates that R can 
change only between its limiting values. The resistance change 
rate of threshold-type switching memristors is very fast above 
(and negligibly slow below) the threshold vT, which here, for 
the purposes of simplicity, is considered symmetric for both 
the SET (ROFF→RON) and RESET (RON→ROFF)  transitions. 
The constants α and b in (2) define this change rate when |v(t)| 
< vT or |v(t)| > vT, respectively, with α, b < 0 and |α|<|b|. Thus, 
the resistance decreases when the memristor is forward-biased 
and increases when it is reverse-biased. Hereinafter we will 
refer to a memristor being forward/reverse-biased when the 
voltage at the top/bottom terminal is higher than that on its 
bottom/top terminal; the bottom terminal is denoted by the 
thick black line in the circuit schematic (see Fig. 2). 

i(t ) = R−1 ⋅ v(t ) 
 

R& = b ⋅ v + 
1 (a − b) ⋅ (| v + v 

 
 
| − | v − v |) 

(1)  
B. Circuit Implementation 

Fig. 2 shows the compact block diagram of the memristor 
module.  The  input  signals  include:  the  top  and  bottom 

2 T T (2) electrode voltage (VTE and V BE), these being the basic two 

⋅ θ (R − RON ) ⋅ θ (ROFF − R). 
 

It is a behavioral model of a voltage-controlled time- 
invariant memristor whose memristance change rate is given 
by the piece-wise linear equation (2). Equation (1) reflects the 
inputs of the block, the initial memristance value (RINIT), 
which is loaded when reset = ‘1’, and two 2-bit flag signals 
to denote whether its terminals are properly connected, i.e., 

whether the applied voltage is valid or has been left floating 
(the need for two bits instead of one is explained in Section 



 
 

 
 

 
 

Fig. 3. Detailed memristor hardware simulator block diagram. 
 

TABLE I 
FPGA IMPLEMENTATION LOGIC DATA 

 

Family / Device Cyclone II / EP2C70F672C6 
Total Logic Elements 3266 (5%) 

Total Registers 32 (<1%) 
 
 

IV). Unlike in [32], in this version of the simulator design, the 
output signal in most cases concerns the memductance G = R-1 

because using G instead of R enables a simplified circuit 
design, lower HW resource requirements, and greater 
computational precision, as shown in the following sections. 
The model-specific parameters α, b, vT, RMIN, and RMAX are 
defined as internal constants (stored in  memory) since we 
assume they are device/module-specific. Preferring power-of- 
2 values for such internal constants and for all the auxiliary 
variables used in multiplications/divisions significantly 
minimizes the required HW resources. 

Fig. 3 shows a more detailed  implementation  block 
diagram. The input voltage is used to compute the derivative 
of R as in (2) and multiply it by a properly selected integration 
time step Δt, which also defines the maximum supported input 
signal frequency. The result is added to the current R value 
and, once the out-of-bound and floating terminal controls have 
been performed (the number (2)10 = (10)2 shown at the bottom 
left of Fig. 3 corresponds to the case of a floating connection), 
is stored  in the corresponding  register. The result of such 
controls are selection bits in multiplexers, i.e. blocks that 
conditionally pass always one of the inputs to the output 
according to the selection bit. For data representation, we use 
up to 32-bit integers and thus guarantee a wide value range 
and adequate precision for all important parameters (e.g., a 
wide memristance range), while preventing under/overflow 
during computations through the appropriate selection of α, b, 
and Δt. In integer computations, the fractional part of any 
result is truncated. Therefore, we represent resistance values in 
mΩ instead of Ω (i.e., 5000 instead of 5), and voltages in µV 
instead of V, to create the necessary precision. Moreover, the 
use of an auxiliary variable (the max integer) is shown in the 
last block in Fig. 3. In fact, this is a necessary transformation 
to obtain a valid G value since inverting R in digital HW 
would simply give zero as a result. Therefore, in order to keep 
this information from the inversion, we shift the result via a 

 
 

 
 

Fig. 4. Comparison between the mathematical model (Matlab) and the 
hardware simulator response (VHDL). α = -2000 Ω/(V×s), b = -190000 
Ω/(V×s), Δt = 0.0005s, vT = 1V, RMIN = 100Ω and RMAX = 10KΩ. 

 
multiplication with a very large number defined as power of 
two (i.e. if R = 104Ω, then it is 107mΩ and we compute G = 
(231-1)/107) = 214S). The result is of course not the correct G 
as the latter includes the shifting operation. However, this is 
not really a problem and the practical meaning of this 
transformation is further explained in Section IV. Generally 
the use of such auxiliary variables is omitted in the block 
diagrams for the sake of simplicity. Basic information about 
the HW  resources  of the memristor module for a specific 
FPGA, is given in Table I (% refers to the percentage of the 
total available resources in the FPGA that are being used). 

