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ABSTRACT

 It is desirable to predict construction costs in the early design stages in order to 

make sure that target costs are met and competitive prices are realized. This study 

investigates the possibility of predicting the cost of construction early in the design 

phase by using machine learning (ML) techniques. To achieve this objective, artificial 

neural network (ANN) and case based reasoning (CBR) prediction models were 

developed in a spreadsheet-based format. An investigation of the impacts of weight 

generation methods on the ANN and CBR models was conducted. The performance of 

the ANN model was enhanced by experimenting with the weight generation methods of 

simplex optimization, back propagation training, and genetic algorithms while the CBR 

model was augmented by feature counting, gradient descent, genetic algorithms (GA), 

decision tree methods of binary-dtree, info-top and info-dtree. 

Cost data belonging to the superstructure of low-rise residential buildings were 

used to test these models. It was found that both approaches were capable of providing 

high prediction accuracy, 96% for ANN using simplex optimization for weight 

determination, and 84% for CBR using GA for attribute weight selection. A comparison 

of the Excel-based ANN and CBR models was made in terms of prediction accuracy, 

preprocessing effort, explanatory value, improvement potentials and ease of use. The 

study demonstrated the practicality of using spreadsheets in developing ANN and CBR 

models for use in construction management as well as the potential benefits of 

enhancing ANN and CBR models by using different weight generation methods.
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ÖZET

Maliyet tahmini, yapım projesinin tasarım sürecine ait erken evre için çok 

önemlidir. Bu çalışmada, otomatik öğrenme tekniklerinden ikisinin, yapay sinir ağları 

(YSA) ve vaka tabanlı gerekçeleme (VTG)’nin, bina tasarım sürecinin erken evresinde 

yapılan maliyet tahmini için uygunluğu ve başarısı araştırılmıştır. Hem YSA hem de 

VTG’nin elektronik tablo simülasyonları geliştirilmiş ve maliyet tahmin modelleri 

oluşturulmuştur. İnşaa edilmiş konut projelerine ait maliyet verisi modellerin örnek 

uygulamasında kullanılmıştır. Çeşitli ağırlık üretim yöntemlerinin YSA ve VTG 

modellerinin tahmin doğruluğu üzerindeki etkisi konut projelerine ait maliyet tahmini 

örneğinde araştırılmıştır. YSA için geriye yayılma eğitimine alternatif olarak, genetik 

algoritmalar ve simpleks optimizasyonu metodu; VTG için ise özellik sayma, genetik 

algoritmalar ve gradyan iniş metodları ile karar ağaçlarından türetilen üç farklı yöntem 

kullanılmıştır. YSA modeli ağ ağırlıklarının belirlenmesinde simpleks optimizasyonunu

kullandığında %96 başarı oranı; VTG modeli özelliklerin ağırlıklarını genetik 

algoritmaları kullanarak seçtiğinde %84 başarı oranı yakalamıştır.

YSA ve VTG’nin elektronik tablo şeklinde geliştirilen maliyet tahmin 

modelleri işlem öncesi çaba, açıklanabilirlik değeri, doğruluk oranı, gelişme potansiyeli 

ve kullanım kolaylığı açısından karşılaştırılmıştır. Modellerin elektronik tablo 

simülasyonları şeklinde geliştirilmiş olması modellerdeki ağırlık üretim değişiklilerini 

yapabilmek için esneklik sağlamış ve modellerinin daha fazla gelişimine olanak 

vermiştir. 

http://uvt.ulakbim.gov.tr/uvt/index.php?keyword=%5Em&op=&ec=&cwid=15&vtadi=TMUH&lang=0&pg=
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CHAPTER 1

INTRODUCTION

During construction and design of buildings, cost prediction is necessary to 

make sure that target costs are met and competitive prices are realized. Conventional 

cost prediction methods generally require quite detailed information about the building 

project. It is therefore only in a late phase of the construction process that the available 

knowledge suffices to base cost-related decisions on it. However, the architects’ 

influence on cost decreases over time because decisions with substantial cost impact are

made in the early phases. 

The properties of emerging machine learning (ML) methods give rise to the 

hope that they can support cost prediction in an early phase of design as they are able to 

detect relationships between conceptual design information and cost unknown to 

architects (i.e. artificial neural networks) or as they are able to use analogy-based 

techniques by storing and retrieving previous design solutions (i.e. case-based 

reasoning). This study investigates the possibilities to support early design phase of 

building project design with machine learning techniques. Cost prediction as a 

prototypical architectural design activity and construction management application is

chosen for the following reasons:

1.1. Motivation of the Research

Design is the basic business of the architect. However, architects are also 

required to be knowledgeable in the areas of construction methods, sequencing of 

construction, and cost. Consideration of these factors is inherently a part of the design. 

Yet, design is also the major determinant of original and operating building cost. It is 

possible for architects and construction managers to exert a highly acceptable degree of 

control over the cost of building design and construction process.

Design and cost cannot be separated if cost control is to be effective. An 

important fact stated for the architects at the outset is that cost is not likely to be 



2

controlled as well as may be done when this effort is divorced from the design process 

itself or when, in fact, cost control is not a part of the designer’s philosophy (Heery, 

1975).

Early project cost estimates are significant to a client because they need to be 

accurate enough to impart the confidence needed to commit additional funds to the 

project. However, architects are often charged with not being able to predict with 

reasonable accuracy the cost of a building project that they design. Thus, an architect’s 

services are engaged only when luxury can be afforded. Reports of building costs 

exceeding the architect’s estimate contribute to the persistence of this image. The 

implication is that if one employs an architect, one will not know the cost until it is too 

late to do anything about it. Architects often fail to consider carefully enough the 

potential costs of a project, or they do not take any responsibility for predicting and 

controlling costs at the early design stage. However, there is a professional standard and 

responsibility to be met and cost consideration is among the most basic ones. 

Architects should assure that the project is built within the cost forecast (Hunt, 

1967). Therefore, they should have the knowledge and techniques to accurately predict 

the cost of any size and type of building project and keep the cost under control. 

However, the current cost prediction practice in building projects is inadequate and 

unreliable. This may be due to incomplete and fuzzy nature of inputs and outputs of 

design and construction work. Because of the importance of factors that could not be 

quantified, the current decision support systems have little chance of success. Newly 

emerging machine learning (ML)-based cost models offer some methods that may 

provide architects with the results that they are looking for. The use of such models has 

outperformed traditional highly subjective or highly objective procedures. Objective 

(mathematical and quantitative analysis) techniques have the ability to identify elements 

in an explicit manner and subjective (judgment) techniques have the advantage of 

developing procedures based on experience and intuition incorporating up-to-date 

knowledge and feelings about the project to obtain current costs. However, a good 

prediction technique should include both historical data and construction experience and 

knowledge. The ML-based prediction methods proposed in this study use artificial 

neural networks (ANN) and case based reasoning (CBR) methods to provide an 

estimate that includes both objective and subjective information. These artificial-

intelligence based techniques either emulate the human ability to learn from past 

experience and to apply quick solutions to new situations or use analogy-based 
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decisions to propose new solutions. The proposed techniques use the judgment process 

of experienced estimators to develop prediction models. 

This dissertation is investigating the usefulness of ML-models in assisting and 

improving the performance of architects and construction managers who are responsible 

for predicting building costs in their early design process.

The development of ML-cost models and their wider application to early design 

and construction processes have the following advantages:

1. It is possible to produce suitable cost information at an early stage in the design 

process.

2. This information is more reliable, introducing greater confidence into the decision-

making process.

3. More information is generated so that better informed decisions are made. 

4. The cost information is provided more quickly.

Architects and construction managers need to be aware of the merits of ML-

based cost models in order to adopt them for early cost prediction.

1.2. Objectives and Organization of the Thesis

This study aims to see if higher cost prediction rates at the early design stage 

can be obtained by using ML techniques. Thus, the goals of this research are twofold. 

The first goal is of practical nature and involves empirically predicting the unit cost of a 

structural system as accurately as possible at the early phase of design by using ML 

techniques of artificial neural networks (ANN) and case based reasoning (CBR). The 

second goal is academic and involves improving and comparing the efficacy of these 

ML models.

In order to reach these goals, first cost prediction and ML techniques are 

reviewed in Chapter II, then the methodology of the study is described in Chapter III. 

Models developed by using ANN and CBR techniques and enhanced by various weight 

generation methods are explained in this chapter. Next, data pertaining to the early 

design parameters and unit cost of the superstructure of residential building projects are 

used to test ANN and CBR models. Chapter IV contains test results of the cost data run 

in ML models. Findings are analyzed and a comparison is made in terms of prediction 

accuracy, preprocessing effort, explanatory value, improvement potentials and ease of 
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use. Chapter V presents the conclusions and recommendations for further studies.

Figure 1.1 presents the methodology of the thesis.

Hegazy and Ayed’s (1998) spreadsheet-based ANN prediction model and a 

commercial software NeuroSolutions (2002) are used for the ANN modeling. In order 

to determine ANN weights, as an alternative to back-propagation training of 

NeuroSolutions, two other techniques named simplex optimization, and genetic 

algorithms (GA) are used. Simplex optimization and GA are implemented using Excel 

add-in programs of Solver and Evolver (1998), respectively. 

The CBR prediction model is established by developing an Excel-based 

simulation. The model is assigned attribute weights by six different weight generation 

methods in order to compare their impact on the performance of CBR prediction.

Weights for attributes of the CBR-Excel model are computed by (1) the feature 

counting method, (2) the gradient descent method, (3) genetic algorithms (GA), (4) 

binary-dtree method, (5) info-top method, and (6) info-dtree method. 

Three commercial software help to determine weights in the CBR-Excel model.    

A CBR software called Esteem (1996) is used to implement the gradient descent weight 

generation method. Evolver (1998) is used once more for GA computations. Binary-

dtree, info-top and info-dtree methods named by Ling et al. (1997) are adapted by using 

induction decision trees (ID3). The decision tree of the cost prediction problem is 

constructed by using the See5 software (1997).

Boosted decision trees (BDT) constructed by See5 is used as the third machine 

learning technique, as an alternative to ANN and CBR models, for the cost prediction 

problem at hand. However, cost data had to be classified into a large number of classes 

because of the BDT modeling rules. In these circumstances, few number of data 

available in this study produced outcomes that were less accurate than the ANN and 

CBR outcomes. Therefore, the BDT model and the results achieved are presented in 

Appendix B. 



5

Figure 1.1. Methodology of the study
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CHAPTER 2

COST PREDICTION AND MACHINE LEARNING 

TECHNIQUES

Cost is one of the major criteria in decision making at the early stages of a 

building design process. In today’s globally competitive world, diminishing profit 

margins and decreasing market shares, cost control plays a major role for being 

competitive while maintaining high quality levels. To this end, designers and project 

managers use a number of cost prediction techniques and intuitive judgments by 

utilizing both their experience and data from previous projects. 

Developments in computer and software technology have facilitated novel 

approaches for cost prediction. By the emergence of computerized learning techniques 

named machine learning (ML) tools (i.e., artificial neural networks, case-based 

reasoning, decision trees) more effective predictive models can now be investigated. 

These techniques have proven to be valuable tools in a wide range of applications. 

Business decision support and data-mining are few of them. These techniques share one

common feature: A solution is learned, then that solution is applied in a manner to make 

useful predictions (Francone 1999). Prediction involves estimating the unknown value 

of an attribute of a system under study given the values of other measured attributes 

(Friedman 2003). In predictive (machine) learning the prediction rule is derived from 

data consisting of previously solved cases (Friedman 2003). For the construction 

industry which is highly experience-oriented, construction problems mostly come with 

previous data of similar cases. Therefore, this study provides insights into integrating 

two currently separate research areas. Integration of cost prediction in the early design 

stage of the construction process; and artificial neural networks (ANN) and case based 

reasoning (CBR) tools of machine learning are investigated.

 Therefore, traditional cost prediction techniques, basic ANN and CBR 

processing and a literature review of ANN and CBR application to cost prediction have 

been covered. To this end, this chapter is composed of two main sections. The first 
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section includes a review of cost prediction and its techniques. The second section 

presents an introduction to machine learning and reviews the basics of ANN and CBR. 

2.1. Cost Prediction

The cost prediction function inherent in architectural design is a complex basic 

component, which can be performed at different subphases of the process (i.e., 

inception, design, construction, operation and maintenance); however a project’s 

optimization can be best obtained by experimenting with different design variables, one 

at a time, at the predesign (early design) stage (Siqueira 1999a, 1999b,  Seyyar 2000). 

This is the stage where decisions have the greatest impact on project cost, schedule and 

performance. Clearly, this stage is the most crucial for meeting a project’s criteria, and 

front-end cost estimating is vital in project development. Estimates prepared at this 

early stage, accordingly, form the basis for analyses of return on investment and, assist 

owners and their agents in making go-no-go decisions.

At this stage, cost estimation depends on very little information available, 

therefore a high level of uncertainty characterizes this phase of the process. This study 

focuses on such cost estimating models. Front-end, parametric, conceptual, early design 

and/or order of magnitude cost estimates refer to estimates using the main parameters of 

a project to predict its cost. These estimates are used to assist in go-no-go decisions 

while minimizing estimating efforts spent on non-viable projects (Melin 1994, Paek 

1994, Barrie and Paulson 1992, Carr 1989, Karshenas 1984).

The generation of the early design estimates to a reasonable degree of accuracy, 

in a timely fashion, can be considerably complex. The highly unstructured nature of 

these estimates, as well as the many different estimating practices, may be the reason 

why inconsistent and therefore unreliable cost estimates are obtained in the process of 

estimating the cost of building construction. Cost estimators often deal with a wide 

variety of design parameters. The building construction industry, like manufacturing 

industries is on the outlook for high quality and efficiency. However the output of the 

construction activity is large in scope and cost, and unique in the sense that it is 

producible only for a particular occasion; thus the concept of building a prototype does 

not apply in the construction industry because it is not practical and economical (Feery 
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and Brandon 1984). Detailed cost estimating, therefore, is currently used for each and 

every construction project, making estimation a time consuming and costly process.

While this practice is well suited to market conditions in the past years, it has 

become inadequate for the current industry’s needs (i.e., tough competition, limited 

resources, decreasing profit margins, etc.). The increase in human population and 

production activities have led to the emergence of more complex building construction 

projects in an ever more competitive market. This has made the targets of the time-cost 

and quality triangle even harder to achieve. For instance, in case of a building project 

defined by four design parameters, the consideration of three different values for each 

parameter, varying one parameter at a time, would generate 81 (34) different project 

alternatives, and, as such, may require the generation of 81 detailed cost estimates.

The above example illustrates that designers cannot achieve optimal solutions in 

a timely and cost effective manner, through the generation of detailed cost estimates for 

different scenarios (i.e., involving different design parameters) for each Request For 

Proposal (RFP). The time and cost involved in preparing such estimates are prohibitive 

for planning purposes. The result is, in most cases, that designers develop project 

proposals by just considering limited scenarios, therefore probably being far from 

optimal. Then, the goal of defining a project of minimum cost while meeting defined 

criteria may not simply be achieved. A solution for this problem is, therefore, to 

automate the cost estimating process, in such a way to allow for 1) interactive (owner 

and designer) project scope definition, 2) the timely generation of what-if-type 

scenarios, 3) reliable cost estimate to assist in go-no-go decisions, and 4) an open and 

flexible cost estimating environment capable of benefiting from actual costs incurred on 

previous projects.

Optimizing the cost estimating process means determining the best tools and 

system to be used for that end. Realizing that, construction companies are looking for 

new concepts and advanced tools to assist the optimization of the cost estimating 

process. At this point, the developments in communication and information 

technologies and applications of computer aided design methods show invaluable 

benefits and opportunities. As such, automation for cost estimating may bring the 

efficiency and accuracy so needed in delivering a number of alternative cost estimates 

generated in a timely and cost effective manner. Increased efficiency and accuracy in 

cost estimating provide companies with a competitive edge. The integration of 
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predesign cost estimating principles with machine learning techniques to develop a 

methodology capable of responding to these needs is investigated in this study.

2.1.1. Cost Prediction Techniques

In an environment of developing technology, global competition, harsh 

economical factors and inevitable rapid movement necessity, the complexity of 

construction projects are impossible to overcome by conventional methods and 

applications. On the other hand, the increasing capacity of information technologies 

along with the diminishing costs of hardware and software systems make computer-

aided methods more appealing than ever. Parallel to this, traditional cost-estimating 

techniques –known as single price estimating models (unit, volume, area and storey 

enclosure method), elemental estimating, operational estimating and resource related 

methods –are also replaced by advanced cost estimating systems –known as casual-

empirical models, regression models, simulation models and expert systems –that use 

hardware and software to convert data into appropriate information for the ultimate 

users (Orhon et al. 1986, Seyyar 2000). Conventional manual methods lost their 

effectiveness in terms of ease, accuracy and time management when compared with 

advanced computer-aided cost estimating applications (Yaylagül 1994). When projects 

become larger in scope and complexity, cost estimation models take many parameters 

into consideration utilizing computers for storing, processing and transferring of various 

data. Today, many construction firms use computer aided cost estimation systems 

designed for better cost estimation performance in their projects and their organizations 

(Seyyar 2000). The importance of computers and computer aided cost estimation 

systems in the fast and easy determination of the interaction between design parameters 

and cost; in eliminating the complexities in the cost estimation process and providing 

automation, cannot be overlooked and underestimated (Seyyar 2000). However, these 

models are still not sufficient and feasible enough for the early architectural design 

stage. The emergence of machine learning techniques promise further achievement for 

early design cost prediction.

The accuracy of any prediction depends on the amount of information available 

at the time of the prediction. As stated in the Construction Industry Institute’s 

“Improving Early Estimates’ (CII 1998), “... any cost estimate is assigned a range of 
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accuracy (±percentage). These ranges narrow as the quantity and quality of information 

increase through the life of a project. This implies that estimate accuracy is a function of 

available information, a generally accepted fact in engineering and construction.” Good 

estimating practice and experienced personnel are also found to have considerable 

impact on estimating accuracy, especially on preliminary estimates, since at this stage 

available information scarce and often poorly defined (CII, 1998).

CII’s (1998) study highlights the following as major factors impacting estimates’ 

accuracy:

1. Quality and amount of information available for preparing the estimate

2. Time allocated to prepare the estimate

3. Proficiency and experience of the estimator and the estimating team

4. Tools, techniques and models used in preparing the estimate

Accordingly, estimates are classified and their corresponding range of accuracy 

is defined. The cost estimate classifications adopted by the Association for 

Advancement of Cost Engineering (AACE) International and the Construction Industry 

Institute (CII), are shown in Table 2.1 and Table 2.2, respectively.

