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Abstract

Multiobjective evolutionary algorithms based on decomposition (MOEA/D) represent
a widely used class of population-based metaheuristics for the solution of multicriteria
optimization problems. We introduce the MOEADr package, which offers many of these
variants as instantiations of a component-oriented framework. This approach contributes
for easier reproducibility of existing MOEA/D variants from the literature, as well as
for faster development and testing of new composite algorithms. The package offers an
standardized, modular implementation of MOEA/D based on this framework, which was
designed aiming at providing researchers and practitioners with a standard way to discuss
and express MOEA/D variants. In this paper we introduce the design principles behind
the MOEADr package, as well as its current components. Three case studies are provided
to illustrate the main aspects of the package.
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1. Introduction
Multiobjective optimization problems (MOPs; Miettinen 1999) are problems in which multiple
objective functions must be simultaneously optimized by the same set of parameters. MOPs
are often characterized by a set of conflicting objective functions, which results in the existence
of a set of optimal compromise solutions, instead of a single globally optimal one. In this
way, multiobjective optimization algorithms are frequently characterized by their ability to
find (representative samples of) this set of solutions with different compromises between the
objective functions.
Multiobjective evolutionary algorithms based on decomposition (MOEA/Ds), originally pro-
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posed by Zhang and Li (2007), represent a widely used class of population-based metaheuris-
tics for solving MOPs (Trivedi, Srinivasan, Sanyal, and Ghosh 2016). MOEA/Ds approach
the problem by decomposing it into a number of single-objective subproblems, which are then
solved in parallel by a set of candidate solutions commonly referred to as a population.

Based on this general concept, a number of variations and improvements have been proposed
over the past decade (Trivedi et al. 2016). As is common in the general literature on evo-
lutionary algorithms, many of these improvements are presented as monolithic entities, in
which a fixed composition of operators and adjustments to the original algorithm is presented
as a single, novel approach. Opposed to this monolithic approach, Bezerra, López-Ibáñez,
and Stützle (2015) have argued towards a more modular design of evolutionary algorithms
in general, where an optimizer is seen as a composition of multiple, specialized components.
This component-based approach allows researchers to clearly identify the contribution of each
component, and facilitates the automated generation of new variants based on existing com-
ponents, e.g., for the solution of specific problem classes. This approach also allows users to
more easily test and implement new components, streamlining the development of new ideas
and the reproducibility of results.

In this context, we have developed a component-oriented framework for MOEA/Ds, in which
modules can be easily added, removed, modified or recombined by either users or automated
testing and tuning programs. In particular, we defined a variation stack, which allows a very
flexible way to model many different combinations and use cases of variation, local search,
and solution repair operators.

This framework is implemented as the MOEADr package (Campelo and Aranha 2020), which
contains not only the original MOEA/D components, but several components found in more
recent variations, all of which were recast as instantiations of the proposed component-based
framework. The package is implemented in the R language and environment for statistical
computing and graphics (R Core Team 2019), and has been published on the Comprehensive
R Archive Network (CRAN), at https://CRAN.R-project.org/package=MOEADr. A devel-
opment version is also available at the project repository, http://github.com/fcampelo/
MOEADr.

This paper describes the package and its underlying framework, and introduces the concepts
necessary for a user to successfully apply MOEADr to their research or application problem.
First, we provide a short primer on multiobjective optimization, as well as a short review
of MOEA/D (Section 2). We then review existing implementations of MOEA/D, as well as
existing implementations of MOP solvers in the R ecosystem, and locate our contribution in
this context (Section 3).

Following that, we detail the framework of the MOEADr package, and present the MOEA/D
components that it currently implements (Sections 4 and 5). This serves as a reference to the
main features of the package, as well as a starting point for future contributions.

Finally, in Section 6 we describe the basic usage of the package with three case studies:
a basic example of solving a benchmark MOP using a traditional MOEA/D algorithm; an
example of using the MOEADr framework in conjunction with an automated algorithm as-
sembling/tuning method to generate a new algorithmic configuration for a specific problem
class; and an example of adding a custom component to the framework. Readers who are not
concerned with the theoretical underpinnings of the package may directly go to this section.

https://CRAN.R-project.org/package=MOEADr
http://github.com/fcampelo/MOEADr
http://github.com/fcampelo/MOEADr
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2. Multiobjective optimization problems and MOEA/D
With no loss of generality, we define a continuous MOP, subject to inequality and equality
constraints, as

min
x

f (x) =
(
f1(x), . . . , fnf (x)

)
subject to: x ∈ Ω,

(1)

where nf is the number of objective functions, x ∈ Rnv represents a candidate solution, nv
is the number of decision variables, f(·) : Rnv 7→ Rnf is a vector of objective functions, and
Ω ⊂ Rnv is the feasible decision space, such that

Ω = {x ∈ Rnv | gi(x) ≤ 0 ∀i ∧ hj(x) = 0 ∀j}, (2)

where gi(·) : Rnv 7→ R, i = 1, . . . , ng and hj(·) : Rnv 7→ R, j = 1, . . . , nh represent the
inequality and equality constraint functions, respectively. The image of the set Ω, denoted
by f(Ω), defines the set of attainable objective values.
Given two feasible solutions xi, xj ∈ Ω, we say that xi Pareto-dominates xj (written as
f(xi) ≺ f(xj) or, equivalently, xi ≺ xj ) if and only if fk(xi) ≤ fk(xj) ∀k ∈ {1, . . . , nf}
and f(xi) 6= f(xj). A solution x∗ ∈ Ω is considered Pareto-optimal if there exists no other
solution x ∈ Ω such that f(x) ≺ f(x∗). The set of all Pareto-optimal solutions to a given
MOP is known as the Pareto-optimal set (PS), and the image of this set is referred to as the
Pareto-optimal front, PF = {f(x∗) | x∗ ∈ PS}.
A widely used way to solve MOP using classical optimization methods is to represent the
MOP as an arbitrary number of scalar optimization problems, which are built through aggre-
gation functions such as the weighted sum (WS) or weighted Tchebycheff (WT) approaches
(Miettinen 1999). Each scalar optimization problem, generated by the aggregation function
and a given weight vector, leads to a problem in which the global optimum coincides with a
particular Pareto-optimal solution of the original MOP. In this way, an estimate of the Pareto-
optimal set can be obtained by solving a set of scalar aggregation functions. However, simply
performing an independent optimization of these multiple scalar problems tends to result in
difficulties for generating an adequate approximation of the Pareto set (Miettinen 1999; Deb
2001), particularly when a well-spread sample of the Pareto-optimal front is desired.
Deb (2001) and Coello Coello, Lamont, and Van Veldhuizen (2007) note that the original MOP
described in (1) can be solved through a multiobjective evolutionary algorithm (MOEA),
which is a population-based approach that attempts to converge to an approximation of the
Pareto-optimal set in a single run. This feature enables a continuous exchange of information
between the estimated solutions, which is useful to promote a proper approximation of the
Pareto-optimal set. Among the algorithms commonly employed for the solution of continuous
MOPs, we focus here on the class of MOEAs based on the explicit decomposition of the
multiobjective optimization problem, which are briefly introduced below.

2.1. Multiobjective evolutionary algorithms based on decomposition

Multiobjective evolutionary algorithms based on decomposition (MOEA/Ds), originally pro-
posed by Zhang and Li (2007), combine features of both MOEA approaches and classical
scalarization approaches for tackling MOPs. In general, a MOEA/D decomposes a MOP, as
defined in (1), into a finite number of scalar optimization subproblems. Each subproblem is
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defined by a weight vector, which is used in a scalar aggregation function to calculate the
utility value of any solution for that particular subproblem.
This set of subproblems is solved in parallel by iterating over a set of candidate solutions,
commonly called the population. Aggregation functions and weight vectors are chosen so
that (i) an optimal solution to a given subproblem is also Pareto-optimal for the original
MOP; and (ii) the optimal solutions to the set of subproblems are well distributed in the
space of objectives. It is thus expected that solving the subproblems provides a reasonable
approximation of the Pareto-optimal front, regarding both convergence and diversity criteria.
Each subproblem has one incumbent solution that is directly associated to it, i.e., the popula-
tion size is equal to the number of subproblems. At each iteration, one new candidate solution
is generated for each subproblem, by the application of a sequence of variation operators to
the existing population. This set of new solutions is compared against each incumbent solu-
tion based on their utility values on the respective subproblem. The best solution for each
subproblem is maintained as its incumbent solution for the next iteration, following rules
defined by a specific update strategy.
When generating new candidate solutions or comparing their performance against incumbent
ones, the algorithm defines a neighborhood for each subproblem which limits the exchange
of information between candidate solutions. This neighborhood provides a certain locality to
the variation operators and update strategy, aiming to regulate the convergence speed and
global exploration abilities of the algorithm.
Among the features that motivate the application of a MOEA/D to the solution of a MOP,
Li and Zhang (2009) highlight a few that stand out in terms of their usefulness. First, it is
generally simpler to handle objective value comparisons and, to a certain extent, diversity
maintenance in a MOEA/D than in other MOEAs. This means that MOEA/D is frequently
able to return a set of reasonably well-spread (in the space of objectives) solutions, even when
the number of subproblems is small or the number of objectives is high. Scaling techniques
for attenuating the effects of objective functions with vastly different ranges are also easily
incorporated into the MOEA/D structure, as are constraint-handling techniques.
Since its introduction, the MOEA/D framework has been the target of several investigations,
mainly aimed at: i) improving its performance; ii) overcoming limitations of its components;
and iii) adapting it for different classes of problems. For instance, studies on decomposition-
based MOEAs have been carried out to investigate new decomposition approaches (Li, Deb,
Zhang, and Kwong 2015a; Tan, Jiao, Li, and Wang 2012; Qi, Ma, Liu, Jiao, Sun, and Wu
2014; Giagkiozis, Purshouse, and Fleming 2014), aggregation functions (Wang, Zhang, and
Guo 2013; Sato 2014; Ishibuchi, Sakane, Tsukamoto, and Nojima 2010), objective scaling
strategies (Deb and Jain 2014; Singh, Isaacs, and Ray 2011), neighborhood assignment meth-
ods (Ishibuchi, Akedo, and Nojima 2013; Li, Zhang, Kwong, Li, and Wang 2014b; Li, Kwong,
Zhang, and Deb 2015b), variation operators (Li and Zhang 2009; Tan et al. 2012; Li, Fi-
alho, Kwong, and Zhang 2014a), and selection operators (Jiang and Yang 2016). Addition-
ally, decomposition-based MOEAs have been investigated for constrained MOPs (Deb and
Jain 2014; Cheng, Jin, Olhofer, and Sendhoff 2016), many-objective optimization problems
(MaOPs; Asafuddoula, Ray, and Sarker 2015; Li et al. 2015a), and incorporation of decision-
maker preferences (Mohammadi, Omidvar, and Li 2012; Gong, Liu, Zhang, Jiao, and Zhang
2011; Pilát and Neruda 2015). A recent, comprehensive survey of MOEAs based on decom-
position has been organized by Trivedi et al. (2016).
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Despite their specificities, we can characterize these different MOEA/D instantiations by
defining the following component classes in the algorithm:

