9 research outputs found

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    Entwicklung einer berĂŒhrungslosen EEG-MĂŒtze mittels kapazitiver Elektroden

    Get PDF
    Non-contact capacitive electrodes for bioelectric diagnostics provide an interesting alternative to classical galvanically coupled electrodes. Such a low cost diagnostic system can be applied without preparation time and in mobile wireless environments. For even higher user comfort textile capacitive electrodes are preferable. In this work, a comprehensive model for the electronic noise properties and frequency dependent responses of PCB-based, as well as textile non-contact capacitive electrodes, is presented. A thorough study of the influence of the electrical components on the resulting noise properties of these electrodes, is provided by independently measuring the corresponding noise spectra. The most important low frequency noise source of capacitive electrode is the necessary high input bias resistance. By comparing the noise measurements with the theoretical noise model of the electrode, it is concluded that the surface of the electrode contributes to an additional 1/f-power noise. It is also found that the highest possible coupling capacitance is most favorable for low noise behavior. Therefore, we implemented electrodes with electrically conducting fabric surfaces. With these electrodes, it is possible to enlarge the surface of the electrode while simultaneously maintaining a small distance between the body and the electrode over the whole surface area, thus maximizing the capacitance. We also show that the use of textile capacitive electrodes, reduces the noise considerably. Furthermore, this thesis describes the construction of a capacitive non-contact textile electroencephalography measuring hat (cEEG hat) with seven measuring channels. This hat benefits from the low noise characteristics of the integrated developed textile capacitive electrodes. The measured noise spectrum of this cEEG hat shows low noise characteristics at low frequencies. This fulfills many requirements for measuring brain signals. The implemented cEEG hat is comfortable to wear during very long measurements and even during sleep periods. In contrast to common methods, the cEEG hat provides a possibility of measuring EEG signal during sleep outside laboratories and in the comfort of home. EEG sleep measurements shown in this work, are recorded inside a normal apartment. The possibility of brain computer interface application is also shown by measuring steady state visually evoked potentials (SSVEP) at different frequencies.BerĂŒhrungslose, kapazitive Elektroden fĂŒr bioelekrische Untersuchungen stellen eine interessante Alternative zu klassischen galvanisch gekoppelten Elektroden dar. Ein solches preisgĂŒnstiges Diagnosesystem kann ohne lange Vorbereitungszeit und in mobilen Umgebungen eingesetzt werden. FĂŒr gesteigerten Tragekomfort sind textile Elektroden von Vorteil. In dieser Arbeit wird eine umfassende Beschreibung der elektronischen Rauscheigenschaften und des frequenzabhĂ€ngigen Verhaltens von sowohl platinenbasierten, als auch textilen kapazitiven Elektroden vorgestellt. Die EinflĂŒsse aller elektronischen Komponenten auf die resultierenden Rauscheigenschaften werden durch Messungen der entsprechenden Rauschspektren untersucht. Die wichtigste niederfrequente Rauschquelle kapazitiver Elektroden stellt der notwendige und zugleich hohe Bias-Eingangswiderstand dar. Durch Vergleich der gemessenen Rauschspektren mit dem theoretischen Modell wird die OberflĂ€che der Elektroden als eine zusĂ€tzliche 1/f-Rauschquelle identifiziert. Dabei ist die grĂ¶ĂŸtmögliche KopplungskapazitĂ€t vorteilhaft fĂŒr ein niedriges Rauschen. Deshalb setzen wir im Folgenden Elektroden aus elektrisch leitfĂ€higen Textilien ein. Mit diesen Elektroden ist es möglich, die OberflĂ€che der Elektrode unter gleichzeitiger Beibehaltung eines kleinen Abstandes zum Körper zu vergrĂ¶ĂŸern. Dies maximiert wiederum die KapazitĂ€t. Wir zeigen zudem, dass die Verwendung textiler kapazitiver Elektroden die Rauscheigenschaften deutlich verbessert. Desweiteren wird in dieser Arbeit die Konstruktion eines kapazitiven, berĂŒhrungslosen EEG-Helmes (cEEG-MĂŒtze) mit sieben KanĂ€len beschrieben. Dieser Helm profitiert von den guten Rauscheigenschaften der zuvor entwickelten und hier integrierten textilen Elektroden. Die gemessenen Rauschspektren zeigen ein niedriges Rauschen im unteren Frequenzbereich. Dies erfĂŒllt viele Voraussetzungen fĂŒr die Messung von Gehirnsignalen. Die erstellte cEEG-MĂŒtze lĂ€sst sich wĂ€hrend langer Messzeiten und Schlafperioden angenehm tragen. Im Gegensatz zu herkömmlichen Methoden ermöglicht sie Messungen außerhalb von Laboratorien und im gewohnten Umfeld. Alle in dieser Arbeit gezeigten Schlafmessungen wurden in einer normalen Wohnung aufgezeichnet. Außerdem wird die Einsatzmöglichkeit fĂŒr sogenannte ”Gehirn-Computer-Schnittstellen” anhand der Messung von ”steady state visually evoked potentials” (SSVEP) Signalen bei verschiedenen Frequenzen demonstriert

