
USING MACHINE LEARNING TECHNIQUES
FOR EARLY COST ESTIMATION OF

STRUCTURAL SYSTEMS OF BUILDINGS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Architecture

by
Sevgi Zeynep DOĞAN

September 2005
İZMİR

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324140307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We approve the thesis of Sevgi Zeynep DOĞAN

 Date of Signature

... 28 September 2005
Assoc. Prof. Dr. H. Murat GÜNAYDIN
Supervisor
Department of Architecture
İzmir Institute of Technology

... 28 September 2005
Prof. Dr. Gökmen TAYFUR
Co-Supervisor
Department of Civil Engineering
İzmir Institute of Technology

... 28 September 2005
Prof. Dr. David ARDITI
Department of Civil and Architectural Engineering
Illinois Institute of Technology

.. 28 September 2005
Assist. Prof. Dr. Emre ERGÜL
Department of Architecture
İzmir Institute of Technology

.. 28 September 2005
Assist. Prof. Dr. Yavuz DUVARCI
Department of City and Regional Planning
İzmir Institute of Technology

... 28 September 2005
Assoc. Prof. Dr. H. Murat GÜNAYDIN
Head of Department
İzmir Institute of Technology

...
Assoc. Prof. Dr. Semahat ÖZDEMİR

Head of the Graduate School

ACKNOWLEDGMENTS

I would like to gratefully acknowledge the enthusiastic and patient supervision

of my advisor Dr. H. Murat Günaydın. Dr. Günaydın was not only my academic advisor

but also my mentor throughout the research study. My deepest gratitude also goes to

Prof. Dr. David Arditi of IIT in Chicago who has also been a supervisor and mentor to

me. I could not have imagined having better advisors and mentors for my PhD; without

their wisdom, knowledge and insightfulness this dissertation could not have been

written. Their dedication to reviewing my work and helping to improve it were

invaluable. I would also like to thank Prof. Dr. Gökmen Tayfur for his excellent course

on artificial neural networks and his careful reviewing and feedback. I gratefully

acknowledge the contribution of my thesis committee composed of Dr. Yavuz Duvarcı

and Dr. Emre Ergül. I also want to thank İzmir Institute of Technology for the financial

support it provided during the progression of this thesis.

Last but not least, I am forever indebted to my mom Firuz and my dad Kiper for

their understanding, endless patience, encouragement, and financial and moral support

when they were most required.

http://www.eee.kcl.ac.uk/member/staff/a_rezazadeh.html

iv

ABSTRACT

 It is desirable to predict construction costs in the early design stages in order to

make sure that target costs are met and competitive prices are realized. This study

investigates the possibility of predicting the cost of construction early in the design

phase by using machine learning (ML) techniques. To achieve this objective, artificial

neural network (ANN) and case based reasoning (CBR) prediction models were

developed in a spreadsheet-based format. An investigation of the impacts of weight

generation methods on the ANN and CBR models was conducted. The performance of

the ANN model was enhanced by experimenting with the weight generation methods of

simplex optimization, back propagation training, and genetic algorithms while the CBR

model was augmented by feature counting, gradient descent, genetic algorithms (GA),

decision tree methods of binary-dtree, info-top and info-dtree.

Cost data belonging to the superstructure of low-rise residential buildings were

used to test these models. It was found that both approaches were capable of providing

high prediction accuracy, 96% for ANN using simplex optimization for weight

determination, and 84% for CBR using GA for attribute weight selection. A comparison

of the Excel-based ANN and CBR models was made in terms of prediction accuracy,

preprocessing effort, explanatory value, improvement potentials and ease of use. The

study demonstrated the practicality of using spreadsheets in developing ANN and CBR

models for use in construction management as well as the potential benefits of

enhancing ANN and CBR models by using different weight generation methods.

v

ÖZET

Maliyet tahmini, yapım projesinin tasarım sürecine ait erken evre için çok

önemlidir. Bu çalışmada, otomatik öğrenme tekniklerinden ikisinin, yapay sinir ağları

(YSA) ve vaka tabanlı gerekçeleme (VTG)’nin, bina tasarım sürecinin erken evresinde

yapılan maliyet tahmini için uygunluğu ve başarısı araştırılmıştır. Hem YSA hem de

VTG’nin elektronik tablo simülasyonları geliştirilmiş ve maliyet tahmin modelleri

oluşturulmuştur. İnşaa edilmiş konut projelerine ait maliyet verisi modellerin örnek

uygulamasında kullanılmıştır. Çeşitli ağırlık üretim yöntemlerinin YSA ve VTG

modellerinin tahmin doğruluğu üzerindeki etkisi konut projelerine ait maliyet tahmini

örneğinde araştırılmıştır. YSA için geriye yayılma eğitimine alternatif olarak, genetik

algoritmalar ve simpleks optimizasyonu metodu; VTG için ise özellik sayma, genetik

algoritmalar ve gradyan iniş metodları ile karar ağaçlarından türetilen üç farklı yöntem

kullanılmıştır. YSA modeli ağ ağırlıklarının belirlenmesinde simpleks optimizasyonunu

kullandığında %96 başarı oranı; VTG modeli özelliklerin ağırlıklarını genetik

algoritmaları kullanarak seçtiğinde %84 başarı oranı yakalamıştır.

YSA ve VTG’nin elektronik tablo şeklinde geliştirilen maliyet tahmin

modelleri işlem öncesi çaba, açıklanabilirlik değeri, doğruluk oranı, gelişme potansiyeli

ve kullanım kolaylığı açısından karşılaştırılmıştır. Modellerin elektronik tablo

simülasyonları şeklinde geliştirilmiş olması modellerdeki ağırlık üretim değişiklilerini

yapabilmek için esneklik sağlamış ve modellerinin daha fazla gelişimine olanak

vermiştir.

http://uvt.ulakbim.gov.tr/uvt/index.php?keyword=%5Em&op=&ec=&cwid=15&vtadi=TMUH&lang=0&pg=

vi

TABLE OF CONTENTS

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER 1. INTRODUCTION ... 1

 1.1. Motivation of the Research .. 1

 1.2. Objectives and Organization of the Thesis 3

CHAPTER 2. COST PREDICTION AND MACHINE LEARNING

 TECHNIQUES .. 6

 2.1. Cost Prediction .. 7

 2.1.1. Cost Prediction Techniques .. 9

 2.2. Machine (Predictive) Learning ... 13

 2.2.1. Artificial Neural Networks (ANN) .. 13

 2.2.2. Case Based Reasoning (CBR) .. 20

CHAPTER 3. METHODOLOGY .. 24

 3.1. Spreadsheet Simulation of ANN ... 25

 3.2. Spreadsheet Simulation of CBR ... 41

CHAPTER 4. FINDINGS AND DISCUSSION ... 59

 4.1. Cost Data ... 59

 4.2. Results and Discussion .. 61

 4.3. Comparison of ANN and CBR Excel Simulations 81

 4.3.1. Preprocessing Effort for Conversion of Data 82

vii

 4.3.2. Configurability in Spreadsheet Format 83

 4.3.3. Accuracy for Cost Prediction... 83

 4.3.4. Explanatory Value .. 84

 4.3.5. Improvement Potentials via Integration of Other Methods 84

 4.3.6. Conclusions .. 86

CHAPTER 5. CONCLUSIONS ... 88

REFERENCES .. 93

APPENDICES

APPENDIX A. TOOLS FOR CASED-BASED REASONING 99

APPENDIX B. BOOSTED DECISION TREES .. 102

viii

LIST OF TABLES

Table Page

Table 2.1. AACE international cost estimation classifications 11

Table 2.2. Construction industry institute cost estimate definitions 12

Table 4.1. Main parameters (attributes) used in the prediction models 60

Table 4.2. Average error percentages for ANN models 69

Table 4.3. Optimized attribute weights for CBR Excel model and average

error percentages .. 76

Table 4.4. Classes specified for output attribute of cost per square meter .. 78

ix

LIST OF FIGURES

Figure Page

Figure 1.1. Methodology of the study ... 5

Figure 2.1. Schematic diagram of a typical multilayer feed forward neural

network architecture .. 15

Figure 2.2. Mathematical model of an artificial neuron 17

Figure 2.3. Basic CBR approach .. 21

Figure 3.1. Basic process of ANN .. 26

Figure 3.2. Schematic illustration of ANN Excel simulation notations of N,

L, O, P, W, W’ .. 28

Figure 3.3. Step 1: Organization of row data ... 29

Figure 3.4. Scaling of input values to a range (-1,1) 30

Figure 3.5. Weight matrix (W) from (N) inputs to (L) hidden nodes 31

Figure 3.6. Solver optimization screen ... 33

Figure 3.7. Evolver optimization screen for ANN Excel-Simulation 35

Figure 3.8. Outputs of hidden nodes ... 38

Figure 3.9. Weights W’ from hidden nodes to output nodes 39

Figure 3.10. Final NN Outputs .. 40

Figure 3.11. Scaling output back & calculating the error 42

Figure 3.12. Basic process of CBR ... 43

Figure 3.13. Formatting data to a case spreadsheet .. 44

Figure 3.14. Attribute similarity matrix for Test Case 1 (i = 1). (m similar

matrices are generated, one for each test case) 46

Figure 3.15. Using gradient descent to optimize CBR weights 48

x

Figure 3.16. Using GA to optimize CBR feature weights 50

Figure 3.17. Evolver optimization screen for optimization of CBR attribute

weights .. 51

Figure 3.18. Basics of a decision tree ... 53

Figure 3.19. Case similarity matrix for all test cases 57

Figure 3.20. CBR outputs and calculating the error .. 58

Figure 4.1. Description of ANN inputs and outputs 62

Figure 4.2. Step 1: Original unscaled inputs ... 64

Figure 4.3. Step 2: Scaled inputs ... 65

Figure 4.4. Step 3: Weight of links from 8 inputs to 5 hidden neurons 66

Figure 4.5. Step 4: Outputs of hidden neurons and Step 5: Weights from 5

hidden neurons to 1 output neuron .. 67

Figure 4.6. Step 6: NN outputs and Step 7: Errors 68

Figure 4.7. Formatting data to a case spreadsheet 71

Figure 4.8. Attribute similarity matrix for Test Case 1 (5 similar matrices

are generated, one for each of the 5 test cases) 72

Figure 4.9. Case similarity matrix for all test cases 73

Figure 4.10. CBR outputs and error ... 74

Figure 4.11. Decision tree constructed by See5 according to the output

 attribute classes in Table 4.4. ... 75

1

CHAPTER 1

INTRODUCTION

During construction and design of buildings, cost prediction is necessary to

make sure that target costs are met and competitive prices are realized. Conventional

cost prediction methods generally require quite detailed information about the building

project. It is therefore only in a late phase of the construction process that the available

knowledge suffices to base cost-related decisions on it. However, the architects’

influence on cost decreases over time because decisions with substantial cost impact are

made in the early phases.

The properties of emerging machine learning (ML) methods give rise to the

hope that they can support cost prediction in an early phase of design as they are able to

detect relationships between conceptual design information and cost unknown to

architects (i.e. artificial neural networks) or as they are able to use analogy-based

techniques by storing and retrieving previous design solutions (i.e. case-based

reasoning). This study investigates the possibilities to support early design phase of

building project design with machine learning techniques. Cost prediction as a

prototypical architectural design activity and construction management application is

chosen for the following reasons:

1.1. Motivation of the Research

Design is the basic business of the architect. However, architects are also

required to be knowledgeable in the areas of construction methods, sequencing of

construction, and cost. Consideration of these factors is inherently a part of the design.

Yet, design is also the major determinant of original and operating building cost. It is

possible for architects and construction managers to exert a highly acceptable degree of

control over the cost of building design and construction process.

Design and cost cannot be separated if cost control is to be effective. An

important fact stated for the architects at the outset is that cost is not likely to be

2

controlled as well as may be done when this effort is divorced from the design process

itself or when, in fact, cost control is not a part of the designer’s philosophy (Heery,

1975).

Early project cost estimates are significant to a client because they need to be

accurate enough to impart the confidence needed to commit additional funds to the

project. However, architects are often charged with not being able to predict with

reasonable accuracy the cost of a building project that they design. Thus, an architect’s

services are engaged only when luxury can be afforded. Reports of building costs

exceeding the architect’s estimate contribute to the persistence of this image. The

implication is that if one employs an architect, one will not know the cost until it is too

late to do anything about it. Architects often fail to consider carefully enough the

potential costs of a project, or they do not take any responsibility for predicting and

controlling costs at the early design stage. However, there is a professional standard and

responsibility to be met and cost consideration is among the most basic ones.

Architects should assure that the project is built within the cost forecast (Hunt,

1967). Therefore, they should have the knowledge and techniques to accurately predict

the cost of any size and type of building project and keep the cost under control.

However, the current cost prediction practice in building projects is inadequate and

unreliable. This may be due to incomplete and fuzzy nature of inputs and outputs of

design and construction work. Because of the importance of factors that could not be

quantified, the current decision support systems have little chance of success. Newly

emerging machine learning (ML)-based cost models offer some methods that may

provide architects with the results that they are looking for. The use of such models has

outperformed traditional highly subjective or highly objective procedures. Objective

(mathematical and quantitative analysis) techniques have the ability to identify elements

in an explicit manner and subjective (judgment) techniques have the advantage of

developing procedures based on experience and intuition incorporating up-to-date

knowledge and feelings about the project to obtain current costs. However, a good

prediction technique should include both historical data and construction experience and

knowledge. The ML-based prediction methods proposed in this study use artificial

neural networks (ANN) and case based reasoning (CBR) methods to provide an

estimate that includes both objective and subjective information. These artificial-

intelligence based techniques either emulate the human ability to learn from past

experience and to apply quick solutions to new situations or use analogy-based

3

decisions to propose new solutions. The proposed techniques use the judgment process

of experienced estimators to develop prediction models.

This dissertation is investigating the usefulness of ML-models in assisting and

improving the performance of architects and construction managers who are responsible

for predicting building costs in their early design process.

The development of ML-cost models and their wider application to early design

and construction processes have the following advantages:

1. It is possible to produce suitable cost information at an early stage in the design

process.

2. This information is more reliable, introducing greater confidence into the decision-

making process.

3. More information is generated so that better informed decisions are made.

4. The cost information is provided more quickly.

Architects and construction managers need to be aware of the merits of ML-

based cost models in order to adopt them for early cost prediction.

1.2. Objectives and Organization of the Thesis

This study aims to see if higher cost prediction rates at the early design stage

can be obtained by using ML techniques. Thus, the goals of this research are twofold.

The first goal is of practical nature and involves empirically predicting the unit cost of a

structural system as accurately as possible at the early phase of design by using ML

techniques of artificial neural networks (ANN) and case based reasoning (CBR). The

second goal is academic and involves improving and comparing the efficacy of these

ML models.

In order to reach these goals, first cost prediction and ML techniques are

reviewed in Chapter II, then the methodology of the study is described in Chapter III.

Models developed by using ANN and CBR techniques and enhanced by various weight

generation methods are explained in this chapter. Next, data pertaining to the early

design parameters and unit cost of the superstructure of residential building projects are

used to test ANN and CBR models. Chapter IV contains test results of the cost data run

in ML models. Findings are analyzed and a comparison is made in terms of prediction

accuracy, preprocessing effort, explanatory value, improvement potentials and ease of

4

use. Chapter V presents the conclusions and recommendations for further studies.

Figure 1.1 presents the methodology of the thesis.

Hegazy and Ayed’s (1998) spreadsheet-based ANN prediction model and a

commercial software NeuroSolutions (2002) are used for the ANN modeling. In order

to determine ANN weights, as an alternative to back-propagation training of

NeuroSolutions, two other techniques named simplex optimization, and genetic

algorithms (GA) are used. Simplex optimization and GA are implemented using Excel

add-in programs of Solver and Evolver (1998), respectively.

The CBR prediction model is established by developing an Excel-based

simulation. The model is assigned attribute weights by six different weight generation

methods in order to compare their impact on the performance of CBR prediction.

Weights for attributes of the CBR-Excel model are computed by (1) the feature

counting method, (2) the gradient descent method, (3) genetic algorithms (GA), (4)

binary-dtree method, (5) info-top method, and (6) info-dtree method.

Three commercial software help to determine weights in the CBR-Excel model.

A CBR software called Esteem (1996) is used to implement the gradient descent weight

generation method. Evolver (1998) is used once more for GA computations. Binary-

dtree, info-top and info-dtree methods named by Ling et al. (1997) are adapted by using

induction decision trees (ID3). The decision tree of the cost prediction problem is

constructed by using the See5 software (1997).

Boosted decision trees (BDT) constructed by See5 is used as the third machine

learning technique, as an alternative to ANN and CBR models, for the cost prediction

problem at hand. However, cost data had to be classified into a large number of classes

because of the BDT modeling rules. In these circumstances, few number of data

available in this study produced outcomes that were less accurate than the ANN and

CBR outcomes. Therefore, the BDT model and the results achieved are presented in

Appendix B.

5

Figure 1.1. Methodology of the study

BDT
(Boosted
Decision Trees)
(Appendix 2)

Problem Definition:
 Cost Prediction for early design stage of

residential building projects

Development of
Machine Learning Techniques

for Cost Prediction

ANN
(Artificial
Neural Networks)

Comparison
of

ANN & CBR
techniques

CBR
(Case-Based
Reasoning)

Decision Tree
Learning Algorithms

Findings
and

Analysis

Conclusion

1. Simplex
Optimization

2. Back-
Propagation

3. GA

1. Feature
Counting

2. Gradient
Descent

3. GA
4. Binary-dtree
5. Info-top
6. Info-dtree

Methods
for

Determining
Weights

Running
Cost Prediction Model
developed by using
ANN

Findings
and

Analysis

Literature Review of
Cost Prediction and Machine Learning

Techniques

Running
Cost Prediction Model
developed by using
CBR

CHAPTER
1

CHAPTER
2

CHAPTER
3

CHAPTER
4

CHAPTER
5

6

CHAPTER 2

COST PREDICTION AND MACHINE LEARNING

TECHNIQUES

Cost is one of the major criteria in decision making at the early stages of a

building design process. In today’s globally competitive world, diminishing profit

margins and decreasing market shares, cost control plays a major role for being

competitive while maintaining high quality levels. To this end, designers and project

managers use a number of cost prediction techniques and intuitive judgments by

utilizing both their experience and data from previous projects.

Developments in computer and software technology have facilitated novel

approaches for cost prediction. By the emergence of computerized learning techniques

named machine learning (ML) tools (i.e., artificial neural networks, case-based

reasoning, decision trees) more effective predictive models can now be investigated.

These techniques have proven to be valuable tools in a wide range of applications.

Business decision support and data-mining are few of them. These techniques share one

common feature: A solution is learned, then that solution is applied in a manner to make

useful predictions (Francone 1999). Prediction involves estimating the unknown value

of an attribute of a system under study given the values of other measured attributes

(Friedman 2003). In predictive (machine) learning the prediction rule is derived from

data consisting of previously solved cases (Friedman 2003). For the construction

industry which is highly experience-oriented, construction problems mostly come with

previous data of similar cases. Therefore, this study provides insights into integrating

two currently separate research areas. Integration of cost prediction in the early design

stage of the construction process; and artificial neural networks (ANN) and case based

reasoning (CBR) tools of machine learning are investigated.

 Therefore, traditional cost prediction techniques, basic ANN and CBR

processing and a literature review of ANN and CBR application to cost prediction have

been covered. To this end, this chapter is composed of two main sections. The first

7

section includes a review of cost prediction and its techniques. The second section

presents an introduction to machine learning and reviews the basics of ANN and CBR.

2.1. Cost Prediction

The cost prediction function inherent in architectural design is a complex basic

component, which can be performed at different subphases of the process (i.e.,

inception, design, construction, operation and maintenance); however a project’s

optimization can be best obtained by experimenting with different design variables, one

at a time, at the predesign (early design) stage (Siqueira 1999a, 1999b, Seyyar 2000).

This is the stage where decisions have the greatest impact on project cost, schedule and

performance. Clearly, this stage is the most crucial for meeting a project’s criteria, and

front-end cost estimating is vital in project development. Estimates prepared at this

early stage, accordingly, form the basis for analyses of return on investment and, assist

owners and their agents in making go-no-go decisions.

At this stage, cost estimation depends on very little information available,

therefore a high level of uncertainty characterizes this phase of the process. This study

focuses on such cost estimating models. Front-end, parametric, conceptual, early design

and/or order of magnitude cost estimates refer to estimates using the main parameters of

a project to predict its cost. These estimates are used to assist in go-no-go decisions

while minimizing estimating efforts spent on non-viable projects (Melin 1994, Paek

1994, Barrie and Paulson 1992, Carr 1989, Karshenas 1984).