• The decomposition strategy, which determines how the weight vectors are calculated
and, consequently, how the MOP gets decomposed.

• The aggregation function, which uses the weight vectors to generate single-objective
subproblems to be solved.

• The objective scaling strategy, which defines how differences in the range of values of
the objective functions are treated.

• The neighborhood assignment strategy, which determines the neighborhood relations
among the subproblems. This strategy defines the locality of the exchange of information
between candidate solutions when applying variation operators and updating strategies.

• A variation stack, composed of one or more variation operators, which generates new
candidate solutions from the existing ones. Our general definition of a variation oper-
ator is a function that modifies a candidate solution in the space of decision variables,
based on information about the problem structure and/or the current and past states
of the population as a whole. Note that this general definition also encompasses repair
operators and local search operators as special cases of variation.

• The update strategy, which determines the candidate solutions to be maintained or
discarded after each iteration, based on their utility values for specific subproblems and
on their neighborhood relations.

• The constraint handling method, which defines how to treat points that violate problem
constraints.

• The termination criteria, which determine when the algorithm stops the search and
returns the set of solutions found.

Based on this decomposition of the algorithm into its individual components, it is possible to
define a common framework from which specific MOEA/D variants can be instantiated. This
framework is detailed in Section 4.

3. MOEA/D implementations
Several implementations of the original MOEA/D and some of its variants for continuous
MOPs are available online, mainly in Java (Gosling, Joy, Steele, and Bracha 2000), C++
(Stroustrup 2013) and MATLAB (The MathWorks Inc. 2019).1 All implementations men-
tioned here have their source codes readily available for download from the links listed in the
references.
Table 1 summarizes these implementations. It is important to note that there is no im-
plementation native to R, and that while jMetal (Nebro, Durillo, and Vergne 2015) and the

1The MOEA/D homepage (https://sites.google.com/view/moead/home) conveniently aggregates these
resources in a single list.

https://sites.google.com/view/moead/home
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Algorithm Language(s) Framework Author(s)
Original MOEA/D C++ – Li and Zhang (2006)

MATLAB
Original MOEA/D Java – Liu (2006)
MOEA/D-DE C++ – Li and Zhang (2007)
MOEA/D-DRA C++ – Zhang, Liu, and Li (2009b)

MATLAB
Original MOEA/D Java jMetal Nebro et al. (2015)
MOEA/D-DE
MOEA/D-DRA
MOEA/D-STM
Original MOEA/D Java MOEA Framework Hadka (2017)

Table 1: MOEA/D implementations for continuous MOPs.

Package Algorithm(s) Author(s)
goalprog Goal programming Novomestky (2008)
NSGA2r NSGA-II Tsou (2013)
mopsocd MOPSO Naval (2013)
mco NSGA-II Mersmann (2014)
GPareto Gaussian process Binois and Picheny (2019)
moko HEGO Passos (2017)

MEGO
VMPF

ecr NSGA-II Bossek (2017a,b)
SMS-EMOA
AS-EMOA

Table 2: Multiobjective optimization packages native to R.

MOEA Framework (Hadka 2017) represent object-oriented frameworks with some component-
oriented design, no MOEA/D program was found to provide the fully modular implementation
of MOEA/D as proposed in the MOEADr package.
The MOEADr package was motivated by a perceived need to facilitate not only the application
of existing MOEA/D variants but also the development and investigation of new components,
as well as the fast reproduction of newly published innovations based on a library of existing
components, with minimal need for reimplementation.
Finally, it is worth mentioning that while there are no specific MOEA/D implementations
native to R, a few packages implementing different, general-purpose algorithms for multiob-
jective optimization are available. Table 2 lists those which are readily available on CRAN.
Most of those packages offer a closed, individual algorithm, with the exception of Jakob
Bossek’s ecr package (Bossek 2017a,b), which offers a modular approach for instantiating
evolutionary algorithms for both single and multiobjective optimization. For the latter class,
the algorithmic structure defined by this package lends itself easily for the implementation
of dominance and indicator-based approaches, but not necessarily for decomposition-based
algorithms such as MOEA/D. This is also the case of another recent initiative to define
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a common framework for defining multiobjective evolutionary algorithms (Bezerra, López-
Ibañez, and Stützle 2016). To the authors’ knowledge, there is no R package implementing
specific MOEA/D algorithms, nor any component-based implementation that allows an easy
instantiation of multiobjective evolutionary algorithms based on decomposition.

4. The MOEADr package
The MOEADr package is an R implementation of multiobjective evolutionary algorithms
based on decomposition, including many MOEA/D variants found in the literature. Our
goals in this package are three-fold:

• To provide a component-wise perspective on the MOEA/D family of algorithms, where
each different algorithm exists as a configuration of common components;

• To be easily extensible, so that researchers and users can implement their own compo-
nents, facilitating both applied uses and scientific inquiries in this field;

• To include a representative section of the existing literature in MOEA/D variants.

To achieve these goals, the implementation was guided by the following design decisions:

1. For the sake of uniformity in the implementation of each component, we define the
main variables of MOEA/D: the solution set, neighborhood set, subproblem weight set,
subproblem utility value set and violation value set as matrices.

2. Algorithms in the MOEA/D family are broken down into common components, and
each component is recast as an operator on the matrices defined above.

3. Each individual component avoids, to the maximum degree possible, to produce and
rely on side effects beyond the explicit manipulation of the main variables above.

4. Each component is implemented as a separate R script file with a fixed naming scheme.
The choice of components is specified as a parameter to the main function call.

5. In particular, we define a variation stack, which is a list of variation components to be
used by MOEA/D in order. The choice of variation operators shows a very large diver-
sity in MOEA/D literature, and using a variation stack allows for a uniform description
of the many existing configurations.

The general framework of MOEA/D, as implemented in our package, is presented in Algo-
rithm 1. The user defines an instance of this framework by choosing a specific component for
each of the roles described in Section 2.1, and one or more variation components to compose
the variation stack V.
In the following sections we detail each of these component classes, presenting a formal def-
inition of their roles as well as relevant examples. The list of components described in this
paper (and currently available in the MOEADr package) is summarized in Table 3.
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Algorithm 1 Component-wise MOEA/D structure.
Require: Objective functions f(·); Constraint functions g(·); Component-specific input pa-

rameters.
1: t← 0
2: run← TRUE
3: Generate initial population X(t) by random sampling from Ω.
4: Generate weights Λ. . Decomposition strategies (Sec. 5.1)
5: while run do
6: Define or update neighborhoods B. . Neighborhood assignment strategies (Sec. 5.3)
7: Copy incumbent solution set X(t) into X′ (t).
8: for each variation operator v ∈ V do
9: X′ (t) ← v(X′ (t)) . Variation operators (Sec. 5.4)

10: end for
11: Evaluate solutions in X(t) and X′ (t). . Aggregation functions (Sec. 5.2)

. Constraint handling (Sec. 5.6)
12: Define next population X(t+1). . Update strategies (Sec. 5.5)
13: Update run flag. . Stop criteria (Sec. 5.7)
14: t← t+ 1
15: end while
16: return X(t); f

(
X(t)

)