This study will focus on estimates prepared at a predesign stage, when the level of 

project definition is within 10 to 40%. The expected accuracy range for these estimates 

is between -20 to +30% in AACE’s classification (see Table 2.2) 

A preliminary cost estimate uses "main" parameters, i.e., parameters that have 

the most significant cost impact on the product being estimated. It focuses on cost 

drivers, the specified design and/or planning characteristics that have a predominant 

effect on the cost of a project. Once the cost drivers are identified, cost models for the 

generation of conceptual estimates can then be developed. Reliance on conceptual cost 

estimates generated by properly developed and carefully evaluated cost models can save 

the user time and resources not only in the evaluation of project alternatives but also in 

the checking of detailed cost estimates prior to bid submittals (CII 1998, Barrie and 

Paulson 1992). Therefore, new alternatives for cost prediction techniques for the early 

design stage are investigated in this study.
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Table 2.1. AACE international cost estimation classifications

Estimate Class
Level of Project 
Definition (%)

End Usage
(Typical Purpose)

Expected 
Accuracy Range 

(%)

Class 5 0 to 2 Concept Screening -50 to +100

Class 4 1 to 5 Study or Feasibility -30 to +50

Class 3 10 to 40 Budget or Control -20 to +30

Class 2 30 to 70
Control or 
Bid/Tender

-15 to +20

Class 1 50 to 100
Check Estimate or 

Bid
-10 to +15
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Table 2.2. Construction industry institute cost estimate definitions 

Estimate Class Percentage Range Description/Methodology

Order of Magnitude ± 30 to 50
Feasibility Study: 

cost/capacity curves

Factored Estimate ±25 to 30 Major equipment: cost/factors

Control Estimate ±10 to 15
Quantities: mech./elec./civil 

drawings

Detailed or Definitive ±<10 Based on detailed drawings
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2.2. Machine (Predictive) Learning 

The rise in computing power has been accompanied by a rapid growth in 

statistical modeling and data analysis. New techniques have emerged for predictive 

learning, not possible 10 years ago, using ideas that bridge the gaps among statistics, 

computer science, and artificial intelligence (Hastie 2004). In this chapter, some of these 

new methods, namely artificial neural networks (ANN) and case based reasoning (CBR) 

are covered with emphasis on their possible application to cost prediction problems. 

The predictive or machine learning problem is easy to state but difficult to solve 

in general. Given a set of measured values of attributes /characteristics/ properties on a 

object (observation) x = (x1, x2,..., xn) (often called "variables") the goal is to predict 

(estimate) the unknown value of another attribute y. The quantity y is called the 

"output" or "response" variable, and x = (x1, ..., xn) are referred to as the "input" or 

"predictor" variables. The prediction takes the form   function y = F(x1, x2, ..., xn) = F(x)  

that maps a point x in the space of all joint values of the predictor variables, to a point y 

in the space of response values. The goal is to produce a "good" predictive F(x). 

In predictive or machine learning one uses data. A "training" data base              

D = {yi, xi1, xi2, ..., xin} N
1  = {yN1i, xi} N

1  of N previously solved cases                                                                                                                      

is presumed to exist for which the values of all variables (response and predictors) have 

been jointly measured. A "learning" procedure is applied to these data in order to extract 

(estimate) a good predicting function F(x). There are many commonly used learning 

procedures. These include linear regression, neural networks, decision trees, etc. For 

descriptions of a large number of such learning procedures see Hastie, et al. (2001).

2.2.1. Artificial Neural Networks (ANN) 

Artificial neural networks (ANN) are an efficient exploitation of predictive 

(machine) learning. They have been widely used to model some of the human activities 

in many areas of science and engineering. Early applications of ANN in engineering go 

back to the late eighties (Adeli 2001). They are also currently used by various 

researchers for different purposes in the fields of building systems and construction 

(Doğan and Günaydın 2003). One of the distinct characteristics of ANN is its ability to 

learn from experience and examples and then to adapt to changing situations. According 
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to Haykin (1994), a neural network is a massively parallel distributed processor that has 

a natural propensity for storing experiential knowledge and making it available for use. 

It resembles the human brain in two aspects; the knowledge is acquired by the network 

through a learning process, and inter-neuron connection strengths known as synaptic 

weights are used to store the knowledge. For more detailed information about ANN see 

Fausett (1994) and Haykin (1994).

ANN is good for some tasks while lacking in some others. Specifically, they are 

good for tasks involving incomplete data sets, fuzzy or incomplete information and for 

highly complex and ill-defined problems, where humans usually decide on an intuitional

basis (Rafiq et al. 1998, 2001). They can learn from examples and able to deal with non-

linear problems. Furthermore, they exhibit robustness and fault tolerance. The tasks that 

ANN cannot handle effectively are those requiring high accuracy and precision, as in 

logic and arithmetic (Kalogirou 1999, 2001). However, they are quite efficient for the 

success of the design process which depends heavily on the initial guess (Mukherjee 

and Deshpande 1995). They have been used in diverse applications in control, robotics, 

pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, 

signal processing and social/psychological sciences. 

ANN operates like a ‘black box’ model, requiring no detailed information about 

the system. Instead, they learn the relationships between the input parameters and the 

controlled and uncontrolled variables by studying previously recorded data. The 

network usually consists of an input layer, some hidden layers and an output layer (see 

Figure 2.1). In its simple form, each single neuron is connected to other neurons of a 

previous layer through adaptable synaptic weights (see Figure 2.1). Knowledge is 

usually stored as a set of connection weights (presumably corresponding to synapse 

efficacy in biological neural systems). Training is the process of modifying the 

connection weights in some orderly fashion using a suitable learning method. The 

network uses a learning mode, in which an input is presented to the network along with 

the desired output, and the weights are adjusted so that the network attempts to produce 

the desired output. The weights after training contain meaningful information, whereas 

before training, they are random and have no meaning.
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output layer

hidden layer(s)

input layer

x1 x2 xn
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Figure 2.1. Schematic diagram of a typical multilayer feed forward neural network
                 architecture
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A single node or neuron receives weighted activation of other nodes (xjwij) 

through its incoming connections. First, these are added (summation) (see Figure 2.2). 

The result is then passed through an activation function, the outcome being activation of 

the node (see Figure 2.2). For each of the outgoing connections, this activation value

(αi) is multiplied with the specific weight and transferred to the next node.

A training set is a group of matched input and output patterns used for training 

the network, usually by suitable adaptation of the synaptic weights. The outputs are the 

dependent variables that the network produces for the corresponding input. It is 

important that all the information the network needs to learn is supplied to the network 

as a data set. When each pattern is read, the network uses the input data to produce an 

output, which is then compared to the training set, i.e. the correct or desired output. If 

there is a difference, the connection weights are altered in such a direction that error is 

decreased. After the network has run through all the input patterns, if the error is still 

greater than the maximum desired tolerance, the ANN runs again through all the input 

patterns repeatedly until all the errors are within the required tolerance. When the 

training reaches a satisfactory level, the network holds the weights constant and uses the 

trained network to make decisions, or define associations in new input data sets not used 

to train it. 

The most popular learning algorithms are the back-propagation and its variants. 

The back-propagation algorithm is one of the most powerful algorithms in neural 

networks. For further information see Rumelhart et al. (1986). The training set has to be 

a representative collection of input-output examples. Back-propagation training is a 

gradient-descent algorithm. It tries to improve the performance of the neural network by 

reducing the total error by changing the weights along its gradient. The error can be 

expressed by the mean-square value (MSE), which is calculated by:

                                               
n

n

1i

2E(i))i(x

MSE






                                              (2.1)

where n is the number examples to be evaluated in the training set, xi is the network 

output (target) related to the example (i=1,2,…,n) and E(i) is the desired output. An 

error of zero would indicate that all the output patterns computed by the ANN perfectly 

match the expected values, and the network is well trained. 
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Figure 2.2. Mathematical model of an artificial neuron
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According to the performance of the system, ANN model is set for future 

predictions with new data. There are no rules as to when an ANN technique is more or 

less suitable for an application and the selection of the model is done empirically after 

testing various alternative solutions. However, based on the work they have carried out 

so far, it is believed that ANN offers an alternative method for predictive learning, 

which should not be underestimated.

Various researchers have used neural networks as a tool for prediction and 

optimization previously. But in the area of cost estimating there exist only few 

applications. The works of Shtub and Versano (1999) and Zhang and Fuh (1998) in the 

manufacturing industry, comprise alternative ANN models for cost estimating. Shtub 

and Versano (1999) have developed a system that was based on a neural network that 

was trained to interpret cost estimates when a new technology was introduced for steel 

pipe bending. They also found out that neural networks outperform linear regression

analysis for cost estimation. Zhang and Fuh (1998) designed a neural network model for 

early cost estimation of packaging products. In their model, they extracted and

quantified cost-sensitive attributes of a product design. The correlation between these 

cost features and the final cost of the product was found by using a back propagation

neural network algorithm depending on historical data. In the construction industry, 

Adeli and Wu (1998) formulated a regularization neural network to estimate highway 

construction costs which were very noisy. They observed that as the number of 

attributes was increased, the construction cost was estimated more accurately. In

another study a neural network model for parametric cost estimation of highway 

projects was proposed by using spreadsheet simulation (Hegazy and Ayed 1998). 

Hegazy and Ayed (1998) developed a very adaptable and flexible model of ANN by 

simply facilitating a spreadsheet program. One particular study by Harding et al. (2000)

constructed an ANN model, which aimed to provide an accurate comparative cost of 

different procurement routes. Among the 40 variables they used in their study were 

design specific criteria such as the frame type and gross internal floor area. Emsley et al. 

(2002) suggested that procurement routes cannot be isolated from cost significant 

variables (i.e., design and site related variables, project strategic variables) in a building 

project. Therefore they developed Harding et al.’s (2000) model one step further by

using a more complete and sophisticated data set which would not be available at the 

early design stage. Their findings indicated 16.6% mean absolute percentage error.
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Al-Tabtabai et al. (1999) also developed a neural network model that could be 

used to estimate the percentage increase in the cost of a typical highway project from a 

baseline reference estimate. They used environmental, company and project specific 

factors. Their model measured the combined effect of these factors on the percentage 

change in expected cost. The network generated outputs reaching a mean absolute

percentage error of 8.1%. Squeira (1999b) presented an automated cost estimating

system for low-rise structural steel buildings by utilizing design variables such as area, 

perimeter, height, load, etc. He used a commercial software of ANN and showed that 

the neural network model outperformed regression. The mean absolute percentage error 

calculated for the neural network model and regression equation over the entire data set 

were 11% and 15%, respectively, for the cost estimating of structural steel framing. For

the two other models (i.e., total direct cost and cost of wall panels), the mean absolute 

percentage errors for the neural network approach and regression were 13% vs. 21% 

and 18% vs. 57%, respectively. Creese and Li (1995) developed a neural network 

application for the parametric cost estimating of timber bridges and again found that the 

neural network method outperformed common linear regression methods. Their study 

also showed that the estimation using neural networks improved when more 

independent variables were introduced in training. However, Bode (1998) concluded in 

his research report that neural networks can only work with a limited number of cost 

drivers, and more attributes with cost effects need larger case bases for the learning 

algorithm to achieve satisfying accuracy. Setyawati et al. (2002) compared their results 

with those of Creese and Li (1995) and pointed out the inappropriateness of standard 

statistical methods for cost estimating and suggested regression analysis based on

percentage error and on combined methods for obtaining the appropriate linear 

regression which might outperform ANN models for cost estimating. Smith and Mason 

(1997) also examined the performance, stability, and ease of cost estimation modeling 

using regression versus neural networks to develop cost estimating relationships. They 

reported that the cost data did not enable fitting a commonly chosen model, or did not 

allow the analyst to discern the appropriate cost estimating relationships; the problem of 

model commitment became more complex as the dimensionality of the independent

variable set grew.
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2.2.2. Case Based Reasoning (CBR) 

Case based reasoning (CBR) involves applying past experiences, in the form of 

prior cases, to guide current decision making. In essence, the cased based reasoner 

assigns an outcome to a problem based on the outcomes of the recently similar prior 

cases. A prior case may be a template for a solution to the problem or the basis of an 

argument how to decide it. 

A case is considered as a set of features, attributes, and relations of a given 

situation and its associated outcome(s). Although the structure of a case may differ from 

one domain to the next, the concept of a case is the same. A case is situation-specific, 

unlike a rule, which is a unit of generalized knowledge (Gupta 1994).

Essentially the roots of case-based reasoning in AI are found in the works of 

Schank (1982) on dynamic memory and the fundamental role that a reminding of earlier 

situations have in problem solving and learning. For a bibliographic categorisation and 

review of CBR research see Aamodt and Plaza 1994, Watson and Marir 1994a, 1994b.

CBR development consists of four steps. The first is to design the structure of 

the case. The second is to collect cases. The third is to prototype the similarity retrieval. 

Finally, the prototype undergoes successive refinement. The processes involved in CBR 

can be represented by a schematic cycle (see Figure 2.3). Aamodt and Plaza (1994) have 

described CBR typically as a cyclical process comprising the four REs: 

1. RETRIEVE the most similar case(s); 

2. REUSE the case(s) to attempt to solve the problem; 

3. REVISE the proposed solution if necessary, and 

4. RETAIN the new solution as a part of a new case. 

A new problem is matched against cases in the case base and one or more similar cases 

are retrieved. A solution suggested by the matching cases is then reused and tested for 

success. Unless the retrieved case is a close match the solution will probably have to be 

revised producing a new case that can be retained. This cycle currently rarely occurs 

without human intervention. For example many CBR tools act primarily as case 

retrieval and reuse systems. Case revision (i.e., adaptation) often being undertaken by 

managers of the case base. Well known methods for case retrieval are: nearest 

neighbour, induction, knowledge guided induction and template retrieval. These 

methods can be used alone or combined into hybrid retrieval strategies. For a further
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Figure 2.3. Basic CBR approach
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overview of the theoretical principles of CBR, see Kolodner (1991, 1993), Riesbeck and 

Schank (1989).

CBR systems handle missing data well. If the current situation is missing the 

value of an important feature, that feature is simply not used during similarity retrieval. 

The most similar cases will match well with target case, except for the missing feature. 

The retrieved cases will possess a variety of values for the missing feature so its 

influence and importance can be determined. If the outcomes represented in the 

retrieved cases are similar, the missing feature is unimportant, and a prediction can be 

made with confidence. If the outcomes vary widely, the prediction should be delayed 

until the value of the missing feature is determined for the target case. 

One of the important strengths of CBR that sets it apart from most AI techniques 

is that a CBR system is aware of its own limitations. If no similar cases are retrieved, 

the CBR system cannot make a prediction. This process is far superior to making a 

nonsensical prediction as most systems would. However, the biggest weakness of CBR 

is its requirement for cases. Enough cases should be present in the case base so that a 

similar one is retrieved. The sparser the case base, the more effort must be invested into 

adaptation strategy. In the extreme, making a prediction from a case that is not very 

similar to the current situation is just as difficult as making it from scratch. It’s not so 

much the absolute number of cases in the case that is important as the density of cases 

in the case base. In some domains, few cases are required to fill the case base to the 

required density. In other domains, especially those with many important features, a 

very large number may be required. 

Prediction is a universal problem in industry. Case-based reasoning (CBR) can 

be a good solution to prediction problems. The number of rules required to generate a 

cost prediction, taking into account all relevant variables, is usually quite large and time 

consuming to generate. Typically, this knowledge must include how to decompose the 

project into smaller tasks and accurately estimate the cost of each portion. Therefore, 

the knowledge required to predict the costs from scratch is enormous. CBR avoids this 

knowledge-acquisition bottleneck by using the wealth of existing prediction knowledge 

embodied in past cases (Stottler 1994). Since the prediction is not generated from 

scratch but is adjusted from a previous experience, less specific and less accurate 

knowledge is required. Yau and Yang (1998) presents an example how CBR can be 

used to estimate construction duration and costs of building construction projects at the 

preliminary design stage. Neural networks also make use of past experience (in the form 
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of training data), but they cannot easily justify the prediction they make. CBR systems 

can point to the similar cases on which the prediction is based as justification. Any 

required adjustments from these cases are usually small and therefore credible. In 

addition, since the knowledge is in symbolic form, richer meaning can be conveyed. For 

example, an architectural design project might have gone over budget because of 

numerous change requests from the client. A text document describing this reason can 

be stored along with the case. Later, when this project is retrieved as a similar case to 

estimate design costs for current projects with the same client, the architect is warned 

about the nature of the excessive project cost in addition to the higher than usual cost 

prediction. Therefore, the architect can explain to the client the reason for the higher 

cost or include a maximum number of change requests in the contract. 

CBR’s ability to mimic the decision-making processes of humans provides an 

alternative in solving experience-oriented problems when traditional techniques or ANN 

encounter difficulties. 
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CHAPTER 3

METHODOLOGY 

The construction industry utilizes experience; therefore knowledge and 

appreciation of previous experience are critical to resolving problems that may reoccur. 

Artificial neural networks (ANN) and case based reasoning (CBR) have grown to be 

effective techniques in the machine learning domain that offer alternatives for solving 

construction related problems that require extensive experience. Late literature reviews 

demonstrated the potential benefits of these techniques in construction management and 

its superior performance over other traditional prediction techniques (Arditi and 

Tokdemir 1999a, Arditi and Tokdemir 1999b, Günaydın and Doğan 2004, Hegazy and 

Ayed 1998, Yau and Yang 1998). Further exploring ANN’s and CBR’s capabilities in 

the construction management domain is a worthwhile task. Recent research studies 

about the effectiveness of integrated machine learning approaches indicate that these 

systems could achieve better results when enhanced by other techniques (Cardie 1993, 

Jarmulak and Craw 1999, Jarmulak et al. 2000, Ling et al. 1997, Shin and Han 1999). 

In order to reach the previously stated goals of this study, ANN and CBR 

models are developed, enhanced and tested for providing better tools of cost prediction 

at the early design stage. Therefore, data pertaining to the early design parameters and 

unit cost of the superstructure of residential building projects are used to test developed 

ANN and CBR models. 

Hegazy and Ayed’s (1998) spreadsheet-based ANN prediction model and a 

commercial software NeuroSolutions (2002) are used for the ANN modeling. In order 

to determine ANN weights, as an alternative to back-propagation training of 

NeuroSolutions, two other techniques, namely simplex optimization, and genetic 

algorithms (GA) are used. Simplex optimization and GA are implemented using Excel 

add-in programs Solver and Evolver (1998), respectively. 

The CBR prediction model is established by developing an Excel-based 

simulation. The model is assigned attribute weights by six different weight generation 

methods in order to compare their impact on the performance of CBR prediction. The 

weights for the attributes of the CBR-Excel model are computed by (1) the feature 
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counting method, (2) the gradient descent method, (3) genetic algorithms (GA), (4) the 

binary-dtree method, (5) the info-top method, and (6) the info-dtree method. 

Three commercial software help to determine weights in the CBR-Excel model.    

A CBR software called Esteem (1996) is used to implement the gradient descent weight 

generation method. Evolver (1998) is used once more for GA computations. Binary-

dtree, info-top and info-dtree methods named by Ling et al. (1997) are adapted by using 

induction decision trees (ID3). The decision tree of the cost prediction problem is 

constructed by using the See5 software (1997). 

Boosted decision trees (BDT) constructed by using See5 is used as the third 

machine learning technique, as an alternative to ANN and CBR models, for the cost 

prediction problem at hand. However, cost data had to be classified into a large number 

of classes because of the BDT modeling rules. The small number of cases available in 

this study produced less accurate outcomes than the ANN and CBR outcomes. The BDT 

model and the results achieved are presented in Appendix B. 

The development of the ANN and CBR models, and the weight generation 

methods are described in this chapter. The results are discussed, ANN and CBR 

techniques are compared, and concluding remarks are made in the next chapter. The 

methodology of the study is presented in Figure 1.1. 