    Knowledge Base for MENTAL AI, in Data Science Context

    Get PDF
    Globally, 1 in 7 people has some kind of mental or substance use disorder that affects their thinking, feelings, and behaviour in everyday life. Mental well-being is vital for physical health. No Health Without Mental Health! People with mental health disorders can carry on with normal life if they get the proper treatment and support. Mental disorders are complex to diagnose due to similar and common symptoms for numerous types of mental illnesses, with a minute difference among them. In the era of big, the challenge stays to make sense of the huge amount of health research and care data. Computational methods hold significant potential to enable superior patient stratification approaches to the established clinical practice, which in turn are a pre-requirement for the development of effective personalized medicine approaches. Personalized psychiatry also plays a vital role in predicting mental disorders and improving diagnosis and optimized treatment. The use of intelligent systems is expected to grow in the medical field, and it will continue to pose abundant opportunities for solutions that can help save patients’ lives. As it does for many industries, Artificial Intelligence (AI) systems can support mental health specialists in their jobs. Machine learning algorithms can be applied to find different patterns in the most diverse sets of data. This work aims to examine and compare different machine learning classification methodologies to predict different mental disorders and, from that, extract knowledge that can help mental health professionals in their tasks. Our algorithms were trained using a total dataset of 3353 patients from different hospital units. These data are divided into three subsets of data, mainly by the characteristics that the pathologies present. We evaluate the performance of the algorithms using different metrics. Among the metrics applied, we chose the F1 score to compare and analyze the algorithms, as it is the most suitable for the data we have since they found themselves imbalances. In the first evaluation, we trained our models, using all the patient’s symptoms and diagnoses. In the second evaluation, we trained our models, using only the symptoms that were somehow related to each other and that influenced the other pathologies.MilhĂ”es de pessoas em todo o mundo sĂŁo afetadas por transtornos mentais que influenciam o seu pensamento, sentimento ou comportamento. A saĂșde mental Ă© um prĂ©-requisito essencial para a saĂșde fĂ­sica e geral. Pessoas com transtornos mentais geralmente precisam de tratamento e apoio adequados para levar uma vida normal. A saĂșde mental Ă© uma condição de bem-estar em que um indivĂ­duo reconhece as suas habilidades, pode lidar com as tensĂ”es quotidianas da vida, trabalhar de forma produtiva e pode contribuir para a sua comunidade. A saĂșde mental afeta a vida das pessoas com transtorno mental, as suas profissĂ”es e a produtividade da comunidade. Boa saĂșde mental e resiliĂȘncia sĂŁo essenciais para a nossa saĂșde biolĂłgica, conexĂ”es humanas, educação, trabalho e alcançar o nosso potencial. A pandemia do covid-19 impactou significativamente a saĂșde mental das pessoas, em particular grupos como saĂșde e outros trabalhadores da linha de frente, estudantes, pessoas que moram sozinhas e pessoas com condiçÔes de saĂșde mental prĂ©-existentes. AlĂ©m disso, os serviços para transtornos mentais, neurolĂłgicos e por uso de substĂąncias foram significativamente interrompidos. Os transtornos mentais sĂŁo classificados como de diagnĂłstico complexo devido Ă  semelhança dos sintomas. Consultas regulares de saĂșde de pessoas com transtornos mentais graves podem impedir a morte prematura. A dificuldade dos especialistas em diagnosticar Ă© geralmente causada pela semelhança dos sintomas nos transtornos mentais, como por exemplo, transtorno de bordeline e bipolar. Os algoritmos de aprendizado de mĂĄquina podem ser aplicados para encontrar diferentes padrĂ”es nos mais diversos conjuntos de dados. Este trabalho, visa examinar e comparar diferentes metodologias de classificação de aprendizado de mĂĄquina para prever difentes transtornos mentais e disso, extrair conhecimento que possam auxiliar os profissionais da area de saude mental, nas suas tarefas. Os nossos algoritmos, foram treinados utilizando um conjunto total de dados de 3353 pacientes, provenientes de diferentes unidades hospitalares. Esses dados, estĂŁo repartidos em trĂȘs subconjuntos de dados, principalmente, pelas caracterĂ­sticas que as patologias apresentam. Avaliamos o desempenho dos algoritmos usando diferentes mĂ©tricas. Dentre as mĂ©tricas aplicadas, escolhemos o F1 score para comparar e analisar os algoritmos, pois Ă© o mais adequado para os dados que possuĂ­mos. Visto que eles se encontravam desequilĂ­brios. Na primeira avaliação, treinamos os nossos modelos, utilizando todos os sintomas e diagnĂłsticos dos pacientes. Na segunda avaliação, treinamos os nossos modelos, utilizando apenas os sintomas que apresentavam alguma relação entre si e que influenciavam nas outras patologias