5. MOEA/D components available in the MOEADr package

In this section we describe in detail each of the components included in the MOEADr package,
version 2.1. We present a formal definition of their roles as well as relevant examples, both
from the specific MOEA/D literature and the wider body of knowledge on multiobjective
evolutionary algorithms in general. The complete list of roles and specific components is
summarized in Table 3.
For each component, the different notations of existing works were recast to a standard
mathematical notation, to prevent confusion and ambiguities that would inevitably arise if
we tried to follow the many different nomenclatures from the literature. Whenever possible,
our notation employs vector and matrix operations to describe the modules, in an attempt to
highlight the mathematical structure of each component, as well as differences and similarities
among variants.
Special care was taken to guarantee the modularity of the definitions provided in the following
sections, so that each component is independent from design choices made for the others. This
characteristic allows the free exchange of components while guaranteeing the correct flow of
MOEA/D, at the cost of some implementation overhead. This also simplifies the use of
automated algorithm assembly and tuning methods, as well as efforts for replicating and
testing algorithms from the literature.
To describe the components, let the following common variables be defined: nf is the number
of objective functions that compose the MOP. N ∈ Z>0 is the number of subproblems, which
is either a user-defined parameter, or calculated internally by the decomposition strategy.
X(t) =

{
x(t)
i | i = 1, . . . , N

}
denotes the set of incumbent solutions for the subproblems at
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Component role Name User parameters Section
Decomposition method SLD h ∈ Z>0

5.1MSLD h ∈ ZK>0; τ ∈ (0, 1]K

Uniform N ∈ Z>0

Scalar aggregation function WS –

5.2
WT –
AWT –
PBI θpbi ∈ R>0
iPBI θipbi ∈ R>0

Objective scaling – type ∈ {none; simple} 5.2

Neighborhood assignment – type ∈
{

by λi; by x(t)
i

}
5.3

δp ∈ [0, 1] 5.4

Variation operators SBX recombination ηX ∈ R>0; pX ∈ [0, 1]

5.4

Polynomial mutation ηM ∈ R>0; pM ∈ [0, 1]
Differential mutation φ ∈ R>0

basis ∈ {rand; mean; wgi}
Binomial recombination ρ ∈ [0, 1]

Truncation –
Local search type ∈ {tpqa; dvls}

τls ∈ Z>0; γls ∈ [0, 1]
ε ∈ R>0 (if type = tpqa)

Update strategy Standard –
5.5Restricted nr ∈ Z>0

Best nr ∈ Z>0; Tr ∈ Z>0

Constraint handling Penalty functions βv ∈ R>0
5.6VBR type ∈ {ts; sr; vt}

pf ∈ [0, 1] (if type = sr)

Termination criteria Evaluations maxeval ∈ Z>0
5.7Iterations maxiter ∈ Z>0

Time maxtime ∈ R>0

Table 3: Components currently available in the MOEADr package.

iteration t. With some abuse of notation, X(t) will also denote a matrix with each row i defined
by x(t)

i .2 Λ ∈ RN×nf≥0 is the matrix of subproblem weights calculated by the decomposition
strategy (Section 5.1), and B ∈ ZN×T>0 is the matrix of neighborhood relations calculated by
the neighborhood assignment strategy (Section 5.3), with T denoting the neighborhood size.

2Throughout this paper the distinction between the set and matrix interpretations will always be clear from
the context. All other quantities defined as matrices will also be sometimes be treated as sets of vectors.
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5.1. Decomposition strategies

A decomposition strategy is responsible for generating the weight vectors that characterize
the set of scalar subproblems in a MOEA/D. The number of subproblems can be either
explicitly defined, or calculated indirectly by the decomposition strategy based on user-defined
parameters.
Methods for generating aggregation weight vectors in the structure of MOEA/D are usually
borrowed from the theory of design and modeling in experiments with mixtures (Chan 2000).
Among the main designs in this area, the simplex-lattice design (Scheffé 1958) has been the
most commonly adopted in the context of decomposition-based MOEAs. This approach, as
well as a multiple-layer variant are presented below. A third approach, based on uniform
designs, is also described.
The following definitions hold for all strategies discussed in this section. Let Λ ∈ RN×nf≥0
be a matrix of non-negative values. Also, let each row of Λ be a vector summing to unity,
‖λi‖1 = 1. Each row λi can be interpreted as the weight vector defining the ith subproblem,
and the matrix Λ is referred to as the weight matrix. Since, given a scalar aggregation
function (Section 5.2), each weight vector defines a unique subproblem, λi will also be used
to refer to the ith subproblem in the following sections.
In the MOEADr package, a list of available decomposition strategies can be generated using
the function get_decomposition_methods().

Simplex-lattice design (SLD)
In the simplex-lattice design (Chan 2000; Zhang and Li 2007) the user provides a parameter
h ∈ Z>0 that defines both the number of subproblems and the values of the weights. In this
method, elements of the weight matrix can only assume h+ 1 distinct values

λi,j ∈
{

0, 1
h
,

2
h
, . . . , 1

}
, ∀ i, j. (3)

The simplex-lattice design generates N weight vectors by using all combinations (with repe-
tition) of nf values taken from the set of values defined in (3), which results in

N =
(
h+ nf − 1
nf − 1

)
(4)

subproblems defined when this strategy is used. In this way, a general (h, nf )-simplex-lattice
can be used to represent N weight vectors on the objective domain. For instance, for an
arbitrary three-objective problem (nf = 3), a value h = 18 yields N =

(20
2
)

= 190 distinct
weight vectors.

Multiple-layer simplex-lattice design (MSLD)
To obtain a reasonable distribution of weight vectors within the nf -dimensional simplex using
the simplex-lattice design it is necessary that h ≥ nf (Deb and Jain 2014). While this
condition is generally harmless for MOPs with few objectives, a large number of weight vectors
is generated for high-dimensional objective domains, even in the limit condition h = nf . On
the other hand, making h < nf results in weight vectors sparsely distributed only at the
boundary of the simplex, which jeopardizes the exploration abilities of the algorithm.
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To address this issue, a multiple-layer approach can be devised. This strategy generates K
subsets of weight vectors by generalizing the user parameter h to a vector of positive integers
h = (h1, . . . , hK) , hk ∈ Z>0 ∀k. Each constant hk is used to calculate Nk weight vectors
according to the SLD method and, within each subset, the vectors are scaled down by a factor
τk ∈ (0, 1] using a simple coordinate transformation

λ′ki = τkλki + (1− τk)/nf (5)

with λki being the ith vector in the kth subset. Each subset must be associated with a unique
user-defined value of τk.3 The total number of subproblems defined in this method is given
by N = ∑K

k=1Nk, and the final weight matrix Λ is composed by the scaled weight vectors
from all layers.
This method ultimately amounts to generating weight vectors in layers, with each layer cor-
responding to a different-sized simplex in the space of objectives. This approach trades the
loss of exploration ability by the increased number of user-defined parameters (it requires
the definition of 2K + 1 parameter values). Common sense seems to suggest τk = k/K as a
reasonable heuristic for defining the scaling factors, but there is currently neither empirical
nor theoretical support for this choice.
Finally, it must be remarked that this approach to generating the weight vectors generalizes
the method of Li et al. (2015a), which was defined specifically for K = 2.

Uniform design (UD)

The uniform design method represents an alternative approach to generate the weight vectors.
Its use was proposed by Tan et al. (2012), with the stated objectives of improving the distri-
bution of the weight vectors and providing greater control over the number of subproblems.
The UD method for calculating the weight vectors can be described as follows. First, let HN

be defined as the set

HN = {h ∈ Z>0 | h < N ∧ gcd (h,N) = 1} , (6)

where gcd (·) returns the greatest common divisor of two integers, and N ∈ Z>0 is a user-
defined value that determines the number of subproblems. Let h =

(
h1, . . . , hnf−1

)
be a

vector composed of nf − 1 mutually exclusive elements of HN . Any such vector can define
a matrix UN (h) ∈ (Z>0)N×(nf−1) with elements calculated as uij = (ihj) mod N . Denoting
the set of all possible h vectors defined from HN as P (HN ), the next step is to identify the
vector that results in the UN (h) matrix with the lowest CD2 discrepancy

h = arg min
h∈P(HN )

CD2 (UN (h)) , (7)

where CD2(·) is the centered L2-discrepancy of a matrix (Fang and Lin 2003; Tan et al. 2012),

3τk = 1 keeps the original coordinate system, while τk → 0 performs a maximum contraction of the weight
vectors towards λi,j = 1/nf , ∀ i, j.
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calculated as

CD2(UN (h)) =
(13

12

)(nf−1)
− 2
N

N∑
i=1

nf−1∏
j=1

(
1 + |ui,j − 0.5| − |ui,j − 0.5|2

2

)
+

1
N2

N∑
i=1

N∑
k=1

nf−1∏
j=1

(
1 + |ui,j − 0.5|+ |uk,j − 0.5|

2 − |ui,j − uk,j |2

)
. (8)

If we define UN =
(
UN (h)− 0.5

)
/N , then the elements of the weight matrix Λ are returned

by the transformation

λi,j =

(
1− u

(
1

nf−j

)
i,j

) j−1∏
k=1

u

(
1

nf−k

)
i,k , if j < nf

λi,nf =
nf−1∏
k=1

u

(
1

nf−k

)
i,k ,

(9)

with the guarantee that Λ conforms with the properties stated at the beginning of Section 5.1.