3.1. Spreadsheet Simulation of ANN

In this section, a spreadsheet simulation model of a three-layer ANN (Figure 

3.1) with one output node is presented on Microsoft Excel. Many practitioners are 

familiar with spreadsheet applications. As a simple and more transparent approach to 

ANN modeling, Excel based simulation is adapted from Hegazy and Ayed’s (1998) 

study. The spreadsheet represents a template for one hidden-layer ANN that is suitable 

for most applications (Hegazy et al. 1994). The processing of the template incorporates 

seven steps, following the widely known back-propagation formulation (Rumelhart et 

al. 1986). The general structure and computations of this type of ANN are presented in 

the following steps: 
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Figure 3.1. Basic process of ANN
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Step 1. Data Organization – as a preliminary stage to ANN modeling, the problem at 

hand needs to be thoroughly analyzed. Through this process, the independent factors 

affecting the problem are identified and considered as (N) input parameters represented 

by nodes at the input layer of an ANN. Similarly, the number of associated outputs or 

conclusions (O) are represented by nodes at the output layer. Once input and output 

parameters are identified their corresponding data are collected from the (P) case 

studies. These data become available for the training stage of the ANN. Schematic 

illustration of ANN Excel simulation notations of N, P, O, etc. are shown in Figure 3.2.

To implement this step in an Excel spreadsheet, the data is first transformed into 

numerical values and stored in a data-list that is a matrix of (N+O) columns and (P) 

rows (Figure 3.3). The numerical transformation of textual data can be done in either a 

continuous or binary manner. In continuous transformation the value of a parameter 

called ‘season’, for example, can be an integer 0-3 for winter, spring, summer, and fall 

respectively. Alternatively, in a binary transformation, four parameters are used to 

represent the four seasons and only one of them is assigned a value 1, whereas the 

others are 0. Depending on the type of transformation used, the number of ANN nodes 

(N) will be determined and, accordingly, the size of the spreadsheet matrix. For each 

variable, the minimum and maximum values were also put in spreadsheet formulas to be 

used in Step 2. 

Step 2. Data Scaling – In this step, the input-data part of the first matrix (N columns by 

P rows) is scaled to a range from [-1 to 1] to suit NN processing. This is done by 

constructing a second matrix with a linear formula for scaling the values of the first 

matrix, as follows: 

                      
 
  1

2






ColumnMinColumnMax

ColumnMinlueUnscaledVa
ValueScaled                             (4.1.)

This scaling formula is written in only one cell (B15 for example, in Figure 3.4), and 

then copied to all cells in the scaling matrix. To the right of this matrix, a column was 

added with unit values associated with the bias node, as illustrated in Figure 3.4.

Step 3. Weight Matrix (W) – the third step is to construct and initialize the weight matrix 

between the inputs and the hidden layer (Figure 3.5). All inputs (1 to N) and a bias node
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Figure 3.2. Schematic illustration of ANN Excel 
                           simulation notations of N, L, O, P, W, W’
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Figure 3.3. Step 1: Organization of row data
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Figure 3.4. Scaling of input values to a range (-1,1)
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Figure 3.5. Weight matrix (W) from (N) inputs to (L) hidden nodes
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were fully connected to the hidden nodes. The number of hidden nodes (L) was set as 

one-half of the total input and output nodes, as heuristically suggested in the literature 

(Hegazy et al. 1994). All of the values in the weight matrix are considered variables to

be determined in the ANN modeling. Hegazy and Ayed (1998) suggest that setting the 

initial weight values to 1 is appropriate for inputs scaled to a range (-1 to 1).

Once the Excel template has been set up with initial weights of 1s, the overall 

performance indicator (cell D94 which will be mentioned in step 7 and Figure 3.11) was 

showing a very high error value. Because all formulas in the template are functions of 

the weights, the next step was to determine the ANN weight values that would optimize 

ANN performance. Three approaches were used: (1) simplex optimization using 

Microsoft Excel Solver. (Excel 2003); (2) GA using Evolver software from the Palisade 

Corporation (Evolver 1998); and (3) back-propagation training using NeuroSolutions 

(2002) software from the NeuroDimensions Inc. 

Simplex Optimization: A simplex optimization is implemented, using Solver, 

an Excel add-in program. The implementation, therefore, is conducted directly on the 

NN spreadsheet. Solver is a powerful and easy to use optimization tool that is highly 

integrated with Excel. Solver can find the optimum set of values for some variables so 

as to maximize or minimize a target cell (or objective function) that is linked by 

formulas to the variables, under a set of user-specified constraints. It proceeds by first 

finding a feasible solution, and then seeking to improve upon it; changing the variables 

to move from one feasible solution to another until the objective function has reached its 

maximum or minimum. For the ANN (or NN) simulation described previously, Solver 

optimization options are shown in Figure 3.6 (solver optimization screen). The 

optimization objective is to minimize the NN weighted error (see Step 7, cell D94 of 

Figure 3.11). Also, the optimization variables, representing the adjustable cells are the 

weights from inputs to hidden nodes and from hidden nodes to outputs. To avoid 

incorrect network results on individual training cases, optimization constraints are set to 

limit the percentage error on the training and test cases to 2 and 5% or lower, 

respectively. Cell references for the optimization variables and the constraints are 

shown in Figure 3.6. These values give more emphasis on the test cases, similar to what 

is also done with back-propagation training (which will be mentioned in the following 

sections).
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Figure 3.6. Solver optimization screen
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Once the optimization parameters are input solver, the optimization process is started. 

Experimenting with this approach, it is found that the results are often sensitive to the 

initial values of the variables and some manipulation of Solver options may become 

necessary to arrive at the optimum solution. Using the suggested (0-1) range for the 

weights can be a good start. Also, when optimization is not improved over a long period 

of time, it can be manually stopped and then continued after reinitializing some of the 

weight values. Generally, the time taken by Solver to arrive at the optimum solution 

varies significantly depending on the size and complexity of the model. The 

optimization process may need to be frequently interrupted to change solver options that 

are fully described in Excel documentation (Excel 2003).

Genetic Algorithms: GA technique is another optimization method that is

fundamentally different from traditional simplex-based algorithms such as the one used 

by Excel Solver. It uses the method of evolution, specifically survival of the fittest. The 

theory behind GA is that a population of certain species will, after many generations of 

random evolution, adapt to live better in its environment. GA solves optimization 

problems in the same fashion. First, a population of possible solutions to the problem is 

created. Individuals in the population are then allowed to randomly breed, a process 

called crossover, until the fittest offspring (the one that solves the problem best) is 

generated (Hegazy et al. 1994). After a large number of generations, a population 

eventually emerges where the individuals will provide an optimum or close to optimum 

solution. For the case study at hand, a commercial GA software (Evolver 2004) was 

used to find the optimum weights of the model. Similar to Solver, Evolver works as an 

add-in to Microsoft Excel, and can replace Excel Solver for optimizing complicated 

problems. The Evolver screen is shown in Figure 3.7 with all the cell references to the 

optimization objective function and constraints. Similar to Solver optimization, cell D94 

representing the NN weighted error is selected to be minimized. The adjustable cells 

containing the optimization variables (called chromosomes in GA terminology) are also 

specified as the two weight matrices. Optimization constraints are then set. These 

constraints limit the range of weight values that Evolver searches for, thus reducing 

processing time. In addition, the constraints add sub goals to the original objective 

function to limit the percentage incorrect training and test sets to 2 and 5%, respectively. 

During the GA optimization, Evolver options can be used to enhance the results. For 

example, “population size” affects processing time because the fitness function must be 

calculated for every individual in every generation. A population size of 50 is generally 
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Figure 3.7. Evolver optimization screen for ANN Excel-Simulation

$D$94

$B$27:$F$31
$B$54:$F$54

$D$79:$D$86<=2
$D$87:$D$90<=5
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found as a good number to start with. This number can be increased later during the 

optimization process. Chromosome length presents the level of accuracy needed for the 

adjustable cells. More bits mean high-precision answers. Other program specific 

parameters that are fully described in the documentation (Evolver 2004) can be used to 

speed the solutions and prevent standstill progress. 

Back-propagation: Back-propagation training is one of the most common 

methods for training NN given historical data (Rumelhart et al. 1986). In essence, back-

propagation training adapts a gradient-descent approach of adjusting the ANN weights.  

To implement back-propagation training, a commercial NN software “NeuroSolutions” 

is used as a stand-alone environment for NN development. NeuroSolutions (2002) is 

used for its ease of use, speed of training, and its host of NN architectures, with flexible 

user-optimization of training parameters. In essence, back-propagation training adapts a 

gradient-descent approach of adjusting the NN weights. During training, an NN is 

presented with the data of thousands of times (called cycles). After each cycle, the error 

between the NN outputs and the actual outputs are propagated backward to adjust the 

weights in a manner that is mathematically guaranteed to converge (Rumelhart et al. 

1986). To achieve good generalization, NeuroSolutions optimizes training by exposing 

the network to the amount of training that minimizes the average error between actual 

and predicted results for a group of test cases. The NN is saved whenever a new 

minimum average error is reached. Using the optimization features of NeuroSolutions, 

several training experiments can be conducted to arrive the best-trained NN. In these 

experiments, network parameters such as the number of hidden layers, the number of 

hidden nodes, network connections, and transfer functions are changed on a trial and 

error basis and the best result is documented. After training, the NN predictions are 

compared with the actual results. 

Step 4. Output of Hidden Nodes – This step is to allow the hidden nodes to process the 

input data and produce values to be forwarded to the next layer. According to NN 

processing (reviewed in chapter 2), each hidden node j receives an activation Xj, which 

is the sum product of scaled inputs by their associated connection weights. Accordingly, 

each hidden node produces an output 'X j  that is a function of its activation, as follows: 
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Experimenting with different activation functions such as linear, logistic, and tanh has 

shown that the tanh function produces the best results. As shown in step 4 in Figure 3.8, 

a formula was written for the first row of all hidden nodes and then copied to the down 

cells. 

Step 5. Weight Matrix (W') – Similar to the weight matrix constructed in Step 3, a 

second matrix was constructed to connect the (L) hidden and bias nodes to the single 

output node (Figure 3.9). These weights are additional variables in the model and were 

initialized as previously described.

Step 6. Final ANN Output - Similar to Step 4, the output of the ANN (O) is computed 

by calculating the sum product (Y) of each hidden node by its connection weight and 

then processing this value through the tanh function as follows (see Figure 3.10 for 

Excel calculations):

             

                                            0.12)1(
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jXY
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j

                                             (4.4)                                                                                  

                                                     O = tanh (Y)                                                             (4.5)

Step 7. Scaling Back NN Output and Calculating the Error – In this step, the NN output 

(O) is scaled back to the original range of value using the reverse of formula (4.1) as 

follows: 
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Figure 3.8. Outputs of hidden nodes

A B C D E F

39
Project

 No.
Hidden Nodes

40 Node 1 Node 2 … Node L Bias 2

41 1 1
42 2 1
43  1
44 P 1
45

=Tanh(SUMPRODUCT
(B15:F15,$B$31:$F$31))
Formula made once and 
copied down

=Tanh(SUMPRODUCT
(B15:F15,$B$27:$F$27))
Formula made once and 
copied down
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Figure 3.9. Weights W’ from hidden nodes to output nodes

A B C D E F


52 Hidden Nodes

53 1 2 .............. Bias 2

54 Output 1 1

55

56

57

58
Cells contain weight values put 

initially as 1.0s. The matrix elements 
are set as variables in the optimization.
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Figure 3.10. Final NN Outputs

A B C D E F


64
Project 

No
NN 

Output
65 1

66 2
67 

68

69

70 P

=Tanh(SUMPRODUCT
(B41:E41,$B$54:$F$54))
Formula made once and copied down
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Output Scaled Back

               Output  Min
Output  MinOutput  MaxValue  Output





2

))(1(
                      (4.6)

To calculate a measure of the ANN performance, a column is constructed (Figure 3.11) 

for determining the error between the actual output and ANN output as follows:

              100
)(





OutputActual

OutputActualOutputorkNeuralnetw
(%)ErrorEstimating               (4.7)

It is also possible in the ANN simulation to use some cases for training and others for 

testing. The average error of each group of cases can be calculated in a different cell and 

then combined in a cell that calculates the performance measure of the ANN, for 

example:

Weighted Error (%) = 0.5 (Test Set Average Error) + 0.5 (Training Set Average Error),

where weights of 0.5 and 0.5 are assumed for illustration. This approach gives more 

emphasis to the test cases (which are usually a small number as compared to training 

cases), to ensure good generalization performance and avoid overtraining. 

3.2. Spreadsheet Simulation of CBR

In this section, a CBR model (Figure 3.12) is developed and simulated in a

spreadsheet format and the model is set up in Microsoft Excel. This spreadsheet model 

represents a template for many prediction problems.  The processing of the template 

involves six steps:

Step 1.  Organizing and Formatting Data – The data are organized in the form of two 

matrices, one for the test cases and one for the input cases such as those presented in 

Figure 3.13.  Around 10% of all cases can be designated as test cases. The input and test 

cases are represented in rows and the input attributes are represented in columns. The 

output attribute is placed in a column next to the input attributes. The values of the
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Figure 3.11. Scaling output back & calculating the error

A B C D E F



79
Project 
No.

NN
output 
scaled 
back

Actual 
Output

%
ERROR

80 1
81 2
82 3
83 
84

85

86

87

88 K
89 
90

91 P

92 Error on K cases

93 Error on K+1 to P cases

94 Weighted Error

=(B65+1)($F$9-$F$8)/2+$F$8
Made once and copied down

=F3
Made once and copied down

=(C80-B80)*100/B80
Made once and copied down

=AVERAGE(D80:D87)

=AVERAGE(D88:D91)

=0.5*D92+0.5*D93
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Figure 3.12. Basic process of CBR

Set
 attribute 
weights

Retrieve
case from 
casebase

Identify
test
case

Calculate case similarity 
score between test case 

vs. retrieved case

Select retrieved 
case with highest 
similarity score

Yes

No

Cases in 
casebase 

exhausted?

Predict the 
outcome of 

test case

Use
1. feature
    counting

Use
2. gradient
     Descent

Use
3. genetic 
 algorithms

Use
4. Binary-
     dtree

Select
method 

Use
5. Info-top

Use
6. Info-
          dtree

Decision 
tree learning 
algorithm
(ID3)

or

or

or

or

or



44

         

Figure 3.13. Formatting data to a case spreadsheet

1 A B C D E F G H

2 Weights w1 w2 w3 … wp 0

3 Case
No.

TEST CASEBASE
Attributes

Output
Attribute

4 1 2 3 … p       

5 Case 1 I11 I12 I13
… I1p O1

6 Case 2 I21 I22 I23
…  O2

7   

8 Case m Im1 Im2 Im3 … Imp Om

9

10 Case
No.

INPUT CASEBASE
Attributes

Output
Attribute

11 1 2 3 … p

12 Case 1 I'11 I'12 I'13
… I'1p O'1

13 Case 2 I'21 I'22 I'23
…  O'2

14   

15   

16 Case n I'n1 I'n2 I'n3 … I'np O'n

17
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attributes for each test and input case are represented respectively by Iik and I'jk where Iik

represents the value of attribute k (k = 1, 2, … , p) for test case i (i = 1, 2, … , m), and 

I'jk represents the same type of information for input cases j (j = 1, 2, … , n). The 

weights of the attributes wk (k = 1, 2, … , p) are located at the top of the matrix in a row 

that corresponds to individual attributes.  The way these weights are set is explained in 

Step 3. After formatting, semantic information is added to the data in the form of 

numerical and textual attribute values.

Step 2.  Calculating Attribute Similarities – Attribute similarity functions are used to 

define how similar the attribute values are to each other.  Attribute similarities are 

computed with respect to each test case versus every case retrieved from the input 

casebase.  Examples of textual and numerical similarity calculations are presented in 

Figure 3.14. Attribute similarity is denoted by Sijk where i is the test case  m...,2,1,i  , 

j the input case  n...,2,1,j   and k the attribute  p...,2,1,k  .

Assuming that the value of the first attribute for the first test case I11, (in cell B5

in Figure 3.13) is textual, its similarity with the corresponding attribute value I'11 (in cell 

B12 in Figure 3.13) is established as follows:

If text in I11 appears to be exactly the same as text in I'11, then similarity 1S111  , or else

similarity 0S111   (See Figure 3.14 for spreadsheet calculations)                              (4.8)

                                                                                                                             
Assuming that the value of the third attribute for the first test case I13 (in cell D5 

in Figure 3.13) is numerical, its similarity with attribute value I'13 in the corresponding 

cell (D12 in Figure 3.13) is established as follows:

                 
 
 1313

1313
113 I,Imax

I,Imin
S




  (See Figure 3.14 for spreadsheet calculations)          (4.9)    

Step 3.  Establishing Attribute Weights – After all the attribute similarity values are 

calculated in (n × p) matrices, once for each test case (the matrix for Test Case 1 is 

presented in Figure 3.14), the next step is to construct the weight vector that will be

used in computing case similarities.
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Figure 3.14. Attribute similarity matrix for Test Case 1 (i = 1). 
                               (m similar matrices are generated, one for each test  case)

1 J K L M N O P R S

2

3 Input Case
No.

Attributes

4 1 2 3 … p

5 Case 1 S112
… S11p

6 Case 2  S122
… S12p

7 Case 3 S132 …

8   …

9  …

10  …

11  …

12  …

13 Case n S1n1 S1n2
… S1np

14 …

S111

= MIN(D5,D$12)/MAX(D5,D$12)
Made once and copied to all cells with 

numerical information

=IF(B5=B$12,"1","0")
 Made once and copied to all cells with 
textual information

S113
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Weights assign a value of importance to each attribute. In general, retrieval of 

the most relevant case is determined by the presence of a greater number of higher 

priority (more important) attributes matching between the test case and the retrieved 

case.

In this CBR study, weights for attributes were computed by (1) the feature 

counting method, (2) the gradient descent method, (3) genetic algorithms (GA), (4) 

binary-dtree method, (5) info-top method, and (6) info-dtree method.  

Feature counting method: In the feature counting method, the weight of each 

input attribute is entered as 1 into the CBR Excel model, implying that attributes have 

equal importance (Esteem 1994).  In the absence of specific information, it is assumed 

that there is no reason for an attribute to be more important than another.

Gradient descent method: A CBR software called “ESTEEM” was used to 

implement the gradient descent weight generation method. The gradient descent weight 

generation method’s basic algorithm is presented in Figure 3.15. Random cases are 

selected from the input casebase, and the cases that are most similar to them (based on 

the initially set weights of the attributes) are found.  Information on how much the 

weights of the attributes should be incremented or decremented is calculated 

considering these cases, based on how well the cases’ outputs match. After examining 

several random cases, the resulting weights are adjusted by using a factor Delta. The 

factor Delta is then decreased, and the algorithm begins examining more random cases. 

This process continues until Delta reaches a minimum value specified by the user.  

When the “arithmetic” method is chosen, Delta is decremented by some value (which 

must be between 0 and 1) every iteration. When the “geometric” method is chosen, 

Delta is multiplied by some factor (which must be between 0 and 1) every iteration. The 

user must also specify the starting and the final value of Delta, the number of random 

cases that are examined every iteration, and an update parameter that specifies how 

quickly Delta decreases from iteration to iteration. All parameters have default values 

which were used in this study: the “geometric” method was used with the starting and 

ending values of 0.5 and 0.02 for Delta, respectively; the update parameter and the 

number of cases to be tested per each iteration were taken as 0.9 and 5, respectively.  