 
III. BEHAVIORAL VERIFICATION TESTS 

This section presents the series of functional verification 
tests carried out to prove the HW simulator’s proper 
functioning and matching with the mathematical model, its 
compliance with the characteristic fingerprints, the multi-level 
tuning property required for analog applications, and its 
suitability for complex interconnections. All the measurements 
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Fig. 5. (a) i-v and R-v plot concerning the response of the HW simulator for 

 
 

 
 

Fig.   6.   Multi-state   programming   feature.   Comparison   between   the 
mathematical base model (Matlab) and the HW simulator response (VHDL). α 
= -2000 Ω/(V×s), b = -190000 Ω/(V×s), Δt = 0.0001s, vT = 1V, RMIN = 100Ω 

various frequencies of the input voltage v(t) = 3sin(2πft) when R  
INIT = RMAX. and RMAX=10KΩ, whereas the applied voltage was v(t) = ±3sin2(100πt). 

(b) i-v plot for varying input amplitudes Vo of v(t) when f = 12 Hz and RINIT =  
RMAX. (c) i-v plot for varying initial conditions (RINIT) when Vo = 3V and f = 
12 Hz. In all scenarios we used α = -2000 Ω/(V×s), b = -190000 Ω/(V×s), Δt = 
0.0001s, vT = 1V, RMIN = 100Ω and RMAX = 10KΩ. 

 
for our design use the ModelSim HW simulation data for a 
target FPGA device and 100MHz clock frequency. These data 
were collected via proper Matlab scripts and compared with 
the reference model data. The ModelSim input files were 
prepared using the Matlab HDL coder. In all demonstrated 
measurements, the reset phase when the system was initialized 
was simply omitted. 

A. Match with the Mathematical Memristor Model 
It is important to guarantee an exact match between the HW 

simulator’s response and data from the memristor model on 
which it is based, regardless of the characteristics of the input 
voltage. Fig. 4 shows a relevant comparison concerning a 
triangular input voltage pulse. The HW simulator’s response 
matches very well that of the model. The available precision 
during computations with integer variables in our design 
guarantees infinitesimal error. Such precise matching is 
obtained for different input pulse types and frequencies, 
provided that the selected model parameter values do  not 
cause under/overflow problems. 

B. Compliance with the Characteristic Fingerprints 
We proved that our HW  simulator indeed behaves as a 

memristor by testing its compliance with memristor 
fingerprints [3]. Fig. 5(a) shows a set of current-voltage 
curves, along  with the memristance-voltage  curves, for 
different frequencies of the input sinusoidal voltage. All 
curves in the i-v plane are pinched at the origin (i, v) = (0, 0), 
i.e.,  there  is  no  phase  shift  between  the  i(t)  and  v(t) 

 
 (c) 
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waveforms. This is valid for all amplitudes and frequencies of 
the input signal (see Fig. 5(b)), and for any possible initial 
condition of memristor (see Fig. 5(c)), as seen in the R-v and 
i- v planes. Moreover, the so-called single-valued function 
limiting phenomenon is confirmed with the collapsing 
hysteresis loops in the i-v graph of Fig. 5(a). As the sweep 
frequency f increases, the area of each lobe of the 
pinched hysteresis loop shrinks, such that the memristance 
function degenerates to a straight line (tends to a single 
value) as f increases towards infinity. 

C. Multi-State Tuning Capability 
One of the main reasons why memristors have been 

proposed as the electronic analog of biological synapses is 
because they demonstrate a continuous set of resistance values 
and are thus ideal for representing synaptic weights. Such 
multi-level tuning capability is crucial for analog applications. 
Therefore, we tested the multi-state tuning capability of 
our design, which is required to model synapse functioning. 
The relevant HW simulation results are shown in Fig. 6. 
Multiple continuous states are obtained via successive 
short voltage pulses of the same polarity. In our case, we 
show seven distinct memristance levels achieved with a 
±Vosin2(100πt) pulse train (Vo = 3V). Since higher applied 
voltages cause faster switching, decreasing the pulse 
amplitude while ensuring it remains above the threshold 
results in much closer distinct memristance levels. 
Shortening the pulse duration while maintaining the same 
amplitude has a similar effect. As shown in Fig. 6, in all 
such cases the module’s multi-level switching response 
matches very well the reference model. 
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Fig. 7. Anti-serial connected memristors. (a) Block diagram showing the 
interconnection of the electronic modules and the additional components for 
the computation of the voltage divider equation. The inset shows the 
equivalent circuit using the memristor symbol. (b) Simulation results showing 
the applied voltage VIN and the voltage drop on the two memristors, the 
composite i-v plot, and the HW simulators’ memristance evolution with time 
and with the input voltage, respectively. α = -2000 Ω/(V×s), b = -190000 
Ω/(V×s), Δt = 0.0005s, vT = 1V, RMIN = 100Ω and RMAX = 10KΩ. 