5.2. Scalar aggregation functions

The scalar aggregation function is used to calculate the utility value of candidate solutions
for each subproblem. This is done by specific functions of the objective function values f (x)
and the weight matrix Λ.
In the MOEADr package, a list of available aggregation functions can be obtained using
function get_scalarization_methods().

Weighted sum (WS)

This technique performs a convex combination of the objective values, resulting in scalar
problems of the form

min fws(x | λi, z) = λi (f (x)− z)> , subject to: x ∈ Ω, (10)

where z = (z1, . . . , znf ) is a reference vector with the property that ∀j zj ≤ min{fj(x) | x ∈
PS}. A diverse set of Pareto-optimal solutions can be achieved by using different weight
vectors λi. However, due to the convex nature of this operation, only convex sections of
Pareto fronts can be approximated using this strategy (Miettinen 1999).
It is important to highlight here that obtaining a good estimate of z is by itself a computation-
ally-intensive effort. In many cases, it is common practice to iteratively estimate this reference
point from the set of all points visited up to a given iteration, X (t′) ,

⋃(t′)
t=1 X(t). In these

cases the elements of the estimated reference vector, ẑ(t), are defined as

ẑ
(t′)
j = min

x∈X (t′)
fj (x) , j = 1, . . . , nf .

This estimated vector is updated at each iteration and is frequently employed instead of a
fixed z in the scalar aggregation functions used with MOEA/D.
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Weighted Tchebycheff (WT)

In this approach, the scalar optimization problems are defined as

min fwt(x | λi, z) = ‖λi � (f (x)− z)‖∞ , subject to: x ∈ Ω, (11)

where � denotes the Hadamard product, and ‖·‖∞ is the Tchebycheff norm. Unlike the
weighted sum approach, the weighted Tchebycheff approach is not sensitive to the convexity
of the Pareto front (Miettinen 1999). However, this approach offers poor diversity control,
as the solution of (11) for equally-spaced weight vectors do not necessarily translate to a
well-spread approximation of the Pareto front (Qi et al. 2014; Wang et al. 2013).

Penalty-based boundary intersection (PBI)

The PBI aggregation function (Zhang and Li 2007) is an extension of an earlier approach
known as normal boundary intersection (Das and Dennis 1998). The scalar optimization
problems defined by the PBI strategy are given as

min fpbi(x | λi, z) = di,1 + θpbidi,2, subject to: x ∈ Ω (12)

with

di,1 = |(f(x)− z)λ>i |
‖λi‖2

, di,2 =
∥∥∥∥∥f(x)−

(
z + di,1λi
‖λi‖2

)∥∥∥∥∥
2
,

where ‖·‖2 denotes the Euclidean norm, and θpbi ∈ R≥0 is a user-defined penalty parameter.
Note that di,1 is related to the convergence of f(xi) towards the Pareto-optimal front, whereas
the minimization of di,2 provides a way to control solution diversity. This aggregation func-
tion enables the definition of a trade-off between convergence and diversity (in the space of
objectives) by an a priori adjustment of θpbi , which directly influences the performance of
MOEA/D.

Adjusted weighted Tchebycheff (AWT)

An alternative that attempts to address the poor diversity control of the weighted Tchebycheff
approach is the adjusted (or transformed) Tchebycheff scalarization function (Qi et al. 2014;
Wang et al. 2013). This method defines the scalar subproblems as:

min fawt(x | λi, z) = ‖ρi � (f (x)− z)‖∞ , subject to: x ∈ Ω , (13)

with the elements of the vector ρi defined as

ρi,j = (λi,j + ε)−1∑nf
j=1 (λi,j + ε)−1 , j = 1, . . . , nf ,

where ε is a small constant added to prevent divisions by zero.4 Note that the only difference
between (11) and (13) is the substitution of the weight vector λi by its respective “normal-
ized inverse” ρi. Besides minimizing the distance between f (x) and z, this transformation
promotes the distance minimization between an objective vector f(x) and its corresponding

4Wang et al. (2013) set this value as ε = 0.0001.
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vector ρi (Qi et al. 2014). In this aspect, the adjusted weighted Tchebycheff strategy presents
an idea similar to that of the PBI, but without any additional parameters.

Inverted PBI (iPBI)

While the PBI approach defines its search based on an ideal reference point z which represents
an (estimated) ideal solution, the inverted PBI function uses a nadir reference point z̃, defined
as ∀k z̃k ≥ max{fk(x) | x ∈ PS} (Sato 2014, 2015).5 This method works by defining the
scalar minimization6 problems

min f ipbi(x | λi, z̃) = θipbidi,2 − di,1, subject to: x ∈ Ω (14)

with

di,1 = |(z̃− f(x))λ>i |
‖λi‖2

, di,2 =
∥∥∥∥∥
(

z̃− f(x)− di,1
λi
‖λi‖2

)∥∥∥∥∥
2
,

where, similarly to the PBI approach, θipbi ∈ R≥0 is a user-defined parameter that controls
the balance between di,1 (convergence) and di,2 (diversity).

Scaling of the objective domain
Since the range of objective functions in MOPs can present arbitrarily large differences, an
appropriate scaling of the objective domain is sometimes used to improve the performance
of MOEA/D. When performed, this scaling happens prior to the calculation of the scalar
aggregation function, so that scaled function values f̄i(·) replace fi(·) in the calculations.
Let z ∈ Rnf : zi ≤ fi(x(t)

k ) ∀k = 1, . . . , N , and z̃ ∈ Rnf : z̃i ≥ fi(x(t)
k ) ∀k = 1, . . . , N be

estimates of the ideal and nadir objective vectors at a given iteration t. A straightforward
way to standardize the objective domain (Miettinen 1999; Zhang and Li 2007) is to replace
each function value fi(x) by

f̄i(x) = fi(x)− zi
z̃i − zi

, ∀i, (15)

which guarantees that f̄i(x) ∈ [0, 1] ∀i.7

5.3. Neighborhood assignment function

The neighborhood assignment function generates a matrix B defining the neighborhood rela-
tionships between subproblems. In general, neighborhood relations among the subproblems
are used for defining restrictions to the exchange of information among candidate solutions
when applying the variation operators, as well as for regulating the replacement of points at
the end of every iteration (Ishibuchi et al. 2013).
Neighborhood relations can be defined either in the space of decision variables, Ω, or in the
space of objectives f (Ω). The more usual case is the definition of neighborhoods based on the

5Similarly to the reference point z, z̃ can also be iteratively estimated by the algorithm. The procedure is
analogous to the one described earlier for the estimation of the ideal point.

6The usual expression of the inverted PBI strategy defines a maximization problem, but in this paper we
express it as the equivalent minimization problem for the sake of standardization.

7While alternative standardization strategies can be employed (Deb and Jain 2014; Singh et al. 2011), the
general idea remains the same.
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distances between weight vectors in the space of objectives (Zhang and Li 2007; Li and Zhang
2009). Let M ∈ RN×N≥0 be the symmetric matrix defined by taking all pairwise Euclidean
distances between weight vectors, i.e., with elements given by

mi,j = ‖λi − λj‖2 . (16)

Let mi denote the ith row of M. For the ith subproblem, its neighborhood vector bi ∈
ZT>0 consists of the indices of the T smallest elements of mi, with T ∈ Z>0 a user-defined
parameter.8 Since weight vectors are usually kept constant throughout the optimization
process (with some exceptions, see Qi et al. 2014), the neighborhoods have to be determined
only once in this approach, and remain fixed throughout the execution of the algorithm.
An alternative approach uses Euclidean distances between incumbent solutions in the space
of decision variables (Chiang and Lai 2011) to define the neighborhood relations among sub-
problems. In this case the distance matrix M is defined by the distances between all vector
pairs x(t)

i ,x
(t)
j ∈ X(t) and

mi,j =
∥∥∥x(t)

i − x(t)
j

∥∥∥
2
, (17)

with x(t)
i ∈ Ω being the incumbent solution to the ith subproblem at iteration t. A neigh-

borhood vector bi is then composed by the indices of the T subproblems whose incumbent
solutions are closest, in the space of decision variables, to the one associated with λi. As
the incumbent solutions change across iterations, neighborhood relations must be updated
whenever a new incumbent solution is determined for any subproblem. While this results in
increased computational cost (N(N −1)/2 distance calculations per iteration), this neighbor-
hood definition may contribute to the algorithm performance in problems for which solution
similarity in Ω does not correspond to small distances in f (Ω) (Chiang and Lai 2011).