    IEEE Transactions On Biomedical Circuits And Systems : Vol. 9, No. 6, December 2015

    No full text
    1. A. Wearable EEG-HEG-HRV Multimodal System with Simultaneous Monitoring of tES for Mental Health Management / A. Burdett, D. Ham, R. Genov 2. Miniaturizing Ultrasonic System for Portable Health Care and Fitness / H.-Y Tang, et al. 3. A Circanidian and Cardiac Intraocular Pressure Sensor for Smart Implantable Lens / A. Donida, et al. 4. A Smart CMOS Assay SoC for Rapid Blood Screening Test of Risk Prediction / P-H. Kuo, et al. 5. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening /T. Chi, et al. Etc

    Hybridizing 3-dimensional multiple object tracking with neurofeedback to enhance preparation, performance, and learning

    Full text link
    Le vaste domaine de l’amĂ©lioration cognitive traverse les applications comportementales, biochimiques et physiques. Aussi nombreuses sont les techniques que les limites de ces premiĂšres : des Ă©tudes de pauvre mĂ©thodologie, des pratiques Ă©thiquement ambiguĂ«s, de faibles effets positifs, des effets secondaires significatifs, des couts financiers importants, un investissement de temps significatif, une accessibilitĂ© inĂ©gale, et encore un manque de transfert. L’objectif de cette thĂšse est de proposer une mĂ©thode novatrice d’intĂ©gration de l’une de ces techniques, le neurofeedback, directement dans un paradigme d’apprentissage afin d’amĂ©liorer la performance cognitive et l’apprentissage. Cette thĂšse propose les modalitĂ©s, les fondements empiriques et des donnĂ©es Ă  l’appui de ce paradigme efficace d’apprentissage ‘bouclé’. En manipulant la difficultĂ© dans une tĂąche en fonction de l’activitĂ© cĂ©rĂ©brale en temps rĂ©el, il est dĂ©montrĂ© que dans un paradigme d’apprentissage traditionnel (3-dimentional multiple object tracking), la vitesse et le degrĂ© d’apprentissage peuvent ĂȘtre amĂ©liorĂ©s de maniĂšre significative lorsque comparĂ©s au paradigme traditionnel ou encore Ă  un groupe de contrĂŽle actif. La performance amĂ©liorĂ©e demeure observĂ©e mĂȘme avec un retrait du signal de rĂ©troaction, ce qui suggĂšre que les effets de l’entrainement amĂ©liorĂ© sont consolidĂ©s et ne dĂ©pendent pas d’une rĂ©troaction continue. Ensuite, cette thĂšse rĂ©vĂšle comment de tels effets se produisent, en examinant les corrĂ©lĂ©s neuronaux des Ă©tats de prĂ©paration et de performance Ă  travers les conditions d’état de base et pendant la tĂąche, de plus qu’en fonction du rĂ©sultat (rĂ©ussite/Ă©chec) et de la difficultĂ© (basse/moyenne/haute vitesse). La prĂ©paration, la performance et la charge cognitive sont mesurĂ©es via des liens robustement Ă©tablis dans un contexte d’activitĂ© cĂ©rĂ©brale fonctionnelle mesurĂ©e par l’électroencĂ©phalographie quantitative. Il est dĂ©montrĂ© que l’ajout d’une assistance- Ă -la-tĂąche apportĂ©e par la frĂ©quence alpha dominante est non seulement