The generation of the early design estimates to a reasonable degree of accuracy,

in a timely fashion, can be considerably complex. The highly unstructured nature of

these estimates, as well as the many different estimating practices, may be the reason

why inconsistent and therefore unreliable cost estimates are obtained in the process of

estimating the cost of building construction. Cost estimators often deal with a wide

variety of design parameters. The building construction industry, like manufacturing

industries is on the outlook for high quality and efficiency. However the output of the

construction activity is large in scope and cost, and unique in the sense that it is

producible only for a particular occasion; thus the concept of building a prototype does

not apply in the construction industry because it is not practical and economical (Feery

8

and Brandon 1984). Detailed cost estimating, therefore, is currently used for each and

every construction project, making estimation a time consuming and costly process.

While this practice is well suited to market conditions in the past years, it has

become inadequate for the current industry’s needs (i.e., tough competition, limited

resources, decreasing profit margins, etc.). The increase in human population and

production activities have led to the emergence of more complex building construction

projects in an ever more competitive market. This has made the targets of the time-cost

and quality triangle even harder to achieve. For instance, in case of a building project

defined by four design parameters, the consideration of three different values for each

parameter, varying one parameter at a time, would generate 81 (34) different project

alternatives, and, as such, may require the generation of 81 detailed cost estimates.

The above example illustrates that designers cannot achieve optimal solutions in

a timely and cost effective manner, through the generation of detailed cost estimates for

different scenarios (i.e., involving different design parameters) for each Request For

Proposal (RFP). The time and cost involved in preparing such estimates are prohibitive

for planning purposes. The result is, in most cases, that designers develop project

proposals by just considering limited scenarios, therefore probably being far from

optimal. Then, the goal of defining a project of minimum cost while meeting defined

criteria may not simply be achieved. A solution for this problem is, therefore, to

automate the cost estimating process, in such a way to allow for 1) interactive (owner

and designer) project scope definition, 2) the timely generation of what-if-type

scenarios, 3) reliable cost estimate to assist in go-no-go decisions, and 4) an open and

flexible cost estimating environment capable of benefiting from actual costs incurred on

previous projects.

Optimizing the cost estimating process means determining the best tools and

system to be used for that end. Realizing that, construction companies are looking for

new concepts and advanced tools to assist the optimization of the cost estimating

process. At this point, the developments in communication and information

technologies and applications of computer aided design methods show invaluable

benefits and opportunities. As such, automation for cost estimating may bring the

efficiency and accuracy so needed in delivering a number of alternative cost estimates

generated in a timely and cost effective manner. Increased efficiency and accuracy in

cost estimating provide companies with a competitive edge. The integration of

9

predesign cost estimating principles with machine learning techniques to develop a

methodology capable of responding to these needs is investigated in this study.

2.1.1. Cost Prediction Techniques

In an environment of developing technology, global competition, harsh

economical factors and inevitable rapid movement necessity, the complexity of

construction projects are impossible to overcome by conventional methods and

applications. On the other hand, the increasing capacity of information technologies

along with the diminishing costs of hardware and software systems make computer-

aided methods more appealing than ever. Parallel to this, traditional cost-estimating

techniques –known as single price estimating models (unit, volume, area and storey

enclosure method), elemental estimating, operational estimating and resource related

methods –are also replaced by advanced cost estimating systems –known as casual-

empirical models, regression models, simulation models and expert systems –that use

hardware and software to convert data into appropriate information for the ultimate

users (Orhon et al. 1986, Seyyar 2000). Conventional manual methods lost their

effectiveness in terms of ease, accuracy and time management when compared with

advanced computer-aided cost estimating applications (Yaylagül 1994). When projects

become larger in scope and complexity, cost estimation models take many parameters

into consideration utilizing computers for storing, processing and transferring of various

data. Today, many construction firms use computer aided cost estimation systems

designed for better cost estimation performance in their projects and their organizations

(Seyyar 2000). The importance of computers and computer aided cost estimation

systems in the fast and easy determination of the interaction between design parameters

and cost; in eliminating the complexities in the cost estimation process and providing

automation, cannot be overlooked and underestimated (Seyyar 2000). However, these

models are still not sufficient and feasible enough for the early architectural design

stage. The emergence of machine learning techniques promise further achievement for

early design cost prediction.

The accuracy of any prediction depends on the amount of information available

at the time of the prediction. As stated in the Construction Industry Institute’s

“Improving Early Estimates’ (CII 1998), “... any cost estimate is assigned a range of

10

accuracy (±percentage). These ranges narrow as the quantity and quality of information

increase through the life of a project. This implies that estimate accuracy is a function of

available information, a generally accepted fact in engineering and construction.” Good

estimating practice and experienced personnel are also found to have considerable

impact on estimating accuracy, especially on preliminary estimates, since at this stage

available information scarce and often poorly defined (CII, 1998).

CII’s (1998) study highlights the following as major factors impacting estimates’

accuracy:

1. Quality and amount of information available for preparing the estimate

2. Time allocated to prepare the estimate

3. Proficiency and experience of the estimator and the estimating team

4. Tools, techniques and models used in preparing the estimate

Accordingly, estimates are classified and their corresponding range of accuracy

is defined. The cost estimate classifications adopted by the Association for

Advancement of Cost Engineering (AACE) International and the Construction Industry

Institute (CII), are shown in Table 2.1 and Table 2.2, respectively.

This study will focus on estimates prepared at a predesign stage, when the level of

project definition is within 10 to 40%. The expected accuracy range for these estimates

is between -20 to +30% in AACE’s classification (see Table 2.2)

A preliminary cost estimate uses "main" parameters, i.e., parameters that have

the most significant cost impact on the product being estimated. It focuses on cost

drivers, the specified design and/or planning characteristics that have a predominant

effect on the cost of a project. Once the cost drivers are identified, cost models for the

generation of conceptual estimates can then be developed. Reliance on conceptual cost

estimates generated by properly developed and carefully evaluated cost models can save

the user time and resources not only in the evaluation of project alternatives but also in

the checking of detailed cost estimates prior to bid submittals (CII 1998, Barrie and

Paulson 1992). Therefore, new alternatives for cost prediction techniques for the early

design stage are investigated in this study.

11

Table 2.1. AACE international cost estimation classifications

Estimate Class
Level of Project
Definition (%)

End Usage
(Typical Purpose)

Expected
Accuracy Range

(%)

Class 5 0 to 2 Concept Screening -50 to +100

Class 4 1 to 5 Study or Feasibility -30 to +50

Class 3 10 to 40 Budget or Control -20 to +30

Class 2 30 to 70
Control or
Bid/Tender

-15 to +20

Class 1 50 to 100
Check Estimate or

Bid
-10 to +15

12

Table 2.2. Construction industry institute cost estimate definitions

Estimate Class Percentage Range Description/Methodology

Order of Magnitude ± 30 to 50
Feasibility Study:

cost/capacity curves

Factored Estimate ±25 to 30 Major equipment: cost/factors

Control Estimate ±10 to 15
Quantities: mech./elec./civil

drawings

Detailed or Definitive ±<10 Based on detailed drawings

13

2.2. Machine (Predictive) Learning

The rise in computing power has been accompanied by a rapid growth in

statistical modeling and data analysis. New techniques have emerged for predictive

learning, not possible 10 years ago, using ideas that bridge the gaps among statistics,

computer science, and artificial intelligence (Hastie 2004). In this chapter, some of these

new methods, namely artificial neural networks (ANN) and case based reasoning (CBR)

are covered with emphasis on their possible application to cost prediction problems.

The predictive or machine learning problem is easy to state but difficult to solve

in general. Given a set of measured values of attributes /characteristics/ properties on a

object (observation) x = (x1, x2,..., xn) (often called "variables") the goal is to predict

(estimate) the unknown value of another attribute y. The quantity y is called the

"output" or "response" variable, and x = (x1, ..., xn) are referred to as the "input" or

"predictor" variables. The prediction takes the form function y = F(x1, x2, ..., xn) = F(x)

that maps a point x in the space of all joint values of the predictor variables, to a point y

in the space of response values. The goal is to produce a "good" predictive F(x).

In predictive or machine learning one uses data. A "training" data base

D = {yi, xi1, xi2, ..., xin} N
1 = {yN1i, xi} N

1 of N previously solved cases

is presumed to exist for which the values of all variables (response and predictors) have

been jointly measured. A "learning" procedure is applied to these data in order to extract

(estimate) a good predicting function F(x). There are many commonly used learning

procedures. These include linear regression, neural networks, decision trees, etc. For

descriptions of a large number of such learning procedures see Hastie, et al. (2001).

2.2.1. Artificial Neural Networks (ANN)

Artificial neural networks (ANN) are an efficient exploitation of predictive

(machine) learning. They have been widely used to model some of the human activities

in many areas of science and engineering. Early applications of ANN in engineering go

back to the late eighties (Adeli 2001). They are also currently used by various

researchers for different purposes in the fields of building systems and construction

(Doğan and Günaydın 2003). One of the distinct characteristics of ANN is its ability to

learn from experience and examples and then to adapt to changing situations. According

14

to Haykin (1994), a neural network is a massively parallel distributed processor that has

a natural propensity for storing experiential knowledge and making it available for use.

It resembles the human brain in two aspects; the knowledge is acquired by the network

through a learning process, and inter-neuron connection strengths known as synaptic

weights are used to store the knowledge. For more detailed information about ANN see

Fausett (1994) and Haykin (1994).

ANN is good for some tasks while lacking in some others. Specifically, they are

good for tasks involving incomplete data sets, fuzzy or incomplete information and for

highly complex and ill-defined problems, where humans usually decide on an intuitional

basis (Rafiq et al. 1998, 2001). They can learn from examples and able to deal with non-

linear problems. Furthermore, they exhibit robustness and fault tolerance. The tasks that

ANN cannot handle effectively are those requiring high accuracy and precision, as in

logic and arithmetic (Kalogirou 1999, 2001). However, they are quite efficient for the

success of the design process which depends heavily on the initial guess (Mukherjee

and Deshpande 1995). They have been used in diverse applications in control, robotics,

pattern recognition, forecasting, medicine, power systems, manufacturing, optimization,

signal processing and social/psychological sciences.

ANN operates like a ‘black box’ model, requiring no detailed information about

the system. Instead, they learn the relationships between the input parameters and the

controlled and uncontrolled variables by studying previously recorded data. The

network usually consists of an input layer, some hidden layers and an output layer (see

Figure 2.1). In its simple form, each single neuron is connected to other neurons of a

previous layer through adaptable synaptic weights (see Figure 2.1). Knowledge is

usually stored as a set of connection weights (presumably corresponding to synapse

efficacy in biological neural systems). Training is the process of modifying the

connection weights in some orderly fashion using a suitable learning method. The

network uses a learning mode, in which an input is presented to the network along with

the desired output, and the weights are adjusted so that the network attempts to produce

the desired output. The weights after training contain meaningful information, whereas

before training, they are random and have no meaning.

15

output layer

hidden layer(s)

input layer

x1 x2 xn

yny2y1

Figure 2.1. Schematic diagram of a typical multilayer feed forward neural network
 architecture

16

A single node or neuron receives weighted activation of other nodes (xjwij)

through its incoming connections. First, these are added (summation) (see Figure 2.2).

The result is then passed through an activation function, the outcome being activation of

the node (see Figure 2.2). For each of the outgoing connections, this activation value

(αi) is multiplied with the specific weight and transferred to the next node.

A training set is a group of matched input and output patterns used for training

the network, usually by suitable adaptation of the synaptic weights. The outputs are the

dependent variables that the network produces for the corresponding input. It is

important that all the information the network needs to learn is supplied to the network

as a data set. When each pattern is read, the network uses the input data to produce an

output, which is then compared to the training set, i.e. the correct or desired output. If

there is a difference, the connection weights are altered in such a direction that error is

decreased. After the network has run through all the input patterns, if the error is still

greater than the maximum desired tolerance, the ANN runs again through all the input

patterns repeatedly until all the errors are within the required tolerance. When the

training reaches a satisfactory level, the network holds the weights constant and uses the

trained network to make decisions, or define associations in new input data sets not used

to train it.

The most popular learning algorithms are the back-propagation and its variants.

The back-propagation algorithm is one of the most powerful algorithms in neural

networks. For further information see Rumelhart et al. (1986). The training set has to be

a representative collection of input-output examples. Back-propagation training is a

gradient-descent algorithm. It tries to improve the performance of the neural network by

reducing the total error by changing the weights along its gradient. The error can be

expressed by the mean-square value (MSE), which is calculated by:

n

n

1i

2E(i))i(x

MSE

 (2.1)

where n is the number examples to be evaluated in the training set, xi is the network

output (target) related to the example (i=1,2,…,n) and E(i) is the desired output. An

error of zero would indicate that all the output patterns computed by the ANN perfectly

match the expected values, and the network is well trained.

17

Figure 2.2. Mathematical model of an artificial neuron

win

)(
1

ij

n

j
ji wxf

Summation
 ∑

Activation
 f

 wi1

wij

Output of the neuron i:

18

According to the performance of the system, ANN model is set for future

predictions with new data. There are no rules as to when an ANN technique is more or

less suitable for an application and the selection of the model is done empirically after

testing various alternative solutions. However, based on the work they have carried out

so far, it is believed that ANN offers an alternative method for predictive learning,

which should not be underestimated.

Various researchers have used neural networks as a tool for prediction and

optimization previously. But in the area of cost estimating there exist only few

applications. The works of Shtub and Versano (1999) and Zhang and Fuh (1998) in the

manufacturing industry, comprise alternative ANN models for cost estimating. Shtub

and Versano (1999) have developed a system that was based on a neural network that

was trained to interpret cost estimates when a new technology was introduced for steel

pipe bending. They also found out that neural networks outperform linear regression

analysis for cost estimation. Zhang and Fuh (1998) designed a neural network model for

early cost estimation of packaging products. In their model, they extracted and

quantified cost-sensitive attributes of a product design. The correlation between these

cost features and the final cost of the product was found by using a back propagation

neural network algorithm depending on historical data. In the construction industry,

Adeli and Wu (1998) formulated a regularization neural network to estimate highway

construction costs which were very noisy. They observed that as the number of

attributes was increased, the construction cost was estimated more accurately. In

another study a neural network model for parametric cost estimation of highway

projects was proposed by using spreadsheet simulation (Hegazy and Ayed 1998).

Hegazy and Ayed (1998) developed a very adaptable and flexible model of ANN by

simply facilitating a spreadsheet program. One particular study by Harding et al. (2000)

constructed an ANN model, which aimed to provide an accurate comparative cost of

different procurement routes. Among the 40 variables they used in their study were

design specific criteria such as the frame type and gross internal floor area. Emsley et al.

(2002) suggested that procurement routes cannot be isolated from cost significant

variables (i.e., design and site related variables, project strategic variables) in a building

project. Therefore they developed Harding et al.’s (2000) model one step further by

using a more complete and sophisticated data set which would not be available at the

early design stage. Their findings indicated 16.6% mean absolute percentage error.

19

Al-Tabtabai et al. (1999) also developed a neural network model that could be

used to estimate the percentage increase in the cost of a typical highway project from a

baseline reference estimate. They used environmental, company and project specific

factors. Their model measured the combined effect of these factors on the percentage

change in expected cost. The network generated outputs reaching a mean absolute

percentage error of 8.1%. Squeira (1999b) presented an automated cost estimating

system for low-rise structural steel buildings by utilizing design variables such as area,

perimeter, height, load, etc. He used a commercial software of ANN and showed that

the neural network model outperformed regression. The mean absolute percentage error

calculated for the neural network model and regression equation over the entire data set

were 11% and 15%, respectively, for the cost estimating of structural steel framing. For

the two other models (i.e., total direct cost and cost of wall panels), the mean absolute

percentage errors for the neural network approach and regression were 13% vs. 21%

and 18% vs. 57%, respectively. Creese and Li (1995) developed a neural network

application for the parametric cost estimating of timber bridges and again found that the

neural network method outperformed common linear regression methods. Their study

also showed that the estimation using neural networks improved when more

independent variables were introduced in training. However, Bode (1998) concluded in

his research report that neural networks can only work with a limited number of cost

drivers, and more attributes with cost effects need larger case bases for the learning

algorithm to achieve satisfying accuracy. Setyawati et al. (2002) compared their results

with those of Creese and Li (1995) and pointed out the inappropriateness of standard

statistical methods for cost estimating and suggested regression analysis based on

percentage error and on combined methods for obtaining the appropriate linear

regression which might outperform ANN models for cost estimating. Smith and Mason

(1997) also examined the performance, stability, and ease of cost estimation modeling

using regression versus neural networks to develop cost estimating relationships. They

reported that the cost data did not enable fitting a commonly chosen model, or did not

allow the analyst to discern the appropriate cost estimating relationships; the problem of

model commitment became more complex as the dimensionality of the independent

variable set grew.

20

2.2.2. Case Based Reasoning (CBR)

Case based reasoning (CBR) involves applying past experiences, in the form of

prior cases, to guide current decision making. In essence, the cased based reasoner

assigns an outcome to a problem based on the outcomes of the recently similar prior

cases. A prior case may be a template for a solution to the problem or the basis of an

argument how to decide it.

A case is considered as a set of features, attributes, and relations of a given

situation and its associated outcome(s). Although the structure of a case may differ from

one domain to the next, the concept of a case is the same. A case is situation-specific,

unlike a rule, which is a unit of generalized knowledge (Gupta 1994).

Essentially the roots of case-based reasoning in AI are found in the works of

Schank (1982) on dynamic memory and the fundamental role that a reminding of earlier

situations have in problem solving and learning. For a bibliographic categorisation and

review of CBR research see Aamodt and Plaza 1994, Watson and Marir 1994a, 1994b.

CBR development consists of four steps. The first is to design the structure of

the case. The second is to collect cases. The third is to prototype the similarity retrieval.

Finally, the prototype undergoes successive refinement. The processes involved in CBR

can be represented by a schematic cycle (see Figure 2.3). Aamodt and Plaza (1994) have

described CBR typically as a cyclical process comprising the four REs:

1. RETRIEVE the most similar case(s);

2. REUSE the case(s) to attempt to solve the problem;

3. REVISE the proposed solution if necessary, and

4. RETAIN the new solution as a part of a new case.

A new problem is matched against cases in the case base and one or more similar cases

are retrieved. A solution suggested by the matching cases is then reused and tested for

success. Unless the retrieved case is a close match the solution will probably have to be

revised producing a new case that can be retained. This cycle currently rarely occurs

without human intervention. For example many CBR tools act primarily as case

retrieval and reuse systems. Case revision (i.e., adaptation) often being undertaken by

managers of the case base. Well known methods for case retrieval are: nearest

neighbour, induction, knowledge guided induction and template retrieval. These

methods can be used alone or combined into hybrid retrieval strategies. For a further

21

Figure 2.3. Basic CBR approach

RETAIN

 Solved
 case

New
case

Problem

Retrieved
case

RETREIVE

REVISE

 Learned
 case

Historical
cases

REUSE

22

overview of the theoretical principles of CBR, see Kolodner (1991, 1993), Riesbeck and

Schank (1989).

CBR systems handle missing data well. If the current situation is missing the

value of an important feature, that feature is simply not used during similarity retrieval.

The most similar cases will match well with target case, except for the missing feature.

The retrieved cases will possess a variety of values for the missing feature so its

influence and importance can be determined. If the outcomes represented in the

retrieved cases are similar, the missing feature is unimportant, and a prediction can be

made with confidence. If the outcomes vary widely, the prediction should be delayed

until the value of the missing feature is determined for the target case.

One of the important strengths of CBR that sets it apart from most AI techniques

is that a CBR system is aware of its own limitations. If no similar cases are retrieved,

the CBR system cannot make a prediction. This process is far superior to making a

nonsensical prediction as most systems would. However, the biggest weakness of CBR

is its requirement for cases. Enough cases should be present in the case base so that a

similar one is retrieved. The sparser the case base, the more effort must be invested into

adaptation strategy. In the extreme, making a prediction from a case that is not very

similar to the current situation is just as difficult as making it from scratch. It’s not so

much the absolute number of cases in the case that is important as the density of cases

in the case base. In some domains, few cases are required to fill the case base to the

required density. In other domains, especially those with many important features, a

very large number may be required.

Prediction is a universal problem in industry. Case-based reasoning (CBR) can

be a good solution to prediction problems. The number of rules required to generate a

cost prediction, taking into account all relevant variables, is usually quite large and time

consuming to generate. Typically, this knowledge must include how to decompose the

project into smaller tasks and accurately estimate the cost of each portion. Therefore,

the knowledge required to predict the costs from scratch is enormous. CBR avoids this

knowledge-acquisition bottleneck by using the wealth of existing prediction knowledge

embodied in past cases (Stottler 1994). Since the prediction is not generated from

scratch but is adjusted from a previous experience, less specific and less accurate

knowledge is required. Yau and Yang (1998) presents an example how CBR can be

used to estimate construction duration and costs of building construction projects at the

preliminary design stage. Neural networks also make use of past experience (in the form

23

of training data), but they cannot easily justify the prediction they make. CBR systems

can point to the similar cases on which the prediction is based as justification. Any

required adjustments from these cases are usually small and therefore credible. In

addition, since the knowledge is in symbolic form, richer meaning can be conveyed. For

example, an architectural design project might have gone over budget because of

numerous change requests from the client. A text document describing this reason can

be stored along with the case. Later, when this project is retrieved as a similar case to

estimate design costs for current projects with the same client, the architect is warned

about the nature of the excessive project cost in addition to the higher than usual cost

prediction. Therefore, the architect can explain to the client the reason for the higher

cost or include a maximum number of change requests in the contract.