5.4. Variation stack

As in any evolutionary algorithm, variation operators in MOEA/D generate new candidate
solutions based on information about points visited by the algorithm up to a given iteration.
The standard MOEA/D (Zhang and Li 2007) employs two variation operators, namely sim-
ulated binary recombination (SBX; Deb and Beyer 2001) followed by polynomial mutation
(Deb and Agrawal 1999), a combination still widely used in the literature (Asafuddoula et al.
2015; Li et al. 2015a). Another very successful MOEA/D version known as MOEA/D-DE (Li
and Zhang 2009; Tan et al. 2012) employs differential mutation and binomial recombination
(Storn and Price 1997), followed by polynomial mutation.
While these two sets of variation operators are arguably the most widespread in the literature,
any combination of variation operators can, at least in principle, be used to drive the search
mechanism of MOEA/D, as long as they are sequentially compatible. This includes the
possibility of employing multiple combinations of recombination and mutation variants –
applied either sequentially or probabilistically – as well as the use of local search operators.
Therefore, Algorithm 1 employs a user-defined set of variation operators which are applied
sequentially to a population matrix X′(t), copied from the incumbent solution matrix X(t)

prior to the application of the variation operators.
8Note that neighborhood vector bi will always contain the index i (since mi,i = 0) plus additional T − 1

subproblem indices j 6= i.
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In the following descriptions all operators (with the exception of the repair operators described
later) are defined assuming that the decision variables are contained in the interval [0, 1], which
greatly simplifies many calculations. Whenever a MOP is defined with decision variables
bound to different limits, it is assumed that the variables are properly scaled prior to the
optimization.
Also included in this discussion of variation operators are local search operators, which execute
a limited search of the solution space focused on the region close to a particular solution.
Because they act as an operator that directly modifies the solution set, in this framework we
group them together with other variation operators.
The variation operators available in the MOEADr package can be listed using functions
get_variation_operators() and get_localsearch_methods().

Definition of sampling probabilities for variation

Prior to the application of the variation stack, the neighborhood effects (Section 5.3) must be
determined. For each subproblem, a vector pi = (pi,1, pi,2, . . . , pi,N ) is defined as containing
the probabilities of sampling the candidate solutions associated with each subproblem when
variation operators are applied for the ith subproblem.
In a general form, sampling probabilities are defined by the neighborhood vectors bi and by
a user-defined parameter δp ∈ [0, 1], which represents the total probability of sampling from
the specific neighborhood bi. Probabilities pi,j are defined as

pi,j =
{
δp/T, if j ∈ bi,
(1− δp) / (N − T ) , otherwise.

(18)

The standard MOEA/D (Zhang and Li 2007) samples exclusively from the neighborhood of
each subproblem (δp = 1 and, consequently, pi,j = 0 ∀j /∈ bi). This setting intensifies local
exploration, at the cost of a loss of solution diversity, which may compromise the effective
exploration of the design space in later iterations (Li and Zhang 2009). Less restrictive
approaches have been used in the literature (Li and Zhang 2009; Chiang and Lai 2011),
defining δp < 1, albeit usually at relatively high values. In these approaches, while each
subproblem maintains a strong bias towards using information from subproblems indexed by
bi, access to the other candidate solutions remains possible, enabling the generation of a more
diverse set of points by the variation operators.

SBX recombination

Let ηX ∈ R>0 be a user-defined parameter, and ui ∈ [0, 1]nv be a vector of uniformly dis-
tributed random values. Also, let βi ∈ Rnv be a vector with elements defined as

βi,j =

(2ui,j)
1

ηX+1 , if ui,j ≤ 0.5,
[2(1− ui,j)]

1
ηX+1 , otherwise.

(19)

Let x′(t)ai ∈ Rnv and x′(t)bi
∈ Rnv be two vectors sampled from X′(t) according to the sampling

probabilities defined for the ith subproblem (18). For each subproblem, SBX recombination
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(Deb and Beyer 2001; Zhang and Li 2007) produces a new candidate solution according to

x̃′(t)i =


(1 + βi)� x′(t)ai + (1− βi)� x′(t)bi

2 , if ui ≤ pX,

x′(t)i , otherwise,
(20)

where ui ∈ [0, 1] is a uniformly distributed random value, and pX ∈ [0, 1] is a user-defined
parameter. After this operator is applied for all i ∈ {1, . . . , N}, each row of the population
matrix X′(t) is updated with its corresponding point x̃′(t)i .9

Polynomial mutation

Let ηM ∈ R>0 and pm ∈ [0, 1] be user-defined parameters, and ui ∈ [0, 1]nv be a vector
of uniformly distributed random values. For a given candidate solution x′(t)i ∈ X′(t), let
βi ∈ Rnv be a vector defined by

βi,j =
[
2ui,j + (1− 2ui,j)

(
1− x′(t)i,j

)η′] 1
η′
− 1 (21)

if ui,j ≤ 0.5, or

βi,j = 1−
[
2 (1− ui,j) + (2ui,j − 1)

(
x
′(t)
i,j

)η′] 1
η′

(22)

otherwise, with η′ = ηM + 1. Let also vi ∈ {0, 1}nv be a vector with elements sampled inde-
pendently from a Bernoulli distribution with probability parameter pM. For each subproblem,
the polynomial mutation (Deb and Agrawal 1999; Zhang and Li 2007) generates a candidate
solution according to

x̃′(t)i = (1− vi)� x′(t)i + vi �
(
x′(t)i + βi

)
. (23)

After this operator is applied for all i ∈ {1, . . . , N}, X′(t) is updated with the new points x̃′(t)i .

Differential mutation

Let φ ∈ R 6=0 be a user-defined parameter10, and x′(t)ai , x′(t)bi
∈ Rnv be two mutually exclusive

vectors sampled from X′(t) according to the sampling probabilities defined in (18). For the ith
subproblem the differential mutation operator (Price, Storn, and Lampinen 2005) generates
a new candidate solution as

x̃′(t)i = x(t)
i,basis + φ

(
x′(t)ai − x′(t)bi

)
, (24)

where x(t)
i,basis ∈ Rnv is a basis vector, which can be generated in several ways. The most

common strategy used with MOEA/D (Li and Zhang 2009) is to randomly sample a vector
9Despite being much more compact than the usual definitions of SBX recombination (Deb and Beyer 2001;

Zhang and Li 2007), this one is equivalent provided that the stated scaling of the variables to the interval
xi,j ∈ [0, 1], ∀i, j is maintained.

10φ can be set either as a constant value, or defined randomly for each application of this operator. In the
latter, it is common to independently sample φ ∈ (0, 1] for each operation, according to a uniform distribution
(Li, Zhou, and Zhang 2014c).
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from X′(t) (mutually exclusive with x′(t)ai and x′(t)bi
) according to the sampling probabilities

defined in (18).
Two possible alternatives for the basis vector in the context of MOEA/D are also suggested
here. For a given subproblem i, let the points x′(t)bi,k

, bi,k ∈ bi be ordered in decreasing order
of utility (i.e., in increasing order of aggregation function value). One possibility is to use the
mean point of the neighborhood

x(t)
i,basis = 1

T

T∑
k=1

x′(t)bi,k
, (25)

while the second is to use a weighted global intermediate point, which is an adaptation of the
basis vector commonly used in evolution strategies (Arnold 2006)

x(t)
i,basis =

T∑
k=1

wkx
′(t)
bi,k

(26)

with weights given by

wk = w′k∑T
k=1w

′
k

,

w′k = ln(T + 0.5)− ln(k).
(27)

Further alternative definitions of the differential mutation operator in the MOEA/D context
can be found in the literature (Li et al. 2014c). Regardless of the specifics of each definition,
this operator is known to be invariant to rotation (Price et al. 2005; Li et al. 2014c). After
its application, X′(t) is updated with the points x̃′(t)i .

Binomial recombination

Let ρ ∈ [0, 1] be a user-defined parameter, ki ∈ {1, . . . , nv}, i = 1 . . . , N denote a set of
randomly selected integers, and ui ∈ [0, 1]nv be a vector of uniformly distributed random
values. Also, recall that the incumbent solutions at iteration t (unmodified by any variation
operators) are stored in the matrix X(t). This operator can then be expressed by the sequential
application of

x̃
′(t)
i,j =

x
′(t)
i,j , if ui,j ≤ ρ,
x

(t)
i,j , otherwise,

j = 1, . . . , nv, (28)

and

x̃
(t)
i,ki

=

x
′(t)
i,ki
, if x̃′(t)i = x(t)

i ,

x̃
′(t)
i,ki
, otherwise.

(29)

As with the previous operators, after this one is applied to all subproblems, each row of X′(t)

is updated with its corresponding point x̃′(t)i .
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Repair operators

Repair operators in evolutionary algorithms for continuous optimization usually refer to
strategies for ensuring that the box constraints, i.e., pairs of constraints defined by (xj,min−
xi,j ≤ 0 ; xi,j − xj,max ≤ 0)∀j, are satisfied. While the literature tends to place repair opera-
tors in a separate category from the variation ones, we argue that they actually belong to the
same class of operations in the MOEA/D framework, as both are used to modify candidate
solutions according to specific rules.
While there are a number of repair methods (Hellwig and Arnold 2016), we describe here
only the simple truncation repair, which can be defined as

x̃
′(t)
i,j = max

(
xj,min, min

(
xj,max, x

′(t)
i,j

))
,∀i, j, (30)

where functions max(·, ·) and min(·, ·) return the largest and the smallest of their arguments,
respectively. After this operation is performed, X′(t) is updated accordingly.