 
 

D. Complex Device Interconnection 
In keeping with the electrical requirements for memristor 

emulators mentioned in the Introduction, this verification test 
checked   the   possibility   of   interconnection   with   other 

Fig. 8. Generic implementation scheme for a single-layer ANN with n input 
neurons Ni (i = 1,…, n) connected to an output neuron No via n memristors. Go 

is a small conductance used in the Kirchhoff’s Current Law computation. 
 

components, i.e., whether the developed HW simulator can be 
connected to other devices or emulators, which is essential for 
it to be used in more sophisticated circuit configurations. It is 
worth mentioning that unless an interface circuit is added, 
such as  for example an  ADC and  a digital  potentiometer, 
similar to that shown by Pershin and Di Ventra in [27] and 
[31], then our implementation cannot be electrically connected 
to an external circuit as a complete digital memristor emulator. 

To this end, we studied the suitability of the simulator for 
the complementary resistive switch (CRS) configuration [35]. 
A CRS consists of two memristors connected in series but 
with opposite polarities (anti-serially), hereinafter called the 
forward-polarized memristor (FPM) and the reverse-polarized 
memristor (RPM). The CRS is a comprehensive enough test, 
also easy to implement,  which allows to confirm both the 
interconnection property and the polarity-dependent switching 
of multiple such modules combined together. Memristors with 
opposite polarities demonstrate reverse behavior to the applied 
signal;  i.e.,  during  one  period  of  the  AC  input  voltage, 

complementary devices reciprocally change their states. 
Fig. 7(a) shows the block diagram of the CRS 

configuration. For simplicity, we have defined the output of 
the simulators as the memristance R instead of the 
memductance G shown in Fig. 3. Apart from the two 
memristor modules, the system requires a combinational part 
to calculate the voltage VC on the common intermediate node 
of the memristors, i.e., to compute the voltage divider 
equation. The latter receives VIN as input and uses the current 
state of the two memristors (R1 and R2) to drive them with the 
corresponding VTE value. The sum of R1 and R2 is computed 
first and then the fraction, which is multiplied by the input 
voltage, as shown in the inset. A MUX is used to prevent 
invalid results by division with zero. The flag inputs “01” 
denote there are no floating electrodes. The two modules are 
set to the FPM/RPM = ROFF/RON state during initialization. 
The inset shows the equivalent circuit schematic for such 
connection, using the memristor symbol for clarity. 

Fig. 7(b) shows the HW simulation results. The positive 
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Fig. 9. (a) Compact and (b) detailed block diagram of the neuron module 
based on the model described in [31]; (c) HW simulation results for the 
neuron’s behavior for different amplitudes of the input voltage VIN. For the 
purposes of clarity, the inset in the output plot focuses on a specific excitation 
cycle. 

part of the triangular input VIN creates the  necessary 
conditions first to change the state of the FPM (R2) from ROFF 

to RON and, later, that of the RPM (R1) from RON to ROFF, 
resulting in a flipped resistive configuration. The memristors 
then exhibit an ohmic behavior until the applied voltage 
exceeds the respective negative thresholds and forces them to 
successively switch to their initial states. In Fig. 7(b) we also 
show the perfectly symmetric composite i-v curve. Overall, 
the results confirm the reproduction of the CRS operation. 

 
IV. MEMRISTIVE ARTIFICIAL NEURAL NETWORKS 

A. Circuit Implementation 
In this section we use the developed hardware simulator as 

a synapse and present an implementation scheme for the 
perceptron topology shown in Fig. 8. All the additional 
electronic modules, like the previously presented for 
memristor, concern digital designs easily tuned and 
generically built to facilitate the development of single- or 
multi-layer ANNs on FPGA devices for several applications. 

