98 research outputs found

    Celebrating 25 Years of World Wetlands Day

    Get PDF
    The purpose of this Special Issue is to celebrate 25 years of “World Wetlands Day”. There is no other ecosystem that has its very own Ramsar Convention or such a challenge impacting ecosystem sustainability. Papers for this Special Issue provide an overview of wetland status and function within different regions of the world. The papers in this Special Issue of Land consist of three review papers, ten research articles and one perspective paper. Edward Maltby’s review paper provides us with an overview of the paradigm shift of how we value and assess wetlands over time. Ballut-Dajud et al. provide us with a worldwide perspective on factors affecting wetland loss. Finally, Jan Vymazal provides us with a historical overview of the development of water quality treatment wetlands in Europe and North America. The research papers can be grouped into four groups: 1) use of remote sensing to analyze stability and dynamic factors affecting wetlands; 2) factors affecting the wetlands’ ability to store carbon; 3) assessment of wetlands effect on water quality; and 4) understanding historical use and value of wetlands, farmer’s attitudes about wetland management, and how we can value wetland ecosystem services. Finally, Bryzek et al. remind us that, as wetland researchers and managers, we should minimize damage to wetlands even through field monitoring work

    Monitoring wetlands and water bodies in semi-arid Sub-Saharan regions

    Get PDF
    Surface water in wetlands is a critical resource in semi-arid West-African regions that are frequently exposed to droughts. Wetlands are of utmost importance for the population as well as the environment, and are subject to rapidly changing seasonal fluctuations. Dynamics of wetlands in the study area are still poorly understood, and the potential of remote sensing-derived information as a large-scale, multi-temporal, comparable and independent measurement source is not exploited. This work shows successful wetland monitoring with remote sensing in savannah and Sahel regions in Burkina Faso, focusing on the main study site Lac Bam (Lake Bam). Long-term optical time series from MODIS with medium spatial resolution (MR), and short-term synthetic aperture radar (SAR) time series from TerraSAR-X and RADARSAT-2 with high spatial resolution (HR) successfully demonstrate the classification and dynamic monitoring of relevant wetland features, e.g. open water, flooded vegetation and irrigated cultivation. Methodological highlights are time series analysis, e.g. spatio-temporal dynamics or multitemporal-classification, as well as polarimetric SAR (polSAR) processing, i.e. the Kennaugh elements, enabling physical interpretation of SAR scattering mechanisms for dual-polarized data. A multi-sensor and multi-frequency SAR data combination provides added value, and reveals that dual-co-pol SAR data is most recommended for monitoring wetlands of this type. The interpretation of environmental or man-made processes such as water areas spreading out further but retreating or evaporating faster, co-occurrence of droughts with surface water and vegetation anomalies, expansion of irrigated agriculture or new dam building, can be detected with MR optical and HR SAR time series. To capture long-term impacts of water extraction, sedimentation and climate change on wetlands, remote sensing solutions are available, and would have great potential to contribute to water management in Africa

    Atlas of Global Surface Water Dynamics

    Get PDF
    It is impossible to overstate the importance of freshwater in our daily lives – for proof, try going without it for any length of time. Surface waterbodies (lakes, ponds, rivers, creeks, estuaries… it doesn't matter what name they go under) are particularly important because they come into direct contact with us and our biophysical environment. But our knowledge concerning where and when waterbodies might be found was, until recently, surprisingly sparse. The paucity of information was because trying to map a moving target is actually very difficult – and waterbodies undeniably move, in both geographical space and time. By 2013 the U.S. Geological Survey and NASA were making petabyte scale archives of satellite imagery freely available, archives that covered the entire planet's surface and stretched back decades. Other's such as the European Commission / European Space Agency Copernicus programme were also putting full free and open data access policies into place, and Google's Earth Engine had become a mature, powerful cloud-based platform for processing very large geospatial datasets. Back in 2013 a small team working at the European Commission's Joint Research Centre were looking at ways satellite imagery could be used to capture surface waterbody dynamics, and create new maps that accurately incorporated time dimensions. Concurrently the Google Earth Engine team were focussing their massive computational capabilities on major issues facing humanity, such as deforestation, food security, climate change - and water management. The two teams came together in a partnership based not on financial transactions but on a mutual exchange of complementary capabilities, and devoted thousands of person hours and thousands of CPU years into turning petabytes of Landsat satellite imagery into unique, validated surface water maps, first published in 2016, and made available to everyone through a dedicated web portal, the Global Surface Water Explorer. Since then satellites have continued to image the Earth, surface water has continued to change and the JRC Goole Earth Engine partnership has continued to work on improving our knowledge of surface water dynamics and making sure this knowledge benefits as many people as possible. This Atlas is part of the outreach; it is not a guide to the Global Surface Water Explorer, it is not a Google Earth Engine tutorial (though if it inspires you to visit either of these resources then it has achieved one of its objectives), but it is a stand-alone window into how people and nature affect, and are affected by the 4.46 million km2 of the Earth's landmass that have been under water at some time over the past 35 years.JRC.D.5-Food Securit

    Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico — A methodological approach using MODIS

    Get PDF
    Accurate and efficient monitoring is critically important for the effective restoration and conservation of threatened tidal wetlands in the Gulf Coast. The high carbon sequestration potential, habitat for important wildlife and fish, and numerous ecosystem services make these tidal wetlands highly valuable both ecologically and economically to Gulf Coast communities. Our study developed a new methodological approach for mapping biophysical health of coastal tidal wetland habitats in terms of green leaf area index (GLAI), canopy level chlorophyll content (CHL), vegetation fraction (VF), and above ground green biomass (GBM). We measured these biophysical characteristics in tidal wetlands of the northern Gulf of Mexico using a combination of ground data collected from field surveys during the growing seasons of 2010 and 2011 and NASA\u27s Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m and 500 m images. Additionally, we compared and evaluated the performances of both in situ proximal and satellite remote sensing measurements in terms of their potential for mapping the wetland biophysical characteristics. MODIS-based models proved superior at the landscape level compared to models developed from in situ proximal sensing, as species level signals seemed to be diluted at coarser spatial scales. We selected Wide Dynamic Range Vegetation Index (WDRVI) for MODIS 250 m and Visible Atmospheric Resistant Index (VARI) for MODIS 500 m to map biophysical characteristics of tidal wetlands. Time-series composites and phenological information derived using the MODIS based models captured the impact of the selected disturbances in the last decade on the ecological and physiological status of the tidal wetland habitats in the Gulf Coast. This is the first study to employ MODIS data to analyze the biophysical characteristics of tidal wetlands in the Gulf Coast, which, in turn, has the potential to improve our ability to predict their productivity and carbon sequestration potential. These techniques could also be used to assess the success of previous and ongoing tidal wetland restoration projects, and evaluate the productivity of marshes under threat from developmental activity, sea level rise, and industrial pollution

    WILD BIRDS AND EMERGING DISEASES: MODELING AVIAN INFLUENZA TRANSMISSION RISK BETWEEN DOMESTIC AND WILD BIRDS IN CHINA

    Get PDF
    Emerging infectious diseases in wildlife have become a growing concern to human health and biological systems with more than 75 percent of known emerging pathogens being transmissible from animals to humans. Highly pathogenic avian influenza (HPAI) H5N1 has caused major global concern over a potential pandemic and since its emergence in 1996 has become the longest persisting HPAI virus in history. HPAI viruses are generally restricted to domestic poultry populations, however, their origins are found in wild bird reservoirs (Anatidae waterfowl) in a low-pathogenic or non-lethal form. Understanding the spatial and temporal interface between wild and domestic populations is fundamental to taking action against the virus, yet this information is lacking. My dissertation takes two approaches to increase our understanding of wild bird and H5N1 transmission. The first includes a field component to track the migratory patterns of bar-headed geese (Anser indicus) and ruddy shelduck (Tadorna ferruginea) from the large H5N1 outbreak at Qinghai Lake, China. The satellite telemetry study revealed a new migratory connection between Qinghai Lake and outbreak regions in Mongolia, and provided ecological data that supplements phylogenetic analyses of virus movement. The second component of my dissertation research took a modeling approach to identify areas of high transmission risk between domestic poultry and wild waterfowl in China, the epicenter of H5N1. This effort required the development of spatial models for both the poultry and wild waterfowl species of China. Using multivariate regression and AIC to determine statistical relationships between poultry census data and remotely-sensed environmental predictors, I generated spatially explicit distribution models for China's three main poultry species: chickens, ducks, and geese. I then developed spatially explicit breeding and wintering season models of presence-absence, abundance, and H5N1 prevalence for each of China's 42 Anatidae waterfowl species. The poultry and waterfowl datasets were used as the main inputs for the transmission risk models. Distinct patterns in both the spatial and temporal distributions of H5N1 risk was observed in the model predictions. All models included estimates of uncertainty, and sensitivity analyses were performed for the risk models

    Investigation of Coastal Vegetation Dynamics and Persistence in Response to Hydrologic and Climatic Events Using Remote Sensing

