5,063 research outputs found

    COMPOSE: Compacted object sample extraction a framework for semi-supervised learning in nonstationary environments

    Get PDF
    An increasing number of real-world applications are associated with streaming data drawn from drifting and nonstationary distributions. These applications demand new algorithms that can learn and adapt to such changes, also known as concept drift. Proper characterization of such data with existing approaches typically requires substantial amount of labeled instances, which may be difficult, expensive, or even impractical to obtain. In this thesis, compacted object sample extraction (COMPOSE) is introduced - a computational geometry-based framework to learn from nonstationary streaming data - where labels are unavailable (or presented very sporadically) after initialization. The feasibility and performance of the algorithm are evaluated on several synthetic and real-world data sets, which present various different scenarios of initially labeled streaming environments. On carefully designed synthetic data sets, we also compare the performance of COMPOSE against the optimal Bayes classifier, as well as the arbitrary subpopulation tracker algorithm, which addresses a similar environment referred to as extreme verification latency. Furthermore, using the real-world National Oceanic and Atmospheric Administration weather data set, we demonstrate that COMPOSE is competitive even with a well-established and fully supervised nonstationary learning algorithm that receives labeled data in every batch

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Multiclass Data Segmentation using Diffuse Interface Methods on Graphs

    Full text link
    We present two graph-based algorithms for multiclass segmentation of high-dimensional data. The algorithms use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation compressed sensing and image processing. A multiclass extension is introduced using the Gibbs simplex, with the functional's double-well potential modified to handle the multiclass case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm is a uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding. We demonstrate the performance of both algorithms experimentally on synthetic data, grayscale and color images, and several benchmark data sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with or better than the current state-of-the-art multiclass segmentation algorithms.Comment: 14 page

    The MOEADr Package – A Component-Based Framework for Multiobjective Evolutionary Algorithms Based on Decomposition

    Get PDF
    Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) represent a widely used class of population-based metaheuristics for the solution of multicriteria optimization problems. We introduce the MOEADr package, which offers many of these variants as instantiations of a component-oriented framework. This approach contributes for easier reproducibility of existing MOEA/D variants from the literature, as well as for faster development and testing of new composite algorithms. The package offers an standardized, modular implementation of MOEA/D based on this framework, which was designed aiming at providing researchers and practitioners with a standard way to discuss and express MOEA/D variants. In this paper we introduce the design principles behind the MOEADr package, as well as its current components. Three case studies are provided to illustrate the main aspects of the package

    Using machine learning techniques for early cost prediction of structural systems of buildings

    Get PDF
    Thesis (Doctoral)--İzmir Institute of Technology, Architecture, İzmir, 2005Includes bibliographical references (leaves:111)Text in English; Abstract: Turkish and Englishx, 111 leavesIt is desirable to predict construction costs in the early design stages in order tomake sure that target costs are met and competitive prices are realized. This study investigates the possibility of predicting the cost of construction early in the design phase by using machine learning (ML) techniques. To achieve this objective, artificialneural network (ANN) and case based reasoning (CBR) prediction models were developed in a spreadsheet-based format. An investigation of the impacts of weight generation methods on the ANN and CBR models was conducted. The performance of the ANN model was enhanced by experimenting with the weight generation methods of simplex optimization, back propagation training, and genetic algorithms while the CBR model was augmented by feature counting, gradient descent, genetic algorithms (GA), decision tree methods of binary-dtree, info-top and info-dtree.Cost data belonging to the superstructure of low-rise residential buildings were used to test these models. It was found that both approaches were capable of providing high prediction accuracy, 96% for ANN using simplex optimization for weight determination, and 84% for CBR using GA for attribute weight selection. A comparison of the Excel-based ANN and CBR models was made in terms of prediction accuracy, preprocessing effort, explanatory value, improvement potentials and ease of use. The study demonstrated the practicality of using spreadsheets in developing ANN and CBR models for use in construction management as well as the potential benefits of enhancing ANN and CBR models by using different weight generation methods
    • …
    corecore