The weights generated by the gradient descent method were plugged into the CBR 

Excel model manually.
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Figure 3.15. Using gradient descent to optimize CBR weights
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GA method: GA uses the method of evolution, specifically “survival of the 

fittest.”  The theory behind GA is that a population of certain species will adapt to live 

better in its environment after many generations of random evolution.  Thus, GA first 

creates a population of possible solutions to the problem.  Individuals in the population 

are then allowed to randomly breed, which is called crossover, until the fittest offspring 

(the one that solves the problem best) is generated.  After a large number of generations, 

a population eventually emerges where the individuals will provide an optimum 

solution. For this study, a commercial GA software, Evolver, was used to find the 

optimum weights of the model.  Evolver works as an add-in to Microsoft Excel 

(Evolver 1998). Weights generated by Evolver were plugged into the CBR Excel model 

manually.

Figure 3.16 shows the flowchart of the GA optimization process used in this 

study.  In order to use GA to generate weights, one of the cases in the input casebase is 

removed and called an “evaluation case.”  The similarities between the attributes of the 

evaluation case and the corresponding attributes of the remaining cases are calculated 

by using Equations 4.8 and 4.9. Given the start-up assumption that attributes have equal 

importance, case similarities (CS) are derived between the “evaluation case” versus the 

remaining input cases by taking the average of all attribute similarities.  The relationship 

that governs the similarity (CS) of the input case that has an output that is closest to the 

output of the evaluation case is plugged into the GA algorithm (Evolver) for 

maximization (for taking it closer to 1).

The Evolver optimization screen is shown in Figure 3.17 with the adjustable 

cells containing the optimization variables (called attribute weights in the CBR system 

and chromosomes in GA terminology).  In this study, the range of the attribute weights 

was set between 1 and 10, the default population size of 50 was used, and Evolver was 

run 15,000 times to find the optimum attribute weights that generated the maximum 

case similarity CS (closest to 1).  This process was repeated as many times as the 

number of cases in the input casebase by taking a different case out as the “evaluation 

case” at each cycle.  The averages of the weights produced by GA at each cycle were 

used to run CBR in Step 4.

In the remaining three other weight determining methods for attributes in the 

CBR simulation study, decision tree learning algorithms (ID3) are used. Related 

information about decision trees can be found in Cardie (1993) and Danyluk (2004).
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Figure 3.16. Using GA to optimize CBR feature weights
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Figure 3.17. Evolver optimization screen for optimization of CBR attribute weights

The highest case 
similarity (100% accurate 
prediction) is “1”.

The attribute weights are set as 
variables.  The weight of the output 
attribute is not included.

Adjustable weights are set to change 
between 1 and 10.
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Decision Trees: A decision tree is a tree in which each branch node represents 

an attribute, and the branches at that node correspond to the possible values of the 

attribute, and each leaf node represents a classification or decision (Figure 3.18). 

The basic idea is to pick an attribute K with values b1, b2, ..., bs,, split the cases in 

the input casebase into subsets (classes) C1, C2, ..., Cs consisting of those cases that have 

the corresponding attribute value. Then if a subset has only cases in a single class (C1, 

C2, ... or Cs), that part of the tree stops with a leaf node labeled with that single class. If 

not, then the subset is split again, recursively, using a different attribute (Figure 3.18). 

In order to choose the best attribute to split on at any branch node, splitting criterion in 

ID3 (induction decision trees) named information gain theory is used.

The point of the ID3 algorithm (Quinlan, 1986) is to decide the best attribute, 

out of those not already used, on which to split the input cases that are classified to a 

particular branch node. The algorithm, in outline, is as follows:

1. If all the cases belong to a single class, a leaf node is created and 

labelled with the name of that class;

2. otherwise, for each attribute that has not already been used, the 

information gain that would be obtained by using that attribute on the 

particular set of cases classified to that branch is calculated.

3. Then the attribute with the greatest information gain is used as that 

branch node.

Splitting criterion requires the calculation of the information gain associated 

with using a particular attribute K. Suppose that there are r classes C1, C2, ...., Cr, and 

that of the N cases classified to this node, N1 belong to class C1, N2 belong to class C2, 

..., and Nr belong to class Cr. If one example is selected at random from N and 

announced that the example belonged to class C1. This announcement would have 

probability p1=N1/N, (and similarly p2 = N2/N, ..., and pr = Nr/N) and the information it 

conveys is –log2(N1/N) bits (and similarly –log2(p2), ..., –log2(pr)). As the probability 

goes up, the information conveyed goes to 0. It’s highest for low probabilities. The term 

information represents the amount of information needed to identify the case as being a 

member of a particular class. Then the average amount of information needed to 

identify the class of a case in N is calculated as follows. This is called the entropy of N.

                                       Info (N) =    






 
N

N
log

N

N r
2

r                                         (4.10)
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Root Node
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Figure 3.18. Basics of a decision tree 
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where the weighted sum is computed over the number of classes in N.

Suppose K attribute of the cases has b possible values. If K attribute were 

selected to be evaluated as a node in the tree, a decision tree node with b branches b1, 

b2, ..., bs would be created. If 
sbN were the examples that have the value bs for attribute 

K, the average entropy that resulted from making this split in the tree would be 

calculated as follows:

                                       InfoK (N) =   









s

s

b
b N

N

N
info                                       (4.11)

where the sum is taken over the s possible values of the attribute K. This is computed 

for every attribute. Once the computations are done for every attribute, the attribute K 

that maximizes the value of info(N)  infoK(N) is selected. This difference (reduction in 

entropy) caused by portioning the cases according to attribute K is named the 

information gain for attribute K: InfoGain (N,K) = info (N)  infoK(N)

The process of handling the continuous valued attributes is slightly different. For 

continuous, rather than discrete attributes, the range is split into two groups: possible 

attribute values   threshold and possible attribute values > threshold (Figure 3.18). The 

important issue is how to select the threshold. In order to determine the threshold, first 

the cases are sorted by the values of the attribute. Then the cases noting adjacent 

examples that belong to different classes are searched. The average values at those 

transition points are considered to be potential splits. Then each split found is evaluated 

by applying the information gain formula. The split that is best, which has the greatest 

information gain is selected. Accordingly a decision tree is constructed considering the 

information gain values of all kinds of attributes at hand.

See5 (1997) is a commercial software that is used for building decision trees. 

See5 builds a decision tree that consists of a sequence of logical decisions based on the 

attributes. It builds decision trees by employing a simple divide and conquer strategy as 

explained above.  It first chooses an attribute as the current root, divides the input cases 

into subsets, and recursively tests the subsets, until all remaining cases belong to a 

single class. The choice of the attribute is based on the information gain. See5 always 

chooses the attribute with maximum information gain as the current root; such attributes 
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tend to be most discriminative or informative for classification at that point. The 

computations usually result in a small decision tree.

The three different decision tree learning algorithm methods used in this study are 

named (1) binary-dtree method, (2) info-top method, and (3) info-dtree method by Ling 

et al. (1997). 

Binary-dtree method: Kibler and Aha (1987) first presented a simple approach 

that uses the presence or absence of attributes in the decision tree to determine their 

weights. If an attribute is present in the decision tree, then its weight is 1, otherwise its 

weight is 0. The method is very efficient since it only involves running See5 over the 

input cases. Cardie (1993) used this method to improve case-based learning and pointed 

out that a strategy of considering the positions of attributes in the decision tree (such as 

in the info-top and info-dtree methods) may work better.

Info-top method: Rather than considering only attributes with the maximum 

information gain (i.e., those appearing in the tree), this method considers the 

information gain of all attributes at the top level; that is, the information gain of all 

attributes based on all the input cases.  Thus there is no need to construct the decision 

tree.  These information-gain values are used as the weights in the similarity assessment 

process. Clearly, the attribute with maximum information gain is assigned a maximum 

weight, but other attributes can have some smaller effects in the similarity assessment as 

well, rather than being completely ignored.

Info-dtree method: This method takes into account the location of the attributes 

in the decision tree.  Thus a decision tree is first constructed using the input cases. For 

each attribute, which may appear in several places in the tree, the weight is determined 

by taking the sum of its information gain at each appearance multiplied by the percent 

of input cases classified by that attribute.  For example, if an attribute appears three 

times in the tree, with information gain values of 0.9, 0.8, and 1.0 with 40%, 20%, and 

10% of the input cases classified by the attribute respectively, then the weight of this 

attribute is (0.9 × 0.4) + (0.8 × 0.2) + (1.0 × 0.1) = 0.62. Clearly, attributes at lower 

levels contribute less to their weight because the number of input cases they classify is 

smaller. This method, like binary-dtree, considers only the information gain of those 

attributes that appear in the tree.

The attribute weights obtained are used in Step 4 of the CBR simulation process.

Step 4.  Calculating Weighted Case Similarities – Case similarities are computed for 

each test case with respect to each input case by using the attribute similarities
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calculated in Step 2 and the attribute weights generated in Step 3. For positive weights 

and normalized similarities, the weighted case similarities are always between 0 and 1,

with a score of 1 indicating the case most similar to the test case and 0 the least.  

Weighted case similarities are computed according to the following formula:
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CS   for test case  m...,2,1,i   and input case  n....,2,1,j   for all    

                                     attributes p)...,2,(1,k                                                         (4.12)

                                                                                                   

where CSij= Weighted case similarity between test case i and input case j over all the 

attributes k, Sijk =  Similarity between test case i and input case j for attribute k, and wk

= Weight of attribute k (See Figure 3. 19 for spreadsheet calculations).

Step 5: Sorting Weighted Case Similarities and Corresponding Outputs – The highest 

weighted case similarity CSij for a test case i indicates the closest matching input case j 

in the casebase.  This operation is conducted (see Figure 3. 20) for each test case: 

                   ini2i1ij CS,...,CS,CSmax CSmax   for each i (i = 1, 2, … m)            (4.13)

Once the highest weighted case similarities are identified for respective test 

cases (see Column AA in Figure 3.20 and 3.19), the corresponding case numbers and 

outputs are also listed (see Columns AB and AC in Figure 3. 20).

Step 6: Calculating the Error – The outputs listed in the preceding step (Column AC in 

Figure 3.20) are compared with the respective actual outputs (Column AD in Figure 

3.20, same as Column H in Figure 3.13).  The differences constitute the errors and are 

listed in Column AE in Figure 3.20.  The average of the error values of all test cases is 

the overall error of the CBR process.
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Figure 3.19. Case similarity matrix for all test cases

1   T U V Y Z AA

2

3 Input Case No.
Highest
Score

4
Test Case 

No.
1 2 … n

5 Test Case 1 CS11 CS12 … CS1n CS1x

6 Test Case 2 CS22 … CS2n 

7 Test Case 3 CS31  … CS3n

8    

9     

10     

11     

12 Test Case m CSm1 CSm2 … CSmn

13

= MAX (T5:Z5)
Made once and 
copied down

=(SUM (B$2*K5,C$2*L5,D$2*M5,E$2*N5,F$2*O5,G$2*P5))/    
(SUM(B$2,C$2,D$2,E$2,F$2,G$2)
Made once and copied to all cells

CS21
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Figure 3.20. CBR outputs and calculating the error

1   AA AB AC AD AE

2

3
Highest
Score

Case 
No.

Output
Value

Actual 
Outputs

for
Test Cases

Error

4

5 Test Case 1 CS1x x Ox O1 x1E

6 Test Case 2 CS2y y Oy O2     y2E

7 Test Case 3    

8 

9 

11 Test Case m CSmz z Oz Om mzE

12 Eaverage

=ABS((100-((AC5*100)/AD5))/100)

=AVERAGE( 1xE , y2E , …, mzE )
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CHAPTER 4

FINDINGS AND DISCUSSION

ANN and CBR models and their integrated versions, which were developed in 

the previous chapter, are all tested by predicting the cost of the superstructure of 

residential building projects at an early design stage. Findings and analysis are 

presented in three sections. The first section analyzes the cost data used in this study. 

The second section includes the test results of the models of the case study and 

discussions of the findings. In the third section, a comparison of ANN and CBR Excel 

simulations are made.

4.1. Cost Data 

Data used in this study belongs to a research report that investigated the cost of 

the structural system of 29 building construction projects undertaken in İstanbul, Turkey 

(Saner 1993).  Analysis of the cost data revealed the main input parameters to be used in 

setting up the machine learning models. These parameters were the predominant cost 

drivers of the case (project) examples. The predominant cost drivers that could easily be 

identified in the early design stage were selected as the main parameters (Table 4.1) for 

modeling the machine learning techniques used in this study. They defined the 

buildings’ formal characteristics and the amount of material required for the structural 

construction of the building. The total area bears a strong linear relation to the total cost 

of the building; and while it considerably impacts the structural cost, the ratio of the 

typical floor area to the total area of the building also becomes an important factor 

influencing directly the vertical section area of the load bearing frame. This in turn 

defines the cost of beams and columns. The number of floors is also clearly another 

important factor for the structural cost for its effect on the cost of columns. The ratio of

the footprint area to the total area of the building is identified as one of the main key

structural parameters, as it can be considered to be correlated with the width and depth

of the foundation system. Foundations are classified as pier, wall or slab foundations to
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Table 4.1. Main parameters (attributes) used in the prediction models

Input 
Attribute

No
Attribute Range

1 The total area of the building 330 m2 – 3,484 m2

2
The ratio of the typical floor area to the 
total area of the building 

0.07 – 0.26

3
The ratio of the footprint area to the 
total area of the building 

0.07 – 0.30

4 The number of floors 4 – 8

5 The type of overhang design No overhang or one-way 

6 The foundation system Pier, wall, slab

7 The type of floor structure
Cast-in-situ concrete, 
precast concrete

8 The location of the core 
At the sides, in the 
middle

Output
The cost of the structural system per 
square meter 

$30/m2 – $160/m2
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determine the effect of the volume of concrete and the amount of reinforcement on the 

total cost. The core of the building is composed of the vertical circulation system 

including stairs, elevators and the service duct. The examples in this case refer to two 

different locations of the building core: either in the middle or at the sides. To 

counteract the torsion effect, the structural system demands extra shear walls for the 

building cores located at the sides, which increases the total cost of the structural 

system. The buildings are analyzed to have either one-way or no overhang. The floor 

type of the apartments, whether reinforced concrete floor systems or precast concrete 

structural units is also considered to affect the structural cost.

Besides the variables considered above, there are some other important variables 

that have not been taken into account in the ML modeling. Since the selection of input 

variables significantly impacts the accuracy of the ML predictions, one may obtain 

different or better results if other possible important input variables are studied. The 

variables that could be investigated include the total height and the roof type of the 

building, quality classification of structural materials (concrete and steel), the ratio of 

the area of curtain walls to the total area of the vertical construction, the ratio of the 

number of secondary beams to the total number of beams in a typical storey of the 

building, etc. However only the variables that can easily be identified in the early design 

stage are considered in the current study.

4.2. Results and Discussion 

ANN Results and Discussion 

The ANN-Excel template was modified to suit the development of a cost model 

of residential building projects. With the inputs and outputs defined (see Figure 4.1), 

relevant data were entered for each project. The records of twenty-nine projects in 

Saner’s (1993) study contain data on all the selected eight design variables and the 

corresponding cost of structural system per square meter. 
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Figure 4.1. Description of ANN inputs and outputs

1 OUTPUT
The cost of 

the structural 
system per 

square meter

8 INPUTS

I1: The total area of the building (m2)
I2: The ratio of the typical floor area to 
     the total area of the building
I3: The ratio of the footprint area to
     the total area of the building
I4: The number of floors
I5: The type of overhang 
     (0=no overhang or 
      1=one-way overhang)
I6: The foundation system 
     (0=pier 1=wall 2=slab)
I7: The type of floor structure
     (0: cast-in-situ concrete 
      1: precast concrete)
I8: The location of the core 
     (0: at the sides 
      1: in the middle) 

bias 
node

x1

x2

x8

y

The input layer

The hidden layer

The output
 layer

x3

bias 
node
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Using the described procedure  for simulating ANN on Excel (in chapter 3), the 

data for 29 projects were then entered into Excel as shown in Figures 4.2, 4.3, 4.4, 4.5 

and 4.6, with the qualitative values transformed into numbers according to the notations 

used in Figure 4.1. All ranges and matrices dimensions were modified according to the 

number of inputs, outputs, historical examples (past projects) and hidden nodes (i.e., 

N=8, O=1, P=21, and L=4, respectively). Using Solver and experimenting with various 

options on a trial and error basis, the resulting ANN weights were shown in Figure 4.4 

and 4.5. Figure 4.6 shows the average error, 4.6%, obtained when Solver was used to 

optimize the model weights. By using GA and varying Evolver settings on a trial and 

error basis during the optimization process, Evolver was able to come up with an overall 

weighted error of 11%, with 0.5 weight on the training set and 0.5 weight on the testing 

set. For back-propagation training NeuroSolutions was used and several training 

experiments were conducted to arrive at the best-trained ANN. In these experiments 

network parameters such as the number of hidden layers, the number of hidden nodes, 

network connections, and the transfer functions were changed and the best results was 

documented (For model modifications, see Günaydın and Doğan 2004). After training, 

the ANN predictions were compared with the actual costs of the test cases. The 

minimum error when using NeuroSolutions was 7%. 

The results of the ANN models using three different approaches for determining 

weights are presented in Table 4.2. The best overall model is the one produced by Excel 

Solver, providing excellent performance on both the training and test cases. While back-

propagation training produced a network with small errors on the training cases, it 

behaved relatively poorly on the test cases. GA, on the other hand, did not produce good 

results probably because of its random selection of the generated population. Despite 

the consistent performance of the GA’s model over the training and test cases, it 

exhibits a higher overall error. It is concluded, therefore, that the networks of simplex 

optimization and back-propagation training are most suited to the present case study.