Local search operators

Local search strategies are usually employed in MOEA/D to accelerate convergence. As with
the repair operators, these approaches are commonly classified as distinct from the variation
operators, but we argue that they are indeed part of the same block, for the same reasons
stated earlier.
Since these operators sometimes result in the need for additional evaluations of candidate
solutions, as well as in loss of diversity, their application is usually regulated by a frequency
parameter, expressed either as a period of application τls ∈ Z>0 (i.e., the operator is applied
to each subproblem once every τls iterations); or as a probability of application γls ∈ [0, 1]
(i.e., at every iteration the operator is applied with probability γls for a given subproblem;
Deb 2001; Coello Coello et al. 2007). Whenever any of these conditions is true, local search
is applied on the incumbent solution of a subproblem instead of all other variation operators.
Note that both τls = 1 and γls = 1 lead to the same behavior, that is, the MOEA/D ignoring
all other variation operators and performing only local search at every iteration. Values
that are sometimes offered for these parameters in the wider MOEA literature are τls = 5
(Wanner, Guimarães, Takahashi, and Fleming 2008) and γls ∈ [0.01, 0.05] (Deb 2001; Coello
Coello et al. 2007), albeit without much theoretical or experimental justification.
As with all other variation methods, after this operation is performed the rows of X′(t) are
updated with the corresponding points x̃′(t)i .

Three-point quadratic approximation (TPQA). Let fagg
ik

4= fagg(x′(t)ik
| λi, z) be the

aggregation function value of the kth candidate solution, k ∈ bi, for the ith subproblem.
Let x′(t)i1

, x′(t)i2
, x′(t)i3

∈ Rnv be the three candidate solutions with the highest utility for the
ith subproblem at iteration t, such that fagg

i1
≤ fagg

i2
≤ fagg

i3
. The three-point quadratic

approximation method (Tan et al. 2012) for performing local search in MOEA/D can be
expressed as

x̃
′(t)
i,j =

x
′(t)
i1,j
, if qi,j < ε,

x̂
(t)
i,j , otherwise,

j = 1, . . . , nv, (31)
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where

qi,j =
(
x
′(t)
i2,j
− x′(t)i3,j

)
fagg
i1

+
(
x
′(t)
i3,j
− x′(t)i1,j

)
fagg
i2

+
(
x
′(t)
i1,j
− x′(t)i2,j

)
fagg
i3

, (32)

x̂
(t)
i,j =

[(
x
′(t)
i2,j

)2
−
(
x
′(t)
i3,j

)2
]
fagg
i1

2qi,j
+
[(
x
′(t)
i3,j

)2
−
(
x
′(t)
i1,j

)2
]
fagg
i2

2qi,j
+ (33)[(

x
′(t)
i1,j

)2
−
(
x
′(t)
i2,j

)2
]
fagg
i3

2qi,j
,

where ε ∈ R>0 is a small positive constant.11

Differential vector-based local search (DVLS). Although this strategy was originally
proposed for non-decomposition MOEAs (Chen, Zeng, Lin, and Zhang 2015), its adaptation
to the MOEA/D framework is straightforward. Let x′(t)ai , x′(t)bi

∈ X′(t) be two candidate
solutions, with (ai, bi) denoting mutually exclusive indices sampled from the neighborhood
bi. Two new candidate alternatives, x̂+

i and x̂−i , are then generated according to (24), using
x(t)
i,basis = x(t)

i and φ = ±φls, with φls ∼ N (µ = 0.5, σ = 0.1) (Chen et al. 2015). This local
search operator then compares these two alternatives against the incumbent solution, and
returns the point with the best performance for the subproblem, i.e.,

x̃′(t)i = arg min
x∈
{

x′(t)i , x̂+
i , x̂−i

}fagg(x | λi, z). (34)

5.5. Update strategies

Update strategies in MOEA/D play the same role as selection operators in general MOEAs,
regulating the substitution of incumbent solutions by those resulting from the application
of a sequence of variation operators. In MOEA/D, this substitution is controlled by the
replacement strategy (Zhang and Li 2007; Asafuddoula et al. 2015; Wang, Zhang, Gong, and
Zhou 2014), as well as by the neighborhood relations between subproblems. Three update
methods are presented next.
In what follows, let X′(t) denote the matrix containing the candidate solutions generated
after the application of the variation stack, and X(t) be the matrix containing the incumbent
solutions at iteration t. Also, let fagg (·) denote the aggregation function (see Section 5.2). For
each subproblem i, the update strategy will generate a set of candidate solutions Ci (generally
composed of the incumbent solution x(t)

i and candidate solutions from a given neighborhood)
and select the best solution in this set as the new incumbent solution x(t+1)

i .
The list of update strategies available in the MOEADr package can be generated using
get_update_methods().

Standard neighborhood replacement
Let the candidate set for the ith subproblem be defined as

C(t)
i = x(t)

i ∪
{
x′(t)k

∣∣k ∈ bi
}
, (35)

11Tan et al. (2012) recommend ε = 10−6.



Journal of Statistical Software 21

where bi is the neighborhood defined in Section 5.3. This replacement strategy (Zhang and
Li 2007) updates the population according to

x(t+1)
i =

{
c(t)
q

∣∣c(t)
q ∈ C(t)

i ∧ f
agg
(
c(t)
q | λi, z

)
≤ min

c(t)
k
∈C(t)

i

fagg
(
c(t)
k | λi, z

)}
. (36)

That is, the best solution to the ith subproblem considering the incumbent solution and the
candidate solutions indexed in bi.

Restricted neighborhood replacement

In the standard replacement, a single candidate solution can replace up to T (the neighbor-
hood size) incumbent solutions at any given iteration, which can lead to diversity loss and
premature stagnation. To overcome this issue, Li and Zhang (2009) proposed a limit to the
number of copies that any single point x′(t)i can pass on to X(t+1), defined by a user-defined
parameter nr ∈ Z>0 | nr ≤ N . This approach generalizes the standard neighborhood replace-
ment (which happens if nr = T ), and provides a relatively simple way to limit the propagation
speed of candidate solutions in the population. The definition of good values for nr, however,
may require some tuning: both nr = 2 (Li and Zhang 2009) and nr = 0.01N (Zhang, Liu,
and Li 2009a) are recommended, without much theoretical or empirical support.

Best subproblem replacement

In the previous strategies, a candidate solution x′(t)i is considered for replacing the incumbent
solutions of its neighboring subproblems, i.e., it can replace incumbent solutions x(t)

k | k ∈ bi.
However, it may happen that the best available candidate solution for a given subproblem i is
not among those in the neighborhood bi. To address this issue, Wang et al. (2014) suggested
a three-step replacement strategy. The first step is to identify the subproblem ki for which
each new candidate solution x′(t)i is most effective, i.e.,

ki = arg min
1≤k≤N

fagg(x′(t)i |λk, z). (37)

The second step is to generate replacement neighborhoods brki , which are composed of the
Tr nearest neighbors to the kith subproblem (calculated as in Section 5.3), where Tr ∈ Z>0 |
Tr ≤ N is a user-defined parameter. Finally, for each subproblem i, the original neighborhood
bi is replaced by brki , and then the restricted neighborhood replacement is used for updating
the population.

5.6. Constraint handling approaches

Some possible approaches to deal with constraints in the MOP formulation are discussed be-
low. While most available implementations of MOEA/D (see Section 3) provide versions that
are only capable of dealing with box constraints (using repair operators such as truncation),
dealing with general constraints in the context of MOEA/D is relatively straightforward, as
discussed below.
The constraint handling techniques available in the MOEADr package can be consulted using
get_constraint_methods().
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Penalty functions

The most common approach in the MOEA community to handle constraints is to use penalties
(Miettinen 1999; Coello 2002). The idea of penalty functions is to transform a constrained
optimization problem to an unconstrained one, by adding a certain value to the aggregation
function value of a given point based on the magnitude of constraint violation that it presents.
Assuming that the magnitude of the constraint violation is derived from the sum of violations
of all inequality and equality constraints, its value can be defined as12

v(x) =
ng∑
i=1

max(gi(x), 0) +
nh∑
j=1

max(|hj(x)| − ε, 0), (38)

where ε ∈ R≥0 is a small threshold representing a tolerance for the equality constraints. The
new (penalized) aggregation function to be optimized is then obtained as

fagg
pen (x|λk, z) = fagg(x|λk, z) + βvv(x) , (39)

in which βv ∈ R>0 is a user-defined penalization constant. For each subproblem, the penalized
values are then used to select which solution will become (or remain) the incumbent one in
the next population, X(t+1), according to the update strategies (Section 5.5).

Violation-based ranking (VBR)

This constraint handling technique generalizes a few methods available in the literature,
such as tournament selection (TS; Deb 2000), stochastic ranking (SR; Runarsson and Yao
2000), and violation threshold (VT; Asafuddoula, Ray, Sarker, and Alam 2012). Like the
penalty functions approach, VBR uses the total magnitude of constraint violations v(x) (38)
to penalize unfeasible solutions, but this penalization takes the form of ranking functions
that employ different quantities depending on the feasibility (or not) of the solutions being
compared.
In its general form, this constraint handling method uses the following criteria when ranking
the solutions:

• If a solution is feasible, use its fagg (x|λk, z) value.

• If a solution is unfeasible, check a criterion c (x):

– If c (x) = TRUE, use its fagg (x|λk, z) value.
– If c (x) = FALSE, use its v (x) value.