Specifically in the single-layer ANN example shown in Fig. 
8, the input neurons Ni  (i = 1, …, n) are connected with an 

output neuron No via synapses (memristors), while the output 
signal OUT is determined by the applied input signals INi and 
the strength of the synaptic connections Gi, which weigh the 
potentials Vi. Biological neurons generally have receptor 
(synaptic) and action potentials. When the receptor potential at 
the input of an idle (not firing) neuron exceeds a given 
threshold, the neuron is excited and starts firing, i.e. starts 
emitting forward and backward fixed-amplitude action pulses. 
As we will show in the following ANN examples, the back- 
propagating pulses are responsible for synaptic tuning and, 
therefore, for continuous re-learning. For the purposes of our 
experiments, we developed a digital electronic version of a 
neuron model as described next and in more detail in [31]. 

Figs. 9(a) and 9(b) show the compact and detailed block 
diagrams of the developed neuron module, which receives two 
inputs. VIN is the receptor potential, which is constantly 
monitored; once it exceeds a threshold value VT (defined as an 
internal constant, i.e., stored in memory), forward and 
backward fixed-amplitude action pulses are generated. 
However, the computed pulse separation (the waiting/idle 
time) varies according to the strength of the receptor input 
stimulus  and  a  random  parameter,  which  is  the  module’s 



 
 

 
 

 
 
 
 
 

 
 

(a)  
(b) 

 

Fig. 10. (a) Compact and (b) detailed block diagram of the Kirchhoff’s Current Law (KCL) computation (weighted summation) module giving the voltage at 
node Vo of Fig. 8. We set Go = (231-1)/Ro, and assumed a large resistance Ro ≈ 1MΩ. 

second input. The output VOUT of the neuron is only indicating 
whether the neuron is excited or idle. There are three possible 
cases for the memristor terminals to be considered since, 
according to [31], when a neuron is idle (not firing), its output 
terminal (e.g., Vi for input neuron Ni in Fig. 8) becomes 
floating. However, while still in idle state, its input terminal 
(i.e. the common node of all the synapses, Vo for  output 
neuron No in Fig. 8) may still be connected and receiving 
input stimuli caused by the pre-synaptic pulses in case one of 
the input neurons is firing. Therefore, defining Vo simply 
floating due to the neuron being idle, is incorrect. We 
overcame this requirement via local bit-processing in-between 
the VOUT of a neuron module and the Valid_VTE/BE flag of a 
memristor module, thereby driving two bits to the flag inputs, 
enough to model the three possible cases (connected, floating, 
and connected while neuron is idle, as explained in Table II). 
This enabled us to keep the implementation of neurons general 
and their complexity low. 

Moreover, the fixed amplitude of the action pulses is not 
defined inside the neurons but rather is set externally and thus 
applied directly to the corresponding terminal of every 
memristor, as shown below. Unlike in our previous work [32], 
here we included a second neuron output VSIGN indicating 
whether the back-propagating pulses have a negative sign. As 
we will show below in our ANN examples, unlike in [31], 
[32], this important added property makes it possible both to 
increase and decrease the synaptic weights through the 
simplified STDP scheme implemented here, previously 
proposed in [38] (although action potentials resembling more 
the true spike waveforms found in biological neural systems, 
as presented in [36], [39], [40], could be implemented as well 
by more HW resources). When both input and output neurons 
are firing, the resulting voltage drop (e.g., Vi - Vo in Fig. 8) on 
the memristors is of constant amplitude but different 
durations, depending on the timing of the voltage signals at the 
two sides of the synapses. On the other hand, when the output 

 
TABLE II 

  POSSIBLE SITUATIONS FOR OUTPUT NEURON’S TERMINALS   
 

Neuron’s state Input terminal (Vo) Output terminal (OUT) 
Idle Connected 

(VOUT of KCL module) Floating 
Excited Connected 

(±VPULSE) 
Connected 
(VPULSE) 

 

neuron is not firing, then Vo  varies depending on the state of 
input neurons and their synapses. 