CBR Results and Discussion

As an example application, the CBR-Excel template was populated by data 

collected from residential building construction projects.  With the input attributes and 

the output attribute defined, relevant data were then entered into the CBR-Excel model 
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Figure 4.2. Step 1: Original unscaled inputs  

A B C D E F G H I J

1
STEP 1: ORIGINAL UNSCALED INPUTS
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3
1

675 0.2 0.182 6 1 0 1 1 49.87

4 2 1425 0.2 0.2 6 0 0 0 1 52.95

5 3 330 0.2 0.2 6 0 0 0 1 37.78

6 4 2025 0.14 0.13 5 0 1 1 1 62.12

7 5 1670 0.16 0.16 4 1 0 1 0 79.61

8 6 2082 0.16 0.3 6 1 0 1 1 58.72

9 7 3484 0.07 0.07 6 0 1 0 1 65.13

10 8 1364 0.25 0.23 6 0 1 0 0 76.36

11 9 1568 0.26 0.25 6 0 1 0 0 85.55

12 10 2533 0.16 0.16 6 0 1 0 2 51.04

          

23 21 569 0.16 0.14 6 1 0 0 1 42.49

24 22 1156 0.13 0.095 6 1 1 0 1 41.24

25 23 1146 0.202 0.19 5 0 0 0 2 127.7

          

31 29 2528 0.13 0.096 8 1 1 0 1 43.98

32
Min Value

330 0.07 0.07 4 0        0 0 0 35.47

33 Max Value 3484 0.26 0.3 8 1 1 1 2 151.9

MIN(B3:B31)

MAX(B3:B31)

Training
Cases

Testing
Cases
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Figure 4.3. Step 2: Scaled inputs

A B C D E F G H I J
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bias 
1

41 1 0.78123 0.368421 -0.026087 0 1 -1 1 0 1

42 2 -0.305644 0.368421 0.130434 0 -1 -1 -1 0 1

43 3 -1 0.368421 0.130434 0 -1 -1 -1 0 1

44 4 0.074825 -0.263158 -0.478261 -0.5 -1 1 1 0 1

45 5 -0.150285 -0.052632 -0.217391 -1 1 -1 1 -1 1

46 6 0.110970 -0.052632 1 0 1 -1 1 0 1

47 7 1 -1 -1 0 -1 1 -1 0 1

48 8 -0.344325 0.894736 0.391304 0 -1 1 -1 -1 1

49 9 -0.214965 1 0.565217 0 -1 1 -1 -1 1

50 10 0.396956 -0.052632 -0.217391 0 -1 1 -1 1 1

          

61 21 -0.848446 -0.052632 -0.391304 0 1 -1 -1 0 1

62 22 -0.476221 -0.368421 -0.782609 0 1 1 -1 0 1

63 23 -0.482562 0.389473 0.043478 -0.5 -1 -1 -1 1 1

          

69 29 0.393785 -0.368421 -0.773913 1 1 1 -1 0 1

2*(B3-B$32)/(B$33-B$32)-1
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Figure 4.4. Step 3: Weight of links from 8 inputs to 5 hidden neurons

74 STEP 3: WEIGHTS OF LINKS FROM 8 INPUTS AND A BIAS TO 5 HIDDEN NEURONS

75 1 1.029 1.000 1.0310 0.998 1.001 -5.866 1.113 0.993 0.921

76 2 0.830 2.685 0.5498 -0.78 1.338 0.712 -0.721 0.515 -0.43

77 3 0.206 1.501 0.9296 0.035 -1.529 0.133 0.134 3.240 0.783

78 4 -0.847 3.662 4.6076 1.573 3.119 3.497 -0.239 -1.162 2.918

79 5 0.1200 2.7294 2.9047 0.281 3.460 1.255 -0.770 0.838 1.727
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                            Figure 4.5. Step 4: Outputs of hidden neurons and
                                              Step 5: Weights from 5 hidden   neurons to 1 output neuron

A B C D E F G H I

83                     STEP 4: Outputs of hidden neurons

84
 Project

No 1 2 3 4 5 Bias 
2

85 1 0.999999 -0.204478 -0.36117 0.9995430 0.9993270 1

86 2 0.999880 -0.744214 0.990207 -0.848484 -0.701478 1

87 3 0.999500 -0.911489 0.986969 -0.580060 -0.741386 1

88 4 -0.999988 -0.980030 0.940175 -0.744563 -0.998134 1

89 5 0.999995 -0.569430 -0.99965 0.6764327 0.8479233 1

90 6 1 -0.033210 0.127449 0.9999964 0.9999861 1

91 7 -0.999999 -0.991813 0.088833 -0.999971 -0.999941 1

92 8 -0.999998 0.900371 0.609595 0.9999999 0.9949690 1

93 9 -0.999996 0.961079 0.783645 1 0.9989984 1

94 10 -0.999986 0.237973 0.999955 0.6872906 0.3832194 1

       

105 21 0.999954 -0.150388 -0.92635 0.9056252 0.9973980 1

106 22 -0.999997 0.477334 -0.97192 0.9999418 0.9991446 1

107 23 0.999926 -0.185502 0.999981 -0.997652 -0.370278 1

       

113 29 -0.999869 0.428230 -0.95645 0.9999899 0.9996242 1

116 STEP 5: Weights from 5 hidden neurons to 1 output neuron

117 1 -1.259155 -2.92964 1.4595452 -5.296362 7.8224082 -2.2764

=TANH
(SUMPRODUCT
(B41:J41,B$75:J$
75))
Formula once 
made and copied 
down to cells

=TANH(SUM
PRODUCT
(B41:J41,B$79:
J$79))
Formula once 
made and 
copied down to 
cells
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Figure 4.6. Step 6: NN outputs and Step 7: Errors

A B C D E F G H

120 Step 6: NNs Output Step 7: Errors

121
 Project

No

NN 
Output

NN 
Output 
Scaled 
Back

Actual 
Output

% Error

122 1 -0.735417 508760 498784 2.000000

123 2 -0.717854 518987 529578 2.000000

124 3 -0.973291 370239 377795 2.000000

125 4 -0.563673 608771 621195 2.00000

126 5 -0.269351 780162 796083 2.000000

127 6 -0.620769 575522 587268 2.000000

128 7 -0.468101 664424 651397 2.000000

129 8 -0.271563 778874 763602 2.000000

130 9 -0.169210 838476 855588 1.999999

131 10 -0.715012 520642 510434 1.999999

      

142 21 -0.893980 416424 424923 1.999999

143 22 -0.865417 433057 412435 5.000000

144 23 0.6936738 1340957 1277101 5.000000


     

151 29 -0.816011 461828 439836 5.000000

152

153 Error on 21 cases 0,046457

154 Error on 8 cases 0,045976

155

=TANH(SUMPRODUCT
(D85:I85;D$117:I$117)
Formula made once and 
copied to the down cells

=D(122+1)($J$33-$J$32)
/2+$J$32
Formula made once and 
copied to the down cells

=ABS
((F122-G122)*100/G122)
Formula once made and 
copied down
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Table 4.2. Average error percentages for ANN models

Methods  
for determining
 ANN  weights

Average error
 in 

ANN prediction 

Simplex optimization 4%

Back-propagation 
(gradient descent)

7%

Genetic Algorithms 
(GA)

11%
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using the procedure described in Figure 3.13, 3.14, 3.18 and 3.19. A set of test cases 

were used to evaluate the effect of the attribute weights generated by all six methods 

(Figure 3.15 3.16, 3.17, 4.11), the dataset of 29 projects being randomly split into an 

input set containing 24 projects, and a test set containing 5 projects. In other words, 

CBR-Excel simulation described in chapter 3 was modified as follows: there were  

5)(m...,2,1,i   projects that were used as test cases, 24)(n...,2,1,j  projects as 

input cases, 8)(p...,2,1,k  input attributes, and one output.  The impact of the six 

sets of attribute weights was evaluated using the same test set of 5 projects.

The next step was to set up the Excel template to calculate attribute weights.  

The overall error obtained in CBR is a function of attribute weights.  The attribute 

weights were generated by using (1) the feature counting method, (2) the gradient 

descent method (3) genetic algorithms, (4) binary-dtree method, (5) info-top method, 

(6)info-dtree method. The attribute weights obtained (Table 4.3) were input into the 

CBR-Excel application.

For the methods using decision tree learning algorithms, See5 was used to 

generate attribute weights for the CBR model. The decision tree constructed by See5 is 

presented in Figure 4.11.  Each branch node (oval shape) in the decision tree represents 

an attribute, and the branches correspond to the possible values of the attribute. Each 

leaf node (rectangular shape) represents a decision or a class (Table 4.4). The attribute 

weights obtained by using decision trees (Table 4.3) were put into CBR-Excel 

application (Figure 4.7, 4.8, 4.9 and 4.10) similar to the other sets of weights generated 

by other methods mentioned. 

After the attribute weights were determined by using feature counting, gradient 

descent, GA, and ID3 (decision tree) learning algorithm methods (binary-dtree, info-top 

and info-dtree), the CBR-Excel model was run and the performance of the model was 

evaluated vis-à-vis each method. The results presented in Table 4.3 indicate that the 

GA-augmented CBR model yielded an average error of 16.23% whereas feature 

counting+CBR and info-top+CBR yielded an average error of 17.63% and binary- dtree
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Figure 4.7. Formatting data to a case spreadsheet

1 A B C D E F G H I J

2 Weights w1 w2 w3 w4 w5 w6 w7 w8

3 TEST CASEBASE

4 Input Attributes

5

Test 
Case 
No. 1 2 3 4 5 6 7 8

Output
Attribute

6 1 2969 0.14 0.120 7 no
cons

middle RC slab 109.35

7 2 1238 0.16 0.160 5 no
cons

sides RC slab 37.66

8 3 2082 0.16 0.300 6 one-
way

sides
pre-
cast

wall 58.72

9 4 2528 0.13 0.096 8 one-
way

middle RC wall 43.98

10 5 1172 0.16 0.160 4 no
cons

middle RC slab 74.84

11

12 INPUT CASEBASE

13 Input Attributes

14

Input 
Case 
No. 1 2 3 4 5 6 7 8

Output
Attribute

15 1 675 0.20 0.182 6 one-
way

sides
pre-
cast

wall 49.87

16 2 2861 0.16 0.080 7 no
cons

middle RC slab 62.70

17 3 330 0.20 0.200 6 no
cons

sides RC wall 37.77

18 4 1425 0.20 0.200 6 no
cons

sides RC wall 52.95

19 5 964 0.17 0.150 5 one-
way

middle RC slab 103.04

20 6 1314 0.15 0.140 6 no
cons

sides RC wall 37.97

21 7 3484 0.07 0.070 6 no
cons

middle RC wall 65.13

22 8 1364 0.25 0.230 6 no
cons

sides RC pier 76.36

23 9 1568 0.26 0.250 6 no
cons

middle RC slab 85.55

24 10 2533 0.16 0.160 6 no
cons

middle RC slab 51.04

          

38 24 1518 0.13 0.120 7 no
cons

sides RC wall 36.38

39
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                  Figure 4.8. Attribute similarity matrix for Test Case 1
                                     (5 similar matrices are generated, one for each of the 5 test cases)

1 K L M N O P Q R S

2

3                                  Input Attributes

4

Input 
Case
No. 1 2 3 4 5 6 7 8

5 1 0.227 0.700 0.659 0.857 0 0 0 0

6 2 0.964 0.875 0.667 1.000 1 1 1 1

7 3 0.111 0.700 0.600 0.857 1 0 1 0

8 4 0.480 0.700 0.600 0.857 1 0 1 0

9 5 0.325 0.824 0.800 0.714 0 1 1 1

10 6 0.443 0.933 0.857 0.857 1 0 1 0

11 7 0.852 0.500 0.583 0.857 1 1 1 0

12 8 0.459 0.560 0.522 0.857 1 0 1 0

13 9 0.528 0.538 0.480 0.857 1 1 1 1

14 10 0.853 0.875 0.750 0.857 1 1 1 1

         

28 24 0.511 0.929 1.000 1.000 1 0 1 0

29

=IF(F6=F$15,“1”,“0”)
Made once and copied for all cells 
with textual information

=MIN(B6,B$15)/MAX(B6,B$15)
Made once and copied for all cells 
with numerical information
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 Figure 4.9. Case similarity matrix for all test cases

1 T U V W X Y Z AA AB AC AD AE AF AG

2

3 Input Case No.

4

Test 
Case 
No. 1 2 3 4 5 6 7 8 9 10 … 24

Highest 
Score

5 1 0.283 0.939 0.418 0.470 0.724 0.525 0.637 0.440 0.799 0.920 … 0.566 0.939

6 2 0.505 0.691 0.616 0.700 0.706 0.737 0.398 0.673 0.722 0.771 … 0.676 0.961

7 3 0.833 0.343 0.658 0.731 0.431 0.717 0.481 0.503 0.381 0.403 … 0.693 0.833

8 4 0.579 0.605 0.499 0.560 0.587 0.606 0.740 0.317 0.463 0.581 … 0.660 0.898

9 5 0.352 0.815 0.460 0.536 0.834 0.572 0.520 0.509 0.840 0.892 … 0.515 0.984

10

=(SUM(B$2*L5,C$2*M5,D$2*N5,E$2*O5,F$2*P5,G$2*Q5,H$2*R5,I$2*S5))/ 
(SUM(B$2,C$2,D$2,E$2,F$2,G$2,H$2,I$2)
Made once and copied to all cells of the matrix

= MAX (U5:AF5)
Made once and copied down

73
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Figure 4.10. CBR outputs and error

1 AH AI AJ AK AL AM

2

3
Test 
Case 
No.

Highest
Score

Input 
Case 
No.

Output
Value

Actual 
Outputs 
for Test 
Cases

Error

4 1 0.939 18 62.70 109.35 0.43

5 2 0.961 21 41.58 37.66 0.10

6 3 0.833 1 49.87 58.72 0.15

7 4 0.898 11 41.24 43.98 0.06

8 5 0.984 2 64.50 74.84 0.14

9 0.176

=ABS((100-((AK4*100)/AL4))/100)
  Made once and copied down

=AVERAGE(AM4:AM8)
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Foundation 
system

Wall
SlabPier

Overhang 
design

Core 
location

  $40 < cost ≤ $50

No overhangOne-way

  $70 < cost ≤ $80

Core 
location

Sides Middle

  $30 < cost ≤ $40   $60 < cost ≤ $70

Sides Middle

Ratio of typical
floor area to total

area of the building

  $60 < cost ≤ $70

$60 < cost ≤ $70

Ratio ≤ 0.16

$100 < cost ≤ $110

Ratio > 0.16

   

                 
                                       

Figure 4.11. Decision tree constructed by See5 according to the output attribute classes in Table 4.4.

75
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Table 4.3. Optimized attribute weights for CBR Excel model and average error percentages 

Attribute Weights
Weight 

Generation 
Method Total area

Ratio of 
floor area to 

total area

Ratio of 
footprint 

area to total 
area

Number of 
floors

Overhang 
design

Core 
location

Floor type
Foundation 

system

Average 
error in CBR 

prediction 

Feature 
Counting

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 17.63%

Gradient 
Descent

0.0069 0.1885 0.1528 0.1427 0.1049 0.1560 0.0316 0.2161 21.20%

Genetic 
Algorithms

1.0000 2.0056 1.0010 9.9988 1.0031 1.0000 3.9999 1.0000 16.23%
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Table 4.3. (continued) Optimized attribute weights for CBR Excel model and average error percentages 

Attribute Weights
Decision 

tree method 
of weight 
generation Total area

Ratio of 
floor area 

to total area

Ratio of 
footprint 

area to total 
area

Number of 
floors

Overhang 
design

Core 
location

Floor type
Foundation 

system

Average 
error in 
CBR 

prediction 

Binary-dtree 0 1 0 0 1 1 0 1 20.70%

Info-top 0,387129 0,451902 0,439009 0,355676 0,509398 0,511249 0,189805 0,783560 17.63%

Info-dtree 0 0,204025 0 0 0,243221 0,604721 0 0,783560 20.70%

77



78

Table 4.4. Classes specified for output attribute of cost per square meter

Class
No

Cost

1 $30/m2 < Cost   $40/m2

2 $40/m2 < Cost   $50/m2

3 $50/m2 < Cost   $60/m2

4 $60/m2 < Cost   $70/m2

5 $70/m2 < Cost   $80/m2

6 $80/m2 < Cost   $90/m2

7 $90/m2 < Cost   100/m2

8 $100/m2 < Cost   $110/m2

9 $110/m2 < Cost   $120/m2

10 $120/m2 < Cost   $130/m2

11 $130/m2 < Cost   $140/m2

12 $140/m2 < Cost   $150/m2

13 $150/m2 < Cost   $160/m2
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+CBR and info-dtree+CBR had average errors of 20.70%; and the gradient 

descent+CBR had average error of 21.20%.

The setting up of the attribute weights in the feature counting method was 

straight forward in that all weights were taken as 1. In the gradient descent method, the 

experimentation between the arithmetic and geometric decrementation approach showed 

that the geometric approach resulted in better predictions.  Default parameters were used 

for all other factors following the recommendations of the software developer (Esteem 

1994).

GA optimization could have been performed with multiple “evaluation cases.”  

But the selection of five test cases out of a total of 29 limited the number of cases in the 

input casebase to as few as 24, which in turn necessitated the selection of very few 

“evaluation cases” (see Figure 3.16), in this study only one.  Finally, in the GA 

optimization process, the weight of each attribute was constrained between 1 and 10.  

Using a range of 0 to 10 rather than 1 to 10 could have had the effect of eliminating 

certain attributes, hence making the process more efficient.  It is worth exploring this 

issue in future research.

After the first cycle of the GA optimization process, the “evaluation case” was 

returned to the input casebase and the next case picked for the next cycle of GA 

optimization.  In other words, every input case in the input casebase was used once as 

an “evaluation case.”  Since the similarity of two identical cases is indicated by 1 in the 

CBR system, the objective function of the GA optimization was set to make the case 

similarities closer to 1.

Three different approaches were experimented in the GA optimization process to 

improve prediction accuracy.  In the first approach, the objective of GA optimization at 

every cycle was to maximize the weighted case similarity of the input case that had the 

highest similarity with the “evaluation case.”  In the second approach, the objective was 

to maximize the average weighted case similarity of all the 23 cases that were 

considered at each cycle.  The third approach involved maximizing the weighted case 

similarity of the input case whose output was closest to the output of the “evaluation 

case.”  The GA optimization process was performed for 24 cycles, each using these 

three approaches.  The averages of the attribute weights determined in these 24 cycles 

were used in the CBR prediction model.  The optimized attribute weights were 

calculated as follows:
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where  k = 1, 2, … , 8 attributes and n = 24 input cases

The setting up of the attribute weights in the binary-dtree method was straight 

forward in that the attributes appearing in the decision tree (the foundation system, the 

type of overhang design, the location of the core, and the ratio of the typical floor area 

to the total area of the building) (see Figure 4.11) were weighted as 1, whereas the 

attributes that did not appear in the tree (the total area of the building, the ratio of the 

footprint area to the total area of the building, the number of floors, the type of floor 

structure) were weighted as 0, as seen in Table 4.3.  In the info-top method, all of the 8 

attributes were given weights according to their information gain values.  The attribute 

with the highest information gain value is selected as the root of the decision tree by 

See5.  In this study, the foundation system with the information gain value of 0,783560 

was selected as the root (see Figure 4.11). The information gain values of all the 

attributes (i.e., their weights) are presented in Table 4.3.  In the info-dtree method, the 

attributes that appear in the tree constructed by See5 (Figure 4.11) were given weights 

in consideration of their information gain values and their positions in the tree.  For 

example, the attribute “console direction” appeared twice in the tree, with information 

gain values of 0.750 and 0.918 with 50% and 25% of input cases classified by the 

attribute respectively; the weight of this attribute is calculated as (0.750 × 0.5) + (0.918 

× 0.25) = 0.6045. The weights of the attributes in the decision tree were calculated using 

the same principle and are presented in Table 4.3.

As discussed by Ling et al. (1997), if the number of input cases is small, See5 

constructs an overly simple decision tree, overlooking relevant attributes. In the case 

study presented in this paper, there were 3 continuous and 5 discrete attributes but only 

29 cases. Because 5 cases had to be used as test cases, only 24 cases were left as input 

cases.  As a result, See5 constructed a tree that included only four attributes.  When this 

happens, the performance of the binary-dtree and info-dtree methods (which consider 

only the attributes in the decision tree) is bound to be worse than the info-top method 

(which considers the information gain of all attributes).  It was therefore not surprising 

to find out that binary-dtree + CBR and info-dtree + CBR did not generate predictions 
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that are as strong as the prediction generated by the info-top + CBR alternative because 

they only use the attributes that appear in the decision tree and therefore do not take into 

account the information gain of the other relevant attributes even though it is likely that 

such information gain affects the classification of some cases used in the study. Our 

findings support the conclusion of Ling et al. (1997) that info-dtree and binary-dtree are 

immune to irrelevant attributes, and that info-top is suitable for situations where there 

are not enough input cases and where all attributes may be relevant.

