21,199 research outputs found

    A situational approach for the definition and tailoring of a data-driven software evolution method

    Get PDF
    Successful software evolution heavily depends on the selection of the right features to be included in the next release. Such selection is difficult, and companies often report bad experiences about user acceptance. To overcome this challenge, there is an increasing number of approaches that propose intensive use of data to drive evolution. This trend has motivated the SUPERSEDE method, which proposes the collection and analysis of user feedback and monitoring data as the baseline to elicit and prioritize requirements, which are then used to plan the next release. However, every company may be interested in tailoring this method depending on factors like project size, scope, etc. In order to provide a systematic approach, we propose the use of Situational Method Engineering to describe SUPERSEDE and guide its tailoring to a particular context.Peer ReviewedPostprint (author's final draft

    Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs).

    Get PDF
    The potential environmental impact of nanomaterials is a critical concern and the ability to assess these potential impacts is top priority for the progress of sustainable nanotechnology. Risk assessment tools are needed to enable decision makers to rapidly assess the potential risks that may be imposed by engineered nanomaterials (ENMs), particularly when confronted by the reality of limited hazard or exposure data. In this review, we examine a range of available risk assessment frameworks considering the contexts in which different stakeholders may need to assess the potential environmental impacts of ENMs. Assessment frameworks and tools that are suitable for the different decision analysis scenarios are then identified. In addition, we identify the gaps that currently exist between the needs of decision makers, for a range of decision scenarios, and the abilities of present frameworks and tools to meet those needs

    Sustainable Strategic Urban Planning: Methodology for Urban Renovation At District Level

    Get PDF
    Sustainable urban renovation is characterized by multiple factors (e.g. technical, socio-economic, environmental and ethical perspectives), different spatial scales and a number of administrative structures that should address the evaluation of alternative scenarios or solutions. This defines a complex decision problem that includes different stakeholders where several aspects need to be considered simultaneously. In spite of the knowledge and experiences during the recent years, there is a need of methods that lead the decision-making processes. In response, a methodology based on the global idea and implications of working towards a more sustainable and energy efficient cities as a holistic procedure for urban renovation at district level is proposed in the European Smart City project CITyFiED. The methodology has the energy efficiency as main pillar and the local authorities as client. It is composed of seven phases that ensures an effective dialogue among all the stakeholders, aiming to understand the objectives and needs of the city to define a set of Strategies for Sustainable Urban Renovation and their integration within the Strategic Urban Planning of the cities.This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement N° 609129. The authors would like to thank the rest of the partners of the CITyFiED project for their help and support

    Enhancing Requirements Change Request Categorization and Prioritization in Agile Software Development Using Analytic Hierarchy Process (AHP)

    Get PDF
    Software development now relies heavily on agile methods, which call for the efficient administration and prioritization of change requests. In order to improve requirement prioritization using the Analytic Hierarchy Process (AHP) in Agile methods, this study article presents a new framework for classifying software requirements into Small Change Requests (SCRs) and Large Change Requests (LCRs). The paper examines the difficulties associated with requirement prioritization and categorization in Agile settings and offers a methodical system for dividing change requests into categories based on complexity, impact, and timeline. In order to provide a thorough grasp of the project scope and objectives, the framework considers both functional and non-functional needs. A case study containing several Agile software development projects is used to evaluate the performance of the suggested categorization and prioritization model. According to the findings, the combination of SCR and LCR categorization with AHP enables more effective teamwork and greater matching of development goals with partner objectives. The research also shows that the suggested framework's integration into the Agile development process results in a more efficient decision-making process, less time wasted on talks, and improved resource distribution. The model aids in risk mitigation by allowing a methodical and quantifiable approach to requirement prioritization. These risks are related to quick changes in project scope and changing client requirements. By presenting a fresh framework for requirement categorization and prioritization, this study adds to the current discussion on successful requirement management in Agile methods. Agile software development projects become more effective and adaptable overall thanks to the incorporation of AHP, which guarantees a more methodical and objective prioritization process. This study has the potential to greatly improve the administration of shifting needs and user expectations in Agile settings by offering a structured method to classify and rank change requests