    Get PDF
    Coastal Wetlands (CW) provide numerous imperative functions and provide an economic base for human societies. Therefore, it is imperative to track and quantify both short and long-term changes in these systems. In this dissertation, CW dynamics related to hydro-meteorological signals were investigated using a series of LANDSAT-derived normalized difference vegetation index (NDVI) data and hydro-meteorological time-series data in Apalachicola Bay, Florida, from 1984 to 2015. NDVI in forested wetlands exhibited more persistence compared to that for scrub and emergent wetlands. NDVI fluctuations generally lagged temperature by approximately three months, and water level by approximately two months. This analysis provided insight into long-term CW dynamics in the Northern Gulf of Mexico. Long-term studies like this are dependent on optical remote sensing data such as Landsat which is frequently partially obscured due to clouds and this can that makes the time-series sparse and unusable during meteorologically active seasons. Therefore, a multi-sensor, virtual constellation method is proposed and demonstrated to recover the information lost due to cloud cover. This method, named Tri-Sensor Fusion (TSF), produces a simulated constellation for NDVI by integrating data from three compatible satellite sensors. The visible and near-infrared (VNIR) bands of Landsat-8 (L8), Sentinel-2, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were utilized to map NDVI and to compensate each satellite sensor\u27s shortcomings in visible coverage area. The quantitative comparison results showed a Root Mean Squared Error (RMSE) and Coefficient of Determination (R2) of 0.0020 sr-1 and 0.88, respectively between true observed and fused L8 NDVI. Statistical test results and qualitative performance evaluation suggest that TSF was able to synthesize the missing pixels accurately in terms of the absolute magnitude of NDVI. The fusion improved the spatial coverage of CWs reasonably well and ultimately increases the continuity of NDVI data for long term studies

    Numerical modeling of thermal bar and stratification pattern in Lake Ontario using the EFDC model

    Get PDF
    Thermal bar is an important phenomenon in large, temperate lakes like Lake Ontario. Spring thermal bar formation reduces horizontal mixing, which in turn, inhibits the exchange of nutrients. Evolution of the spring thermal bar through Lake Ontario is simulated using the 3D hydrodynamic model Environmental Fluid Dynamics Code (EFDC). The model is forced with the hourly meteorological data from weather stations around the lake, flow data for Niagara and St. Lawrence rivers, and lake bathymetry. The simulation is performed from April to July, 2011; on a 2-km grid. The numerical model has been calibrated by specifying: appropriate initial temperature and solar radiation attenuation coefficients. The existing evaporation algorithm in EFDC is updated to modified mass transfer approach to ensure correct simulation of evaporation rate and latent heatflux. Reasonable values for mixing coefficients are specified based on sensitivity analyses. The model simulates overall surface temperature profiles well (RMSEs between 1-2°C). The vertical temperature profiles during the lake mixed phase are captured well (RMSEs < 0.5°C), indicating that the model sufficiently replicates the thermal bar evolution process. An update of vertical mixing coefficients is under investigation to improve the summer thermal stratification pattern. Keywords: Hydrodynamics, Thermal BAR, Lake Ontario, GIS

    Classifying and Mapping Aquatic Vegetation in Heterogeneous Stream Ecosystems Using Visible and Multispectral UAV Imagery

    Get PDF
    The need for assessment and management of aquatic vegetation in stream ecosystems is recognized given the importance in impacting water quality, hydrodynamics, and aquatic biota. However, existing approaches to monitor are laborious and its currently not feasible to track spatial and temporal differences at broad scales. The objective of this study was therefore to map and classify aquatic vegetation of a shallow stream with heterogenous mixtures of emergent and submerged aquatic vegetation. Data was collected in the Camden Creek watershed within the Inner Bluegrass Region of central Kentucky. The use of unmanned aerial vehicles (UAVs) was employed and both visible (RGB) and multispectral imagery were collected. Machine learning techniques were applied in an off-the-shelf software (QGIS environment) to develop visible and multispectral classification land-cover maps following an effective object-based image analysis workflow. Visible images were additionally coupled with high frequency water quality data to examine the spatial and temporal behavior of the aquatic vegetation. Results showed high overall classification accuracies (OA=83.5% for the training dataset and OA=83.73% for the validation dataset) for the visible imagery, with excellent user’s and producer’s accuracies for duckweed, both for training and validation. Surprisingly, multispectral overall accuracies were substantial (OA=77.8% for the training dataset and OA=70.2% for the validation dataset) but were inferior to the visible classification results. User’s and producer’s accuracies were lower for almost all classes. However, this approach was unsuccessful in detecting, segmenting and classifying submerged aquatic vegetation (algae) for both datasets. Finally, a change detection algorithm was applied to the visible classified maps and the changes in duckweed areal coverage were successfully estimated

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow
    • …
    corecore