On the other hand, it was surprising to see that binary-dtree + CBR performed as 

good as info-dtree + CBR.  After all, info-dtree is considered to be a more sophisticated 

method than binary-dtree that assigns a weight of 1 to all attributes in the decision tree, 

regardless of their position in the tree ( Ling et al. 1997).  While binary-dtree was found 

to be as effective as info-dtree in this case study, it must be noted that a limited number 

of input cases were available.  The performance of the info-dtree method could possibly 

improve with larger numbers of input cases.

The performance of the optimized attribute weights were tested on the five test 

cases. Out of the six approaches, GA approach performed best. The attribute weights 

presented in the last row of Table 4.3 were obtained by using the GA approach.

One of the reasons why the average errors obtained (last column in Table 3) 

were not very low had to do with the nature of the output attribute. The output of the 

cases considered in this study was the unit cost of construction of the superstructure and 

its value ranged between $30 and $160/m2 (see Table 4.1 and Table 4.4).  In order to 

have high prediction accuracy, one should have at least two or more cases with not only 

quite similar input attributes but also almost identical outputs, which is most improbable 

given the small number of cases (total 29) that were available for this study and the 

wide range of unit costs associated with the cases considered.  The average errors 

reported in this study could have been lower had the output variables been binary or had 

there been a larger number of cases with an output attribute whose value varied in a 

smaller range.

4.3. Comparison of ANN and CBR Excel Simulations

This study has evaluated ML techniques of ANN and CBR and their integrated 

(augmented) forms, which were used to make cost estimations. These have been 
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compared with their prediction accuracy. However, there are other characteristics of 

these techniques that will have an equal, if not greater, impact upon their adoption. 

Below the relative merits and demerits of those are discussed. In light of the studies 

conducted with both ANN simulation and CBR simulation, five factors are considered 

to assess their utility: preprocessing effort, configurability, explanatory value, accuracy 

and improvement potentials. 

4.3.1. Preprocessing Effort for Conversion of Data

Data consist of cases and their related features. The content could be both in 

numerical and textual values. The techniques of handling data for ANN and CBR 

systems are different. The ANN system can only handle numerical values, which also 

need to be scaled to a certain range. Conversions of numerical and textual input data are 

essential to suit ANN processing. (The numerical values are often scaled to a range from 

[-1,1] for tanh activation function to avoid fluctuations in the mathematical calculations 

of an ANN system.) Although both CBR and ANN systems require the organization of 

data into a matrix form to suit the Excel format, the ANN system needs 3 more steps in 

this procedure in order to be able to process input data and produce meaningful output 

data. This certainly brings additional preprocessing effort for organization of data. The 

spreadsheet simulations bring the advantage of transparency, however they cannot avoid 

the considerable time required to build them up, when compared with commercial 

software. Therefore, the ANN system may be less advantageous when dealing with a 

large data set. Then it is easier to use CBR which handles cases in their original 

representations, without converting from one type to another. This may also be 

important in order to prevent loss of information since learning performance may 

deteriorate when modified data are used (Reich 1997). In this study, the building cost 

data were in the form of both numerical and textual values. Features expressed as text 

were used in the CBR study. Textual data were subjected to numerical transformation in 

a continuous manner in the ANN study; the numerical data were reduced to a range [-

1,1] with a linear scaling formula.
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4.3.2. Configurability in Spreadsheet Format

The second major factor in comparing ANN and CBR prediction systems for this 

simulation study is configurability, in other words how much effort is required to build 

the prediction system in order to generate useful results. Considering the preprocessing 

effort mentioned previously for conversion of data, CBR needs relatively little effort. 

However, model building is a more complex issue than entering and converting data. 

The ANN model needs specifying the number of hidden layers, hidden neurons, bias 

nodes, a learning algorithm and a transfer function for the Excel format, whereas CBR 

only needs specifying the feature and case similarity functions. These variables are the 

tools of modeling, which analyst uses to find the optimum combinations and results. 

Although various sets of books have been published on ANN modeling, the process is 

agreed to be largely one of trial and error. Therefore, it is obvious that it takes 

considerable effort to configure the neural network architecture and it certainly requires 

a fair degree of expertise. For this reason, it is difficult to see how an ANN model could 

easily be built up within the spreadsheet format by analysts, where the analyst has to 

manually enter all the values, build up the model, evaluate the performance and then 

accordingly rebuild the model again and again until he/she gets an optimum solution. 

This is generally related with the burden of the training process of an ANN system. 

However, the burden could be intolerable in a spreadsheet format. CBR, on the other 

hand, does not require the combinations of parameters to build up its prediction model. 

Since it does not predict from scratch, but retrieves cases from a case-base, it uses 

simple feature similarity and case similarity formulas, which can be made once in Excel 

and easily copied to all cells thereafter. 

4.3.3. Accuracy for Cost Prediction

Not generating data from scratch but adjusting from a case-base enhances the 

configurability of CBR in Excel format, but it appears to be a disadvantage in this 

particular study since there are only few examples to store in the case-base. 

Consequently in this study, the ANN model was able to produce closer cost values to 

actual costs than the CBR model (see Table 4.2 and Table 4.3). It was obvious that even 

though, CBR had worked with full efficiency and selected the closest cost value, it 



84

definitely would never have been able to predict better than what existed as the closest 

cost in its case-base. Although several methods by utilizing highest score ranks were 

applied in order to get closer predictions, none produced better results. If the neural 

network paradigm is suitable for the data available, a key aspect of many ANN models 

is that they are able to learn, and their behavior may improve with training and 

experience (Barrow 1996). In this case this advantage of ANN provided superior 

prediction results over CBR.

4.3.4. Explanatory Value

Although ANN models are great learners, almost like humans, the rules behind 

their judgment is not explainable. One attraction of the transparent spreadsheet 

simulations carried out in this study is that the analyst is able to see and control all the 

formulas and connections being used by the prediction system. However, in an ANN 

system if a particular prediction is in some sense surprising to the analyst, it is harder to 

establish any rationale for the value generated. It is difficult to evaluate the outcome of 

an ANN study merely by studying the network architecture and neuron weights. By 

comparison, CBR appears to offer an advantage in this respect. Unlike reducing error by 

weight generation through back-propagation learning in ANN, CBR estimates by 

analogy. Cases are ordered in degree of similarity to the target case by utilizing 

similarity assessment methods calculated by assigning weights to the related features. 

Indeed, above the explanatory value, this technique encourages the participation of the 

analyst for getting better and effective predictions. 

4.3.5. Improvement Potential via Integration of Other Methods

For better and effective predictions, weights are the important adjustable 

variables that can be freely manipulated on an Excel spreadsheet. Both in ANN and 

CBR, the weights of the variables are the adjusted in order to build up the optimum 

prediction system. Therefore, the improvement potential of these models are strongly 

tied to how realistic the weight of the variables are. In the studies of ANN and CBR, 

cited in Chapter 3, the optimization of the weights is done by well established methods 

(described in Chapter 3).



85

 When comparing the model building effort for the two systems, it was 

mentioned that the primary advantage of CBR over ANN was that a CBR application 

did not need to be trained (Kasravi 1994). On the other hand, in the GA/CBR study, the 

selection of the weights for the similarity assessment method turned not to be an 

important operation, which consumed as much time as the training procedure of the 

ANN model. By comparison, GA integration in ANN is a simpler procedure, which is 

carried out only once for the whole training cycle. On the other hand, weight generation 

in CBR is a critical issue on which the success of the CBR technique heavily relies. The 

GA optimization for feature weights in this CBR study was carried out once for each 

case in the case base in order to get the most benefit out of their integration. 

For the study carried out with GA/ANN, the GA optimization of weights was 

not more successful than the simplex optimization method or back-propagation training 

(Günaydın and Doğan 2004, Doğan et al. 2005c). However, GA offered several 

improvements in the GA/CBR study. GA was able to reduce the effect of less important 

features; and it was able to eliminate the unimportant features when constraints were 

scored on a scale starting with 0. This means that if a feature is of no importance, it was 

assigned a 0 weight by GA. In the study carried out by Doğan et al. (2005a) it was 

found out that every feature could somewhat improve the prediction accuracy, so the 

constraints were set to begin from 1. Irrelevant features for ANN models are also an 

important problem investigated lately by Shi (2004). 

The feature counting method which assigns weight values of 1 to all attributes 

required no effort on the part of this researcher. But all the other methods (decision tree 

learning algorithms, gradient descent and GA) required a far greater effort to generate 

the optimized weights that were later plugged into the Excel model. The ANN model 

was more welcoming than CBR when the Excel add-in programs were used to 

determine ANN weights. 

Whatever mechanism is being utilized, it is clear that although accuracy is the 

most important concern, it is not sufficient to consider the accuracy of prediction 

systems in isolation. The consistency (explanatory value), continuity (configurability 

and preprocessing effort) and improvement of the systems are also of great importance. 
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4.3.6. Conclusions

CBR and ANN models were used by Doğan et al. (2005a, 2005b); and Günaydın 

and Doğan (2004) and Doğan et al. (2005c), respectively, to predict the early cost 

estimate of residential building projects. A comparison of the experiences with the 

development of CBR and ANN models shows the following:

 The case study used in the models to compare ANN and CBR indicates 

that augmented ANN and CBR models by different weight generation 

methods may make better predictions than standard methods provided by 

commercial software of ANN or CBR (Doğan et al. 2005a, 2005b, 

2005c). However, in both cases, the model building process is 

unnecessarily cumbersome for Excel simulations. Even after the systems 

are designed, when they need to be updated with new cases for the long-

term use of these models, it is even more cumbersome since all the 

model building process should be repeated and tested with each update. 

This is the reason that the automation is importantly needed. Currently, 

there is no commercial software like GA-CBR. However Jarmulak et al. 

(2000) reported working such integration on the CBR software ReCall 

(1993). For the ANN system, some software is supported by genetic 

training, e.g., NeuroShell (2002). Augmenting CBR weights with 

different decision tree learning algorithm methods is discussed in some 

articles (Ling et.al. 1997) published in the computer science field; but 

there is no software designed for their integration as yet. The CBR 

software Esteem only supports a limited part of this kind of integration 

just by considering the numerical attributes. When input attributes of data 

include textual information, Esteem is unable to take those attributes into 

consideration when performing its prediction. 

 Even after the release of integrated software, more research should be 

carried out for different data sets because specific recommendations are 

needed as to which approach could be more appropriate in what type of 

domain [for what type of output (numeric, textual, binary, etc...)] or for 
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what type of input data (i.e. number of inputs /attributes and training and 

retrieving case numbers). This type of guideline would be of great help to 

the developers of prediction models.

 The early stage cost estimation effort conducted by using different 

machine learning applications has a number of distinct characteristics 

compared to other prediction problems. First, the training set is 

comparatively small. Second, the predictions generally have a higher 

degree of significance to the analyst. This has the consequence that 

interaction or collaboration, between the prediction system and the 

analyst is of great importance. Allowing the analyst to participate in the 

prediction process by utilizing spreadsheet simulations may lead to two 

beneficial effects. First, it may enhance accuracy. Analysts may provide 

some kind of sanity check on the systems, while the system allows them 

to manipulate far more characteristics manually than would be possible 

by commercial software. Second, it may increase confidence in the 

prediction. This consideration is also important in order to avoid the 

situation where end-users reject a prediction system. 

In this dissertation two machine learning techniques augmented with various 

weight generation methods for predicting early cost estimation of superstructure of 

buildings were compared. These techniques were compared in terms of preprocessing 

effort, accuracy, explanatory value, configurability and improvement potentials. Despite 

finding that there are differences in prediction accuracy levels, it is argued that it may be

the other characteristics of these techniques that may have an impact upon their 

adoption. It was found that the explanatory value of estimation by analogy gives CBR 

an advantage when considering its interaction with the analyst and end-users. It was also 

found that problems of configuring neural networks tend to rather counteract their 

superior performance in terms of accuracy. This preliminary research has shown that the 

machine learning (ML) techniques used in this study are locally significant but are not 

generalizable. It is believed that it is important to further investigate these ML methods, 

particularly to explore under which conditions they are most likely to be effective.
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CHAPTER 5

CONCLUSIONS 

This dissertation has presented the developments and findings of ANN and CBR 

models for the prediction of unit structural cost of residential buildings. For doing so, 

the basics of artificial neural networks and cased reasoning processing are analyzed in 

the context of cost prediction. An ANN spreadsheet model has been developed based on 

Hegazy and Ayed’s (1998) Excel template. A CBR Excel model has been developed 

following the spreadsheet based user interface of a commercial CBR software (Induce-

It, 2000). Cost data belonging to residential buildings in İstanbul have been used to test 

the models. An investigation of the impacts of weight generation methods on the ANN 

and CBR models in the building cost prediction domain has been conducted. Various 

methods including simplex optimization, back propagation training, and genetic 

algorithms for ANN and feature counting, gradient descent, genetic algorithms (GA), 

binary-dtree, info-top and info-dtree for CBR model have been used. Thus, the two 

main Excel models of ANN and CBR developed in this study produced nine different 

models. Spreadsheet structures of the developed ANN and CBR models made them 

flexible for weight generation alterations and further development. 

This research provides contributions in several areas. The following paragraphs 

itemize conclusions and major identifiable tasks that have been accomplished. At a 

global level, this dissertation developed a unique methodology by using machine 

learning (ML) methods for improving cost prediction at the early design stage of 

building construction. The following are the research findings, the conclusions and 

contributions:

1. The review and the results of the study show that cost prediction at 

the early design stage can be enhanced by major breakthrough 

developments in machine learning (ML) domain. Architects and 

project managers involved in the process of building design and 

construction may take advantage of ML techniques for higher cost 

prediction accuracy and therefore for higher quality in building design 

and construction processes.
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2. The study has been able to introduce alternative approaches of using 

ANN and CBR models for higher cost prediction of the structural 

system at the early stages of the building design process. Both of the

approaches have been capable of providing high prediction accuracy 

(96% for ANN using simplex optimization for weight determination, 

84% for CBR using GA for attribute weight selection) for building 

cost per square meter by using eight parameters available at the early

design phase. Both models establish a methodology that can provide 

an economical and rapid means of cost prediction for the structural 

system of future building design processes.

3. Development of the models demonstrated the practicality of using 

spreadsheets in developing ANN and CBR for use in construction 

management. A spreadsheet simulation of an artificial neural network 

model developed by Hegazy and Ayed (1998) was the motivation of 

the investigation. The use of spreadsheets and development of ANN 

and CBR models in Excel have brought several benefits to the 

development process and presumably to the end user. This also 

indicates that the nature of the model development process in this 

study actually makes a unique difference in ML employment. It was 

possible to simulate the ANN and CBR processes in a transparent 

form, and further optimize them using spreadsheet availabilities. 

4. The Excel simulations of ANN and CBR present these models as 

viable tools for use in construction by adjusting the developed 

templates to other applications. ANN and CBR Excel templates can 

be modified, populated with different sets of data and used in other 

areas of building construction such as quality, productivity, 

constructability, value engineering, scheduling, etc. 

5. Spreadsheet programs have been among the most easy-to-use 

software programs that include powerful data management 

capabilities, since their introduction in early 1980s. Therefore, the use 

of spreadsheets in construction has been customary to many 

practitioners. Furthermore, users can also select among many add-in 

modules available on the market to extend spreadsheet capabilities. 

This study has used Solver and Evolver add-ins to Microsoft Excel to 
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improve weight generation abilities of ANN or CBR models.

Additionally, the weights generated by other commercial softwares 

(Esteem and See5) have been easily plugged into these Excel models, 

which have facilitated integration and evaluation of different methods. 

6. ANN learns from examples. The performance of an ANN model of 

cost prediction strongly depends on the quality and the quantity of 

examples. The more examples there are, the less the prediction error 

is. Thus, to study modeling and prediction methods in ANN, and 

construct an accurate prediction model of building costs, there is a 

need for reliable, highquality, full-scale cost data of buildings of 

various types and conditions. Though the data selected for this model 

were limited in scope, the results are encouraging for further research

of expanded data sets.

7. CBR prediction model also depends on the examples in its casebase. 

CBR cost model performed well despite the fact that the number of 

cases in the casebase was small and the output attribute was not 

binary. Both the CBR prediction and the GA optimization of CBR-

GA model suffered from the fact that not many of the 29 cases 

considered in the study had input attributes and outputs that were 

close to each other. The likelihood of seeing stronger similarities is 

much higher if the number of cases is substantially higher than 29. 

8. ANN was used in this study to develop a prediction model where its 

connection weights were determined by three different approaches, 

namely simplex optimization, back propagation training and GA. 

Based on this experimentation; the simplex optimization produced the 

best ANN model. CBR was used in this study to develop a prediction 

model where attribute weights were generated by means of six 

different techniques, namely feature counting, gradient descent, GA 

and three methods of induction decision trees (ID3). The results 

indicated that GA-augmented CBR performed better than CBR used 

in association with the other techniques. Despite the limitation of data 

cited above, the study is of benefit to researchers as it illustrates the 

importance of weights as variables in the performance of both ANN 

and CBR prediction tools. It also indicates that it is worth 
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experimenting with different weight generation methods rather than 

being confined by the standard methodologies provided by ANN and 

CBR software.

9. The findings of ANN weight determination approaches show that GA 

optimization did not generate ANN predictions as strong as the 

simplex optimization method. The results of the ANN models using 

three different approaches for determining weights are presented in 

Table 4.2. The best overall model is the one produced by Excel 

Solver, providing superior performance on both the training and test 

cases. While back-propagation training produced a network with 

small errors on the training cases, it behaved relatively poor on the 

test cases. GA, on the other hand, did not produce good results 

probably because of its random selection of the generated population. 

Despite the consistent performance of the GA’s model over the 

training and test cases, it exhibits a higher overall error. Therefore, it 

can be concluded that the networks of simplex optimization and back-

propagation training are most suited to the present case study.

10. The findings of the CBR weight generation methods show that feature 

counting + CBR did not generate predictions that are as strong as the 

prediction generated by the GA + CBR because feature counting 

assigns equal weights to the attributes and therefore does not take into 

account the differences in importance of the attributes even though it 

is likely that such differences existed in the particular cases used in 

the study. But it was surprising to see that feature counting + CBR 

performed better than gradient descent + CBR.  After all, gradient 

descent is a well established technique that is routinely used in CBR 

systems (e.g., Esteem 1996).  While geometric descent was found to 

be more effective than arithmetic descent, the gradient descent 

experiments were conducted by using the default values of the 

parameters as recommended by Esteem (1996).  Exploring the use of 

values other than the default values could possibly improve the 

performance of the gradient descent method, and in turn improve the 

predictions generated by gradient descent + CBR.
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11. The findings of the CBR weight generation methods using ID3 

methods show that info-top + CBR performed well considering the 

other decision tree methods, namely binary-dtree and info-dtree. All 

of the ID3 weight generation methods (binary-dtree, info-top, and 

info-dtree) and the CBR prediction suffered from the fact that not 

many of the 29 cases considered in the study had outputs that were 

close to each other.  More consistent outputs could have resulted in 

splitting the cases into fewer classes in Table 4.4 and consequently 

producing smaller prediction errors in Table 4.3. 

