103 research outputs found

    Single Channel Speech Enhancement using Kalman Filter

    Get PDF
    The quality and intelligibility of speech conversation are generally degraded by the surrounding noises. The main objective of speech enhancement (SE) is to eliminate or reduce such disturbing noises from the degraded speech. Various SE methods have been proposed in literature. Among them, the Kalman filter (KF) is known to be an efficient SE method that uses the minimum mean square error (MMSE). However, most of the conventional KF based speech enhancement methods need access to clean speech and additive noise information for the state-space model parameters, namely, the linear prediction coefficients (LPCs) and the additive noise variance estimation, which is impractical in the sense that in practice, we can access only the noisy speech. Moreover, it is quite difficult to estimate these model parameters efficiently in the presence of adverse environmental noises. Therefore, the main focus of this thesis is to develop single channel speech enhancement algorithms using Kalman filter, where the model parameters are estimated in noisy conditions. Depending on these parameter estimation techniques, the proposed SE methods are classified into three approaches based on non-iterative, iterative, and sub-band iterative KF. In the first approach, a non-iterative Kalman filter based speech enhancement algorithm is presented, which operates on a frame-by-frame basis. In this proposed method, the state-space model parameters, namely, the LPCs and noise variance, are estimated first in noisy conditions. For LPC estimation, a combined speech smoothing and autocorrelation method is employed. A new method based on a lower-order truncated Taylor series approximation of the noisy speech along with a difference operation serving as high-pass filtering is introduced for the noise variance estimation. The non-iterative Kalman filter is then implemented with these estimated parameters effectively. In order to enhance the SE performance as well as parameter estimation accuracy in noisy conditions, an iterative Kalman filter based single channel SE method is proposed as the second approach, which also operates on a frame-by-frame basis. For each frame, the state-space model parameters of the KF are estimated through an iterative procedure. The Kalman filtering iteration is first applied to each noisy speech frame, reducing the noise component to a certain degree. At the end of this first iteration, the LPCs and other state-space model parameters are re-estimated using the processed speech frame and the Kalman filtering is repeated for the same processed frame. This iteration continues till the KF converges or a maximum number of iterations is reached, giving further enhanced speech frame. The same procedure will repeat for the following frames until the last noisy speech frame being processed. For further improving the speech enhancement performance, a sub-band iterative Kalman filter based SE method is also proposed as the third approach. A wavelet filter-bank is first used to decompose the noisy speech into a number of sub-bands. To achieve the best trade-off among the noise reduction, speech intelligibility and computational complexity, a partial reconstruction scheme based on consecutive mean squared error (CMSE) is proposed to synthesize the low-frequency (LF) and highfrequency (HF) sub-bands such that the iterative KF is employed only to the partially reconstructed HF sub-band speech. Finally, the enhanced HF sub-band speech is combined with the partially reconstructed LF sub-band speech to reconstruct the full-band enhanced speech. Experimental results have shown that the proposed KF based SE methods are capable of reducing adverse environmental noises for a wide range of input SNRs, and the overall performance of the proposed methods in terms of different evaluation metrics is superior to some existing state-of-the art SE methods

    Speech Enhancement with Adaptive Thresholding and Kalman Filtering

    Get PDF
    Speech enhancement has been extensively studied for many years and various speech enhance- ment methods have been developed during the past decades. One of the objectives of speech en- hancement is to provide high-quality speech communication in the presence of background noise and concurrent interference signals. In the process of speech communication, the clean speech sig- nal is inevitably corrupted by acoustic noise from the surrounding environment, transmission media, communication equipment, electrical noise, other speakers, and other sources of interference. These disturbances can significantly degrade the quality and intelligibility of the received speech signal. Therefore, it is of great interest to develop efficient speech enhancement techniques to recover the original speech from the noisy observation. In recent years, various techniques have been developed to tackle this problem, which can be classified into single channel and multi-channel enhancement approaches. Since single channel enhancement is easy to implement, it has been a significant field of research and various approaches have been developed. For example, spectral subtraction and Wiener filtering, are among the earliest single channel methods, which are based on estimation of the power spectrum of stationary noise. However, when the noise is non-stationary, or there exists music noise and ambient speech noise, the enhancement performance would degrade considerably. To overcome this disadvantage, this thesis focuses on single channel speech enhancement under adverse noise environment, especially the non-stationary noise environment. Recently, wavelet transform based methods have been widely used to reduce the undesired background noise. On the other hand, the Kalman filter (KF) methods offer competitive denoising results, especially in non-stationary environment. It has been used as a popular and powerful tool for speech enhancement during the past decades. In this regard, a single channel wavelet thresholding based Kalman filter (KF) algorithm is proposed for speech enhancement in this thesis. The wavelet packet (WP) transform is first applied to the noise corrupted speech on a frame-by-frame basis, which decomposes each frame into a number of subbands. A voice activity detector (VAD) is then designed to detect the voiced/unvoiced frames of the subband speech. Based on the VAD result, an adaptive thresholding scheme is applied to each subband speech followed by the WP based reconstruction to obtain the pre-enhanced speech. To achieve a further level of enhancement, an iterative Kalman filter (IKF) is used to process the pre-enhanced speech. The proposed adaptive thresholding iterative Kalman filtering (AT-IKF) method is evaluated and compared with some existing methods under various noise conditions in terms of segmental SNR and perceptual evaluation of speech quality (PESQ) as two well-known performance indexes. Firstly, we compare the proposed adaptive thresholding (AT) scheme with three other threshold- ing schemes: the non-linear universal thresholding (U-T), the non-linear wavelet packet transform thresholding (WPT-T) and the non-linear SURE thresholding (SURE-T). The experimental results show that the proposed AT scheme can significantly improve the segmental SNR and PESQ for all input SNRs compared with the other existing thresholding schemes. Secondly, extensive computer simulations are conducted to evaluate the proposed AT-IKF as opposed to the AT and the IKF as standalone speech enhancement methods. It is shown that the AT-IKF method still performs the best. Lastly, the proposed ATIKF method is compared with three representative and popular meth- ods: the improved spectral subtraction based speech enhancement algorithm (ISS), the improved Wiener filter based method (IWF) and the representative subband Kalman filter based algorithm (SIKF). Experimental results demonstrate the effectiveness of the proposed method as compared to some previous works both in terms of segmental SNR and PESQ