• Assuming that n1 ≤ N points are to be ranked using their fagg (x|λk, z) values, VBR
ranks those solutions first (rank values from 1 to n1), and then attributes ranks for the
remaining solutions using their v (x) values, from n1 + 1 to N . Rank values are then
used instead of fagg (x|λk, z) whenever solutions must be compared.

12Individual violation values can also be subject to scaling, to prevent extreme differences in the scale of
constraint functions from dominating the attribution of the penalized utility value. This discussion, however,
is not advanced further in the present work.
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Situation Rank using
v(x) = 0 c (x) = TRUE fagg (x|λk, z)
v(x) = 0 c (x) = FALSE fagg (x|λk, z)
v(x) > 0 c (x) = TRUE fagg (x|λk, z)
v(x) > 0 c (x) = TRUE v (x)

Table 4: Ranking criteria for the violation-based ranking.

Method Function c (x) =
Tournament selection (Deb 2000) FALSE
Stochastic ranking (Runarsson and Yao 2000) (u ≤ pf )
Violation threshold (Asafuddoula et al. 2012) (v (x) ≤ εv)

Table 5: Secondary criterion functions.

As mentioned earlier, this criterion generalizes the commonly-used constraint handling tech-
niques tournament selection (TS), stochastic ranking (SR), and violation threshold (VT).
These specific methods can be instantiated from the rules defined in Table 4, by choosing
an appropriate function c (x), see Table 5. For SR, pf ∈ [0, 1] represents a user-defined pa-
rameter, and u ∈ [0, 1] denotes a uniformly distributed random value. For VT, the adaptive
threshold εv is calculated independently for each subproblem, as

εv,i = [fs]i
(T + 1)2

∑
k∈b′i

v (xk) , (40)

where b′i = x(t)
i

⋃{
x′(t)k |k ∈ bi

}
; [fs]i represents the number of feasible solutions in b′i; and

(T + 1) is the cardinality of b′i.13

An important point to highlight here is that the VBR method does not necessarily guarantee
that feasible solutions will always be maintained in the population. This means that a good
feasible solution obtained previously for a scalar subproblem may be eliminated later in the
search. To prevent this loss of feasible solutions, an elitist archiving strategy can be adopted
in order to preserve the feasible solution with the best aggregation value found for each sub-
problem throughout the iterations. In this case, this elitist archive should be considered as
the output population of the algorithm (Ying, He, Huang, Li, and Wu 2016).
Finally, it is worth mentioning that this generalization of known constraint handling tech-
niques may serve as a template for further developments of better methods for dealing with
constraints in population-based algorithms, both for single and multiobjective cases. This
possibility, however, falls outside the scope of the current paper, and will not be explored
further.

5.7. Termination criteria

Termination criteria determine when the algorithm should stop running and return the so-
lutions found. Common criteria in the evolutionary computation literature tend to fall into

13If the “best subproblem replacement” is used, then brki
is used instead of bi, and Tr instead of T .
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two broad categories, namely: (i) exhaustion of the algorithmic budget, in terms of execution
time, number of points visited, or number of iterations performed; and (ii) attainment of a
specific threshold value for some criterion, such as lack of improvement, loss of population
diversity, convergence to specified quality values, or some other population statistic.14

“Time-based” stop criteria stop the process after a user-defined amount of time has passed
since the program started running. These criteria can be useful when comparing computation-
ally intensive tasks such as the construction of neighborhood or subproblem weight matrices,
but it can be sensitive to background tasks if “wall clock” time is used. In general, “process”
time tends to be preferable, although it tends to add some complexity to the implementation.
“Number of iterations” stop criteria stop the search immediately after the iteration counter
becomes higher than a given threshold. This tends to be useful when comparing minor vari-
ations of a given algorithm, as long as there is no significant differences in the computational
cost per iteration.
Finally, “number of evaluations” criteria terminate the search when the total number of points
visited by the algorithm reaches a predefined threshold. This criterion is usually preferred in
situations when the larger part of the total computational cost is incurred by utility function
evaluations, in which case it is a good practice to keep this value constant when comparing
very different algorithms. Note that because the termination check occurs once per iteration,
the total number of evaluations may show some fluctuations from the user-defined value.
The list of available stop criteria in the MOEADr package can be consulted using function
get_stop_criteria().

6. Usage examples
In this section we present three case studies which illustrate common usage situations for
the MOEADr package. The first shows how to solve a simple MOP using the package. The
second illustrates the application of the component oriented framework with an automatic
algorithmic assembling and tuning approach. Finally, the third example demonstrates how
to use a user-defined component with the package.
These three case studies are also available as vignettes in the MOEADr documentation.

6.1. Solving a simple multiobjective optimization problem using MOEADr
In this case study, we use MOEADr to optimize a simple 2-objective problem composed of
the (shifted) Sphere and Rastrigin functions in the domain Ω = [−1, 1]nv , defined as

sphere(x) =
nv∑
i=1

(xi + 0.1i)2 , and

rastrigin(x) =
nv∑
i=1

[
(xi − 0.1i)2 − 10cos (2π (xi − 0.1i)) + 10

]
.

The R implementation of the problem can be defined as follows. Note that the MOEADr
package requires the multiobjective problem to be defined as a function that can receive a

14An interesting compilation of works on stop criteria for MOEAs is maintained by Luis Martí at
http://lmarti.com/stopping.

http://lmarti.com/stopping
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population matrix X, and return a matrix of objective function values for each point. In the
following code chunk, first the object functions are defined, then the objective functions are
wrapped in an evaluator routine and the problem definition list is assembled.

R> sphere <- function(X) {
+ X.shift <- X + seq_along(X) * 0.1
+ sum(X.shift**2)
+ }
R> rastringin <- function(X) {
+ X.shift <- X - seq_along(X) * 0.1
+ sum((X.shift)**2 - 10 * cos(2 * pi * X.shift) + 10)
+ }
R> problem.sr <- function(X) {
+ t(apply(X, MARGIN = 1, FUN = function(X) c(sphere(X), rastringin(X))))
+ }
R> problem.1 <- list(name = "problem.sr",
+ xmin = rep(-1, 30), xmax = rep(1, 30), m = 2)

To load the package and run the problem using the original MOEA/D (Zhang and Li 2007),
we use the following commands:

R> library("MOEADr")
R> results <- moead(problem = problem.1,
+ preset = preset_moead("original"), seed = 42)

The moead() function requires a problem definition, discussed above, an algorithm config-
uration, logging parameters, and a seed. In this example we used a preset algorithm. The
preset_moead() function can output a number of different presets based on combinations
found on the literature. These presets can also be modified (either partially or as a whole),
as will be shown in another case study. preset_moead("original") returns the original
MOEA/D configuration, as proposed by Zhang and Li (2007). Running preset_moead()
without an argument outputs a list of available presets.
The moead() function returns a list object of class ‘moead’, containing the final solution set,
objective values for each solution, and other information about the optimization process. The
MOEADr package uses S3 to implement versions of plot(), print() and summary() for this
object.
plot() will show the estimated Pareto front for the objectives, as in Figure 1. When the
number of objectives is greater than 2, a parallel coordinates plot is also produced (see Fig-
ure 2). summary() displays information about the number of non-dominated and feasible
solution points, the estimated ideal and nadir values, and (optionally) the inverted genera-
tional distance (IGD) and hypervolume indicators (Zitzler, Thiele, Laumanns, Fonseca, and
Fonseca 2003) calculated for the set of feasible, nondominated points returned.

R> summary(results)

Warning: reference point not provided:
using the maximum in each dimension instead.
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Figure 1: Estimated front produced by running the code in Case Study 1.1.

Summary of MOEA/D run
#====================================
Total function evaluations: 20100
Total iterations: 200
Population size: 100
Feasible points found: 100 (100% of total)
Nondominated points found: 100 (100% of total)
Estimated ideal point: 31.879 92.925
Estimated nadir point: 117.372 450.424
Estimated HV: 23972.73
Ref point used for HV: 117.3718 450.4242
#====================================

R> plot(results)

A more complex example

Package smoof (Bossek 2017c, 2020) provides the implementation of a large number of single
and multiobjective test functions. MOEADr provides a wrapper function
make_vectorized_smoof() to easily convert smoof functions to the format required by the
moead() function, as illustrated below for a 5-objective standard MOP benchmark problem.

R> library("smoof")
R> DTLZ2 <- make_vectorized_smoof(prob.name = "DTLZ2",
+ dimensions = 20, n.objectives = 5)
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Figure 2: Parallel coordinates plot and 2 objective projections produced by Case Study 1.2.

R> problem.dtlz2 <- list(name = "DTLZ2", xmin = rep(0, 20),
+ xmax = rep(1, 20), m = 5)

The code below shows an example of how to modify a preset algorithm. Because of the
higher number of objectives, we want to reduce the value of the parameter H in the SLD
decomposition component (see Section 5.1) used by the preset from 100 to 8:

R> results.dtlz <- moead(problem = problem.dtlz2,
+ preset = preset_moead("original"),
+ decomp = list(name = "SLD", H = 8), seed = 42)

As before, we see an overview of the results with summary() and plot(). Note that the
output of plot() is different when the number of objectives in a problem is greater than 2,
as shown in Figure 2.