appropriĂ©e aux conditions de ce paradigme, mais influence la charge cognitive afin de favoriser un maintien du sujet dans sa zone de dĂ©veloppement proximale, ce qui facilite l’apprentissage et amĂ©liore la performance. Ce type de paradigme d’apprentissage peut contribuer Ă  surmonter, au minimum, un des limites fondamentales du neurofeedback et des autres techniques d’amĂ©lioration cognitive : le manque de transfert, en utilisant une mĂ©thode pouvant ĂȘtre intĂ©grĂ©e directement dans le contexte dans lequel l’amĂ©lioration de la performance est souhaitĂ©e.The domain of cognitive enhancement is vast, spanning behavioral, biochemical and physical applications. The techniques are as numerous as are the limitations: poorly conducted studies, ethically ambiguous practices, limited positive effects, significant side-effects, high financial costs, significant time investment, unequal accessibility, and lack of transfer. The purpose of this thesis is to propose a novel way of integrating one of these techniques, neurofeedback, directly into a learning context in order to enhance cognitive performance and learning. This thesis provides the framework, empirical foundations, and supporting evidence for a highly efficient ‘closed-loop’ learning paradigm. By manipulating task difficulty based on a measure of cognitive load within a classic learning scenario (3-dimentional multiple object tracking) using real-time brain activity, results demonstrate that over 10 sessions, speed and degree of learning can be substantially improved compared with a classic learning system or an active sham-control group. Superior performance persists even once the feedback signal is removed, which suggests that the effects of enhanced training are consolidated and do not rely on continued feedback. Next, this thesis examines how these effects occur, exploring the neural correlates of the states of preparedness and performance across baseline and task conditions, further examining correlates related to trial results (correct/incorrect) and task difficulty (slow/medium/fast speeds). Cognitive preparedness, performance and load are measured using well-established relationships between real-time quantified brain activity as measured by quantitative electroencephalography. It is shown that the addition of neurofeedback-based task assistance based on peak alpha frequency is appropriate to task conditions and manages to influence cognitive load, keeping the subject in the zone of proximal development more often, facilitating learning and improving performance. This type of learning paradigm could contribute to overcoming at least one of the fundamental limitations of neurofeedback and other cognitive enhancement techniques : a lack of observable transfer effects, by utilizing a method that can be directly integrated into the context in which improved performance is sought
    corecore