More specifically, according to Fig. 9(b), the neuron 
operation is determined based on two counters defining the 
total excitation time steps and the pulse separation time, 
mentioned before. We arbitrarily set the excitation time to 100 
clock steps. This duration is defined by the step counter 
(bottom left in the figure), which starts counting when the 
neuron becomes excited. Inside the neuron, the number of 
steps when the VSIGN is ‘1’ is also defined as VSIGN_TIME which 
is assumed to be 20 steps in Fig. 9(b), a value chosen based on 
trial and error to improve the results obtained in the 
application examples shown next; for the rest of the excitation 
cycle steps, VSIGN is ‘0’. The hold register is responsible for 
keeping the neuron excited (i.e. neuron’s output VOUT = ‘1’) 
for 100 steps. Moreover, when the step counter starts, the dt 
register stores the idle/waiting time, which is computed 
according to a formula proposed in [31] and converted to true 
simulation time via multiplication with the integration time 
step Δt. When the step counter reaches 100, the hold register 
becomes ‘0’ but the dt enabled becomes ‘1’, thereby 
activating the dt counter, which is responsible for keeping the 
neuron idle for a waiting time (refractory period) equal to dt. 
When dt counter = dt, then the dt enabled becomes ‘0’. A 
positive difference VIN-VT can activate the neuron provided 
that the dt enabled register is ‘0’, i.e., that the neuron is not in 
refractory period. Adjusting the VSIGN_TIME during module 
instantiation makes it possible to create the desired time ratio 



 
 

 

 
 

Fig. 11. Block-level circuit topology implementing the linear perceptron with three neurons and two synapses, according to [31], using the neuron, the memristor, 
and the weighted summation (KCL) electronic modules. The small gear driving the memristor Valid_VTE inputs denotes local bit-processing mentioned in text. 

 

of negative and positive back-propagating action pulses during 
excitation, as proposed in [38]. HW simulation results of the 
neuron’s behavior are shown in Fig. 9(c). We present the 
action potentials caused by different amplitudes of the input 
VIN, whereas for the rand input we use a series of randomly 
generated integers ∈	[0, 10]. When VIN<VT there is no firing. 
Otherwise, the average pulse separation decreases as the input 
amplitude increases. The effect of the rand input on the dt 
computation is more evident at higher firing rates. Fig. 9(c) 
also  shows  the  VSIGN    output,  which,  in  this  simulation 
scenario, is ‘1’ for the first 20 of the 100 excitation time steps. 

In short, looking back at Fig. 8, we can conclude that when 
the input neurons are firing, the memristors receive positive 
action potentials Vi  at their TE, whereas when they are idle, 
these terminals are assumed to be floating. On the other hand, 
when the output neuron is firing, the memristors receive either 
positive or negative action potentials Vo at their BE, but when 
the  neuron  is  idle,  the  receptor  potential  Vo   at  its  input 
terminal  needs  to  be  calculated  (see  Table  II).  We  saw a 
similar problem before in the CRS example. Whenever there 
is a shared node among many interconnected memristors, an 
additional  module  responsible  for  computing  the  instant 
potential at that node is required. Therefore, for the purposes 
of our experiments, we developed an electronic version of the 
Kirchhoff’s   Current   Law   (KCL)   computation   (weighted 
summation) shown in Fig. 10. As can be seen in Fig. 10(a), 
this  module  receives  the  current  memductance  of  every 
memristor   Gi    (which   includes   the   shifted   operation   as 
explained previously) and a series of bits Vi, which are the 
outputs of the input neurons (VOUT). The output (i.e., the Vo 

potential in Fig. 8) is updated using the KCL equation when 
the input VBACK  is ‘0’, i.e., when the output neuron is not 

excited and there is thus no back-propagating pulses. 
Otherwise, i.e. when the output neuron is firing, the output 
becomes equal to the predefined amplitude ±VPULSE depending 
on the VSIGN input. VPULSE is the fixed amplitude assumed for 
both the forward and backward action pulses in our ANNs. As 
shown in Fig. 10(b), we built this module in a generic manner 
in order to receive an arbitrary number of inputs, provided that 
the internal KCL computations do not cause overflow. 
According to the KCL formula Vo = (V1G1 + V2G2 + … + 
VnGn) / (Go + G1 + G2 + … + Gn), first we sequentially 
compute the conditional sum of all Gi (depending on the 
corresponding Vi which serves as MUX selection bit) and Go. 
Then we compute the fraction and eventually multiply it by 
the fixed amplitude VPULSE. Since this formula has G both in 
the numerator and denominator, the previous shifting 
transformation is inherently removed and does not affect the 
result of this computation. The reason we prefer G instead of 
R is to simplify the implementation of the KCL block as 
several more divisions are required if R is used in this 
formula, while we also noted even a better precision. In the 
next section, we use all these modules and present two ANN 
example configurations for two different applications. 