CBR’s ability to mimic the decision-making processes of humans provides an

alternative in solving experience-oriented problems when traditional techniques or ANN

encounter difficulties.

24

CHAPTER 3

METHODOLOGY

The construction industry utilizes experience; therefore knowledge and

appreciation of previous experience are critical to resolving problems that may reoccur.

Artificial neural networks (ANN) and case based reasoning (CBR) have grown to be

effective techniques in the machine learning domain that offer alternatives for solving

construction related problems that require extensive experience. Late literature reviews

demonstrated the potential benefits of these techniques in construction management and

its superior performance over other traditional prediction techniques (Arditi and

Tokdemir 1999a, Arditi and Tokdemir 1999b, Günaydın and Doğan 2004, Hegazy and

Ayed 1998, Yau and Yang 1998). Further exploring ANN’s and CBR’s capabilities in

the construction management domain is a worthwhile task. Recent research studies

about the effectiveness of integrated machine learning approaches indicate that these

systems could achieve better results when enhanced by other techniques (Cardie 1993,

Jarmulak and Craw 1999, Jarmulak et al. 2000, Ling et al. 1997, Shin and Han 1999).

In order to reach the previously stated goals of this study, ANN and CBR

models are developed, enhanced and tested for providing better tools of cost prediction

at the early design stage. Therefore, data pertaining to the early design parameters and

unit cost of the superstructure of residential building projects are used to test developed

ANN and CBR models.

Hegazy and Ayed’s (1998) spreadsheet-based ANN prediction model and a

commercial software NeuroSolutions (2002) are used for the ANN modeling. In order

to determine ANN weights, as an alternative to back-propagation training of

NeuroSolutions, two other techniques, namely simplex optimization, and genetic

algorithms (GA) are used. Simplex optimization and GA are implemented using Excel

add-in programs Solver and Evolver (1998), respectively.

The CBR prediction model is established by developing an Excel-based

simulation. The model is assigned attribute weights by six different weight generation

methods in order to compare their impact on the performance of CBR prediction. The

weights for the attributes of the CBR-Excel model are computed by (1) the feature

25

counting method, (2) the gradient descent method, (3) genetic algorithms (GA), (4) the

binary-dtree method, (5) the info-top method, and (6) the info-dtree method.

Three commercial software help to determine weights in the CBR-Excel model.

A CBR software called Esteem (1996) is used to implement the gradient descent weight

generation method. Evolver (1998) is used once more for GA computations. Binary-

dtree, info-top and info-dtree methods named by Ling et al. (1997) are adapted by using

induction decision trees (ID3). The decision tree of the cost prediction problem is

constructed by using the See5 software (1997).

Boosted decision trees (BDT) constructed by using See5 is used as the third

machine learning technique, as an alternative to ANN and CBR models, for the cost

prediction problem at hand. However, cost data had to be classified into a large number

of classes because of the BDT modeling rules. The small number of cases available in

this study produced less accurate outcomes than the ANN and CBR outcomes. The BDT

model and the results achieved are presented in Appendix B.

The development of the ANN and CBR models, and the weight generation

methods are described in this chapter. The results are discussed, ANN and CBR

techniques are compared, and concluding remarks are made in the next chapter. The

methodology of the study is presented in Figure 1.1.

3.1. Spreadsheet Simulation of ANN

In this section, a spreadsheet simulation model of a three-layer ANN (Figure

3.1) with one output node is presented on Microsoft Excel. Many practitioners are

familiar with spreadsheet applications. As a simple and more transparent approach to

ANN modeling, Excel based simulation is adapted from Hegazy and Ayed’s (1998)

study. The spreadsheet represents a template for one hidden-layer ANN that is suitable

for most applications (Hegazy et al. 1994). The processing of the template incorporates

seven steps, following the widely known back-propagation formulation (Rumelhart et

al. 1986). The general structure and computations of this type of ANN are presented in

the following steps:

26

Figure 3.1. Basic process of ANN

Set
weights

as
variables

Scale
numerical

data

Transform
textual

data

Calculate sum product of
scaled and transformed inputs

by their associated weights

Scale back
ANN
output

No

Final
ANN
output

Use
1.Excel
Solver

Use
 2.Genetic
 algorithms

Construct
other

weight matrice
from hidden layer(s)

 to output layer

Construct
weight matrix

 from input layer
to hidden layer

Outputs
of

hidden
nodes

Analyze the data:
Determine

 input and output parameters

Add
bias
node

Calculate sum product of
each hidden node

by its connection weights

ANN
outputs

Use
 3.Gradient
 descent

or

or

Calculate
Average Error

between
ANN outputs and

Actual outputs

Add
bias
node

Error
within set

limits?

Yes

27

Step 1. Data Organization – as a preliminary stage to ANN modeling, the problem at

hand needs to be thoroughly analyzed. Through this process, the independent factors

affecting the problem are identified and considered as (N) input parameters represented

by nodes at the input layer of an ANN. Similarly, the number of associated outputs or

conclusions (O) are represented by nodes at the output layer. Once input and output

parameters are identified their corresponding data are collected from the (P) case

studies. These data become available for the training stage of the ANN. Schematic

illustration of ANN Excel simulation notations of N, P, O, etc. are shown in Figure 3.2.

To implement this step in an Excel spreadsheet, the data is first transformed into

numerical values and stored in a data-list that is a matrix of (N+O) columns and (P)

rows (Figure 3.3). The numerical transformation of textual data can be done in either a

continuous or binary manner. In continuous transformation the value of a parameter

called ‘season’, for example, can be an integer 0-3 for winter, spring, summer, and fall

respectively. Alternatively, in a binary transformation, four parameters are used to

represent the four seasons and only one of them is assigned a value 1, whereas the

others are 0. Depending on the type of transformation used, the number of ANN nodes

(N) will be determined and, accordingly, the size of the spreadsheet matrix. For each

variable, the minimum and maximum values were also put in spreadsheet formulas to be

used in Step 2.

Step 2. Data Scaling – In this step, the input-data part of the first matrix (N columns by

P rows) is scaled to a range from [-1 to 1] to suit NN processing. This is done by

constructing a second matrix with a linear formula for scaling the values of the first

matrix, as follows:

 1

2

ColumnMinColumnMax

ColumnMinlueUnscaledVa
ValueScaled (4.1.)

This scaling formula is written in only one cell (B15 for example, in Figure 3.4), and

then copied to all cells in the scaling matrix. To the right of this matrix, a column was

added with unit values associated with the bias node, as illustrated in Figure 3.4.

Step 3. Weight Matrix (W) – the third step is to construct and initialize the weight matrix

between the inputs and the hidden layer (Figure 3.5). All inputs (1 to N) and a bias node

28

Figure 3.2. Schematic illustration of ANN Excel
 simulation notations of N, L, O, P, W, W’

N

1

2

3

4

O

Bias 2
W

L

W’

Bias 1

1 2 3 P

1

2

29

Figure 3.3. Step 1: Organization of row data

A B C D E F

1
Project

 No.
Inputs Outputs

2 1 2 … N O
3 1
4 2
5 3
6

7 P

8 Min.:

9 Max.:

=MIN(B3:B7) =MIN(F3:F7)

=MAX(B3:B7) =MAX(F3:F7)

30

Figure 3.4. Scaling of input values to a range (-1,1)

A B C D E F

13
Project

 No.
Scaled Inputs

14 1 2 … N Bias 1

15 1 1
16 2 1
17 1
18 P 1

=2*(B3-B$8)/(B$9-B$8)-1
Made once and copied to all cells

31

Figure 3.5. Weight matrix (W) from (N) inputs to (L) hidden nodes

A B C D E F

25
To

Hidden
Weights from Inputs & Bias 1

26 I’
1 I’

2 … I’
N Bias 1

27 Node 1
28 Node 2
29 Node 3
30
31 Node L

Cells contain weights values put
initially as 1.0s. The matrix elements

are set as variables in the
optimization.

32

were fully connected to the hidden nodes. The number of hidden nodes (L) was set as

one-half of the total input and output nodes, as heuristically suggested in the literature

(Hegazy et al. 1994). All of the values in the weight matrix are considered variables to

be determined in the ANN modeling. Hegazy and Ayed (1998) suggest that setting the

initial weight values to 1 is appropriate for inputs scaled to a range (-1 to 1).

Once the Excel template has been set up with initial weights of 1s, the overall

performance indicator (cell D94 which will be mentioned in step 7 and Figure 3.11) was

showing a very high error value. Because all formulas in the template are functions of

the weights, the next step was to determine the ANN weight values that would optimize

ANN performance. Three approaches were used: (1) simplex optimization using

Microsoft Excel Solver. (Excel 2003); (2) GA using Evolver software from the Palisade

Corporation (Evolver 1998); and (3) back-propagation training using NeuroSolutions

(2002) software from the NeuroDimensions Inc.

Simplex Optimization: A simplex optimization is implemented, using Solver,

an Excel add-in program. The implementation, therefore, is conducted directly on the

NN spreadsheet. Solver is a powerful and easy to use optimization tool that is highly

integrated with Excel. Solver can find the optimum set of values for some variables so

as to maximize or minimize a target cell (or objective function) that is linked by

formulas to the variables, under a set of user-specified constraints. It proceeds by first

finding a feasible solution, and then seeking to improve upon it; changing the variables

to move from one feasible solution to another until the objective function has reached its

maximum or minimum. For the ANN (or NN) simulation described previously, Solver

optimization options are shown in Figure 3.6 (solver optimization screen). The

optimization objective is to minimize the NN weighted error (see Step 7, cell D94 of

Figure 3.11). Also, the optimization variables, representing the adjustable cells are the

weights from inputs to hidden nodes and from hidden nodes to outputs. To avoid

incorrect network results on individual training cases, optimization constraints are set to

limit the percentage error on the training and test cases to 2 and 5% or lower,

respectively. Cell references for the optimization variables and the constraints are

shown in Figure 3.6. These values give more emphasis on the test cases, similar to what

is also done with back-propagation training (which will be mentioned in the following

sections).

33

Figure 3.6. Solver optimization screen

D94

B27:F31; B54:F54

D80:D87<=2
D88:D91<=5

34

Once the optimization parameters are input solver, the optimization process is started.

Experimenting with this approach, it is found that the results are often sensitive to the

initial values of the variables and some manipulation of Solver options may become

necessary to arrive at the optimum solution. Using the suggested (0-1) range for the

weights can be a good start. Also, when optimization is not improved over a long period

of time, it can be manually stopped and then continued after reinitializing some of the

weight values. Generally, the time taken by Solver to arrive at the optimum solution

varies significantly depending on the size and complexity of the model. The

optimization process may need to be frequently interrupted to change solver options that

are fully described in Excel documentation (Excel 2003).

Genetic Algorithms: GA technique is another optimization method that is

fundamentally different from traditional simplex-based algorithms such as the one used

by Excel Solver. It uses the method of evolution, specifically survival of the fittest. The

theory behind GA is that a population of certain species will, after many generations of

random evolution, adapt to live better in its environment. GA solves optimization

problems in the same fashion. First, a population of possible solutions to the problem is

created. Individuals in the population are then allowed to randomly breed, a process

called crossover, until the fittest offspring (the one that solves the problem best) is

generated (Hegazy et al. 1994). After a large number of generations, a population

eventually emerges where the individuals will provide an optimum or close to optimum

solution. For the case study at hand, a commercial GA software (Evolver 2004) was

used to find the optimum weights of the model. Similar to Solver, Evolver works as an

add-in to Microsoft Excel, and can replace Excel Solver for optimizing complicated

problems. The Evolver screen is shown in Figure 3.7 with all the cell references to the

optimization objective function and constraints. Similar to Solver optimization, cell D94

representing the NN weighted error is selected to be minimized. The adjustable cells

containing the optimization variables (called chromosomes in GA terminology) are also

specified as the two weight matrices. Optimization constraints are then set. These

constraints limit the range of weight values that Evolver searches for, thus reducing

processing time. In addition, the constraints add sub goals to the original objective

function to limit the percentage incorrect training and test sets to 2 and 5%, respectively.

During the GA optimization, Evolver options can be used to enhance the results. For

example, “population size” affects processing time because the fitness function must be

calculated for every individual in every generation. A population size of 50 is generally

35

Figure 3.7. Evolver optimization screen for ANN Excel-Simulation

D94

B27:F31
B54:F54

D79:D86<=2
D87:D90<=5

36

found as a good number to start with. This number can be increased later during the

optimization process. Chromosome length presents the level of accuracy needed for the

adjustable cells. More bits mean high-precision answers. Other program specific

parameters that are fully described in the documentation (Evolver 2004) can be used to

speed the solutions and prevent standstill progress.

Back-propagation: Back-propagation training is one of the most common

methods for training NN given historical data (Rumelhart et al. 1986). In essence, back-

propagation training adapts a gradient-descent approach of adjusting the ANN weights.

To implement back-propagation training, a commercial NN software “NeuroSolutions”

is used as a stand-alone environment for NN development. NeuroSolutions (2002) is

used for its ease of use, speed of training, and its host of NN architectures, with flexible

user-optimization of training parameters. In essence, back-propagation training adapts a

gradient-descent approach of adjusting the NN weights. During training, an NN is

presented with the data of thousands of times (called cycles). After each cycle, the error

between the NN outputs and the actual outputs are propagated backward to adjust the

weights in a manner that is mathematically guaranteed to converge (Rumelhart et al.

1986). To achieve good generalization, NeuroSolutions optimizes training by exposing

the network to the amount of training that minimizes the average error between actual

and predicted results for a group of test cases. The NN is saved whenever a new

minimum average error is reached. Using the optimization features of NeuroSolutions,

several training experiments can be conducted to arrive the best-trained NN. In these

experiments, network parameters such as the number of hidden layers, the number of

hidden nodes, network connections, and transfer functions are changed on a trial and

error basis and the best result is documented. After training, the NN predictions are

compared with the actual results.

Step 4. Output of Hidden Nodes – This step is to allow the hidden nodes to process the

input data and produce values to be forwarded to the next layer. According to NN

processing (reviewed in chapter 2), each hidden node j receives an activation Xj, which

is the sum product of scaled inputs by their associated connection weights. Accordingly,

each hidden node produces an output 'X j that is a function of its activation, as follows:

37

)tanh('
jj XX

 0.11
1

j

N

i
ijij BWIX (4.2)

 (4.3)

Experimenting with different activation functions such as linear, logistic, and tanh has

shown that the tanh function produces the best results. As shown in step 4 in Figure 3.8,

a formula was written for the first row of all hidden nodes and then copied to the down

cells.

Step 5. Weight Matrix (W') – Similar to the weight matrix constructed in Step 3, a

second matrix was constructed to connect the (L) hidden and bias nodes to the single

output node (Figure 3.9). These weights are additional variables in the model and were

initialized as previously described.

Step 6. Final ANN Output - Similar to Step 4, the output of the ANN (O) is computed

by calculating the sum product (Y) of each hidden node by its connection weight and

then processing this value through the tanh function as follows (see Figure 3.10 for

Excel calculations):

 0.12)1(
1

B'
jW'

jXY
L

j

 (4.4)

 O = tanh (Y) (4.5)

Step 7. Scaling Back NN Output and Calculating the Error – In this step, the NN output

(O) is scaled back to the original range of value using the reverse of formula (4.1) as

follows:

38

Figure 3.8. Outputs of hidden nodes

A B C D E F

39
Project

 No.
Hidden Nodes

40 Node 1 Node 2 … Node L Bias 2

41 1 1
42 2 1
43 1
44 P 1
45

=Tanh(SUMPRODUCT
(B15:F15,B31:F31))
Formula made once and
copied down

=Tanh(SUMPRODUCT
(B15:F15,B27:F27))
Formula made once and
copied down

39

Figure 3.9. Weights W’ from hidden nodes to output nodes

A B C D E F

52 Hidden Nodes

53 1 2 Bias 2

54 Output 1 1

55

56

57

58
Cells contain weight values put

initially as 1.0s. The matrix elements
are set as variables in the optimization.

40

Figure 3.10. Final NN Outputs

A B C D E F

64
Project

No
NN

Output
65 1

66 2
67

68

69

70 P

=Tanh(SUMPRODUCT
(B41:E41,B54:F54))
Formula made once and copied down

41

Output Scaled Back

 Output Min
Output MinOutput MaxValue Output

2

))(1(
 (4.6)

To calculate a measure of the ANN performance, a column is constructed (Figure 3.11)

for determining the error between the actual output and ANN output as follows:

 100
)(

OutputActual

OutputActualOutputorkNeuralnetw
(%)ErrorEstimating (4.7)

It is also possible in the ANN simulation to use some cases for training and others for

testing. The average error of each group of cases can be calculated in a different cell and

then combined in a cell that calculates the performance measure of the ANN, for

example:

Weighted Error (%) = 0.5 (Test Set Average Error) + 0.5 (Training Set Average Error),

where weights of 0.5 and 0.5 are assumed for illustration. This approach gives more

emphasis to the test cases (which are usually a small number as compared to training

cases), to ensure good generalization performance and avoid overtraining.

3.2. Spreadsheet Simulation of CBR

In this section, a CBR model (Figure 3.12) is developed and simulated in a

spreadsheet format and the model is set up in Microsoft Excel. This spreadsheet model

represents a template for many prediction problems. The processing of the template

involves six steps:

Step 1. Organizing and Formatting Data – The data are organized in the form of two

matrices, one for the test cases and one for the input cases such as those presented in

Figure 3.13. Around 10% of all cases can be designated as test cases. The input and test

cases are represented in rows and the input attributes are represented in columns. The

output attribute is placed in a column next to the input attributes. The values of the

42

Figure 3.11. Scaling output back & calculating the error

A B C D E F

79
Project
No.

NN
output
scaled
back

Actual
Output

%
ERROR

80 1
81 2
82 3
83
84

85

86

87

88 K
89
90

91 P

92 Error on K cases

93 Error on K+1 to P cases

94 Weighted Error

=(B65+1)(F9-F8)/2+F8
Made once and copied down

=F3
Made once and copied down

=(C80-B80)*100/B80
Made once and copied down

=AVERAGE(D80:D87)

=AVERAGE(D88:D91)

=0.5*D92+0.5*D93

43

Figure 3.12. Basic process of CBR

Set
 attribute
weights

Retrieve
case from
casebase

Identify
test
case

Calculate case similarity
score between test case

vs. retrieved case

Select retrieved
case with highest
similarity score

Yes

No

Cases in
casebase

exhausted?

Predict the
outcome of

test case

Use
1. feature
 counting

Use
2. gradient
 Descent

Use
3. genetic
 algorithms

Use
4. Binary-
 dtree

Select
method

Use
5. Info-top

Use
6. Info-
 dtree

Decision
tree learning
algorithm
(ID3)

or

or

or

or

or

44

Figure 3.13. Formatting data to a case spreadsheet

1 A B C D E F G H

2 Weights w1 w2 w3 … wp 0

3 Case
No.

TEST CASEBASE
Attributes

Output
Attribute

4 1 2 3 … p

5 Case 1 I11 I12 I13
… I1p O1

6 Case 2 I21 I22 I23
… O2

7

8 Case m Im1 Im2 Im3 … Imp Om

9

10 Case
No.

INPUT CASEBASE
Attributes

Output
Attribute

11 1 2 3 … p

12 Case 1 I'11 I'12 I'13
… I'1p O'1

13 Case 2 I'21 I'22 I'23
… O'2

14

15

16 Case n I'n1 I'n2 I'n3 … I'np O'n

17

45

attributes for each test and input case are represented respectively by Iik and I'jk where Iik

represents the value of attribute k (k = 1, 2, … , p) for test case i (i = 1, 2, … , m), and

I'jk represents the same type of information for input cases j (j = 1, 2, … , n). The

weights of the attributes wk (k = 1, 2, … , p) are located at the top of the matrix in a row

that corresponds to individual attributes. The way these weights are set is explained in

Step 3. After formatting, semantic information is added to the data in the form of

numerical and textual attribute values.

Step 2. Calculating Attribute Similarities – Attribute similarity functions are used to

define how similar the attribute values are to each other. Attribute similarities are

computed with respect to each test case versus every case retrieved from the input

casebase. Examples of textual and numerical similarity calculations are presented in

Figure 3.14. Attribute similarity is denoted by Sijk where i is the test case m...,2,1,i ,

j the input case n...,2,1,j and k the attribute p...,2,1,k .