12. Also, while the CBR study concentrated on optimizing attribute 

weights, improving attribute selection can also be explored by using 

GA (Jarmulak and Craw 1999, Jarmulak et al. 2000).

Conclusions mainly cover methodological contributions that include the 

development of ANN and CBR Excel models and their testing results of cost 

data. ANN and CBR spreadsheet simulations integrated and enhanced by 

different methods, some not available in commercial softwares yet, can be 

extended beyond the specific cost problem addressed in this dissertation.



93

REFERENCES

Aamodt, A. and Plaza, E. 1994. “Case-based Reasoning: Foundational Issues,     
Methodological Variations, and System Approaches,” AICOM. Vol.7, No.1, pp. 39-
59.

Adeli, H. and Wu, M. 1998. “Regularization Neural Network for Construction Cost 
Estimation,” Journal of Construction Engineering and Management. Vol.124, No.1, 
pp.18-24.

Adeli, H. 2001. “Neural Networks in Civil Engineering: 1989-2000,” Computer Aided 
Civil and Infrastructure Engineering. Vol.16, pp.126-142.

Al-Tabtabai, H. and Alex, A.P. 2000. “Modeling the Cost of Political Risk in
International Construction Projects,” Project Management Journal. Vol.31, No.3, 
pp.4-13.

Al-Tabtabai, H., Alex, A.P., Tantash, M. 1999. “Preliminary Cost Estimation of 
Highway Construction Using Neural Networks,” Cost Engineering. Vol.41, No.3, 
pp.19-24.

Arditi, D. and Tokdemir, O. B. 1999a. “Using Case-Based Reasoning to Predict the 
Outcome of Construction Litigation,” Computer-Aided Civil and Infrastructure 
Engineering. Vol. 14. pp. 385-393.

Arditi, D. and Tokdemir, O. B. 1999b. “Comparison of Case-Based Reasoning and 
Artificial Neural Networks,”  Journal of Computing in Civil Engineering. Vol.13, 
No.3, pp. 162- 169.

Barrie, D.S. and Paulson, B.C. 1992. Professional Construction Engineering and 
Management, (McGraw-Hill, New York, NY).

Bode, J. 1998. “Neural Networks for Cost Estimation,” Cost Engineering. Vol.40, No.1, 
pp.25-30.

Barrow, H. 1996. “Connectionism and Neural Networks,” in Artificial Intelligence: 
Handbook of Perception and Cognition, edited by M.A. Boden (2nd edition, 
Academic Press, San Diego, CA), pp. 135-155. 

Cardie, C. 1993. “Using Decision Trees to Improve Case-Based Learning,” Proceedings 
of the Tenth International Conference on Machine Learning, ICML'93, University of 
Massachusetts, Amherst, MA, Morgan Kaufmann Publishers Inc., San Francisco, 
CA, pp. 25-32.

Carr, R.I. 1989. “Cost Estimating Principles,” Journal of Construction Engineering and 
Management. Vol.115, No.4, pp.545-551.



94

CII. 1998. “Improving Early Estimates,” Construction Industry Institute. University of 
Texas at Austin, TX, USA.

Creese, R.C. and Li, L. 1995. “Cost Estimation of Timber Bridges Using Neural
Networks,” Cost Engineering. Vol.37, No.5, pp.17-22.

Danyluk, A. 2004. “Learning Decision Trees.” and “Decision Trees on Real Problems.” 
Lecture Notes of CSCI 108 Artificial Intelligence: Image and Reality Course, 
Williams College, Department of Computer Science, Williamstown, MA.

Doğan, S.Z. and Günaydın, H.M. 2003. “Applications of Artificial Neural Networks and 
Their Potential Uses for Building Construction Industry: A Review,” Proceedings of 
the 9th EuropIA International Conference on E-Activities and Intelligent Support in Design
and the Built Environment, İstanbul, edited by B. Tuncer, S. S. Ozsariyildiz and S. 
Sariyildiz, pp.79-89.

Doğan, S.Z., Arditi, D. and Günaydın, H.M. 2005a. “CBR Model for Early Cost 
Prediction,” Journal of Construction Engineering and Management. Under review.

Doğan, S.Z., Arditi, D. and Günaydın, H.M. 2005b. “Using Decision Trees for 
Determining Attribute Weights in a Case-Based Model of Early Cost Prediction,” 
Journal of Construction Engineering and Management. Under review.

Doğan, S.Z., Arditi, D. and Günaydın, H.M. 2005c. “GA Destekli VTG ile YSA’nın 
Elektronik Tablo Simülasyonlarının Karşılaştırılması,” Proceedings of Third 
National Construction Management Congress (3. Yapı İşletmesi Kongresi), İzmir, 
Turkey, (29 September – 30 September), pp.286-295.

Emsley, M.W., Lowe, D.J., Duff, A.R., Harding, A., Hickson, A. 2002. “Data Modeling
and the Application of a Neural Network Approach to the Prediction of Total 
Construction Costs,” Construction Management Economics. Vol.20, pp.465-472.

Esteem 1.4. 1996. Case based reasoning development tool. Esteem Software, San 
Mateo, California.

Evolver 4.0. 1998. Excel Reference Manual. Palisade Corp., Newfield, NY.

Excel. 2003. Microsoft Excel Documentation. Microsoft Corporation.

Fausett, L. 1994. Fundamentals of Neural Networks, (Prentice Hall, Englewood Cliffs, 
NJ).

Feery, D. and Brandon, P.S. 1984. Cost Planning of Buildings, (Collins, London, UK).

Francone, F. D. 1999. “AIM learning, Adaptive, Real Time, Control Technologies,” 
unpublished manuscript available at the web site (27/08/2005) 
http://www.aimlearning.com/Process%20Control%20White%20Paper.pdf

Friedman, J. H. 2003. “Recent Advances in Predictive (Machine) Learning.” 
Proceedings of Statistical Problems in Particle Physics, Astrophysics and 

http://uvt.ulakbim.gov.tr/uvt/index.php?keyword=%5Ev&op=&ec=&cwid=15&vtadi=TMUH&lang=1&pg=
http://uvt.ulakbim.gov.tr/uvt/index.php?keyword=%5En&op=&ec=&cwid=15&vtadi=TMUH&lang=0&pg=2
http://uvt.ulakbim.gov.tr/uvt/index.php?keyword=%5En&op=&ec=&cwid=15&vtadi=TMUH&lang=0&pg=2


95

Cosmology, SLAC Stanford, California, (November 2003), manuscript available at 
Friedman’s web site (27/08/2005) http://wwwstat.stanford.edu/~jhf/ftp/machine.pdf.

Gupta, U.G. 1994. “How Case-Based Reasoning Solves New Problems,” Interfaces.
Vol.24, No.6, pp.110-119.

Günaydın, H.M. and Doğan, S.Z. 2004. “A Neural Network Approach for Early Cost 
Estimation of Structural Systems of Buildings,” International Journal of Project 
Management. Vol.22, No.7, pp. 595-602.

Harding, A., Lowe, D., Hickson, A., Emsley, M. and Duff, R. 2000. Implementation of 
a neural network model for the comparison of the cost of different procurement 
approaches. Paper presented to CIB W92 Procurement System Symposium. 
Santiago, (April), Chile, pp.24–27.

Hastie, T. 2004. University of Stanford web site, 11/11/2004. http://www.stanford.edu 
/class/stats315a/. (“Statistics 315B: Modern Applied Statistics: Elements of 
Statistical Learning,” introductory course notes).

Hastie, T., Tibshirani, R. and Friedman, J.H. 2001. The Elements of Statistical 
Learning: Data Mining, Inference, and Prediction, (Springer-Verlag, New York, 
NY).

Haykin, S., 1994. Neural Networks: A Comprehensive Foundation, (Macmillan,
NewYork).

Hegazy, T. and Ayed, A. 1998. “Neural Network Model for Parametric Cost Estimation 
of Highway Projects,” Journal of Construction Engineering and Management. 
Vol.124, No.3, pp.210-225.

Hegazy, T., Moselhi, O., and Fazio, P. 1994. “Developing Practical Neural Network 
Applications Using Back-Propagation,” Microcomputers in Civil Engineering. 
Vol.9, No.2, pp.145-159.

Heery, G.T., 1975. Time, Cost, and Architecture, (McGraw-Hill, New York.)

Hunt Jr., W.D. 1967. Creative Control of Building Costs, (McGraw-Hill, New York.)

Induce-It. 2000. User Manual. Inductive Solutions, Inc., New York, NY.

Jarmulak, J. and Craw, S. 1999. “Genetic Algorithms for Feature Selection and 
Weighting,” in IJCAI-99 Workshop on Automating the Construction of Case-Based 
Reasoners , Stockholm, Sweden, (2 August 1999) edited by S. S. Anand, A. 
Aamodt, and D. W. Aha, pp. 28-33.

Jarmulak, J., Craw, S. and Rowe, R. 2000. “Genetic Algorithms to Optimize CBR 
Retrieval,” in EWCBR 2000, LNAI 1898, edited by E. Blanzeri and L. Portinale  
(Springer-Verlag, Berlin Heidelberg), pp. 136-147.

http://wwwstat.stanford.edu/~jhf/ftp/machine.pdf


96

Kalogirou, S.A. 1999. “Applications of Artificial Neural Networks in Energy Systems: 
A Review,” Energy Conversion and Management. Vol.40, No.3, pp.1073-1087.

Kalogirou, S.A. 2001. “Artificial Neural Networks in Renewable Energy Systems 
Applications: A Review,” Renewable and Sustainable Energ Reviews. Vol.5, No.4, 
pp.373-401.

Karshenas, S. 1984. “Predesign Cost Estimating Method for Multistory Buildings,” 
Journal of Construction Engineering and Management. Vol.111, No.1, pp.79-99.

Kasravi, K. 1994. ‘‘Understanding Knowledge-Based CAD/CAM.’’ Journal of 
Computer Aided Engineering. Vol.13, No.10, 72–78.

Kibler D. and Aha D.W. 1987. “Learning Representative Exemplars of Concepts: An 
Initial Case Study,” Proceedings of the Fourth International Workshop on Machine 
Learning, Irvine, CA, (June 1987), edited by P. Langley, Morgan Kaufmann, CA, 
pp. 24-30.

Kolodner, J.L. 1991. “Improving Human Decision Making Through Case-Based 
Decision Aiding,” AI Magazine. Vol.12, No.2, pp.52-68.

Kolodner, J.L. 1993. Case based reasoning, (Morgan Kaufmann Publishers, Inc., San 
Mateo, CA).

Ling, C. X., Parry J. J. and Wang, H. 1997. “Setting Attribute Weights for Nearest 
Neighbor Learning Algorithms Using C4.5,” International Journal of Pattern 
Recognition and Artificial Intelligence. Vol.11, No.3, pp. 405 - 415.

Melin, J.B. 1994. “Parametric Estimation,” Cost Engineering. Vol.36, No.1, pp.19-24.

Mukherjee, A. and Deshpande, J.M. 1995. “Modeling Initial Design Process Using 
Artificial Neural Networks,” Journal of Computing in Civil Engineering. Vol.9, 
No.3. pp.194-200.

NeuroShell Trader Professional. 2002. Tutorial,  WardSytems Group, Inc., Frederick, 
MD. 

NeuroSolutions. 2002. NeuroSolutions Tool for Excel, NeuroDimensions, Inc. 
Gainesville, FL.

Orhon, İ., Sey, Y., Aral, N., Giritli, H., Sözen, Z. 1986-1987 fall semester lecture notes. 
Istanbul Technical University.

Paek, J.H. 1994. “Contractor Risks in Conceptual Estimating,” Cost Engineering.
Vol.36, No.12, pp.19-22

Quinlan, J.R. 1996. “Bagging, Boosting, and C4.5,” Proceedings, Fourteenth National 
Conference on Artificial Intelligence, manuscript available at web address
http://www.cse.unsw.edu.au/~quinlan/q.aaai96.ps.



97

Rafiq, M.Y., Bugmann, G., Easterbrook, D.J. 1998. “Artificial Neural Networks for 
Modeling Some of the Activities of the Conceptual Stage of the Design Process,” 
Proceedings of International Computing Congress on Computing in Civil 
Engineering, edited by K.C.P Wang (Boston, Massachusetts), pp.631-643.

Rafiq, M.Y, Bugmann, G. and Easterbrook, D.J. 2001. “Neural Network Design for 
Engineering Applications,” Computers and Structures. Vol. 79, pp. 1541-1552.

ReCall. 1993. A Case Based Reasoning Shell. Isoft, France.

Reich, Y. 1997. ‘‘Machine Learning Techniques for Civil Engineering Problems.’’ 
Microcomputers in Civil Engineering. Vol. 12, No. 4, pp. 295-310.

Riesbeck, C.K. and Schank, R.C. 1989. Inside case-based reasoning, (Lawrence 
Erlbaum Associates, Hillsdale, NJ).

Rumelhart, D.E., Hinton, G.E., Williams, J.R. 1986. “Learning Representations by 
Backpropagation Errors,” Nature. Vol. 323, pp. 533-536.

Saner, C. 1993. A Proposal for Cost-Estimation for Structural Systems of 4–8 Storey 
Residential Buildings. MSc. Thesis, Istanbul Technical University.

Schank, R.D. 1982. Dynamic Memory; a Theory of Reminding and Learning in 
Computers and People, (Cambridge University Press, New York, NY).

See5/C5.0. 1997. Data Mining Tools Manual. Rulequest, Australia.

Setyawati, B.R, Sahirman, S., Creese, R.C. 2002. “Neural Networks for Cost
Estimation,” AACE International Transactions, ABI/INFORM Global: EST.13.1–
EST.13.9.

Seyyar, B. 2000. Computer Aided Cost Estimation Systems During Building Design 
Process. MSc. Thesis, Istanbul Technical University.

Shi, J. J. 2000. “Reducing Prediction Error by Transforming Input Data for Neural 
Networks,” Journal of Computing in Civil Engineering. Vol. 14 No. 2, pp. 109-116.

Shin, K. and Han, I. 1999. “Case Based Reasoning Supported by Genetic Algorithms 
for Corporate Bond Rating,” Expert Systems with Applications. Vol. 16, No. 2, 
pp.85-95.

Shtub, A., Versano, R. 1999. “Estimating the Cost of Steel Pipe Bending, a Comparison 
Between Neural Networks and Regression Analysis,” International Journal of 
Production Economics. Vol.62, No.3, pp.201-207.

Smith, A.E., Mason, A.K. 1997. “Cost Estimation Predictive Modeling: Regression 
Versus Neural Network,” The Engineering Economist. Vol.42, No.2, pp.137-161.



98

Squeira, I. 1999a. Neural Network-Based Cost Estimating, Master’s Thesis. Department 
of Building, Civil and Environmental Engineering, Concordia University, Montreal, 
Quebec, Canada.

Siqueira, I. 1999b. “Automated Cost Estimating Systems Using Neural Networks,” 
Project Management Journal. Vol.30, No.1, pp.11-18.

State Institute of Statistics, Construction Permits for the Year 2003. Available from: 
www.die.gov.tr/english/SONIST/INSAAT/050903g.htm; last accessed October 
2003.

Stottler, R.H. 1994. “CBR for Cost and Sales Prediction.” AI Expert. Vol. August, pp. 
25-33.

U.S. Department of Defense. 1995. “Parametric Cost Estimating Handbook,” 
Department of Defense, United States of America. Arlington, VA, USA.

Watson, I. and Marir, F. (1994a). “Case Based Reasoning: A Review,” The Knowledge 
Engineering Review. Vol.9, No.4, pp.327-354.

Watson, I. and Marir, F. (1994b). “Case Based Reasoning: A Categorized 
Bibliography,” The Knowledge Engineering Review. Vol.9, No.4, manuscript 
available at the web address http://www.salford.ac.uk/survey/staff/IWatson/ 
cbrefs.htm.

Yau, N.J. and Yang, J.B. 1998. “Case based Reasoning in Construction Management.” 
Computer-Aided Civil and Infrastructure Engineering. Vol.13, pp.143-150.

Yaylagül, N. 1994. Bina Yapımında Simülasyon Yaklaşımıyla Maliyet Tahmini (Cost 
Estimation via Simulation Approach in Building Construction). MSc. Thesis, 
Istanbul Technical University.

Zhang, Y.F. and Fuh, J.Y.H. 1998 .“A Neural Network Approach for Early Cost
Estimation of Packaging Products,” Computers and Industrial Engineering. Vol.34, 
No.2, pp.433-450.

http://www.salford.ac.uk/survey/staff/IWatson/ cbrefs.htm
http://www.salford.ac.uk/survey/staff/IWatson/ cbrefs.htm


99

APPENDIX A

TOOLS FOR CASE-BASED REASONING

Vendors and service providers are (name of company followed by name of tool 

and URL where available):

 Atlantis Aerospace Corporation and later Case Bank Support Systems Inc, 

Spotlight, http://www.casebank.com/products/spotlight.asp

Phil D’Eon, Chairman and Chief Executive Officer, is a founder of CaseBank and 

originator of the SpotLight concept. In 1978, he co-founded Atlantis Aerospace 

Corporation, and for over 20 years developed a successful international business in 

maintenance and flight simulators for the aerospace industry. It was there that he 

originated the SpotLight concept in 1995. In 1998, he purchased the SpotLight 

technology from Atlantis and founded CaseBank. He continues today to guide the 

innovation of CaseBank’s case-based reasoning technology and pioneering new 

applications.

 The University of Wales, Aberystwyth, Caspian, 

          

http://www.aber.ac.uk/compsci/Research/mbsg/cbrprojects/getting_caspian.shtml

This is a publicly available CBR shell built at Aberystwyth.

 Cognitive Systems, Inc., ReMind: Case-based Reasoning Development 

Shell,

Cognitive Systems Inc. ceased trading in 1996. ReMind may still be available from 

other suppliers.

http://www.ai-cbr.org/tools/spotlight.html
http://www.casebank.com/products/spotlight.asp
http://www.aber.ac.uk/compsci/Research/mbsg/cbrprojects/getting_caspian.shtml
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 Esteem Software, Inc. and later SHAI: Stottler-Henke Associates, Inc

ESTEEM: Case-based Reasoning Shell,

http://www.stottlerhenke.com/solutions/decision_support/esteem.htm

ESTEEM enables people to develop case-based reasoning applications without 

programming. ESTEEM was marketed by Esteem Software Incorporated from 1991 

to 2001.  ESTEEM is described as being "a good tool for people interested in 

exploring the potential of CBR within their organizations." Research and academic 

institutions can request a free copy of this unsupported software by sending email to 

info@stottlerhenke.com.

 Inductive Solutions, Inc., Induce-It, http://www.inductive.com/softcase.htm

Induce-It is an Excel-based case-based reasoning system. It creates case-based 

reasoning systems from Microsoft Excel spreadsheet databases. Induce-It searches a 

case database based on similarity metrics. Case-based are adapted from the closest 

matching cases, ranked by case score, and displayed to users in a sorted list. f you 

know how to use a spreadsheet, then you know how to use Induce-It. Student 

version is $85 

for 60 day license and you can download it from

http://www.inductive.com/download.htm

 ALICE d'ISoft, ReCall, http://www.alice-soft.com/html/prod_recall.htm

ReCall is a CBR toolkit, which helps you re-use your corporate knowledge. ReCall 

is also available as a set of libraries for developers. You can run an on-line demo of 

ALICE d'ISoft. You can download the ALICE d'ISoft demonstration. You can fill in 

a form to receive an evaluation version of the product.