B. ANN Example for Associative Memory 
Following [31], which demonstrates a neural network 

implementing the famous “Pavlov’s dog” experiment [41], 
here we present a similar ANN implementation as a proof of 
concept of associative memory. Fig. 11 presents the block- 
level circuit topology implementing the linear perceptron with 
two input neurons and one output neuron connected via two 
synapses. A few details about the Pavlov’s dog target 
experiment [31], [41]: Initially, a dog salivates only at the 



 
 

 
 

 
 

Fig. 12. HW simulation results for the circuit in Fig. 11. Parameter values of the memristor model (α = 0 Ω/(V×s), b = -15000 Ω/(V×s), Δt = 0.0001s, vT = 4V, 
RMIN = 675Ω and RMAX = 10KΩ.), the voltage amplitudes, and the time duration of the experiment were set following the experiment in [31], for the purposes of 
comparison. The graphs of the top plot show the output voltage VOUT of the three neurons and the input voltage VIN of the salivation neuron (combination of a 
positive amplitude receptor potential and of a negative amplitude back propagating action potential). The top three curves in the plot were displaced vertically for 
clarity. The bottom plot shows the synapse memristance evolution with time. 

 

sight of food. However, if the sight of food is accompanied by 
a particular sound for a certain period of time, then the dog 
learns to associate the sound with food; hence, thereafter 
salivation can be triggered using only the sound (Hebbian 
learning rule). The values for the amplitude of the action 
pulses (2.5V), the internal threshold of the neurons (1.5V), and 
the initial synapse memristance are all set as in [31] for the 
purposes of comparison. The amplitude of the action 
potentials is set directly at the VTE terminal of every memristor 
emulator. The food and sound 2.5V input pulse trains define 
the receptor potential of the input neurons, whose output VOUT 

is driven to the TE flag input of the corresponding memristor 
modules (after undergoing local bit-processing), as well as to 
the weighted summation (KCL) module. The latter also 
receives the current memductance G of the memristors. Thus, 
the memristor VBE voltage is in fact the output of the KCL 
module, which is also driven to the input terminal of  the 
salivation neuron. In order to properly consider the cases 
shown in Table II and correctly define whether the memristor 
terminals are floating or not, Table III explains the small gear 
box bit processing operation, shown in Fig. 11. Practically, b0 

is the output of the neuron and b1 is a bit we append defining 
whether this is an output neuron (b1 = 0) or input neuron 
(b1=1). Hence, inside the memristor module, only the 
combination “10” denotes a floating TE. 

In this ANN, the VSIGN output of the neurons is not used 
because only negative backward action pulses are required, so 
the VSIGN input of the KCL module is constantly set to ‘1’. 
The output VOUT of the salivation neuron is driven to the 
VBACK input of the KCL module. Regarding the rand input of 
the neurons, in [31], this input was driven by a random value 
created within a microcontroller. However, in the absence of 
any particular pseudo-random number generation module here 
and in order to avoid the prior preparation of random values at 
software level, we instead used a 0-10 counter (the circuit 

 
TABLE III 

  2-BIT ENCODING OF VALID TE/BE FLAGS   
 

Memristor 
electrode 

Connected 
neuron’s state 

Representation as 
“b1b0” 

 

Valid_VTE 
Idle “10” (Floating) 

 Excited “11” (Not Floating) 
 

Valid_VBE 
Idle “00” (Not Floating) 

 Excited “01” (Not Floating) 
 

within a dashed line box in Fig. 11), which we purposely 
initialized at a different value for every neuron (i.e., at 0, 4, 
and 9, respectively). Hence, we created a different sequence of 
rand input values for each neuron, which still affected the 
neuron waiting time dt satisfactorily for the purposes of our 
experiments. 

Fig. 12 shows the HW simulation results, which are very 
much in line with the results published in [31] and confirm the 
development of associative memory. During the first probing 
phase, it is evident that salivation is uniquely caused by the 
sight of food neuron. This happens due to the initial high 
conductance of the  connecting synapse, which permits the 
pulse at the input of the salivation neuron to exceed the 
internal activation threshold. There is no synapse state change 
in this phase as it can be observed in the plot at the bottom 
showing the memristance evolution with time. This happens 
because the sight of food synapse is already in RON, whereas 
the sound neuron is idle while the salivation neuron is excited, 
meaning that the TE of the sound synapse is floating. Next, 
during the learning phase, we simultaneously stimulate both 
the uncorrelated sight of food and sound neurons. The 
overlapping of the backward action pulses of the salivation 
neuron with the forward action pulses of the sound neuron 
thus create a voltage drop higher than the switching threshold 



 
 

 
 

 
(a) 

 

 
(b) (c) 

 
Fig. 13. HW simulation results. (a) Snapshots of the input images (first row) and the synaptic weights (second row) in the HW at the beginning, the middle, and 
the end of the 60s training period, respectively. White corresponds to low conductance and blue to high conductance. In the plot at the bottom, a dot corresponds 
to a firing neuron. (b) Time evolution of the mean square error of synaptic weights. (c) Time evolution of the average conductance of the target ON pixels of 
every pattern. The parameter values of the memristor emulator are set as in the previous example with α = -8Ω/(V×s), b = -128Ω/(V×s). 