Assuming that the value of the first attribute for the first test case I11, (in cell B5

in Figure 3.13) is textual, its similarity with the corresponding attribute value I'11 (in cell

B12 in Figure 3.13) is established as follows:

If text in I11 appears to be exactly the same as text in I'11, then similarity 1S111 , or else

similarity 0S111 (See Figure 3.14 for spreadsheet calculations) (4.8)

Assuming that the value of the third attribute for the first test case I13 (in cell D5

in Figure 3.13) is numerical, its similarity with attribute value I'13 in the corresponding

cell (D12 in Figure 3.13) is established as follows:

 1313

1313
113 I,Imax

I,Imin
S

 (See Figure 3.14 for spreadsheet calculations) (4.9)

Step 3. Establishing Attribute Weights – After all the attribute similarity values are

calculated in (n × p) matrices, once for each test case (the matrix for Test Case 1 is

presented in Figure 3.14), the next step is to construct the weight vector that will be

used in computing case similarities.

46

Figure 3.14. Attribute similarity matrix for Test Case 1 (i = 1).
 (m similar matrices are generated, one for each test case)

1 J K L M N O P R S

2

3 Input Case
No.

Attributes

4 1 2 3 … p

5 Case 1 S112
… S11p

6 Case 2 S122
… S12p

7 Case 3 S132 …

8 …

9 …

10 …

11 …

12 …

13 Case n S1n1 S1n2
… S1np

14 …

S111

= MIN(D5,D$12)/MAX(D5,D$12)
Made once and copied to all cells with

numerical information

=IF(B5=B$12,"1","0")
 Made once and copied to all cells with
textual information

S113

47

Weights assign a value of importance to each attribute. In general, retrieval of

the most relevant case is determined by the presence of a greater number of higher

priority (more important) attributes matching between the test case and the retrieved

case.

In this CBR study, weights for attributes were computed by (1) the feature

counting method, (2) the gradient descent method, (3) genetic algorithms (GA), (4)

binary-dtree method, (5) info-top method, and (6) info-dtree method.

Feature counting method: In the feature counting method, the weight of each

input attribute is entered as 1 into the CBR Excel model, implying that attributes have

equal importance (Esteem 1994). In the absence of specific information, it is assumed

that there is no reason for an attribute to be more important than another.

Gradient descent method: A CBR software called “ESTEEM” was used to

implement the gradient descent weight generation method. The gradient descent weight

generation method’s basic algorithm is presented in Figure 3.15. Random cases are

selected from the input casebase, and the cases that are most similar to them (based on

the initially set weights of the attributes) are found. Information on how much the

weights of the attributes should be incremented or decremented is calculated

considering these cases, based on how well the cases’ outputs match. After examining

several random cases, the resulting weights are adjusted by using a factor Delta. The

factor Delta is then decreased, and the algorithm begins examining more random cases.

This process continues until Delta reaches a minimum value specified by the user.

When the “arithmetic” method is chosen, Delta is decremented by some value (which

must be between 0 and 1) every iteration. When the “geometric” method is chosen,

Delta is multiplied by some factor (which must be between 0 and 1) every iteration. The

user must also specify the starting and the final value of Delta, the number of random

cases that are examined every iteration, and an update parameter that specifies how

quickly Delta decreases from iteration to iteration. All parameters have default values

which were used in this study: the “geometric” method was used with the starting and

ending values of 0.5 and 0.02 for Delta, respectively; the update parameter and the

number of cases to be tested per each iteration were taken as 0.9 and 5, respectively.

The weights generated by the gradient descent method were plugged into the CBR

Excel model manually.

48

Figure 3.15. Using gradient descent to optimize CBR weights

Casebase
of input

cases

Remove a
number of

cases randomly

Remaining
cases

Set attribute
weights

Calculate
case

similarities

Final new
weights

generated

Yes

No Decrement
Delta

Generate
updated

weights in next
iteration

Delta
Factor
Min?

Match the
outputs

Calculate
Error

Adjust
Weights by
Delta Factor

49

GA method: GA uses the method of evolution, specifically “survival of the

fittest.” The theory behind GA is that a population of certain species will adapt to live

better in its environment after many generations of random evolution. Thus, GA first

creates a population of possible solutions to the problem. Individuals in the population

are then allowed to randomly breed, which is called crossover, until the fittest offspring

(the one that solves the problem best) is generated. After a large number of generations,

a population eventually emerges where the individuals will provide an optimum

solution. For this study, a commercial GA software, Evolver, was used to find the

optimum weights of the model. Evolver works as an add-in to Microsoft Excel

(Evolver 1998). Weights generated by Evolver were plugged into the CBR Excel model

manually.

Figure 3.16 shows the flowchart of the GA optimization process used in this

study. In order to use GA to generate weights, one of the cases in the input casebase is

removed and called an “evaluation case.” The similarities between the attributes of the

evaluation case and the corresponding attributes of the remaining cases are calculated

by using Equations 4.8 and 4.9. Given the start-up assumption that attributes have equal

importance, case similarities (CS) are derived between the “evaluation case” versus the

remaining input cases by taking the average of all attribute similarities. The relationship

that governs the similarity (CS) of the input case that has an output that is closest to the

output of the evaluation case is plugged into the GA algorithm (Evolver) for

maximization (for taking it closer to 1).

The Evolver optimization screen is shown in Figure 3.17 with the adjustable

cells containing the optimization variables (called attribute weights in the CBR system

and chromosomes in GA terminology). In this study, the range of the attribute weights

was set between 1 and 10, the default population size of 50 was used, and Evolver was

run 15,000 times to find the optimum attribute weights that generated the maximum

case similarity CS (closest to 1). This process was repeated as many times as the

number of cases in the input casebase by taking a different case out as the “evaluation

case” at each cycle. The averages of the weights produced by GA at each cycle were

used to run CBR in Step 4.

In the remaining three other weight determining methods for attributes in the

CBR simulation study, decision tree learning algorithms (ID3) are used. Related

information about decision trees can be found in Cardie (1993) and Danyluk (2004).

50

Figure 3.16. Using GA to optimize CBR feature weights

Input
Casebase

Label first case
“evaluation case”

Remaining
cases

Calculate
similarities

between attributes

Calculate case
similarities

Retrieve case
with output

closest to the
output of the

“evaluation case”

Plug in case
similarity score of

selected case
 to GA

Conduct
GA optimization

to make case
similarity score

closer to 1

GA generates
new attribute

weights

Select next case
in casebase as

“evaluation case”

Set attribute
weights to 1

No
Yes

Plug in new
attribute weights
to CBR process

Take the average
of the weights

generated for all
evaluation cases

Input
casebase

exhausted?

Yes

51

Figure 3.17. Evolver optimization screen for optimization of CBR attribute weights

The highest case
similarity (100% accurate
prediction) is “1”.

The attribute weights are set as
variables. The weight of the output
attribute is not included.

Adjustable weights are set to change
between 1 and 10.

52

Decision Trees: A decision tree is a tree in which each branch node represents

an attribute, and the branches at that node correspond to the possible values of the

attribute, and each leaf node represents a classification or decision (Figure 3.18).

The basic idea is to pick an attribute K with values b1, b2, ..., bs,, split the cases in

the input casebase into subsets (classes) C1, C2, ..., Cs consisting of those cases that have

the corresponding attribute value. Then if a subset has only cases in a single class (C1,

C2, ... or Cs), that part of the tree stops with a leaf node labeled with that single class. If

not, then the subset is split again, recursively, using a different attribute (Figure 3.18).

In order to choose the best attribute to split on at any branch node, splitting criterion in

ID3 (induction decision trees) named information gain theory is used.

The point of the ID3 algorithm (Quinlan, 1986) is to decide the best attribute,

out of those not already used, on which to split the input cases that are classified to a

particular branch node. The algorithm, in outline, is as follows:

1. If all the cases belong to a single class, a leaf node is created and

labelled with the name of that class;

2. otherwise, for each attribute that has not already been used, the

information gain that would be obtained by using that attribute on the

particular set of cases classified to that branch is calculated.

3. Then the attribute with the greatest information gain is used as that

branch node.

Splitting criterion requires the calculation of the information gain associated

with using a particular attribute K. Suppose that there are r classes C1, C2,, Cr, and

that of the N cases classified to this node, N1 belong to class C1, N2 belong to class C2,

..., and Nr belong to class Cr. If one example is selected at random from N and

announced that the example belonged to class C1. This announcement would have

probability p1=N1/N, (and similarly p2 = N2/N, ..., and pr = Nr/N) and the information it

conveys is –log2(N1/N) bits (and similarly –log2(p2), ..., –log2(pr)). As the probability

goes up, the information conveyed goes to 0. It’s highest for low probabilities. The term

information represents the amount of information needed to identify the case as being a

member of a particular class. Then the average amount of information needed to

identify the class of a case in N is calculated as follows. This is called the entropy of N.

 Info (N) =

N

N
log

N

N r
2

r (4.10)

53

Root Node
(Most

discriminative or informative
attribute, K)

Branch
(b2)

Branch
(Possible Value

of the discrete attribute: b1)

Branch
Node

(Attribute)

Leaf

Leaf
(Decision or class)

(C1)

 possible value of the attribute(AV) ≤ threshold value (TV)

Decision Decision

Continuous
Attribute

BranchBranch

Cases that belong to
class C1: N1

Leaf
(C3)

N3

N2

N classified to this node
N = N1+N2+N3

N21 N22

N2=N21+N22+N23

N23

AV > TV

Figure 3.18. Basics of a decision tree

54

where the weighted sum is computed over the number of classes in N.

Suppose K attribute of the cases has b possible values. If K attribute were

selected to be evaluated as a node in the tree, a decision tree node with b branches b1,

b2, ..., bs would be created. If
sbN were the examples that have the value bs for attribute

K, the average entropy that resulted from making this split in the tree would be

calculated as follows:

 InfoK (N) =

s

s

b
b N

N

N
info (4.11)

where the sum is taken over the s possible values of the attribute K. This is computed

for every attribute. Once the computations are done for every attribute, the attribute K

that maximizes the value of info(N) infoK(N) is selected. This difference (reduction in

entropy) caused by portioning the cases according to attribute K is named the

information gain for attribute K: InfoGain (N,K) = info (N) infoK(N)

The process of handling the continuous valued attributes is slightly different. For

continuous, rather than discrete attributes, the range is split into two groups: possible

attribute values threshold and possible attribute values > threshold (Figure 3.18). The

important issue is how to select the threshold. In order to determine the threshold, first

the cases are sorted by the values of the attribute. Then the cases noting adjacent

examples that belong to different classes are searched. The average values at those

transition points are considered to be potential splits. Then each split found is evaluated

by applying the information gain formula. The split that is best, which has the greatest

information gain is selected. Accordingly a decision tree is constructed considering the

information gain values of all kinds of attributes at hand.

See5 (1997) is a commercial software that is used for building decision trees.

See5 builds a decision tree that consists of a sequence of logical decisions based on the

attributes. It builds decision trees by employing a simple divide and conquer strategy as

explained above. It first chooses an attribute as the current root, divides the input cases

into subsets, and recursively tests the subsets, until all remaining cases belong to a

single class. The choice of the attribute is based on the information gain. See5 always

chooses the attribute with maximum information gain as the current root; such attributes

55

tend to be most discriminative or informative for classification at that point. The

computations usually result in a small decision tree.

The three different decision tree learning algorithm methods used in this study are

named (1) binary-dtree method, (2) info-top method, and (3) info-dtree method by Ling

et al. (1997).

Binary-dtree method: Kibler and Aha (1987) first presented a simple approach

that uses the presence or absence of attributes in the decision tree to determine their

weights. If an attribute is present in the decision tree, then its weight is 1, otherwise its

weight is 0. The method is very efficient since it only involves running See5 over the

input cases. Cardie (1993) used this method to improve case-based learning and pointed

out that a strategy of considering the positions of attributes in the decision tree (such as

in the info-top and info-dtree methods) may work better.

Info-top method: Rather than considering only attributes with the maximum

information gain (i.e., those appearing in the tree), this method considers the

information gain of all attributes at the top level; that is, the information gain of all

attributes based on all the input cases. Thus there is no need to construct the decision

tree. These information-gain values are used as the weights in the similarity assessment

process. Clearly, the attribute with maximum information gain is assigned a maximum

weight, but other attributes can have some smaller effects in the similarity assessment as

well, rather than being completely ignored.

Info-dtree method: This method takes into account the location of the attributes

in the decision tree. Thus a decision tree is first constructed using the input cases. For

each attribute, which may appear in several places in the tree, the weight is determined

by taking the sum of its information gain at each appearance multiplied by the percent

of input cases classified by that attribute. For example, if an attribute appears three

times in the tree, with information gain values of 0.9, 0.8, and 1.0 with 40%, 20%, and

10% of the input cases classified by the attribute respectively, then the weight of this

attribute is (0.9 × 0.4) + (0.8 × 0.2) + (1.0 × 0.1) = 0.62. Clearly, attributes at lower

levels contribute less to their weight because the number of input cases they classify is

smaller. This method, like binary-dtree, considers only the information gain of those

attributes that appear in the tree.

The attribute weights obtained are used in Step 4 of the CBR simulation process.

Step 4. Calculating Weighted Case Similarities – Case similarities are computed for

each test case with respect to each input case by using the attribute similarities

56

calculated in Step 2 and the attribute weights generated in Step 3. For positive weights

and normalized similarities, the weighted case similarities are always between 0 and 1,

with a score of 1 indicating the case most similar to the test case and 0 the least.

Weighted case similarities are computed according to the following formula:

 p

1k
k

p

1k
kijk

ij

w

wS

CS for test case m...,2,1,i and input case n....,2,1,j for all

 attributes p)...,2,(1,k (4.12)

where CSij= Weighted case similarity between test case i and input case j over all the

attributes k, Sijk = Similarity between test case i and input case j for attribute k, and wk

= Weight of attribute k (See Figure 3. 19 for spreadsheet calculations).

Step 5: Sorting Weighted Case Similarities and Corresponding Outputs – The highest

weighted case similarity CSij for a test case i indicates the closest matching input case j

in the casebase. This operation is conducted (see Figure 3. 20) for each test case:

 ini2i1ij CS,...,CS,CSmax CSmax for each i (i = 1, 2, … m) (4.13)

Once the highest weighted case similarities are identified for respective test

cases (see Column AA in Figure 3.20 and 3.19), the corresponding case numbers and

outputs are also listed (see Columns AB and AC in Figure 3. 20).

Step 6: Calculating the Error – The outputs listed in the preceding step (Column AC in

Figure 3.20) are compared with the respective actual outputs (Column AD in Figure

3.20, same as Column H in Figure 3.13). The differences constitute the errors and are

listed in Column AE in Figure 3.20. The average of the error values of all test cases is

the overall error of the CBR process.

57

Figure 3.19. Case similarity matrix for all test cases

1 T U V Y Z AA

2

3 Input Case No.
Highest
Score

4
Test Case

No.
1 2 … n

5 Test Case 1 CS11 CS12 … CS1n CS1x

6 Test Case 2 CS22 … CS2n

7 Test Case 3 CS31 … CS3n

8

9

10

11

12 Test Case m CSm1 CSm2 … CSmn

13

= MAX (T5:Z5)
Made once and
copied down

=(SUM (B$2*K5,C$2*L5,D$2*M5,E$2*N5,F$2*O5,G$2*P5))/
(SUM(B$2,C$2,D$2,E$2,F$2,G$2)
Made once and copied to all cells

CS21

58

Figure 3.20. CBR outputs and calculating the error

1 AA AB AC AD AE

2

3
Highest
Score

Case
No.

Output
Value

Actual
Outputs

for
Test Cases

Error

4

5 Test Case 1 CS1x x Ox O1 x1E

6 Test Case 2 CS2y y Oy O2 y2E

7 Test Case 3

8

9

11 Test Case m CSmz z Oz Om mzE

12 Eaverage

=ABS((100-((AC5*100)/AD5))/100)

=AVERAGE(1xE , y2E , …, mzE)

59

CHAPTER 4

FINDINGS AND DISCUSSION

ANN and CBR models and their integrated versions, which were developed in

the previous chapter, are all tested by predicting the cost of the superstructure of

residential building projects at an early design stage. Findings and analysis are

presented in three sections. The first section analyzes the cost data used in this study.

The second section includes the test results of the models of the case study and

discussions of the findings. In the third section, a comparison of ANN and CBR Excel

simulations are made.

4.1. Cost Data

Data used in this study belongs to a research report that investigated the cost of

the structural system of 29 building construction projects undertaken in İstanbul, Turkey

(Saner 1993). Analysis of the cost data revealed the main input parameters to be used in

setting up the machine learning models. These parameters were the predominant cost

drivers of the case (project) examples. The predominant cost drivers that could easily be

identified in the early design stage were selected as the main parameters (Table 4.1) for

modeling the machine learning techniques used in this study. They defined the

buildings’ formal characteristics and the amount of material required for the structural

construction of the building. The total area bears a strong linear relation to the total cost

of the building; and while it considerably impacts the structural cost, the ratio of the

typical floor area to the total area of the building also becomes an important factor

influencing directly the vertical section area of the load bearing frame. This in turn

defines the cost of beams and columns. The number of floors is also clearly another

important factor for the structural cost for its effect on the cost of columns. The ratio of

the footprint area to the total area of the building is identified as one of the main key

structural parameters, as it can be considered to be correlated with the width and depth

of the foundation system. Foundations are classified as pier, wall or slab foundations to

60

Table 4.1. Main parameters (attributes) used in the prediction models

Input
Attribute

No
Attribute Range

1 The total area of the building 330 m2 – 3,484 m2

2
The ratio of the typical floor area to the
total area of the building

0.07 – 0.26

3
The ratio of the footprint area to the
total area of the building

0.07 – 0.30

4 The number of floors 4 – 8

5 The type of overhang design No overhang or one-way

6 The foundation system Pier, wall, slab

7 The type of floor structure
Cast-in-situ concrete,
precast concrete

8 The location of the core
At the sides, in the
middle

Output
The cost of the structural system per
square meter

$30/m2 – $160/m2

61

determine the effect of the volume of concrete and the amount of reinforcement on the

total cost. The core of the building is composed of the vertical circulation system

including stairs, elevators and the service duct. The examples in this case refer to two

different locations of the building core: either in the middle or at the sides. To

counteract the torsion effect, the structural system demands extra shear walls for the

building cores located at the sides, which increases the total cost of the structural

system. The buildings are analyzed to have either one-way or no overhang. The floor

type of the apartments, whether reinforced concrete floor systems or precast concrete

structural units is also considered to affect the structural cost.

Besides the variables considered above, there are some other important variables

that have not been taken into account in the ML modeling. Since the selection of input

variables significantly impacts the accuracy of the ML predictions, one may obtain

different or better results if other possible important input variables are studied. The

variables that could be investigated include the total height and the roof type of the

building, quality classification of structural materials (concrete and steel), the ratio of

the area of curtain walls to the total area of the vertical construction, the ratio of the

number of secondary beams to the total number of beams in a typical storey of the

building, etc. However only the variables that can easily be identified in the early design

stage are considered in the current study.

4.2. Results and Discussion

ANN Results and Discussion

The ANN-Excel template was modified to suit the development of a cost model

of residential building projects. With the inputs and outputs defined (see Figure 4.1),

relevant data were entered for each project. The records of twenty-nine projects in

Saner’s (1993) study contain data on all the selected eight design variables and the

corresponding cost of structural system per square meter.

62

Figure 4.1. Description of ANN inputs and outputs

1 OUTPUT
The cost of

the structural
system per

square meter

8 INPUTS

I1: The total area of the building (m2)
I2: The ratio of the typical floor area to
 the total area of the building
I3: The ratio of the footprint area to
 the total area of the building
I4: The number of floors
I5: The type of overhang
 (0=no overhang or
 1=one-way overhang)
I6: The foundation system
 (0=pier 1=wall 2=slab)
I7: The type of floor structure
 (0: cast-in-situ concrete
 1: precast concrete)
I8: The location of the core
 (0: at the sides
 1: in the middle)

bias
node

x1

x2

x8

y

The input layer

The hidden layer

The output
 layer

x3

bias
node

63

Using the described procedure for simulating ANN on Excel (in chapter 3), the

data for 29 projects were then entered into Excel as shown in Figures 4.2, 4.3, 4.4, 4.5

and 4.6, with the qualitative values transformed into numbers according to the notations

used in Figure 4.1. All ranges and matrices dimensions were modified according to the

number of inputs, outputs, historical examples (past projects) and hidden nodes (i.e.,

N=8, O=1, P=21, and L=4, respectively). Using Solver and experimenting with various

options on a trial and error basis, the resulting ANN weights were shown in Figure 4.4

and 4.5. Figure 4.6 shows the average error, 4.6%, obtained when Solver was used to

optimize the model weights. By using GA and varying Evolver settings on a trial and

error basis during the optimization process, Evolver was able to come up with an overall

weighted error of 11%, with 0.5 weight on the training set and 0.5 weight on the testing

set. For back-propagation training NeuroSolutions was used and several training

experiments were conducted to arrive at the best-trained ANN. In these experiments

network parameters such as the number of hidden layers, the number of hidden nodes,

network connections, and the transfer functions were changed and the best results was

documented (For model modifications, see Günaydın and Doğan 2004). After training,

the ANN predictions were compared with the actual costs of the test cases. The

minimum error when using NeuroSolutions was 7%.