R> summary(results.dtlz)

Warning: reference point not provided:
using the maximum in each dimension instead.

Summary of MOEA/D run
#====================================
Total function evaluations: 99495
Total iterations: 200
Population size: 495
Feasible points found: 495 (100% of total)
Nondominated points found: 242 (48.9% of total)
Estimated ideal point: 0 0 0 0 0
Estimated nadir point: 1.252 1.176 1.174 1.571 2.16
Estimated HV: 5.063807
Ref point used for HV: 1.252253 1.176129 1.174102 1.57124 2.160007
#====================================
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R> plot(results.dtlz)

6.2. Fine tuning algorithm configurations using MOEADr and irace
For this example, we employ the iterated racing procedure (available in the irace package;
López-Ibáñez, Dubois-Lacoste, Cáceres, Birattari, and Stützle 2016), to automatically as-
semble and fine-tune a MOEA/D configuration based on the components available in the
MOEADr package.
Ten unconstrained test problems from the CEC2009 competition15 are used, with dimensions
ranging from 10 to 30. Dimension 20 was reserved for testing, while all others were used for
the training effort. To quantify the quality of the set of solutions returned by a candidate
configuration we use the inverted generational distance (IGD; Zitzler et al. 2003) indicator.
The number of subproblems was fixed as 100 for nf = 2 and 150 for nf = 3.
We define a tuning budget of 1,000 runs for this example. The algorithm was set with the
following fixed parameters: uniform decomposition, AWT aggregation function, restricted
update, simple scaling, max. evaluations = 50, 000 as a stop criterion. The variation stack
was partially fixed with the sequence of operators: differential mutation (with φ ∼ U (0, 1)),
binomial recombination, polynomial mutation (with pM = 1/nv) and simple truncation repair.
Seven tunable parameters were set as follows:

• Neighborhood type ∈
{
by λi; by x(t)

i

}
;

• Neighborhood size T ∈ [10, 40];

• Probability of sampling from neighborhood δp ∈ (0.1, 1.0);

• For the restricted update: nr ∈ [1, 10];

• Differential mutation basis ∈ {rand, mean, wgi};

• Binomial recombination ρ ∈ (0, 1);

• Polynomial mutation ηM ∈ (1, 100).

The code of this case study requires a large amount of boilerplate for the irace package
(López-Ibáñez et al. 2016) and, for the sake of brevity, it is not included in the text. Please
refer to the supplementary materials for the full replication script.16

Figure 3 shows the IGD values achieved by the four final configurations over the test problems.
Based on these final configurations, we assemble the consensus MOEA/D configuration, which
is described in Table 6. The third column of this table, together with Figure 4, provides the
consensus value of each component, measured (in the table) as the rate of occurrence of each
component in the seven final configurations returned by the iterated racing procedure. These
results suggest that the automated assembling and tuning method reached a reasonably solid
consensus, in terms of the components used as well as the values returned for the numeric
parameters.

15Functions UF1 to UF10 (http://dces.essex.ac.uk/staff/qzhang/moeacompetition09.htm), using the
standard implementation available in the smoof package (Bossek 2020).

16A much larger version of this experiment is also presented in the “Fine Tuning MOEA/D Configurations
Using MOEADr and irace” vignette in the MOEADr package.

http://dces.essex.ac.uk/staff/qzhang/moeacompetition09.htm
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Figure 3: IGD values for the 4 final configurations returned by the iterated racing procedure
on the testing problems.

Component Value Consensus
Decomposition Uniform Fixed
Aggregation function AWT Fixed
Objective scaling Simple Fixed
Neighborhood by x 1.00

T = 13 see Figure 4
δp = 0.887 see Figure 4

Variation stack Differential mutation Fixed
basis = rand 1.00
φ ∼ U(0, 1) Fixed

Binomial recombination Fixed
ρ = 0.906 see Figure 4

Polynomial mutation Fixed
pM = 1/nv Fixed
ηM = 10.429 see Figure 4
Truncate Fixed

Update Restricted Fixed
nr = 3 0.75

Table 6: Final MOEA/D configuration returned by the iterated racing procedure. “Value”
shows the best configuration, and “Consensus” represents the agreement between the four
final configurations.

This case study illustrates how to use the MOEADr package to explore the space of possi-
ble component configurations and parameter values, which can render improved algorithmic
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Figure 4: Values of the numeric parameters returned by irace.

configurations and new insights into the roles of specific components and parameter values
outside the standard values from the literature. The example used in this paper is intended
only as a proof-of-concept, but we highly recommend that a similar approach is used when de-
veloping new components, in order to observe not only the individual performance of the novel
component, but also its interaction with components which already exist in the MOEA/D
environment.

6.3. Adding new components to MOEADr

In addition to a wide variety of components from the literature, the MOEADr package also
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supports the use of user-defined components. For this example, we will create a simple
variation operator that does not exist in the package in its current state, and compare it with
the original MOEA/D.
Consider the following “Gaussian mutation” operator: Given a set X of solutions xi ∈ X we
add, with probability p, a noise rij ∼ N (µ, σ) to each xij ∈ xi ∈ X. The R code for this
operator is as follows:

R> variation_gaussmut <- function(X, mean = 0, sd = 0.1, p = 0.1, ...) {
+ R <- rnorm(length(X), mean = mean, sd = sd)
+ R <- R * (runif(length(X)) <= p)
+ return(X + R)
+ }

We would like to highlight a few characteristics of the code sample above. First, the name
of the function must be in the form variation_[functionname]. The MOEADr package
uses function name prefixes to perform some automated functions such as listing existing
components and error checking. The list of current function prefixes and their meaning is:

• constraint_: constraint handling components;

• decomposition_: decomposition functions;

• ls_: local search operators;

• scalarization_: scalarization functions;

• stop_: stop criteria components;

• uptd_: update components;

• variation_: variation operators.

Second, the parameters in the definition of the variation operator function must include: the
solution set matrix X, any specific parameters for the function, and finally an ellipsis argument
to catch any other inputs passed down by the main moead() function, such as objective values
and former solution sets. Extensively commented examples of using these parameters are
available in the source code for the variation operators included in the package, such as the
binomial recombination operator (variation_binrec()). Other component classes follow
similar rules, as documented in the vignette “Writing Extensions for the MOEADr Package”
in the MOEADr package.
If a given function is not available in the MOEADr package environment, it will search for it
in the base R environment. Therefore, if you have named your component correctly, all you
need to do is to add it to the appropriate parameter in the moead() call.
For example, let us replace the variation stack of the original MOEA/D by our Gaussian mu-
tation operator, followed by simple truncation, and test it on a standard benchmark function,
and use the plotting function to perform a purely qualitative graphical comparison against
the original MOEA/D:
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Figure 5: Estimated Pareto front achieved by the “original” MOEA/D composition (left) and
the MOEA/D using the Gaussian mutation variation (right).

R> library("MOEADr")
R> library("smoof")
R> ZDT1 <- make_vectorized_smoof(prob.name = "ZDT1", dimensions = 30)
R> problem.zdt1 <- list(name = "ZDT1", xmin = rep(0, 30),
+ xmax = rep(1, 30), m = 2)
R> myvar <- list()
R> myvar[[1]] <- list(name = "gaussmut", p = 0.5)
R> myvar[[2]] <- list(name = "truncate")
R> results.orig <- moead(problem = problem.zdt1,
+ preset = preset_moead("original"), seed = 42)
R> results.myvar <- moead(problem = problem.zdt1,
+ preset = preset_moead("original"), variation = myvar, seed = 42)
R> plot(results.orig)
R> plot(results.myvar)

Figure 5 shows the estimated Pareto front for both the standard MOEA/D and the MOEA/D
with a Gaussian mutation operator. From these images it seems, rather unsurprisingly, that
the example operator is not an adequate replacement for the variation methods used in the
standard MOEA/D.

7. Summary and conclusions
In this article we presented the R package MOEADr, implementing a new, component-based
formulation of the MOEA/D framework. This formulation breaks down the algorithm into
independent components that can be separately replaced or configured. We described many
recent proposals in the MOEA/D literature in an unified mathematical formulation fitting
this framework.
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The package allows users to easily instantiate a large variety of works from the MOEA/D
literature, which facilitates the reproducibility of published results and the application of
known variants to problems of interest. By implementing the components listed in Table 3
and allowing the definition of new functions for any component of the algorithm, the package
also allows practitioners to quickly test new proposals and ideas.
Recently, Bezerra et al. (2016) introduced a component-wise framework for dominance- and
indicator-based MOEAs (a vision that is partially implemented in the ecr package by Bossek
2017a), and described how that framework was useful for the automated generation of algo-
rithms. In the present work we introduced a counterpart for decomposition-based approaches,
covering the third major branch of multiobjective evolutionary algorithms.
Besides expanding the library of available components, current work for improving the package
includes the addition of parameter self-adaptation and of performance-based stop criteria.
The possibility of including preference information within the MOEADr framework to bias
the search towards specific subsets of the Pareto-optimal front (Goulart and Campelo 2016;
Goulart, de Souza, Batista, and Campelo 2017b), as well as expanding the package to deal
with robust multiobjective optimization problems (Goulart, Borges, Takahashi, and Campelo
2017a) are also among the improvements planned for a future release.
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