 

of the sound synapse (3V), hence causing its resistance to drop 
quickly. The final association of the two  input  neurons is 
demonstrated in the final probing phase, when any stimulus 
coming from either of the input neurons causes salivation. The 
different salivation neuron firing rate noticed in the last 
probing phase is simply attributed to the different conductance 
of the synapses (the sound synapse is being reinforced during 
this stage as its resistance keeps decreasing), causing an 
increasing VIN value to the salivation neuron (see Fig. 9(c)) 
which consequently decreases the wait time of that neuron. 
Apparently, with a longer training phase the memductance of 
the sound neuron would eventually reach the GON value, so no 
change in the firing rate of the salivation neuron would be 
noted. 

C. ANN Example for Unsupervised STDP Spatio-Temporal 
Pattern Learning 

Following [37], which presents a correlation detector ANN 
applied in continuous STDP re-learning of spatio-temporal 
noisy patterns, we evaluated the developed ANN on a set of 
5×5 pixel binary images used as input stimuli to 25 input 
neurons consecutively connected (row by row, starting from 
the top left pixel) to the 25 input pixels. Consequently there 
were 25 synapses connected to a single output neuron. 
Because of the simplified unsupervised STDP learning 
mechanism applied here [38], we show that in our HW ANN, 
the  interaction  between  input  and  output  neurons  finally 

develops selectivity to particular features found in the noisy 
input image patterns. The ANN topology is very similar to that 
shown in Fig. 11 but now includes 25 input neurons (see Fig. 
8). Unlike in the associative memory example, here it is also 
necessary to decrease the synaptic weights. Therefore, the 
VSIGN output of the output neuron is now directly driven to the 
VSIGN input of the KCL module to create negative and positive 
successive back propagating potentials. Moreover, according 
to [37], when the input neurons are not firing, the TE 
memristor terminals are considered grounded instead of 
floating. Here, the Valid_VTE flag input of the memristor 
modules is thus constantly driven by value ‘1’ to denote that it 
is not floating. Also, the VOUT output of the input neurons is 
used as the selection bit of an intermediate multiplexer whose 
inputs are 2V and 0V, corresponding to an ON (dark) or OFF 
(white) pixel, respectively, and its output is driven to the VTE 

memristor input. In short, when the output neuron fires, it 
applies a succession of a negative and a positive back 
propagating potential (see Fig. 9(c)). So, during the positive 
part, if there is no PRE pulse applied to the TE of a memristor 
(i.e., if it is grounded) there is a reverse voltage drop of 
amplitude VPOST > VT, which decreases the synapse weight. 
Likewise, the synapse weight increase is performed in the 
same manner as in the associative memory example, when the 
forward voltage drop VPRE-VPOST is higher than VT. 

In our experiment we consecutively presented temporally 



 
 

 
 

 
 

Fig. 14. FPGA HW resource scaling trends. KCL module only and ANN Total 
Registers/Logic Elements normalized to the 2-input case. The plot highlights 
the linear relationship of the KCL resources and the total ANN resources. 

 
encoded signals derived from images of the letters ‘D’, ‘U’, 
‘T’, and ‘h’, each for a training period of 60s, following the 
timescale of the original experiment in [37]. The input patterns 
are applied at time instances drawn from a Poisson distribution 
@1Hz rate. Furthermore, every pattern includes 20% 
Poissonian noise. Nevertheless, the correlated synapses 
progressively get potentiated, whereas the uncorrelated 
synapses are subject to depression. Thus, due to the simplified 
STDP learning, the ANN is finally able to extract the input 
pattern correctly. Moreover, when the input pattern changes, 
the ANN eventually re-learns the new information. 