The results of the ANN models using three different approaches for determining

weights are presented in Table 4.2. The best overall model is the one produced by Excel

Solver, providing excellent performance on both the training and test cases. While back-

propagation training produced a network with small errors on the training cases, it

behaved relatively poorly on the test cases. GA, on the other hand, did not produce good

results probably because of its random selection of the generated population. Despite

the consistent performance of the GA’s model over the training and test cases, it

exhibits a higher overall error. It is concluded, therefore, that the networks of simplex

optimization and back-propagation training are most suited to the present case study.

CBR Results and Discussion

As an example application, the CBR-Excel template was populated by data

collected from residential building construction projects. With the input attributes and

the output attribute defined, relevant data were then entered into the CBR-Excel model

64

Figure 4.2. Step 1: Original unscaled inputs

A B C D E F G H I J

1
STEP 1: ORIGINAL UNSCALED INPUTS

Project
 No.

Th
e

to
ta

l a
re

a
of

 th
e

bu
ild

in
g

(m
²)

Th
e

ra
tio

 o
f t

he
ty

pi
ca

l f
lo

or

ar
ea

 to
 th

e
to

ta
l a

re
a

of
 th

e
bu

ild
in

g
Th

e
ra

tio
 o

f g
ro

un
d

flo
or

ar

ea
 to

 th
e

to
ta

l a
re

a
of

 th
e

bu
ild

in
g

Th
e

nu
m

be
r o

f f
lo

or
s

Th
e

ty
pe

 o
f

 o
ve

rh
an

g
de

si
gn

Th
e

lo
ca

tio
n

of
 th

e
co

re
 o

f
th

e
bu

ild
in

g

Th
e

flo
or

 ty
pe

 o
f t

he

bu
ild

in
g

Th
e

fo
un

da
tio

n
sy

st
em

 o
f

th
e

bu
ild

in
g

Th
e

co
st

 o
f t

he

st
ru

ct
ur

al
 s

ys
te

m
 p

er

sq
ua

re
 m

et
er

3
1

675 0.2 0.182 6 1 0 1 1 49.87

4 2 1425 0.2 0.2 6 0 0 0 1 52.95

5 3 330 0.2 0.2 6 0 0 0 1 37.78

6 4 2025 0.14 0.13 5 0 1 1 1 62.12

7 5 1670 0.16 0.16 4 1 0 1 0 79.61

8 6 2082 0.16 0.3 6 1 0 1 1 58.72

9 7 3484 0.07 0.07 6 0 1 0 1 65.13

10 8 1364 0.25 0.23 6 0 1 0 0 76.36

11 9 1568 0.26 0.25 6 0 1 0 0 85.55

12 10 2533 0.16 0.16 6 0 1 0 2 51.04

23 21 569 0.16 0.14 6 1 0 0 1 42.49

24 22 1156 0.13 0.095 6 1 1 0 1 41.24

25 23 1146 0.202 0.19 5 0 0 0 2 127.7

31 29 2528 0.13 0.096 8 1 1 0 1 43.98

32
Min Value

330 0.07 0.07 4 0 0 0 0 35.47

33 Max Value 3484 0.26 0.3 8 1 1 1 2 151.9

MIN(B3:B31)

MAX(B3:B31)

Training
Cases

Testing
Cases

65

Figure 4.3. Step 2: Scaled inputs

A B C D E F G H I J

39

STEP 2: SCALED INPUTS

40

Pr
oj

ec
t N

o.

Th
e

to
ta

l a
re

a
of

 th
e

bu
ild

in
g

(m
²)

Th
e

ra
tio

 o
f t

he
ty

pi
ca

l
flo

or
 a

re
a

to
 th

e
to

ta
l

ar
ea

 o
f t

he
 b

ui
ld

in
g

Th
e

ra
tio

 o
f g

ro
un

d
flo

or

ar
ea

 to
 th

e
to

ta
l a

re
a

of

th
e

bu
ild

in
g

Th
e

nu
m

be
r o

f f
lo

or
s

Th
e

ty
pe

 o
f

 o
ve

rh
an

g
de

si
gn

Th
e

lo
ca

tio
n

of
 th

e
co

re

of
 th

e
bu

ild
in

g

Th
e

flo
or

 ty
pe

 o
f t

he

bu
ild

in
g

Th
e

fo
un

da
tio

n
sy

st
em

of

 th
e

bu
ild

in
g

bias
1

41 1 0.78123 0.368421 -0.026087 0 1 -1 1 0 1

42 2 -0.305644 0.368421 0.130434 0 -1 -1 -1 0 1

43 3 -1 0.368421 0.130434 0 -1 -1 -1 0 1

44 4 0.074825 -0.263158 -0.478261 -0.5 -1 1 1 0 1

45 5 -0.150285 -0.052632 -0.217391 -1 1 -1 1 -1 1

46 6 0.110970 -0.052632 1 0 1 -1 1 0 1

47 7 1 -1 -1 0 -1 1 -1 0 1

48 8 -0.344325 0.894736 0.391304 0 -1 1 -1 -1 1

49 9 -0.214965 1 0.565217 0 -1 1 -1 -1 1

50 10 0.396956 -0.052632 -0.217391 0 -1 1 -1 1 1

61 21 -0.848446 -0.052632 -0.391304 0 1 -1 -1 0 1

62 22 -0.476221 -0.368421 -0.782609 0 1 1 -1 0 1

63 23 -0.482562 0.389473 0.043478 -0.5 -1 -1 -1 1 1

69 29 0.393785 -0.368421 -0.773913 1 1 1 -1 0 1

2*(B3-B$32)/(B$33-B$32)-1

66

Figure 4.4. Step 3: Weight of links from 8 inputs to 5 hidden neurons

74 STEP 3: WEIGHTS OF LINKS FROM 8 INPUTS AND A BIAS TO 5 HIDDEN NEURONS

75 1 1.029 1.000 1.0310 0.998 1.001 -5.866 1.113 0.993 0.921

76 2 0.830 2.685 0.5498 -0.78 1.338 0.712 -0.721 0.515 -0.43

77 3 0.206 1.501 0.9296 0.035 -1.529 0.133 0.134 3.240 0.783

78 4 -0.847 3.662 4.6076 1.573 3.119 3.497 -0.239 -1.162 2.918

79 5 0.1200 2.7294 2.9047 0.281 3.460 1.255 -0.770 0.838 1.727

67

 Figure 4.5. Step 4: Outputs of hidden neurons and
 Step 5: Weights from 5 hidden neurons to 1 output neuron

A B C D E F G H I

83 STEP 4: Outputs of hidden neurons

84
 Project

No 1 2 3 4 5 Bias
2

85 1 0.999999 -0.204478 -0.36117 0.9995430 0.9993270 1

86 2 0.999880 -0.744214 0.990207 -0.848484 -0.701478 1

87 3 0.999500 -0.911489 0.986969 -0.580060 -0.741386 1

88 4 -0.999988 -0.980030 0.940175 -0.744563 -0.998134 1

89 5 0.999995 -0.569430 -0.99965 0.6764327 0.8479233 1

90 6 1 -0.033210 0.127449 0.9999964 0.9999861 1

91 7 -0.999999 -0.991813 0.088833 -0.999971 -0.999941 1

92 8 -0.999998 0.900371 0.609595 0.9999999 0.9949690 1

93 9 -0.999996 0.961079 0.783645 1 0.9989984 1

94 10 -0.999986 0.237973 0.999955 0.6872906 0.3832194 1

105 21 0.999954 -0.150388 -0.92635 0.9056252 0.9973980 1

106 22 -0.999997 0.477334 -0.97192 0.9999418 0.9991446 1

107 23 0.999926 -0.185502 0.999981 -0.997652 -0.370278 1

113 29 -0.999869 0.428230 -0.95645 0.9999899 0.9996242 1

116 STEP 5: Weights from 5 hidden neurons to 1 output neuron

117 1 -1.259155 -2.92964 1.4595452 -5.296362 7.8224082 -2.2764

=TANH
(SUMPRODUCT
(B41:J41,B$75:J$
75))
Formula once
made and copied
down to cells

=TANH(SUM
PRODUCT
(B41:J41,B$79:
J$79))
Formula once
made and
copied down to
cells

68

Figure 4.6. Step 6: NN outputs and Step 7: Errors

A B C D E F G H

120 Step 6: NNs Output Step 7: Errors

121
 Project

No

NN
Output

NN
Output
Scaled
Back

Actual
Output

% Error

122 1 -0.735417 508760 498784 2.000000

123 2 -0.717854 518987 529578 2.000000

124 3 -0.973291 370239 377795 2.000000

125 4 -0.563673 608771 621195 2.00000

126 5 -0.269351 780162 796083 2.000000

127 6 -0.620769 575522 587268 2.000000

128 7 -0.468101 664424 651397 2.000000

129 8 -0.271563 778874 763602 2.000000

130 9 -0.169210 838476 855588 1.999999

131 10 -0.715012 520642 510434 1.999999

142 21 -0.893980 416424 424923 1.999999

143 22 -0.865417 433057 412435 5.000000

144 23 0.6936738 1340957 1277101 5.000000

151 29 -0.816011 461828 439836 5.000000

152

153 Error on 21 cases 0,046457

154 Error on 8 cases 0,045976

155

=TANH(SUMPRODUCT
(D85:I85;D$117:I$117)
Formula made once and
copied to the down cells

=D(122+1)(J33-J32)
/2+J32
Formula made once and
copied to the down cells

=ABS
((F122-G122)*100/G122)
Formula once made and
copied down

69

Table 4.2. Average error percentages for ANN models

Methods
for determining
 ANN weights

Average error
 in

ANN prediction

Simplex optimization 4%

Back-propagation
(gradient descent)

7%

Genetic Algorithms
(GA)

11%

70

using the procedure described in Figure 3.13, 3.14, 3.18 and 3.19. A set of test cases

were used to evaluate the effect of the attribute weights generated by all six methods

(Figure 3.15 3.16, 3.17, 4.11), the dataset of 29 projects being randomly split into an

input set containing 24 projects, and a test set containing 5 projects. In other words,

CBR-Excel simulation described in chapter 3 was modified as follows: there were

5)(m...,2,1,i projects that were used as test cases, 24)(n...,2,1,j projects as

input cases, 8)(p...,2,1,k input attributes, and one output. The impact of the six

sets of attribute weights was evaluated using the same test set of 5 projects.

The next step was to set up the Excel template to calculate attribute weights.

The overall error obtained in CBR is a function of attribute weights. The attribute

weights were generated by using (1) the feature counting method, (2) the gradient

descent method (3) genetic algorithms, (4) binary-dtree method, (5) info-top method,

(6)info-dtree method. The attribute weights obtained (Table 4.3) were input into the

CBR-Excel application.

For the methods using decision tree learning algorithms, See5 was used to

generate attribute weights for the CBR model. The decision tree constructed by See5 is

presented in Figure 4.11. Each branch node (oval shape) in the decision tree represents

an attribute, and the branches correspond to the possible values of the attribute. Each

leaf node (rectangular shape) represents a decision or a class (Table 4.4). The attribute

weights obtained by using decision trees (Table 4.3) were put into CBR-Excel

application (Figure 4.7, 4.8, 4.9 and 4.10) similar to the other sets of weights generated

by other methods mentioned.

After the attribute weights were determined by using feature counting, gradient

descent, GA, and ID3 (decision tree) learning algorithm methods (binary-dtree, info-top

and info-dtree), the CBR-Excel model was run and the performance of the model was

evaluated vis-à-vis each method. The results presented in Table 4.3 indicate that the

GA-augmented CBR model yielded an average error of 16.23% whereas feature

counting+CBR and info-top+CBR yielded an average error of 17.63% and binary- dtree

71

Figure 4.7. Formatting data to a case spreadsheet

1 A B C D E F G H I J

2 Weights w1 w2 w3 w4 w5 w6 w7 w8

3 TEST CASEBASE

4 Input Attributes

5

Test
Case
No. 1 2 3 4 5 6 7 8

Output
Attribute

6 1 2969 0.14 0.120 7 no
cons

middle RC slab 109.35

7 2 1238 0.16 0.160 5 no
cons

sides RC slab 37.66

8 3 2082 0.16 0.300 6 one-
way

sides
pre-
cast

wall 58.72

9 4 2528 0.13 0.096 8 one-
way

middle RC wall 43.98

10 5 1172 0.16 0.160 4 no
cons

middle RC slab 74.84

11

12 INPUT CASEBASE

13 Input Attributes

14

Input
Case
No. 1 2 3 4 5 6 7 8

Output
Attribute

15 1 675 0.20 0.182 6 one-
way

sides
pre-
cast

wall 49.87

16 2 2861 0.16 0.080 7 no
cons

middle RC slab 62.70

17 3 330 0.20 0.200 6 no
cons

sides RC wall 37.77

18 4 1425 0.20 0.200 6 no
cons

sides RC wall 52.95

19 5 964 0.17 0.150 5 one-
way

middle RC slab 103.04

20 6 1314 0.15 0.140 6 no
cons

sides RC wall 37.97

21 7 3484 0.07 0.070 6 no
cons

middle RC wall 65.13

22 8 1364 0.25 0.230 6 no
cons

sides RC pier 76.36

23 9 1568 0.26 0.250 6 no
cons

middle RC slab 85.55

24 10 2533 0.16 0.160 6 no
cons

middle RC slab 51.04

38 24 1518 0.13 0.120 7 no
cons

sides RC wall 36.38

39

72

 Figure 4.8. Attribute similarity matrix for Test Case 1
 (5 similar matrices are generated, one for each of the 5 test cases)

1 K L M N O P Q R S

2

3 Input Attributes

4

Input
Case
No. 1 2 3 4 5 6 7 8

5 1 0.227 0.700 0.659 0.857 0 0 0 0

6 2 0.964 0.875 0.667 1.000 1 1 1 1

7 3 0.111 0.700 0.600 0.857 1 0 1 0

8 4 0.480 0.700 0.600 0.857 1 0 1 0

9 5 0.325 0.824 0.800 0.714 0 1 1 1

10 6 0.443 0.933 0.857 0.857 1 0 1 0

11 7 0.852 0.500 0.583 0.857 1 1 1 0

12 8 0.459 0.560 0.522 0.857 1 0 1 0

13 9 0.528 0.538 0.480 0.857 1 1 1 1

14 10 0.853 0.875 0.750 0.857 1 1 1 1

28 24 0.511 0.929 1.000 1.000 1 0 1 0

29

=IF(F6=F$15,“1”,“0”)
Made once and copied for all cells
with textual information

=MIN(B6,B$15)/MAX(B6,B$15)
Made once and copied for all cells
with numerical information

73

 Figure 4.9. Case similarity matrix for all test cases

1 T U V W X Y Z AA AB AC AD AE AF AG

2

3 Input Case No.

4

Test
Case
No. 1 2 3 4 5 6 7 8 9 10 … 24

Highest
Score

5 1 0.283 0.939 0.418 0.470 0.724 0.525 0.637 0.440 0.799 0.920 … 0.566 0.939

6 2 0.505 0.691 0.616 0.700 0.706 0.737 0.398 0.673 0.722 0.771 … 0.676 0.961

7 3 0.833 0.343 0.658 0.731 0.431 0.717 0.481 0.503 0.381 0.403 … 0.693 0.833

8 4 0.579 0.605 0.499 0.560 0.587 0.606 0.740 0.317 0.463 0.581 … 0.660 0.898

9 5 0.352 0.815 0.460 0.536 0.834 0.572 0.520 0.509 0.840 0.892 … 0.515 0.984

10

=(SUM(B$2*L5,C$2*M5,D$2*N5,E$2*O5,F$2*P5,G$2*Q5,H$2*R5,I$2*S5))/
(SUM(B$2,C$2,D$2,E$2,F$2,G$2,H$2,I$2)
Made once and copied to all cells of the matrix

= MAX (U5:AF5)
Made once and copied down

73

74

Figure 4.10. CBR outputs and error

1 AH AI AJ AK AL AM

2

3
Test
Case
No.

Highest
Score

Input
Case
No.

Output
Value

Actual
Outputs
for Test
Cases

Error

4 1 0.939 18 62.70 109.35 0.43

5 2 0.961 21 41.58 37.66 0.10

6 3 0.833 1 49.87 58.72 0.15

7 4 0.898 11 41.24 43.98 0.06

8 5 0.984 2 64.50 74.84 0.14

9 0.176

=ABS((100-((AK4*100)/AL4))/100)
 Made once and copied down

=AVERAGE(AM4:AM8)

75

Foundation
system

Wall
SlabPier

Overhang
design

Core
location

 $40 < cost ≤ $50

No overhangOne-way

 $70 < cost ≤ $80

Core
location

Sides Middle

 $30 < cost ≤ $40 $60 < cost ≤ $70

Sides Middle

Ratio of typical
floor area to total

area of the building

 $60 < cost ≤ $70

$60 < cost ≤ $70

Ratio ≤ 0.16

$100 < cost ≤ $110

Ratio > 0.16

Figure 4.11. Decision tree constructed by See5 according to the output attribute classes in Table 4.4.

75

76

Table 4.3. Optimized attribute weights for CBR Excel model and average error percentages

Attribute Weights
Weight

Generation
Method Total area

Ratio of
floor area to

total area

Ratio of
footprint

area to total
area

Number of
floors

Overhang
design

Core
location

Floor type
Foundation

system

Average
error in CBR

prediction

Feature
Counting

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 17.63%

Gradient
Descent

0.0069 0.1885 0.1528 0.1427 0.1049 0.1560 0.0316 0.2161 21.20%

Genetic
Algorithms

1.0000 2.0056 1.0010 9.9988 1.0031 1.0000 3.9999 1.0000 16.23%

76

77

Table 4.3. (continued) Optimized attribute weights for CBR Excel model and average error percentages

Attribute Weights
Decision

tree method
of weight
generation Total area

Ratio of
floor area

to total area

Ratio of
footprint

area to total
area

Number of
floors

Overhang
design

Core
location

Floor type
Foundation

system

Average
error in
CBR

prediction

Binary-dtree 0 1 0 0 1 1 0 1 20.70%

Info-top 0,387129 0,451902 0,439009 0,355676 0,509398 0,511249 0,189805 0,783560 17.63%

Info-dtree 0 0,204025 0 0 0,243221 0,604721 0 0,783560 20.70%

77

78

Table 4.4. Classes specified for output attribute of cost per square meter

Class
No

Cost

1 $30/m2 < Cost $40/m2

2 $40/m2 < Cost $50/m2

3 $50/m2 < Cost $60/m2

4 $60/m2 < Cost $70/m2

5 $70/m2 < Cost $80/m2

6 $80/m2 < Cost $90/m2

7 $90/m2 < Cost 100/m2

8 $100/m2 < Cost $110/m2

9 $110/m2 < Cost $120/m2

10 $120/m2 < Cost $130/m2

11 $130/m2 < Cost $140/m2

12 $140/m2 < Cost $150/m2

13 $150/m2 < Cost $160/m2

79

+CBR and info-dtree+CBR had average errors of 20.70%; and the gradient

descent+CBR had average error of 21.20%.

The setting up of the attribute weights in the feature counting method was

straight forward in that all weights were taken as 1. In the gradient descent method, the

experimentation between the arithmetic and geometric decrementation approach showed

that the geometric approach resulted in better predictions. Default parameters were used

for all other factors following the recommendations of the software developer (Esteem

1994).

GA optimization could have been performed with multiple “evaluation cases.”

But the selection of five test cases out of a total of 29 limited the number of cases in the

input casebase to as few as 24, which in turn necessitated the selection of very few

“evaluation cases” (see Figure 3.16), in this study only one. Finally, in the GA

optimization process, the weight of each attribute was constrained between 1 and 10.

Using a range of 0 to 10 rather than 1 to 10 could have had the effect of eliminating

certain attributes, hence making the process more efficient. It is worth exploring this

issue in future research.

After the first cycle of the GA optimization process, the “evaluation case” was

returned to the input casebase and the next case picked for the next cycle of GA

optimization. In other words, every input case in the input casebase was used once as

an “evaluation case.” Since the similarity of two identical cases is indicated by 1 in the

CBR system, the objective function of the GA optimization was set to make the case

similarities closer to 1.