    Automating Wetland Prioritization Analyses Using GIS

    Get PDF
    In environmental and conservation fields, managers and other decision makers need to prioritize their efforts to specific areas using multiple-criteria decision analysis, to maximize environmental protection given limitations of budget and time. However, creating these prioritization models requires a combination of both scientific and technical skills, and many of those with the expertise to create scientifically sound prioritization models have limited time to devote to the technical aspects of the analysis. There was a need to automate this analysis process to enable scientists and other decision makers to quickly repeat analyses with different criteria and compare the results. This project automated a wetland prioritization analysis in California for the U.S. Fish and Wildlife Service (USFWS) into a collection of ArcGIS ModelBuilder tools. This project then created a GIS web application to enable USFWS employees to re-do the prioritization analysis with different weights for the various ecological factors that were included in the analysis (such as endangered species habitat, important bird areas, etc.). With the analysis process thus simplified, scientists and decision makers in the USFWS can now apply current and evolving scientific knowledge and compare wetland priorities in a multiple criteria decision analysis framework

    Business process modelling tool selection : a review

    Get PDF
    Abstract: The interest in business process modelling has increased in the last decade. Numerous business process modelling tools for developing business processes exist. These tools serve a wide range of business functions and applications. There exist limitations in effectively selecting the appropriate business process modelling tool relative to corporate functions and applications. This research explores this specific limitation and serves as a guide to mitigate this specific limitation relative to prioritizing and selecting a business process modelling tool. This investigation explores the limitations in the currently designed business process modelling tool based on local, regional and global modelling of corporate processes. Results prove essential prioritization constituents relative to selecting a more enhanced business process modelling tool for enterprise professionals. The applicability of the proposed prioritization approach is demonstrated

    Tree species selection for land rehabilitation in Ethiopia: from fragmented knowledge to an integrated multi-criteria decision approach

    Get PDF
    Dryland regions worldwide are increasingly suffering from losses of soil and biodiversity as a consequence of land degradation. Integrated conservation, rehabilitation and community-based management of natural resources are therefore of vital importance. Local planting efforts should focus on species performing a wide range of functions. Too often however, unsuitable tree species are planted when both ecological suitability for the targeted area or preferences of local stakeholders are not properly taken into account during selection. To develop a decision support tool for multi-purpose species selection, first information needs to be pooled on species-specific ranges, characteristics and functions for a set of potentially valuable species. In this study such database has been developed for the highly degraded northern Ethiopian highlands, using a unique combination of information sources, and with particular attention for local ecological knowledge and preferences. A set of candidate tree species and potentially relevant criteria, a flexible input database with species performance scores upon these criteria, and a ready-to-use multi-criteria decision support tool are presented. Two examples of species selection under different scenarios have been worked out in detail, with highest scores obtained for Cordia africana and Dodonaea angustifolia, as well as Eucalyptus spp., Acacia abyssinica, Acacia saligna, Olea europaea and Faidherbia albida. Sensitivity to criteria weights, and reliability and lack of knowledge on particular species attributes remain constraints towards applicability, particularly when many species are jointly evaluated. Nonetheless, the amount and diversity of the knowledge pooled in the presented database is high, covering 91 species and 45 attributes

    PriEsT: an interactive decision support tool to estimate priorities from pairwise comparison judgments

    Get PDF
    Pairwise comparison (PC) is a well-established method to assist decision makers (DMs) in estimating their preferences. This paper considers the rationale, design, and evaluation of an open-source priority estimation tool, PriEsT, which has been developed to offer new features related to the PC method. PriEsT is able to assist DMs in interactively identifying and revising their judgments based on different consistency measures and graphical aids. When inconsistency cannot be improved due to practical limitations, PriEsT offers a wide range of Pareto-optimal solutions based on multiobjective optimization, unlike other tools that offer only a single solution. DMs have the flexibility to select any of these nondominated solutions according to their requirements. The features of PriEsT have been demonstrated and evaluated through its application to a real-world case study: the selection of the most appropriate telecom infrastructure for rural areas. This case study using PriEsT has highlighted the presence of intransitive judgments in the acquired data, and the correction of these judgments has led to a different ranking of the available alternatives
    • …
    corecore