Fig. 13(a) presents the time-lapse sequence of the learning 
procedure for the four target patterns. The first row concerns 
the actual noisy input pattern and the second row corresponds 
to the actual weight values at that moment. For each letter we 
show the synapse weights at the beginning, middle, and end of 
the 60s training process. The plot at the bottom presents the 
state of the input neurons at every time step of the entire 
experiment, according to the applied input pattern. This plot 
highlights the effect of noise, also obvious in the first row of 
images. The results show that the ANN always learns the 
correlated features of the inputs even in the presence of 
important noise. Using such a simple STDP approach, the 
synaptic weights continuously store and update the learned 
information. Following [37], in Fig. 13(b) we show the time 
evolution of the mean square error (MSE) between each 
synapse weight and the target weight of the corresponding 
pixel of the input pattern. The highest MSE is seen at the 
beginning of the training process; however, it decreases to less 
than 1-2% by the time the training process is finished. 
Likewise, Fig. 13(c) shows the time evolution of the average 
conductance of the synapses corresponding only to the target 
ON pixels of every pattern. As can be seen, it approaches the 
maximum value during the training process. It decreases 
significantly when the input pattern changes due to changes in 
the ON pixels of interest. The local oscillations noticed during 
its evolution were simply attributed to the decrease in synapse 
weights due to noise; without noise, the average conductance 
monotonically increases during training. 

D. FPGA HW Resource Scaling 
This section aims to examine the HW resource scaling 

trends of the developed ANN FPGA implementations, as well 

 
 

TABLE IV 
  FPGA IMPLEMENTATION LOGIC DATA   

 

Cyclone II 
(EP2C70F672C6) 

No of Inputs 
2 4 8 16 32 64 

KCL 
only 

Registers 22 22 22 22 22 22 
Logic Elements 1338 1465 1721 2239 3260 5313 

Full 
ANN 

Registers 132 190 306 538 1002 N/A 
Logic Elements 2964 3227 3751 4789 6875 N/A 

 
as the required KCL module itself. This is because it would 
make little sense to consider memristive ANNs simulated on 
FPGAs if the KCL resources were predominant or if the total 
resources scaled unfavorably with regard to the number of 
ANN inputs. 

To this end, we collected the implementation data (total 
registers and logic elements) for the KCL only and for the 
complete ANN (see Fig. 10 and Fig. 11) with 2, 4, 8, 32, and 
64 inputs for the Cyclone II target FPGA device, as shown in 
Table IV. However, unlike in Table I, here we used an 
optimized implementation using up to 14-bit registers for all 
the required variables, given that their value-range allowed 
this. Based on Table IV, Fig. 14 shows each data series 
normalized to its value for the 2-input ANN case, which is 
taken as a reference. Notably, as the number of inputs 
increases, the graphs clearly demonstrate a linear relation for 
all cases and, most importantly, with a small slope. Moreover, 
when comparing the KCL-only case with that of the full ANN, 
containing all the relevant presented modules, we noticed a 
ratio of less than 0.5 for the logic elements, and just a small 
constant number of registers required by the KCL. 

The total HW resources for large ANNs are also target 
device-specific, whereas scaling will be much better in ASICs 
but here the focus is on FPGA devices, preferably for the 
reconfigurability they offer and the accessibility in academia, 
at considerably low costs. Our experiments showed that 
several n inputs-to-1 output (n×1) ANNs implemented on the 
same FPGA would require proportionally more HW. 
However, we found that ANNs with more than 32 inputs 
significantly increased the required FPGA resources. Fig. 14 
does not include ANN data for 64 inputs as the synthesis 
would never be completed on the Cyclone II FPGA. This is 
attributed to the fact that such an FPGA has only 4 LUT 
inputs. Using a target device with more LUT inputs (e.g., one 
of the Cyclone V family), we implemented ANNs much larger 
than 64×1 without problem. 

Thus, although we do not expect that the developed HW 
modules can be used to scale up the resulting ANNs to 
approach true brain density, owing to their simplicity, quite 
large ANNs can be implemented on proper target FPGAs 
using the modules developed here and thus achieve several 
ANN functionalities in various applications of interest. 

 
V. CONCLUSIONS 

The developed digital memristor HW simulator perfectly 
matches the mathematical model. Being the core of a true 
memristor digital emulator, it is interesting that it complies 



 
 

 
with all the desired emulator requirements. Moreover, it can 
be readily used in complex circuit configurations and ANNs. 
It supports connection with other digital circuit modules due to 
the floating node flags and the use of additional HW, which 
computes the required node voltages (KCL module). Using an 
interface circuit will enable its connection with external 
circuitry, thus truly replacing a real memristor. The HW 
resource requirements are small and are linearly related to the 
number of ANN inputs. Passing from simulation in SW to 
emulation and execution in HW offers the major advantage of 
near-real time response. Following the presented approach, 
complex memristor circuit configurations and reasonably large 
ANNs can be easily implemented digitally for different 
applications. For this reason, all the corresponding VHDL 
descriptions are available to be used in research and/or in 
under/post-graduate student projects to enable an emulation- 
assisted HW exploration of memristive dynamics. 
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