Three different approaches were experimented in the GA optimization process to

improve prediction accuracy. In the first approach, the objective of GA optimization at

every cycle was to maximize the weighted case similarity of the input case that had the

highest similarity with the “evaluation case.” In the second approach, the objective was

to maximize the average weighted case similarity of all the 23 cases that were

considered at each cycle. The third approach involved maximizing the weighted case

similarity of the input case whose output was closest to the output of the “evaluation

case.” The GA optimization process was performed for 24 cycles, each using these

three approaches. The averages of the attribute weights determined in these 24 cycles

were used in the CBR prediction model. The optimized attribute weights were

calculated as follows:

80

n

w

w

n

j
jk

k

 1 (4.1)

where k = 1, 2, … , 8 attributes and n = 24 input cases

The setting up of the attribute weights in the binary-dtree method was straight

forward in that the attributes appearing in the decision tree (the foundation system, the

type of overhang design, the location of the core, and the ratio of the typical floor area

to the total area of the building) (see Figure 4.11) were weighted as 1, whereas the

attributes that did not appear in the tree (the total area of the building, the ratio of the

footprint area to the total area of the building, the number of floors, the type of floor

structure) were weighted as 0, as seen in Table 4.3. In the info-top method, all of the 8

attributes were given weights according to their information gain values. The attribute

with the highest information gain value is selected as the root of the decision tree by

See5. In this study, the foundation system with the information gain value of 0,783560

was selected as the root (see Figure 4.11). The information gain values of all the

attributes (i.e., their weights) are presented in Table 4.3. In the info-dtree method, the

attributes that appear in the tree constructed by See5 (Figure 4.11) were given weights

in consideration of their information gain values and their positions in the tree. For

example, the attribute “console direction” appeared twice in the tree, with information

gain values of 0.750 and 0.918 with 50% and 25% of input cases classified by the

attribute respectively; the weight of this attribute is calculated as (0.750 × 0.5) + (0.918

× 0.25) = 0.6045. The weights of the attributes in the decision tree were calculated using

the same principle and are presented in Table 4.3.

As discussed by Ling et al. (1997), if the number of input cases is small, See5

constructs an overly simple decision tree, overlooking relevant attributes. In the case

study presented in this paper, there were 3 continuous and 5 discrete attributes but only

29 cases. Because 5 cases had to be used as test cases, only 24 cases were left as input

cases. As a result, See5 constructed a tree that included only four attributes. When this

happens, the performance of the binary-dtree and info-dtree methods (which consider

only the attributes in the decision tree) is bound to be worse than the info-top method

(which considers the information gain of all attributes). It was therefore not surprising

to find out that binary-dtree + CBR and info-dtree + CBR did not generate predictions

81

that are as strong as the prediction generated by the info-top + CBR alternative because

they only use the attributes that appear in the decision tree and therefore do not take into

account the information gain of the other relevant attributes even though it is likely that

such information gain affects the classification of some cases used in the study. Our

findings support the conclusion of Ling et al. (1997) that info-dtree and binary-dtree are

immune to irrelevant attributes, and that info-top is suitable for situations where there

are not enough input cases and where all attributes may be relevant.

On the other hand, it was surprising to see that binary-dtree + CBR performed as

good as info-dtree + CBR. After all, info-dtree is considered to be a more sophisticated

method than binary-dtree that assigns a weight of 1 to all attributes in the decision tree,

regardless of their position in the tree (Ling et al. 1997). While binary-dtree was found

to be as effective as info-dtree in this case study, it must be noted that a limited number

of input cases were available. The performance of the info-dtree method could possibly

improve with larger numbers of input cases.

The performance of the optimized attribute weights were tested on the five test

cases. Out of the six approaches, GA approach performed best. The attribute weights

presented in the last row of Table 4.3 were obtained by using the GA approach.

One of the reasons why the average errors obtained (last column in Table 3)

were not very low had to do with the nature of the output attribute. The output of the

cases considered in this study was the unit cost of construction of the superstructure and

its value ranged between $30 and $160/m2 (see Table 4.1 and Table 4.4). In order to

have high prediction accuracy, one should have at least two or more cases with not only

quite similar input attributes but also almost identical outputs, which is most improbable

given the small number of cases (total 29) that were available for this study and the

wide range of unit costs associated with the cases considered. The average errors

reported in this study could have been lower had the output variables been binary or had

there been a larger number of cases with an output attribute whose value varied in a

smaller range.

4.3. Comparison of ANN and CBR Excel Simulations

This study has evaluated ML techniques of ANN and CBR and their integrated

(augmented) forms, which were used to make cost estimations. These have been

82

compared with their prediction accuracy. However, there are other characteristics of

these techniques that will have an equal, if not greater, impact upon their adoption.

Below the relative merits and demerits of those are discussed. In light of the studies

conducted with both ANN simulation and CBR simulation, five factors are considered

to assess their utility: preprocessing effort, configurability, explanatory value, accuracy

and improvement potentials.

4.3.1. Preprocessing Effort for Conversion of Data

Data consist of cases and their related features. The content could be both in

numerical and textual values. The techniques of handling data for ANN and CBR

systems are different. The ANN system can only handle numerical values, which also

need to be scaled to a certain range. Conversions of numerical and textual input data are

essential to suit ANN processing. (The numerical values are often scaled to a range from

[-1,1] for tanh activation function to avoid fluctuations in the mathematical calculations

of an ANN system.) Although both CBR and ANN systems require the organization of

data into a matrix form to suit the Excel format, the ANN system needs 3 more steps in

this procedure in order to be able to process input data and produce meaningful output

data. This certainly brings additional preprocessing effort for organization of data. The

spreadsheet simulations bring the advantage of transparency, however they cannot avoid

the considerable time required to build them up, when compared with commercial

software. Therefore, the ANN system may be less advantageous when dealing with a

large data set. Then it is easier to use CBR which handles cases in their original

representations, without converting from one type to another. This may also be

important in order to prevent loss of information since learning performance may

deteriorate when modified data are used (Reich 1997). In this study, the building cost

data were in the form of both numerical and textual values. Features expressed as text

were used in the CBR study. Textual data were subjected to numerical transformation in

a continuous manner in the ANN study; the numerical data were reduced to a range [-

1,1] with a linear scaling formula.

83

4.3.2. Configurability in Spreadsheet Format

The second major factor in comparing ANN and CBR prediction systems for this

simulation study is configurability, in other words how much effort is required to build

the prediction system in order to generate useful results. Considering the preprocessing

effort mentioned previously for conversion of data, CBR needs relatively little effort.

However, model building is a more complex issue than entering and converting data.

The ANN model needs specifying the number of hidden layers, hidden neurons, bias

nodes, a learning algorithm and a transfer function for the Excel format, whereas CBR

only needs specifying the feature and case similarity functions. These variables are the

tools of modeling, which analyst uses to find the optimum combinations and results.

Although various sets of books have been published on ANN modeling, the process is

agreed to be largely one of trial and error. Therefore, it is obvious that it takes

considerable effort to configure the neural network architecture and it certainly requires

a fair degree of expertise. For this reason, it is difficult to see how an ANN model could

easily be built up within the spreadsheet format by analysts, where the analyst has to

manually enter all the values, build up the model, evaluate the performance and then

accordingly rebuild the model again and again until he/she gets an optimum solution.

This is generally related with the burden of the training process of an ANN system.

However, the burden could be intolerable in a spreadsheet format. CBR, on the other

hand, does not require the combinations of parameters to build up its prediction model.

Since it does not predict from scratch, but retrieves cases from a case-base, it uses

simple feature similarity and case similarity formulas, which can be made once in Excel

and easily copied to all cells thereafter.

4.3.3. Accuracy for Cost Prediction

Not generating data from scratch but adjusting from a case-base enhances the

configurability of CBR in Excel format, but it appears to be a disadvantage in this

particular study since there are only few examples to store in the case-base.

Consequently in this study, the ANN model was able to produce closer cost values to

actual costs than the CBR model (see Table 4.2 and Table 4.3). It was obvious that even

though, CBR had worked with full efficiency and selected the closest cost value, it

84

definitely would never have been able to predict better than what existed as the closest

cost in its case-base. Although several methods by utilizing highest score ranks were

applied in order to get closer predictions, none produced better results. If the neural

network paradigm is suitable for the data available, a key aspect of many ANN models

is that they are able to learn, and their behavior may improve with training and

experience (Barrow 1996). In this case this advantage of ANN provided superior

prediction results over CBR.

4.3.4. Explanatory Value

Although ANN models are great learners, almost like humans, the rules behind

their judgment is not explainable. One attraction of the transparent spreadsheet

simulations carried out in this study is that the analyst is able to see and control all the

formulas and connections being used by the prediction system. However, in an ANN

system if a particular prediction is in some sense surprising to the analyst, it is harder to

establish any rationale for the value generated. It is difficult to evaluate the outcome of

an ANN study merely by studying the network architecture and neuron weights. By

comparison, CBR appears to offer an advantage in this respect. Unlike reducing error by

weight generation through back-propagation learning in ANN, CBR estimates by

analogy. Cases are ordered in degree of similarity to the target case by utilizing

similarity assessment methods calculated by assigning weights to the related features.

Indeed, above the explanatory value, this technique encourages the participation of the

analyst for getting better and effective predictions.

4.3.5. Improvement Potential via Integration of Other Methods

For better and effective predictions, weights are the important adjustable

variables that can be freely manipulated on an Excel spreadsheet. Both in ANN and

CBR, the weights of the variables are the adjusted in order to build up the optimum

prediction system. Therefore, the improvement potential of these models are strongly

tied to how realistic the weight of the variables are. In the studies of ANN and CBR,

cited in Chapter 3, the optimization of the weights is done by well established methods

(described in Chapter 3).

85

 When comparing the model building effort for the two systems, it was

mentioned that the primary advantage of CBR over ANN was that a CBR application

did not need to be trained (Kasravi 1994). On the other hand, in the GA/CBR study, the

selection of the weights for the similarity assessment method turned not to be an

important operation, which consumed as much time as the training procedure of the

ANN model. By comparison, GA integration in ANN is a simpler procedure, which is

carried out only once for the whole training cycle. On the other hand, weight generation

in CBR is a critical issue on which the success of the CBR technique heavily relies. The

GA optimization for feature weights in this CBR study was carried out once for each

case in the case base in order to get the most benefit out of their integration.

For the study carried out with GA/ANN, the GA optimization of weights was

not more successful than the simplex optimization method or back-propagation training

(Günaydın and Doğan 2004, Doğan et al. 2005c). However, GA offered several

improvements in the GA/CBR study. GA was able to reduce the effect of less important

features; and it was able to eliminate the unimportant features when constraints were

scored on a scale starting with 0. This means that if a feature is of no importance, it was

assigned a 0 weight by GA. In the study carried out by Doğan et al. (2005a) it was

found out that every feature could somewhat improve the prediction accuracy, so the

constraints were set to begin from 1. Irrelevant features for ANN models are also an

important problem investigated lately by Shi (2004).

The feature counting method which assigns weight values of 1 to all attributes

required no effort on the part of this researcher. But all the other methods (decision tree

learning algorithms, gradient descent and GA) required a far greater effort to generate

the optimized weights that were later plugged into the Excel model. The ANN model

was more welcoming than CBR when the Excel add-in programs were used to

determine ANN weights.

Whatever mechanism is being utilized, it is clear that although accuracy is the

most important concern, it is not sufficient to consider the accuracy of prediction

systems in isolation. The consistency (explanatory value), continuity (configurability

and preprocessing effort) and improvement of the systems are also of great importance.

86

4.3.6. Conclusions

CBR and ANN models were used by Doğan et al. (2005a, 2005b); and Günaydın

and Doğan (2004) and Doğan et al. (2005c), respectively, to predict the early cost

estimate of residential building projects. A comparison of the experiences with the

development of CBR and ANN models shows the following:

 The case study used in the models to compare ANN and CBR indicates

that augmented ANN and CBR models by different weight generation

methods may make better predictions than standard methods provided by

commercial software of ANN or CBR (Doğan et al. 2005a, 2005b,

2005c). However, in both cases, the model building process is

unnecessarily cumbersome for Excel simulations. Even after the systems

are designed, when they need to be updated with new cases for the long-

term use of these models, it is even more cumbersome since all the

model building process should be repeated and tested with each update.

This is the reason that the automation is importantly needed. Currently,

there is no commercial software like GA-CBR. However Jarmulak et al.

(2000) reported working such integration on the CBR software ReCall

(1993). For the ANN system, some software is supported by genetic

training, e.g., NeuroShell (2002). Augmenting CBR weights with

different decision tree learning algorithm methods is discussed in some

articles (Ling et.al. 1997) published in the computer science field; but

there is no software designed for their integration as yet. The CBR

software Esteem only supports a limited part of this kind of integration

just by considering the numerical attributes. When input attributes of data

include textual information, Esteem is unable to take those attributes into

consideration when performing its prediction.

 Even after the release of integrated software, more research should be

carried out for different data sets because specific recommendations are

needed as to which approach could be more appropriate in what type of

domain [for what type of output (numeric, textual, binary, etc...)] or for

87

what type of input data (i.e. number of inputs /attributes and training and

retrieving case numbers). This type of guideline would be of great help to

the developers of prediction models.

 The early stage cost estimation effort conducted by using different

machine learning applications has a number of distinct characteristics

compared to other prediction problems. First, the training set is

comparatively small. Second, the predictions generally have a higher

degree of significance to the analyst. This has the consequence that

interaction or collaboration, between the prediction system and the

analyst is of great importance. Allowing the analyst to participate in the

prediction process by utilizing spreadsheet simulations may lead to two

beneficial effects. First, it may enhance accuracy. Analysts may provide

some kind of sanity check on the systems, while the system allows them

to manipulate far more characteristics manually than would be possible

by commercial software. Second, it may increase confidence in the

prediction. This consideration is also important in order to avoid the

situation where end-users reject a prediction system.

In this dissertation two machine learning techniques augmented with various

weight generation methods for predicting early cost estimation of superstructure of

buildings were compared. These techniques were compared in terms of preprocessing

effort, accuracy, explanatory value, configurability and improvement potentials. Despite

finding that there are differences in prediction accuracy levels, it is argued that it may be

the other characteristics of these techniques that may have an impact upon their

adoption. It was found that the explanatory value of estimation by analogy gives CBR

an advantage when considering its interaction with the analyst and end-users. It was also

found that problems of configuring neural networks tend to rather counteract their

superior performance in terms of accuracy. This preliminary research has shown that the

machine learning (ML) techniques used in this study are locally significant but are not

generalizable. It is believed that it is important to further investigate these ML methods,

particularly to explore under which conditions they are most likely to be effective.

88

CHAPTER 5

CONCLUSIONS

This dissertation has presented the developments and findings of ANN and CBR

models for the prediction of unit structural cost of residential buildings. For doing so,

the basics of artificial neural networks and cased reasoning processing are analyzed in

the context of cost prediction. An ANN spreadsheet model has been developed based on

Hegazy and Ayed’s (1998) Excel template. A CBR Excel model has been developed

following the spreadsheet based user interface of a commercial CBR software (Induce-

It, 2000). Cost data belonging to residential buildings in İstanbul have been used to test

the models. An investigation of the impacts of weight generation methods on the ANN

and CBR models in the building cost prediction domain has been conducted. Various

methods including simplex optimization, back propagation training, and genetic

algorithms for ANN and feature counting, gradient descent, genetic algorithms (GA),

binary-dtree, info-top and info-dtree for CBR model have been used. Thus, the two

main Excel models of ANN and CBR developed in this study produced nine different

models. Spreadsheet structures of the developed ANN and CBR models made them

flexible for weight generation alterations and further development.

This research provides contributions in several areas. The following paragraphs

itemize conclusions and major identifiable tasks that have been accomplished. At a

global level, this dissertation developed a unique methodology by using machine

learning (ML) methods for improving cost prediction at the early design stage of

building construction. The following are the research findings, the conclusions and

contributions:

1. The review and the results of the study show that cost prediction at

the early design stage can be enhanced by major breakthrough

developments in machine learning (ML) domain. Architects and

project managers involved in the process of building design and

construction may take advantage of ML techniques for higher cost

prediction accuracy and therefore for higher quality in building design

and construction processes.

89

2. The study has been able to introduce alternative approaches of using

ANN and CBR models for higher cost prediction of the structural

system at the early stages of the building design process. Both of the

approaches have been capable of providing high prediction accuracy

(96% for ANN using simplex optimization for weight determination,

84% for CBR using GA for attribute weight selection) for building

cost per square meter by using eight parameters available at the early

design phase. Both models establish a methodology that can provide

an economical and rapid means of cost prediction for the structural

system of future building design processes.

3. Development of the models demonstrated the practicality of using

spreadsheets in developing ANN and CBR for use in construction

management. A spreadsheet simulation of an artificial neural network

model developed by Hegazy and Ayed (1998) was the motivation of

the investigation. The use of spreadsheets and development of ANN

and CBR models in Excel have brought several benefits to the

development process and presumably to the end user. This also

indicates that the nature of the model development process in this

study actually makes a unique difference in ML employment. It was

possible to simulate the ANN and CBR processes in a transparent

form, and further optimize them using spreadsheet availabilities.

4. The Excel simulations of ANN and CBR present these models as

viable tools for use in construction by adjusting the developed

templates to other applications. ANN and CBR Excel templates can

be modified, populated with different sets of data and used in other

areas of building construction such as quality, productivity,

constructability, value engineering, scheduling, etc.

5. Spreadsheet programs have been among the most easy-to-use

software programs that include powerful data management

capabilities, since their introduction in early 1980s. Therefore, the use

of spreadsheets in construction has been customary to many

practitioners. Furthermore, users can also select among many add-in

modules available on the market to extend spreadsheet capabilities.

This study has used Solver and Evolver add-ins to Microsoft Excel to

90

improve weight generation abilities of ANN or CBR models.

Additionally, the weights generated by other commercial softwares

(Esteem and See5) have been easily plugged into these Excel models,

which have facilitated integration and evaluation of different methods.

6. ANN learns from examples. The performance of an ANN model of

cost prediction strongly depends on the quality and the quantity of

examples. The more examples there are, the less the prediction error

is. Thus, to study modeling and prediction methods in ANN, and

construct an accurate prediction model of building costs, there is a

need for reliable, highquality, full-scale cost data of buildings of

various types and conditions. Though the data selected for this model

were limited in scope, the results are encouraging for further research

of expanded data sets.

7. CBR prediction model also depends on the examples in its casebase.

CBR cost model performed well despite the fact that the number of

cases in the casebase was small and the output attribute was not

binary. Both the CBR prediction and the GA optimization of CBR-

GA model suffered from the fact that not many of the 29 cases

considered in the study had input attributes and outputs that were

close to each other. The likelihood of seeing stronger similarities is

much higher if the number of cases is substantially higher than 29.

8. ANN was used in this study to develop a prediction model where its

connection weights were determined by three different approaches,

namely simplex optimization, back propagation training and GA.

Based on this experimentation; the simplex optimization produced the

best ANN model. CBR was used in this study to develop a prediction

model where attribute weights were generated by means of six

different techniques, namely feature counting, gradient descent, GA

and three methods of induction decision trees (ID3). The results

indicated that GA-augmented CBR performed better than CBR used

in association with the other techniques. Despite the limitation of data

cited above, the study is of benefit to researchers as it illustrates the

importance of weights as variables in the performance of both ANN

and CBR prediction tools. It also indicates that it is worth

91

experimenting with different weight generation methods rather than

being confined by the standard methodologies provided by ANN and

CBR software.

9. The findings of ANN weight determination approaches show that GA

optimization did not generate ANN predictions as strong as the

simplex optimization method. The results of the ANN models using

three different approaches for determining weights are presented in

Table 4.2. The best overall model is the one produced by Excel

Solver, providing superior performance on both the training and test

cases. While back-propagation training produced a network with

small errors on the training cases, it behaved relatively poor on the

test cases. GA, on the other hand, did not produce good results

probably because of its random selection of the generated population.

Despite the consistent performance of the GA’s model over the

training and test cases, it exhibits a higher overall error. Therefore, it

can be concluded that the networks of simplex optimization and back-

propagation training are most suited to the present case study.

10. The findings of the CBR weight generation methods show that feature

counting + CBR did not generate predictions that are as strong as the

prediction generated by the GA + CBR because feature counting

assigns equal weights to the attributes and therefore does not take into

account the differences in importance of the attributes even though it

is likely that such differences existed in the particular cases used in

the study. But it was surprising to see that feature counting + CBR

performed better than gradient descent + CBR. After all, gradient

descent is a well established technique that is routinely used in CBR

systems (e.g., Esteem 1996). While geometric descent was found to

be more effective than arithmetic descent, the gradient descent

experiments were conducted by using the default values of the

parameters as recommended by Esteem (1996). Exploring the use of

values other than the default values could possibly improve the

performance of the gradient descent method, and in turn improve the

predictions generated by gradient descent + CBR.