 Simon Fraser University, Case Advisor 2.1,

http://www.cs.sfu.ca/research/groups/CBR/

Case Advisor is a PC-based problem diagnosis and resolution system which allows 

an organization to retrieve solutions from a "knowledge database" to solve 

customer problems. CaseAdvisor 4 PC Version is given out free for non-

commercial purposes.

You can download the installation program at, Download Case Advisor 4.12: 

http://www.cs.sfu.ca/~isa/caseadvisor/download/, Case Advisor Screen Demos: 

mailto:info@stottlerhenke.com
http://www.wsdinc.com/products/p1145.shtml
http://www.inductive.com/softcase.htm
http://www.alice-soft.com/html/prod_recall.htm
http://www.alice-soft.com/html/tech_cbr.htm
http://www.alice-soft.com/demo/al6demo.htm
http://www.alice-soft.com/demo/al6demo.htm
http://www.alice-soft.com/demo/Alicedemo.zip
http://www.cs.sfu.ca/~isa/caseadvisor/download/
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http://www.cs.sfu.ca/~isa/caseadvisor/screendemo/index.html. After viewing the 

demo, you may receive a 30-day evaluation copy of CaseAdvisor Software. If 

interested in 

receiving the evaluation copy, contact Peter Leung at SoundLogic 

peterl@soundlogic.net: 604-291-9989 x3022 or Dr. Qiang Yang: 604-291-5415. 

 TreeTools, HELPDESK-3, http://www.treetools.com.br/ (unfortunately this 

site is in Portuguese only)

HELPDESK-3 from the Brazilian company TreeTools is a CBR tool designed to 

automated help desk. It uses heuristic search to retrieve cases and can handle natural 

language problem description. 

 University of Auckland, Department of Computer Science, CS760 

Datamining & Machine Learning, AIAI CBR-Tool, 

http://www.cs.auckland.ac.nz/~ian/760/

This tool lets you explore various features of a CBR tool including adaptation. It can 

be downloaded. The software is free for academic use.

Names of other vendors: 

 Inference Corporation - k-commerce (formerly called CBR3 or CBR Express)

 IET-Intelligent Electronics - TechMate 

 Intellix - KnowMan 

 Sententia Software Inc. - CASE Advisor & Case Advisor Webserver 

 ServiceSoft - Knowledge Builder & Web Adviser 

 tecInno GmbH - CBR-Works and Inference's k-commerce 

 Webpresence Technology - The RapidReasoner 

 Astea International - Case-1

http://www.cs.sfu.ca/~isa/caseadvisor/screendemo/index.html
http://www.ai-cbr.org/tools/helpdesk-3.html
http://www.treetools.com.br/
http://www.cs.auckland.ac.nz/~ian/760/
http://www.ai-cbr.org/tools/inference.html
http://www.ai-cbr.org/tools/techmate.html
http://www.ai-cbr.org/tools/knowman.html
http://www.ai-cbr.org/tools/sententia.html
http://www.ai-cbr.org/tools/servicesoft.html
http://www.ai-cbr.org/tools/tecinno.html
http://www.ai-cbr.org/tools/rapid.html
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APPENDIX B

BOOSTED DECISION TREES 

Introduction

In many problem domains, combining the predictions of several models often 

results in a model with improved predictive performance. The trend toward model 

mixing had a resurgence in economics (Bates and Granger 1969), has increased in the 

machine learning community. Boosting is one of such method that is an addition to the 

class of model mixing procedures. This study was conducted to see if boosting concept 

combined with decision trees could be used for better cost estimation results than the 

ones obtained by ANN and CBR models. Thus, this report provides an introduction to 

boosting algorithm and decision trees, presents an application of boosted decision trees 

(BDT) to cost estimation, and discusses the prediction results provided by BDT model.

Boosting Algorithm

Given a training set of data, a learning algorithm will generate a rule that 

classifies the data. This rule may or may not be accurate, depending on the quality of the 

learning algorithm and the inherent difficulty of the particular classification task. If the 

rule is even slightly better than random guessing, then the learning algorithm has found 

some structure in the data to achieve this advantage. Boosting is a method that boosts 

the accuracy of the learning algorithm by making the most of this advantage. Boosting 

uses the learning algorithm routinely in order to produce a prediction rule that is 

guaranteed to be highly accurate on the training set. Boosting works by running the 

learning algorithm on the training set multiple times, each time focusing on different 

training examples. After the boosting process is finished, the rules that were output by 

the learner are combined into a single prediction rule which is provably accurate on the 

training set. This combined rule is then verified for its accuracy on the test set. 

Boosting has its roots in a theoretical framework for studying machine learning 

called the Probably Approximately Correct (PAC) learning model, due to Valiant 

(Quinlan, 1996); see Kearns and Vazirani (1994) for a good introduction to this model. 

Kearns and Valiant (1988, 1994) were the first to pose the question of whether a “weak” 

learning algorithm which performs just slightly better than random guessing in the PAC 
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model can be “boosted” into an arbitrarily accurate “strong” learning algorithm. 

Schapire (1990) came up with the first provable polynomial-time boosting algorithm in 

1989. Later, Freund (1995) developed a much more efficient boosting algorithm which, 

although optimal in a certain sense, nevertheless suffered from certain practical 

drawbacks. The first experiments with these early boosting algorithms were carried out 

by Drucker et al. (1993) on an Optical Character Recognition (OCR) task. The 

AdaBoost algorithm, introduced in 1995 by Freund and Schapire (1999), solved many 

of the practical difficulties of the earlier boosting algorithms, and is the one used in this 

study.

The AdaBoost algorithm was a breakthrough. When the first boosting algorithms 

were invented they received a small amount of attention from the experimental machine 

learning community (Drucker et al. 1993). Then the AdaBoost algorithm arrived with its 

many desirable properties: a theoretical derivation and analysis, fast running time, and 

simple implementation. These properties attracted machine learning researchers who 

began experimenting with the algorithm. All of the experimental studies showed that 

AdaBoost almost always improves the performance of various base learning algorithms, 

often by a dramatic amount (Drucker et al. 1993). 

Decision Trees

In this section, the application of boosting to one kind of base learning algorithm 

that outputs decision tree classifiers is discussed. Experiments with the AdaBoost 

algorithm usually apply it to classification problems. Recall that a classification problem 

is specified by a space X of instances and a space Y of labels, where each instance x is 

assigned a label y according to an unknown labeling function c: X→Y. We assume that 

the label space Y is finite. The input to a base learning algorithm is a set of training 

examples “(x1;y1),. . .,(xm;ym)”, where it is assumed that yi is the correct label of instance 

xi (i.e., yi = c(xi)). The goal of the algorithm is to output a classifier h:X→Y that closely 

approximates the unknown function c. 

The first experiments with AdaBoost (Drucker and Cortes, 1996; Freund and 

Schapire, 1996; Quinlan, 1996) used it to improve the performance of algorithms that 

generate decision trees, which are defined as follows. Suppose each instance x∈X is 

represented as a vector of n attributes “ai,. . .,an” that take on either discrete or 

continuous values. For example, an attribute vector that represents human physical 

characteristics is “height, weight, hair color, eye color, skin color”. The values of these 
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attributes for a particular person might be “1.85 m, 70.5 kg, black, dark brown, tan.” A 

decision tree is a hierarchical classifier that classifies instances according to the values 

of their attributes. Each non-leaf node of the decision tree has an associated attribute a 

(one of the ai's) and a value v (one of the possible values of a). Each non-leaf node has 

three children designated as “yes”, “no”, and “missing.” Each leaf node u has an 

associated label y∈Y. 

A one node decision tree, called a stump, consists of one internal node and three 

leaves. Consider a stump T1 whose internal node compares the value of attribute a to 

value v. T1 classifies instance x as follows. Let x.a be the value of attribute a of x. If a is 

a discrete-valued attribute then 

• if x.a = v then T1 assigns x the label associated with the “yes” leaf. 

• if x.a ≠ v then T1 assigns x the label associated with the “no” leaf. 

• if x.a is undefined, meaning x is missing a value for attribute a, then T1 assigns x 

the label associated with the “missing" leaf. 

If instead a is a continuous-valued attribute, T1 applies a threshold test (x.a > v) instead 

of an equality test. 

A general decision tree T has many internal nodes with associated attributes. In 

order to classify instance x, T traces x along the path from the root to a leaf u according 

to the outcomes at every decision node; T assigns x the label associated with leaf u. A 

decision tree can be thought of as a partition of the instance space X into pair wise 

disjoint sets Xu whose union is X, where each Xu has an associated logic expression that 

expresses the attribute values of instances that fall in that set 

(for example “eye color = blue and height < 1.25 m”).

The goal of a decision tree learning algorithm is to find a partition of X and an 

assignment of labels to each set of the partition that minimizes the number of mislabeled 

instances. 

About See 5 (Boosted Decision Trees)

Freund and Schapire (1996) and Quinlan (1996) investigated the abilities of 

boosting to improve C4.5, a decision tree learning algorithm. When using C4.5 as the 

Base learner, Freund and Schapire's (1996) experiments revealed that on average, 

boosting improved the error rate of C4.5 by 24.8%. Quinlan (1996) found that boosting

reduced C4.5's classification error by 15%. Drucker and Cortes (1996) also found that
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AdaBoost was able to improve the performance of C4.5. They used AdaBoost to build 

ensembles of decision trees for optical character recognition (OCR) tasks. In each of 

their experiments, the boosted decision trees performed better than a single tree, 

sometimes reducing the error by a factor of four.

Experiments with the AdaBoost algorithm revealed that it is able to use a base-

learning algorithm to produce a highly accurate prediction rule. AdaBoost usually 

improves the base learner quite dramatically, with minimal extra computation costs

(Valiant, 1997). Valiant (1997) praised AdaBoost for being an extremely simple 

algorithm that can get practitioners use in minutes.

See 5 is a successor of C4.5, which combines decision trees with AdaBoost 

algorithm. It was written by Quinlan in 1996. Because of their simplicity compared with 

other artificial intelligence systems, boosting was first experimented with decision trees 

to test if performance is enhanced by this plug-in algorithm. See 5 and TreeBoost 

(DTreg) are the available software tools that integrate boosting with decision trees. The 

idea is to generate several classifiers of decision trees rather than just one. When a new 

case is to be classified, each classifier votes for its predicted class and the votes are 

counted to determine the final class. 

The first step in generating several classifiers from a single dataset involves 

constructing a single decision tree using the training data. Once the results of this 

classifier are obtained, the data on which it has made mistakes are determined. Then, the 

second classifier is constructed by paying more attention to the wrong predicted data in 

an attempt to get them right. Consequently, the second classifier will generally be 

different from the first. It also will make errors on some data, and these will become the 

focus of attention during the construction of the third classifier. This process continues 

for a pre-determined number of iterations (Arditi and Pulket 2004, Pulket 2001).

The Boost option with x trials instructs See5 to construct up to x classifiers in 

this manner. Although constructing multiple classifiers requires more computation than 

building a single classifier, the prediction results are generally much better. 

Procedure of Preparing Data for See 5

This section shows how to prepare data files for See 5 and the procedure of 

running the system. The data involved for this application belongs to residential 

buildings in Turkey. The objective was to construct boosted decision trees to predict the 
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unit structural cost of these buildings. Below are the attributes and information related 

to some cases: 

  Attribute                              Case 1    Case 2    Case 3

  The total area of the building (m2)      675      1425       330

  The ratio of the typical floor area      
  to the total area of the building        0.2       0.2       0.2    
             
  The ratio of the ground floor area 
  to the total area of the building       0.182      0.2       0.2

  The number of floors                     6         6         6

  The console direction 
  of the building                        oneway    nocons     nocons

  The location of the core 
  of the building                         sides     sides      sides

  The floor type of the 
  building                             precast  reinforced  reinforced

  The foundation system 
  of the building                         wall      wall       wall

  The cost of the 
  structural system per m2                  2        3          1

  Abbreviation:

  oneway = one-way console

  nocons = no consoles

  sides = at the sides

  middle = in the middle

  precast = precast concrete structural units

  reinforced = reinforced concrete floor systems

The unit structural costs of cases are classified into 13 classes. Class 1 

represents the unit cost of the structural system falling between $30 and $40.  Class 2 

represents the unit cost range between $40 and $50. The classification goes on like that 

up to the last class 13 which represents the unit cost range between $150 and $160. Each 

case belongs to one of a small number of these mutually exclusive classes. Properties of 

each case that may be relevant to its outcome are provided. There are 8 attributes in the 

problem and the system investigates how to predict the unit structural cost of the 
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building from the values of these attributes. See 5 does this by constructing a classifier 

that makes this prediction.

Two files are essential for all See 5 applications and there are three further 

optional files (See 5 Tutorial). The first essential file is the "names" file that describes 

the attributes and classes.  The names file for this data set is as follows:

Names File
the cost of the structural system per m2 :   | the target attribute                                

the total area of the building (m2) :        continuous.

the ratio of the typical floor area      
to the total area of the building :          continuous. 
             
the ratio of the ground floor area 
to the total area of the building :          continuous.

the number of floors :                       4,5,6,7,8.

the console direction of the building :      nocons, oneway.

the location of the core of the building :   sides, middle.

the floor type of the building :             precast, reinforced.

the foundation system of the building :      pier, wall, slab.       

the cost of the structural system per m2:    1,2,3,4,5,6,7,8,9,
                                             10,11,12,13.

The second file is the application’s data file which provides information on the cases for 

See 5 in order to extract patterns. The entry for each case gives the values of all 

attributes available for that case. Commas separate values. The data file for this study is 

as follows: (The data for testing is separated by a horizontal line)

Data File
675,0.2,0.182,6,oneway,sides,precast,wall,2
1425,0.2,0.2,6,nocons,sides,reinforced,wall,3
330,0.2,0.2,6,nocons,sides,reinforced,wall,1
2025,0.14,0.13,5,nocons,middle,precast,wall,4
1670,0.16,0.16,4,oneway,sides,precast,pier,5
2082,0.16,0.3,6,oneway,sides,precast,wall,3
3484,0.07,0.07,6,nocons,middle,reinforced,wall,4
1364,0.25,0.23,6,nocons,sides,reinforced,pier,5
1568,0.26,0.25,6,nocons,middle,reinforced,slab,6

569,0.16,0.14,6,oneway,sides,reinforced,wall,2
1156,0.13,0.095,6,oneway,middle,reinforced,wall,2
1146,0.202,0.19,5,nocons,sides,reinforced,slab,9

2528,0.13,0.096,8,oneway,middle,reinforced,wall,2
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Once the names, data and other optional files have been set up, everything is 

ready for See 5 to construct classifiers. Several options affect the type classifier that See 

5 produces and the way that it is constructed. The "Construct Classifier" button on the 

toolbar displays a dialog box that sets out these classifier construction options. 

Discussion and Results of See 5 Application for the Prediction of Cost Data

 See 5 constructed the classifiers for the same data set that was also used in the 

ANN and CBR models. The Boosting option was set to 10 trials. However, the boosting 

was reduced to three trials since the last classifier constructed by See 5 was very 

inaccurate. Indeed, the system abandoned boosting since there were too few classifiers. 

The first experiments showed that the decision tree model of See 5 couldn’t be boosted. 

This resulted in very poor prediction rates of 47.6%, 52.4% and 61.9% on the training 

set. Since the training of the data was not successful, the testing evaluations were 

poorer. Substantial manipulation of the data is required for BDT application in order to 

enable BDT to make accurate predictions. For increasing the prediction accuracy of the 

system, altering the size of the classes and dividing the target values into less number of 

classes are required. This modification does not serve to the practical goal of this 

dissertation since exactness in cost values will most probably be affected negatively by 

this way. However, this will give us some idea about the application’s capabilities. The 

details of these modifications are reported below. Although BDT model results are tried 

to be improved by carefully manipulating the data, no valid and consistent improvement 

in prediction accuracy could be achieved.  

Experiments on the Dataset

 In the first part of the study, 29 cases used in the ANN and CBR models were 

entered. However, the original data were in a format that created compatibility 

problems with See5. Therefore, the original data needed adjustment to conform 

the requirements of See5 and target attribute values which were the unit 

structural cost values were classified into 13 classes:

 See5 using the decision tree it constructed for the cost data with no boosting 

produced a prediction rate of 62.5% on the training set. 

 When the boosting option was set to 10 times, the system couldn’t be boosted. 

Boosting was reduced to 3 trials since the last classifier was reported to be very
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Table 1. Identified classes for the target attribute

Class
 No

Cost
 per meter 

1 $30 – $40

2 $40 – $50

3 $50 – $60

4 $60 – $70

5 $70 – $80

6 $80 – $90

7 $90 – $100

8 $100 – $110

9 $110 – $120

10 $120 – $130

11 $130 – $140

12 $140 – $150

13 $150 – $160

      inaccurate and boosting was abandoned because of too few classifiers. 

 Then the attributes were reduced from 8 to 2. These 2 attributes were

selected to be the ones found to have the greatest impact on the ANN 

model by the sensitivity analysis (Günaydın and Doğan 2004). In the 

ANN model, the ratio of typical floor area to the total area of the building 

and the ratio of the footprint area to the total area of the building were 

found to be the most effective design parameters. However, only using 

these two design parameters reduced the average prediction accuracy of 

the ANN model from 93% to 90%. This finding might suggest for the 

ANN model that even the small clues (i.e. attributes) could enhance the 

model’s prediction capability. For the BDT model (with no boosting), the 

prediction rate with these 2 attributes were 33.5% on the training set and 

50% on the testing set. 

 When the first decision tree model with 8 attributes was considered, it 

was seen that the attribute “foundation system” is the main classifier for 

the tree constructed. Therefore, this attribute was added and the 
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experiment was repeated with 3 attributes this time. The results (with no 

boosting) were 47.6% on the training set and 75% on the testing set.

 Finally, the decision tree model was run with 1 attribute of “foundation 

system.” The prediction accuracy was 47.6% on the training and 25% on 

the testing set.

 Target attribute values which are the unit structural cost values were 

classified into 13 classes in the experiments. Using classes for cost 

prediction in this case means that even the prediction accuracy on the 

testing set is 100%, the predictor will still have an error rate of 33.3%

since a predicted class will still have a prediction range (i.e. predicted 

class 1 would mean a cost value between $30 and $40). Thus, the aim 

already became 100% accuracy on the testing test in order for the model 

to be worthy. This led us to try the reduction of the classes. Since only 1 

case belongs to 12th class and again one case belongs to 10th class and 

relatively less cases belong to 9th, 10th and 11th classes considering the 

first 8; the classes after 8th has been eliminated. Then the experiments 

were carried out with 8 classes. The results were still not promising. The 

system put out a prediction rate of 55% on training set and 0% on the 

testing set. Therefore, the study was extended into the next phase with 

the objective to improve the prediction rate.

 During experimentation, it was observed that some cases cause the 

accuracy of the training and testing to decline. Therefore, these cases 

were eliminated and the number of training cases was cut down to 19 and 

the number of testing cases was cut down to 2 from the original whole 

dataset of 29 cases. 

 Using the new training set of 19 cases, 94.7% prediction accuracy on the 

training set and 100% prediction accuracy on the testing set were 

achieved by 10 boosting trials. This means the system was able to find 

the correct class although each class suggests a cost range. However, 

testing with 2 cases and using 19 training cases was already a failure for 

a prediction problem.
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