92

11. The findings of the CBR weight generation methods using ID3

methods show that info-top + CBR performed well considering the

other decision tree methods, namely binary-dtree and info-dtree. All

of the ID3 weight generation methods (binary-dtree, info-top, and

info-dtree) and the CBR prediction suffered from the fact that not

many of the 29 cases considered in the study had outputs that were

close to each other. More consistent outputs could have resulted in

splitting the cases into fewer classes in Table 4.4 and consequently

producing smaller prediction errors in Table 4.3.

12. Also, while the CBR study concentrated on optimizing attribute

weights, improving attribute selection can also be explored by using

GA (Jarmulak and Craw 1999, Jarmulak et al. 2000).

Conclusions mainly cover methodological contributions that include the

development of ANN and CBR Excel models and their testing results of cost

data. ANN and CBR spreadsheet simulations integrated and enhanced by

different methods, some not available in commercial softwares yet, can be

extended beyond the specific cost problem addressed in this dissertation.

93

REFERENCES

Aamodt, A. and Plaza, E. 1994. “Case-based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches,” AICOM. Vol.7, No.1, pp. 39-
59.

Adeli, H. and Wu, M. 1998. “Regularization Neural Network for Construction Cost
Estimation,” Journal of Construction Engineering and Management. Vol.124, No.1,
pp.18-24.

Adeli, H. 2001. “Neural Networks in Civil Engineering: 1989-2000,” Computer Aided
Civil and Infrastructure Engineering. Vol.16, pp.126-142.

Al-Tabtabai, H. and Alex, A.P. 2000. “Modeling the Cost of Political Risk in
International Construction Projects,” Project Management Journal. Vol.31, No.3,
pp.4-13.

Al-Tabtabai, H., Alex, A.P., Tantash, M. 1999. “Preliminary Cost Estimation of
Highway Construction Using Neural Networks,” Cost Engineering. Vol.41, No.3,
pp.19-24.

Arditi, D. and Tokdemir, O. B. 1999a. “Using Case-Based Reasoning to Predict the
Outcome of Construction Litigation,” Computer-Aided Civil and Infrastructure
Engineering. Vol. 14. pp. 385-393.

Arditi, D. and Tokdemir, O. B. 1999b. “Comparison of Case-Based Reasoning and
Artificial Neural Networks,” Journal of Computing in Civil Engineering. Vol.13,
No.3, pp. 162- 169.

Barrie, D.S. and Paulson, B.C. 1992. Professional Construction Engineering and
Management, (McGraw-Hill, New York, NY).

Bode, J. 1998. “Neural Networks for Cost Estimation,” Cost Engineering. Vol.40, No.1,
pp.25-30.

Barrow, H. 1996. “Connectionism and Neural Networks,” in Artificial Intelligence:
Handbook of Perception and Cognition, edited by M.A. Boden (2nd edition,
Academic Press, San Diego, CA), pp. 135-155.

Cardie, C. 1993. “Using Decision Trees to Improve Case-Based Learning,” Proceedings
of the Tenth International Conference on Machine Learning, ICML'93, University of
Massachusetts, Amherst, MA, Morgan Kaufmann Publishers Inc., San Francisco,
CA, pp. 25-32.

Carr, R.I. 1989. “Cost Estimating Principles,” Journal of Construction Engineering and
Management. Vol.115, No.4, pp.545-551.

94

CII. 1998. “Improving Early Estimates,” Construction Industry Institute. University of
Texas at Austin, TX, USA.

Creese, R.C. and Li, L. 1995. “Cost Estimation of Timber Bridges Using Neural
Networks,” Cost Engineering. Vol.37, No.5, pp.17-22.

Danyluk, A. 2004. “Learning Decision Trees.” and “Decision Trees on Real Problems.”
Lecture Notes of CSCI 108 Artificial Intelligence: Image and Reality Course,
Williams College, Department of Computer Science, Williamstown, MA.

Doğan, S.Z. and Günaydın, H.M. 2003. “Applications of Artificial Neural Networks and
Their Potential Uses for Building Construction Industry: A Review,” Proceedings of
the 9th EuropIA International Conference on E-Activities and Intelligent Support in Design
and the Built Environment, İstanbul, edited by B. Tuncer, S. S. Ozsariyildiz and S.
Sariyildiz, pp.79-89.

Doğan, S.Z., Arditi, D. and Günaydın, H.M. 2005a. “CBR Model for Early Cost
Prediction,” Journal of Construction Engineering and Management. Under review.

Doğan, S.Z., Arditi, D. and Günaydın, H.M. 2005b. “Using Decision Trees for
Determining Attribute Weights in a Case-Based Model of Early Cost Prediction,”
Journal of Construction Engineering and Management. Under review.

Doğan, S.Z., Arditi, D. and Günaydın, H.M. 2005c. “GA Destekli VTG ile YSA’nın
Elektronik Tablo Simülasyonlarının Karşılaştırılması,” Proceedings of Third
National Construction Management Congress (3. Yapı İşletmesi Kongresi), İzmir,
Turkey, (29 September – 30 September), pp.286-295.

Emsley, M.W., Lowe, D.J., Duff, A.R., Harding, A., Hickson, A. 2002. “Data Modeling
and the Application of a Neural Network Approach to the Prediction of Total
Construction Costs,” Construction Management Economics. Vol.20, pp.465-472.

Esteem 1.4. 1996. Case based reasoning development tool. Esteem Software, San
Mateo, California.

Evolver 4.0. 1998. Excel Reference Manual. Palisade Corp., Newfield, NY.

Excel. 2003. Microsoft Excel Documentation. Microsoft Corporation.

Fausett, L. 1994. Fundamentals of Neural Networks, (Prentice Hall, Englewood Cliffs,
NJ).

Feery, D. and Brandon, P.S. 1984. Cost Planning of Buildings, (Collins, London, UK).

Francone, F. D. 1999. “AIM learning, Adaptive, Real Time, Control Technologies,”
unpublished manuscript available at the web site (27/08/2005)
http://www.aimlearning.com/Process%20Control%20White%20Paper.pdf

Friedman, J. H. 2003. “Recent Advances in Predictive (Machine) Learning.”
Proceedings of Statistical Problems in Particle Physics, Astrophysics and

http://uvt.ulakbim.gov.tr/uvt/index.php?keyword=%5Ev&op=&ec=&cwid=15&vtadi=TMUH&lang=1&pg=
http://uvt.ulakbim.gov.tr/uvt/index.php?keyword=%5En&op=&ec=&cwid=15&vtadi=TMUH&lang=0&pg=2
http://uvt.ulakbim.gov.tr/uvt/index.php?keyword=%5En&op=&ec=&cwid=15&vtadi=TMUH&lang=0&pg=2

95

Cosmology, SLAC Stanford, California, (November 2003), manuscript available at
Friedman’s web site (27/08/2005) http://wwwstat.stanford.edu/~jhf/ftp/machine.pdf.

Gupta, U.G. 1994. “How Case-Based Reasoning Solves New Problems,” Interfaces.
Vol.24, No.6, pp.110-119.

Günaydın, H.M. and Doğan, S.Z. 2004. “A Neural Network Approach for Early Cost
Estimation of Structural Systems of Buildings,” International Journal of Project
Management. Vol.22, No.7, pp. 595-602.

Harding, A., Lowe, D., Hickson, A., Emsley, M. and Duff, R. 2000. Implementation of
a neural network model for the comparison of the cost of different procurement
approaches. Paper presented to CIB W92 Procurement System Symposium.
Santiago, (April), Chile, pp.24–27.

Hastie, T. 2004. University of Stanford web site, 11/11/2004. http://www.stanford.edu
/class/stats315a/. (“Statistics 315B: Modern Applied Statistics: Elements of
Statistical Learning,” introductory course notes).

Hastie, T., Tibshirani, R. and Friedman, J.H. 2001. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, (Springer-Verlag, New York,
NY).

Haykin, S., 1994. Neural Networks: A Comprehensive Foundation, (Macmillan,
NewYork).

Hegazy, T. and Ayed, A. 1998. “Neural Network Model for Parametric Cost Estimation
of Highway Projects,” Journal of Construction Engineering and Management.
Vol.124, No.3, pp.210-225.

Hegazy, T., Moselhi, O., and Fazio, P. 1994. “Developing Practical Neural Network
Applications Using Back-Propagation,” Microcomputers in Civil Engineering.
Vol.9, No.2, pp.145-159.

Heery, G.T., 1975. Time, Cost, and Architecture, (McGraw-Hill, New York.)

Hunt Jr., W.D. 1967. Creative Control of Building Costs, (McGraw-Hill, New York.)

Induce-It. 2000. User Manual. Inductive Solutions, Inc., New York, NY.

Jarmulak, J. and Craw, S. 1999. “Genetic Algorithms for Feature Selection and
Weighting,” in IJCAI-99 Workshop on Automating the Construction of Case-Based
Reasoners , Stockholm, Sweden, (2 August 1999) edited by S. S. Anand, A.
Aamodt, and D. W. Aha, pp. 28-33.

Jarmulak, J., Craw, S. and Rowe, R. 2000. “Genetic Algorithms to Optimize CBR
Retrieval,” in EWCBR 2000, LNAI 1898, edited by E. Blanzeri and L. Portinale
(Springer-Verlag, Berlin Heidelberg), pp. 136-147.

http://wwwstat.stanford.edu/~jhf/ftp/machine.pdf

96

Kalogirou, S.A. 1999. “Applications of Artificial Neural Networks in Energy Systems:
A Review,” Energy Conversion and Management. Vol.40, No.3, pp.1073-1087.

Kalogirou, S.A. 2001. “Artificial Neural Networks in Renewable Energy Systems
Applications: A Review,” Renewable and Sustainable Energ Reviews. Vol.5, No.4,
pp.373-401.

Karshenas, S. 1984. “Predesign Cost Estimating Method for Multistory Buildings,”
Journal of Construction Engineering and Management. Vol.111, No.1, pp.79-99.

Kasravi, K. 1994. ‘‘Understanding Knowledge-Based CAD/CAM.’’ Journal of
Computer Aided Engineering. Vol.13, No.10, 72–78.

Kibler D. and Aha D.W. 1987. “Learning Representative Exemplars of Concepts: An
Initial Case Study,” Proceedings of the Fourth International Workshop on Machine
Learning, Irvine, CA, (June 1987), edited by P. Langley, Morgan Kaufmann, CA,
pp. 24-30.

Kolodner, J.L. 1991. “Improving Human Decision Making Through Case-Based
Decision Aiding,” AI Magazine. Vol.12, No.2, pp.52-68.

Kolodner, J.L. 1993. Case based reasoning, (Morgan Kaufmann Publishers, Inc., San
Mateo, CA).

Ling, C. X., Parry J. J. and Wang, H. 1997. “Setting Attribute Weights for Nearest
Neighbor Learning Algorithms Using C4.5,” International Journal of Pattern
Recognition and Artificial Intelligence. Vol.11, No.3, pp. 405 - 415.

Melin, J.B. 1994. “Parametric Estimation,” Cost Engineering. Vol.36, No.1, pp.19-24.

Mukherjee, A. and Deshpande, J.M. 1995. “Modeling Initial Design Process Using
Artificial Neural Networks,” Journal of Computing in Civil Engineering. Vol.9,
No.3. pp.194-200.

NeuroShell Trader Professional. 2002. Tutorial, WardSytems Group, Inc., Frederick,
MD.

NeuroSolutions. 2002. NeuroSolutions Tool for Excel, NeuroDimensions, Inc.
Gainesville, FL.

Orhon, İ., Sey, Y., Aral, N., Giritli, H., Sözen, Z. 1986-1987 fall semester lecture notes.
Istanbul Technical University.

Paek, J.H. 1994. “Contractor Risks in Conceptual Estimating,” Cost Engineering.
Vol.36, No.12, pp.19-22

Quinlan, J.R. 1996. “Bagging, Boosting, and C4.5,” Proceedings, Fourteenth National
Conference on Artificial Intelligence, manuscript available at web address
http://www.cse.unsw.edu.au/~quinlan/q.aaai96.ps.

97

Rafiq, M.Y., Bugmann, G., Easterbrook, D.J. 1998. “Artificial Neural Networks for
Modeling Some of the Activities of the Conceptual Stage of the Design Process,”
Proceedings of International Computing Congress on Computing in Civil
Engineering, edited by K.C.P Wang (Boston, Massachusetts), pp.631-643.

Rafiq, M.Y, Bugmann, G. and Easterbrook, D.J. 2001. “Neural Network Design for
Engineering Applications,” Computers and Structures. Vol. 79, pp. 1541-1552.

ReCall. 1993. A Case Based Reasoning Shell. Isoft, France.

Reich, Y. 1997. ‘‘Machine Learning Techniques for Civil Engineering Problems.’’
Microcomputers in Civil Engineering. Vol. 12, No. 4, pp. 295-310.

Riesbeck, C.K. and Schank, R.C. 1989. Inside case-based reasoning, (Lawrence
Erlbaum Associates, Hillsdale, NJ).

Rumelhart, D.E., Hinton, G.E., Williams, J.R. 1986. “Learning Representations by
Backpropagation Errors,” Nature. Vol. 323, pp. 533-536.

Saner, C. 1993. A Proposal for Cost-Estimation for Structural Systems of 4–8 Storey
Residential Buildings. MSc. Thesis, Istanbul Technical University.

Schank, R.D. 1982. Dynamic Memory; a Theory of Reminding and Learning in
Computers and People, (Cambridge University Press, New York, NY).

See5/C5.0. 1997. Data Mining Tools Manual. Rulequest, Australia.

Setyawati, B.R, Sahirman, S., Creese, R.C. 2002. “Neural Networks for Cost
Estimation,” AACE International Transactions, ABI/INFORM Global: EST.13.1–
EST.13.9.

Seyyar, B. 2000. Computer Aided Cost Estimation Systems During Building Design
Process. MSc. Thesis, Istanbul Technical University.

Shi, J. J. 2000. “Reducing Prediction Error by Transforming Input Data for Neural
Networks,” Journal of Computing in Civil Engineering. Vol. 14 No. 2, pp. 109-116.

Shin, K. and Han, I. 1999. “Case Based Reasoning Supported by Genetic Algorithms
for Corporate Bond Rating,” Expert Systems with Applications. Vol. 16, No. 2,
pp.85-95.

Shtub, A., Versano, R. 1999. “Estimating the Cost of Steel Pipe Bending, a Comparison
Between Neural Networks and Regression Analysis,” International Journal of
Production Economics. Vol.62, No.3, pp.201-207.

Smith, A.E., Mason, A.K. 1997. “Cost Estimation Predictive Modeling: Regression
Versus Neural Network,” The Engineering Economist. Vol.42, No.2, pp.137-161.

98

Squeira, I. 1999a. Neural Network-Based Cost Estimating, Master’s Thesis. Department
of Building, Civil and Environmental Engineering, Concordia University, Montreal,
Quebec, Canada.

Siqueira, I. 1999b. “Automated Cost Estimating Systems Using Neural Networks,”
Project Management Journal. Vol.30, No.1, pp.11-18.

State Institute of Statistics, Construction Permits for the Year 2003. Available from:
www.die.gov.tr/english/SONIST/INSAAT/050903g.htm; last accessed October
2003.

Stottler, R.H. 1994. “CBR for Cost and Sales Prediction.” AI Expert. Vol. August, pp.
25-33.

U.S. Department of Defense. 1995. “Parametric Cost Estimating Handbook,”
Department of Defense, United States of America. Arlington, VA, USA.

Watson, I. and Marir, F. (1994a). “Case Based Reasoning: A Review,” The Knowledge
Engineering Review. Vol.9, No.4, pp.327-354.

Watson, I. and Marir, F. (1994b). “Case Based Reasoning: A Categorized
Bibliography,” The Knowledge Engineering Review. Vol.9, No.4, manuscript
available at the web address http://www.salford.ac.uk/survey/staff/IWatson/
cbrefs.htm.

Yau, N.J. and Yang, J.B. 1998. “Case based Reasoning in Construction Management.”
Computer-Aided Civil and Infrastructure Engineering. Vol.13, pp.143-150.

Yaylagül, N. 1994. Bina Yapımında Simülasyon Yaklaşımıyla Maliyet Tahmini (Cost
Estimation via Simulation Approach in Building Construction). MSc. Thesis,
Istanbul Technical University.

Zhang, Y.F. and Fuh, J.Y.H. 1998 .“A Neural Network Approach for Early Cost
Estimation of Packaging Products,” Computers and Industrial Engineering. Vol.34,
No.2, pp.433-450.

http://www.salford.ac.uk/survey/staff/IWatson/ cbrefs.htm
http://www.salford.ac.uk/survey/staff/IWatson/ cbrefs.htm

99

APPENDIX A

TOOLS FOR CASE-BASED REASONING

Vendors and service providers are (name of company followed by name of tool

and URL where available):

 Atlantis Aerospace Corporation and later Case Bank Support Systems Inc,

Spotlight, http://www.casebank.com/products/spotlight.asp

Phil D’Eon, Chairman and Chief Executive Officer, is a founder of CaseBank and

originator of the SpotLight concept. In 1978, he co-founded Atlantis Aerospace

Corporation, and for over 20 years developed a successful international business in

maintenance and flight simulators for the aerospace industry. It was there that he

originated the SpotLight concept in 1995. In 1998, he purchased the SpotLight

technology from Atlantis and founded CaseBank. He continues today to guide the

innovation of CaseBank’s case-based reasoning technology and pioneering new

applications.

 The University of Wales, Aberystwyth, Caspian,

http://www.aber.ac.uk/compsci/Research/mbsg/cbrprojects/getting_caspian.shtml

This is a publicly available CBR shell built at Aberystwyth.

 Cognitive Systems, Inc., ReMind: Case-based Reasoning Development

Shell,

Cognitive Systems Inc. ceased trading in 1996. ReMind may still be available from

other suppliers.

http://www.ai-cbr.org/tools/spotlight.html
http://www.casebank.com/products/spotlight.asp
http://www.aber.ac.uk/compsci/Research/mbsg/cbrprojects/getting_caspian.shtml

100

 Esteem Software, Inc. and later SHAI: Stottler-Henke Associates, Inc

ESTEEM: Case-based Reasoning Shell,

http://www.stottlerhenke.com/solutions/decision_support/esteem.htm

ESTEEM enables people to develop case-based reasoning applications without

programming. ESTEEM was marketed by Esteem Software Incorporated from 1991

to 2001. ESTEEM is described as being "a good tool for people interested in

exploring the potential of CBR within their organizations." Research and academic

institutions can request a free copy of this unsupported software by sending email to

info@stottlerhenke.com.

 Inductive Solutions, Inc., Induce-It, http://www.inductive.com/softcase.htm

Induce-It is an Excel-based case-based reasoning system. It creates case-based

reasoning systems from Microsoft Excel spreadsheet databases. Induce-It searches a

case database based on similarity metrics. Case-based are adapted from the closest

matching cases, ranked by case score, and displayed to users in a sorted list. f you

know how to use a spreadsheet, then you know how to use Induce-It. Student

version is $85

for 60 day license and you can download it from

http://www.inductive.com/download.htm

 ALICE d'ISoft, ReCall, http://www.alice-soft.com/html/prod_recall.htm

ReCall is a CBR toolkit, which helps you re-use your corporate knowledge. ReCall

is also available as a set of libraries for developers. You can run an on-line demo of

ALICE d'ISoft. You can download the ALICE d'ISoft demonstration. You can fill in

a form to receive an evaluation version of the product.

 Simon Fraser University, Case Advisor 2.1,

http://www.cs.sfu.ca/research/groups/CBR/

Case Advisor is a PC-based problem diagnosis and resolution system which allows

an organization to retrieve solutions from a "knowledge database" to solve

customer problems. CaseAdvisor 4 PC Version is given out free for non-

commercial purposes.

You can download the installation program at, Download Case Advisor 4.12:

http://www.cs.sfu.ca/~isa/caseadvisor/download/, Case Advisor Screen Demos:

mailto:info@stottlerhenke.com
http://www.wsdinc.com/products/p1145.shtml
http://www.inductive.com/softcase.htm
http://www.alice-soft.com/html/prod_recall.htm
http://www.alice-soft.com/html/tech_cbr.htm
http://www.alice-soft.com/demo/al6demo.htm
http://www.alice-soft.com/demo/al6demo.htm
http://www.alice-soft.com/demo/Alicedemo.zip
http://www.cs.sfu.ca/~isa/caseadvisor/download/

101

http://www.cs.sfu.ca/~isa/caseadvisor/screendemo/index.html. After viewing the

demo, you may receive a 30-day evaluation copy of CaseAdvisor Software. If

interested in

receiving the evaluation copy, contact Peter Leung at SoundLogic

peterl@soundlogic.net: 604-291-9989 x3022 or Dr. Qiang Yang: 604-291-5415.

 TreeTools, HELPDESK-3, http://www.treetools.com.br/ (unfortunately this

site is in Portuguese only)

HELPDESK-3 from the Brazilian company TreeTools is a CBR tool designed to

automated help desk. It uses heuristic search to retrieve cases and can handle natural

language problem description.

 University of Auckland, Department of Computer Science, CS760

Datamining & Machine Learning, AIAI CBR-Tool,

http://www.cs.auckland.ac.nz/~ian/760/

This tool lets you explore various features of a CBR tool including adaptation. It can

be downloaded. The software is free for academic use.

Names of other vendors:

 Inference Corporation - k-commerce (formerly called CBR3 or CBR Express)

 IET-Intelligent Electronics - TechMate

 Intellix - KnowMan

 Sententia Software Inc. - CASE Advisor & Case Advisor Webserver

 ServiceSoft - Knowledge Builder & Web Adviser

 tecInno GmbH - CBR-Works and Inference's k-commerce

 Webpresence Technology - The RapidReasoner

 Astea International - Case-1

http://www.cs.sfu.ca/~isa/caseadvisor/screendemo/index.html
http://www.ai-cbr.org/tools/helpdesk-3.html
http://www.treetools.com.br/
http://www.cs.auckland.ac.nz/~ian/760/
http://www.ai-cbr.org/tools/inference.html
http://www.ai-cbr.org/tools/techmate.html
http://www.ai-cbr.org/tools/knowman.html
http://www.ai-cbr.org/tools/sententia.html
http://www.ai-cbr.org/tools/servicesoft.html
http://www.ai-cbr.org/tools/tecinno.html
http://www.ai-cbr.org/tools/rapid.html

102

APPENDIX B

BOOSTED DECISION TREES

Introduction

In many problem domains, combining the predictions of several models often

results in a model with improved predictive performance. The trend toward model

mixing had a resurgence in economics (Bates and Granger 1969), has increased in the

machine learning community. Boosting is one of such method that is an addition to the

class of model mixing procedures. This study was conducted to see if boosting concept

combined with decision trees could be used for better cost estimation results than the

ones obtained by ANN and CBR models. Thus, this report provides an introduction to

boosting algorithm and decision trees, presents an application of boosted decision trees

(BDT) to cost estimation, and discusses the prediction results provided by BDT model.

Boosting Algorithm

Given a training set of data, a learning algorithm will generate a rule that

classifies the data. This rule may or may not be accurate, depending on the quality of the

learning algorithm and the inherent difficulty of the particular classification task. If the

rule is even slightly better than random guessing, then the learning algorithm has found

some structure in the data to achieve this advantage. Boosting is a method that boosts

the accuracy of the learning algorithm by making the most of this advantage. Boosting

uses the learning algorithm routinely in order to produce a prediction rule that is

guaranteed to be highly accurate on the training set. Boosting works by running the

learning algorithm on the training set multiple times, each time focusing on different

training examples. After the boosting process is finished, the rules that were output by

the learner are combined into a single prediction rule which is provably accurate on the

training set. This combined rule is then verified for its accuracy on the test set.

Boosting has its roots in a theoretical framework for studying machine learning

called the Probably Approximately Correct (PAC) learning model, due to Valiant

(Quinlan, 1996); see Kearns and Vazirani (1994) for a good introduction to this model.

Kearns and Valiant (1988, 1994) were the first to pose the question of whether a “weak”

learning algorithm which performs just slightly better than random guessing in the PAC

103

model can be “boosted” into an arbitrarily accurate “strong” learning algorithm.

Schapire (1990) came up with the first provable polynomial-time boosting algorithm in

1989. Later, Freund (1995) developed a much more efficient boosting algorithm which,

although optimal in a certain sense, nevertheless suffered from certain practical

drawbacks. The first experiments with these early boosting algorithms were carried out

by Drucker et al. (1993) on an Optical Character Recognition (OCR) task. The

AdaBoost algorithm, introduced in 1995 by Freund and Schapire (1999), solved many

of the practical difficulties of the earlier boosting algorithms, and is the one used in this

study.

The AdaBoost algorithm was a breakthrough. When the first boosting algorithms

were invented they received a small amount of attention from the experimental machine

learning community (Drucker et al. 1993). Then the AdaBoost algorithm arrived with its

many desirable properties: a theoretical derivation and analysis, fast running time, and

simple implementation. These properties attracted machine learning researchers who

began experimenting with the algorithm. All of the experimental studies showed that

AdaBoost almost always improves the performance of various base learning algorithms,

often by a dramatic amount (Drucker et al. 1993).

Decision Trees

In this section, the application of boosting to one kind of base learning algorithm

that outputs decision tree classifiers is discussed. Experiments with the AdaBoost

algorithm usually apply it to classification problems. Recall that a classification problem

is specified by a space X of instances and a space Y of labels, where each instance x is

assigned a label y according to an unknown labeling function c: X→Y. We assume that

the label space Y is finite. The input to a base learning algorithm is a set of training

examples “(x1;y1),. . .,(xm;ym)”, where it is assumed that yi is the correct label of instance

xi (i.e., yi = c(xi)). The goal of the algorithm is to output a classifier h:X→Y that closely

approximates the unknown function c.

The first experiments with AdaBoost (Drucker and Cortes, 1996; Freund and

Schapire, 1996; Quinlan, 1996) used it to improve the performance of algorithms that

generate decision trees, which are defined as follows. Suppose each instance x∈X is

represented as a vector of n attributes “ai,. . .,an” that take on either discrete or

continuous values. For example, an attribute vector that represents human physical

characteristics is “height, weight, hair color, eye color, skin color”. The values of these

104

attributes for a particular person might be “1.85 m, 70.5 kg, black, dark brown, tan.” A

decision tree is a hierarchical classifier that classifies instances according to the values

of their attributes. Each non-leaf node of the decision tree has an associated attribute a

(one of the ai's) and a value v (one of the possible values of a). Each non-leaf node has

three children designated as “yes”, “no”, and “missing.” Each leaf node u has an

associated label y∈Y.

A one node decision tree, called a stump, consists of one internal node and three

leaves. Consider a stump T1 whose internal node compares the value of attribute a to

value v. T1 classifies instance x as follows. Let x.a be the value of attribute a of x. If a is

a discrete-valued attribute then

• if x.a = v then T1 assigns x the label associated with the “yes” leaf.

• if x.a ≠ v then T1 assigns x the label associated with the “no” leaf.

• if x.a is undefined, meaning x is missing a value for attribute a, then T1 assigns x

the label associated with the “missing" leaf.

If instead a is a continuous-valued attribute, T1 applies a threshold test (x.a > v) instead

of an equality test.

A general decision tree T has many internal nodes with associated attributes. In

order to classify instance x, T traces x along the path from the root to a leaf u according

to the outcomes at every decision node; T assigns x the label associated with leaf u. A

decision tree can be thought of as a partition of the instance space X into pair wise

disjoint sets Xu whose union is X, where each Xu has an associated logic expression that

expresses the attribute values of instances that fall in that set

(for example “eye color = blue and height < 1.25 m”).

The goal of a decision tree learning algorithm is to find a partition of X and an

assignment of labels to each set of the partition that minimizes the number of mislabeled

instances.

About See 5 (Boosted Decision Trees)

Freund and Schapire (1996) and Quinlan (1996) investigated the abilities of

boosting to improve C4.5, a decision tree learning algorithm. When using C4.5 as the

Base learner, Freund and Schapire's (1996) experiments revealed that on average,

boosting improved the error rate of C4.5 by 24.8%. Quinlan (1996) found that boosting

reduced C4.5's classification error by 15%. Drucker and Cortes (1996) also found that

105

AdaBoost was able to improve the performance of C4.5. They used AdaBoost to build

ensembles of decision trees for optical character recognition (OCR) tasks. In each of

their experiments, the boosted decision trees performed better than a single tree,

sometimes reducing the error by a factor of four.

Experiments with the AdaBoost algorithm revealed that it is able to use a base-

learning algorithm to produce a highly accurate prediction rule. AdaBoost usually

improves the base learner quite dramatically, with minimal extra computation costs

(Valiant, 1997). Valiant (1997) praised AdaBoost for being an extremely simple

algorithm that can get practitioners use in minutes.

See 5 is a successor of C4.5, which combines decision trees with AdaBoost

algorithm. It was written by Quinlan in 1996. Because of their simplicity compared with

other artificial intelligence systems, boosting was first experimented with decision trees

to test if performance is enhanced by this plug-in algorithm. See 5 and TreeBoost

(DTreg) are the available software tools that integrate boosting with decision trees. The

idea is to generate several classifiers of decision trees rather than just one. When a new

case is to be classified, each classifier votes for its predicted class and the votes are

counted to determine the final class.

The first step in generating several classifiers from a single dataset involves

constructing a single decision tree using the training data. Once the results of this

classifier are obtained, the data on which it has made mistakes are determined. Then, the

second classifier is constructed by paying more attention to the wrong predicted data in

an attempt to get them right. Consequently, the second classifier will generally be

different from the first. It also will make errors on some data, and these will become the

focus of attention during the construction of the third classifier. This process continues

for a pre-determined number of iterations (Arditi and Pulket 2004, Pulket 2001).

The Boost option with x trials instructs See5 to construct up to x classifiers in

this manner. Although constructing multiple classifiers requires more computation than

building a single classifier, the prediction results are generally much better.

Procedure of Preparing Data for See 5

This section shows how to prepare data files for See 5 and the procedure of

running the system. The data involved for this application belongs to residential

buildings in Turkey. The objective was to construct boosted decision trees to predict the

106

unit structural cost of these buildings. Below are the attributes and information related

to some cases:

 Attribute Case 1 Case 2 Case 3

 The total area of the building (m2) 675 1425 330

 The ratio of the typical floor area
 to the total area of the building 0.2 0.2 0.2

 The ratio of the ground floor area
 to the total area of the building 0.182 0.2 0.2

 The number of floors 6 6 6

 The console direction
 of the building oneway nocons nocons

 The location of the core
 of the building sides sides sides

 The floor type of the
 building precast reinforced reinforced

 The foundation system
 of the building wall wall wall

 The cost of the
 structural system per m2 2 3 1

 Abbreviation:

 oneway = one-way console

 nocons = no consoles

 sides = at the sides

 middle = in the middle

 precast = precast concrete structural units

 reinforced = reinforced concrete floor systems

The unit structural costs of cases are classified into 13 classes. Class 1

represents the unit cost of the structural system falling between $30 and $40. Class 2

represents the unit cost range between $40 and $50. The classification goes on like that

up to the last class 13 which represents the unit cost range between $150 and $160. Each

case belongs to one of a small number of these mutually exclusive classes. Properties of

each case that may be relevant to its outcome are provided. There are 8 attributes in the

problem and the system investigates how to predict the unit structural cost of the

107

building from the values of these attributes. See 5 does this by constructing a classifier

that makes this prediction.

Two files are essential for all See 5 applications and there are three further

optional files (See 5 Tutorial). The first essential file is the "names" file that describes

the attributes and classes. The names file for this data set is as follows:

Names File
the cost of the structural system per m2 : | the target attribute

the total area of the building (m2) : continuous.

the ratio of the typical floor area
to the total area of the building : continuous.

the ratio of the ground floor area
to the total area of the building : continuous.

the number of floors : 4,5,6,7,8.

the console direction of the building : nocons, oneway.

the location of the core of the building : sides, middle.

the floor type of the building : precast, reinforced.

the foundation system of the building : pier, wall, slab.

the cost of the structural system per m2: 1,2,3,4,5,6,7,8,9,
 10,11,12,13.

The second file is the application’s data file which provides information on the cases for

See 5 in order to extract patterns. The entry for each case gives the values of all

attributes available for that case. Commas separate values. The data file for this study is

as follows: (The data for testing is separated by a horizontal line)

Data File
675,0.2,0.182,6,oneway,sides,precast,wall,2
1425,0.2,0.2,6,nocons,sides,reinforced,wall,3
330,0.2,0.2,6,nocons,sides,reinforced,wall,1
2025,0.14,0.13,5,nocons,middle,precast,wall,4
1670,0.16,0.16,4,oneway,sides,precast,pier,5
2082,0.16,0.3,6,oneway,sides,precast,wall,3
3484,0.07,0.07,6,nocons,middle,reinforced,wall,4
1364,0.25,0.23,6,nocons,sides,reinforced,pier,5
1568,0.26,0.25,6,nocons,middle,reinforced,slab,6

569,0.16,0.14,6,oneway,sides,reinforced,wall,2
1156,0.13,0.095,6,oneway,middle,reinforced,wall,2
1146,0.202,0.19,5,nocons,sides,reinforced,slab,9

2528,0.13,0.096,8,oneway,middle,reinforced,wall,2

108

Once the names, data and other optional files have been set up, everything is

ready for See 5 to construct classifiers. Several options affect the type classifier that See

5 produces and the way that it is constructed. The "Construct Classifier" button on the

toolbar displays a dialog box that sets out these classifier construction options.

Discussion and Results of See 5 Application for the Prediction of Cost Data

 See 5 constructed the classifiers for the same data set that was also used in the

ANN and CBR models. The Boosting option was set to 10 trials. However, the boosting

was reduced to three trials since the last classifier constructed by See 5 was very

inaccurate. Indeed, the system abandoned boosting since there were too few classifiers.

The first experiments showed that the decision tree model of See 5 couldn’t be boosted.

This resulted in very poor prediction rates of 47.6%, 52.4% and 61.9% on the training

set. Since the training of the data was not successful, the testing evaluations were

poorer. Substantial manipulation of the data is required for BDT application in order to

enable BDT to make accurate predictions. For increasing the prediction accuracy of the

system, altering the size of the classes and dividing the target values into less number of

classes are required. This modification does not serve to the practical goal of this

dissertation since exactness in cost values will most probably be affected negatively by

this way. However, this will give us some idea about the application’s capabilities. The

details of these modifications are reported below. Although BDT model results are tried

to be improved by carefully manipulating the data, no valid and consistent improvement

in prediction accuracy could be achieved.

Experiments on the Dataset

 In the first part of the study, 29 cases used in the ANN and CBR models were

entered. However, the original data were in a format that created compatibility

problems with See5. Therefore, the original data needed adjustment to conform

the requirements of See5 and target attribute values which were the unit

structural cost values were classified into 13 classes:

 See5 using the decision tree it constructed for the cost data with no boosting

produced a prediction rate of 62.5% on the training set.

 When the boosting option was set to 10 times, the system couldn’t be boosted.

Boosting was reduced to 3 trials since the last classifier was reported to be very

109

Table 1. Identified classes for the target attribute

Class
 No

Cost
 per meter

1 $30 – $40

2 $40 – $50

3 $50 – $60

4 $60 – $70

5 $70 – $80

6 $80 – $90

7 $90 – $100

8 $100 – $110

9 $110 – $120

10 $120 – $130

11 $130 – $140

12 $140 – $150

13 $150 – $160

 inaccurate and boosting was abandoned because of too few classifiers.

 Then the attributes were reduced from 8 to 2. These 2 attributes were

selected to be the ones found to have the greatest impact on the ANN

model by the sensitivity analysis (Günaydın and Doğan 2004). In the

ANN model, the ratio of typical floor area to the total area of the building

and the ratio of the footprint area to the total area of the building were

found to be the most effective design parameters. However, only using

these two design parameters reduced the average prediction accuracy of

the ANN model from 93% to 90%. This finding might suggest for the

ANN model that even the small clues (i.e. attributes) could enhance the

model’s prediction capability. For the BDT model (with no boosting), the

prediction rate with these 2 attributes were 33.5% on the training set and

50% on the testing set.

 When the first decision tree model with 8 attributes was considered, it

was seen that the attribute “foundation system” is the main classifier for

the tree constructed. Therefore, this attribute was added and the

110

experiment was repeated with 3 attributes this time. The results (with no

boosting) were 47.6% on the training set and 75% on the testing set.

 Finally, the decision tree model was run with 1 attribute of “foundation

system.” The prediction accuracy was 47.6% on the training and 25% on

the testing set.

 Target attribute values which are the unit structural cost values were

classified into 13 classes in the experiments. Using classes for cost

prediction in this case means that even the prediction accuracy on the

testing set is 100%, the predictor will still have an error rate of 33.3%

since a predicted class will still have a prediction range (i.e. predicted

class 1 would mean a cost value between $30 and $40). Thus, the aim

already became 100% accuracy on the testing test in order for the model

to be worthy. This led us to try the reduction of the classes. Since only 1

case belongs to 12th class and again one case belongs to 10th class and

relatively less cases belong to 9th, 10th and 11th classes considering the

first 8; the classes after 8th has been eliminated. Then the experiments

were carried out with 8 classes. The results were still not promising. The

system put out a prediction rate of 55% on training set and 0% on the

testing set. Therefore, the study was extended into the next phase with

the objective to improve the prediction rate.

 During experimentation, it was observed that some cases cause the

accuracy of the training and testing to decline. Therefore, these cases

were eliminated and the number of training cases was cut down to 19 and

the number of testing cases was cut down to 2 from the original whole

dataset of 29 cases.

 Using the new training set of 19 cases, 94.7% prediction accuracy on the

training set and 100% prediction accuracy on the testing set were

achieved by 10 boosting trials. This means the system was able to find

the correct class although each class suggests a cost range. However,

testing with 2 cases and using 19 training cases was already a failure for

a prediction problem.

111

References

Arditi, D. and Pulket, T. (2004). “Predicting the outcome of construction litigation
using boosted decision trees.” Unpublished manuscript.

Bates, J. M. and Granger, C. W. J. (1969). “The combination of forecasts.”
Operations Research Quarterly, 20, 451–468.

Drucker, H., Schapire, R. E., and Simard, P. (1993). “Boosting performance in
neural networks.” International Journal of Pattern Recognition and Artificial
Intelligence, 705-719.

Drucker, H. and Cortes, C. (1996). “Boosting decision trees.” Advances in Neural
Information Processing Systems, 8, 479-485.

DTREG. (2004). Download and technical information available at the web address:
http://www.dtreg.com

Freund, Y. (1995). “Boosting a weak learning algorithm by majority.” Information
and Computation, 256-285.

Freund, Y. and Schapire, R. (1996). “Experiments with a new boosting algorithm.”
Machine Learning: Proceedings of Thirteenth International Conference, 148-156.

Freund, Y. and Schapire, R. E. (1999). “A short introduction to boosting.” Journal
of Japanese Society of Artificial Intelligence, 14(5), 771-780.

Kearns, M. J. and Valiant, L. G. (1988). “Learning Boolean formulae or finite
automata is as hard as factoring.” Technical Report TR -14-88, Harvard University
Aiken Computation Laboratory.

Kearns, M. and Leslie, G. V. (1994). “Cryptographic limitations on learning boolean
formulae and finite automata.” Journal of the Association for Computing Machinery,
41(1), 67-95.

Kearns, M. J. and Vazirani, U. V. (1994). An Introduction to Computational
Learning Theory. MIT Press, Cambridge, MA.

Pulket, T. (2001). “Predicting the outcome of construction claims using boosted
decision trees.” Thesis submitted for the degree of Master of Science in Civil
Engineering in the Graduate College of the Illinois Institute of Technology.

Quinlan, J. R. (1996). “Bagging, boosting and C 4.5.” Proceedings of Fourteenth
National Conference on Artificial Intelligence, 725-730.

Rule Quest Research Pty Ltd. (1999). “See5: Informal Tutorial.” Unpublished
Manuscript, available from the company homepage. (http://www.rulequest.com)

Schapire, R. E. (1990). “The strength of weak learnability.” Machine Learning, 197-
227.

Valiant, L. G. (1997). “Learning is computational.” Knuth Prize Lecture, In 38
th

Annual Symposium on Foundations of Compute

VITA

Sevgi Zeynep Doğan, daughter of Firuz and Kiper, was born on 14th November

1977 in İzmir. She attended Bornova Anatolian High School in İzmir, and was

graduated in 1995 with the 3rd rank. She was admitted to Middle East Technical

University in September 1995 and received her bachelor’s degree in Architecture in

June 1999 being an honour student. She was accepted to the Master of Science Program

in Architecture in September 1999 and received her M.Sc. Degree in December 2000.

She is currently holding a research/teaching assistant position at İzmir Institute

of Technology (Iztech) since December 2001. She has assisted building technology and

science courses, basic design and architectural design studios at Iztech. From January

2004 to January 2005 she worked as a visiting research scholar in the Department of

Civil and Architectural Engineering, Illinois Institute of Technology, Chicago, USA.

Her research interests are construction management technologies particularly

machine learning / artificial intelligence implementations in construction problems. She

has research papers in International Journal of Project Management and proceedings of

EuropIA and national conference on Construction Management.

Her current e-mail address is sevgidogan@iyte.edu.tr or dogan@iit.edu and her

web address is http://www.iyte.edu.tr/~sevgidogan/

mailto:sevgidogan@iyte.edu.tr
mailto:dogan@iit.edu