    Speech Enhancement by Noise Cancellation: A Review

    Get PDF
    It is observed that recognition rate of speech decreases, with the increase of noise in the background. Noise in the background as a tendency to decay the system’s robustness. This paper gives a brief survey on speech enhancements methods using various noise cancellation techniques for different SNR’s in a noisy environment

    DNN-Assisted Speech Enhancement Approaches Incorporating Phase Information

    Get PDF
    Speech enhancement is a widely adopted technique that removes the interferences in a corrupted speech to improve the speech quality and intelligibility. Speech enhancement methods can be implemented in either time domain or time-frequency (T-F) domain. Among various proposed methods, the time-frequency domain methods, which synthesize the enhanced speech with the estimated magnitude spectrogram and the noisy phase spectrogram, gain the most popularity in the past few decades. However, this kind of techniques tend to ignore the importance of phase processing. To overcome this problem, the thesis aims to jointly enhance the magnitude and phase spectra by means of the most recent deep neural networks (DNNs). More specifically, three major contributions are presented in this thesis. First, we present new schemes based on the basic Kalman filter (KF) to remove the background noise in the noisy speech in time domain, where the KF acts as joint estimator for both the magnitude and phase spectra of speech. A DNN-augmented basic KF is first proposed, where DNN is applied for estimating key parameters in the KF, namely the linear prediction coefficients (LPCs). By training the DNN with a large database and making use of the powerful learning ability of DNN, the proposed algorithm is able to estimate LPCs from noisy speech more accurately and robustly, leading to an improved performance as compared to traditional KF based approaches in speech enhancement. We further present a high-frequency (HF) component restoration algorithm to extenuate the degradation in the HF regions of the Kalman-filtered speech, in which the DNN-based bandwidth extension is applied to estimate the magnitude of HF component from the low-frequency (LF) counterpart. By incorporating the restoration algorithm, the enhanced speech suffers less distortion in the HF component. Moreover, we propose a hybrid speech enhancement system that exploits DNN for speech reconstruction and Kalman filtering for further denoising. Two separate networks are adopted in the estimation of magnitude spectrogram and LPCs of the clean speech, respectively. The estimated clean magnitude spectrogram is combined with the phase of the noisy speech to reconstruct the estimated clean speech. A KF with the estimated parameters is then utilized to remove the residual noise in the reconstructed speech. The proposed hybrid system takes advantages of both the DNN-based reconstruction and traditional Kalman filtering, and can work reliably in either matched or unmatched acoustic environments. Next, we incorporate the DNN-based parameter estimation scheme in two advanced KFs: subband KF and colored-noise KF. The DNN-augmented subband KF method decomposes the noisy speech into several subbands, and performs Kalman filtering to each subband speech, where the parameters of the KF are estimated by the trained DNN. The final enhanced speech is then obtained by synthesizing the enhanced subband speeches. In the DNN-augmented colored-noise KF system, both clean speech and noise are modelled as autoregressive (AR) processes, whose parameters comprise the LPCs and the driving noise variances. The LPCs are obtained through training a multi-objective DNN, while the driving noise variances are obtained by solving an optimization problem aiming to minimize the difference between the modelled and observed AR spectra of the noisy speech. The colored-noise Kalman filter with DNN-estimated parameters is then applied to the noisy speech for denoising. A post-subtraction technique is adopted to further remove the residual noise in the Kalman-filtered speech. Extensive computer simulations show that the two proposed advanced KF systems achieve significant performance gains when compared to conventional Kalman filter based algorithms as well as recent DNN-based methods under both seen and unseen noise conditions. Finally, we focus on the T-F domain speech enhancement with masking technique, which aims to retain the speech dominant components and suppress the noise dominant parts of the noisy speech. We first derive a new type of mask, namely constrained ratio mask (CRM), to better control the trade-off between speech distortion and residual noise in the enhanced speech. The CRM is estimated with a trained DNN based on the input noisy feature set and is applied to the noisy magnitude spectrogram for denoising. We further extend the CRM to the complex spectrogram estimation, where the enhanced magnitude spectrogram is obtained with the CRM, while the estimated phase spectrogram is reconstructed with the noisy phase spectrogram and the phase derivatives. Performance evaluation reveals our proposed CRM outperforms several traditional masks in terms of objective metrics. Moreover, the enhanced speech resulting from the CRM based complex spectrogram estimation has a better speech quality than that obtained without using phase reconstruction

    Speech enhancement algorithms for audiological applications

    Get PDF
    Texto en inglés y resumen en inglés y españolPremio Extraordinario de Doctorado de la UAH en el año académico 2013-2014La mejora de la calidad de la voz es un problema que, aunque ha sido abordado durante muchos años, aún sigue abierto. El creciente auge de aplicaciones tales como los sistemas manos libres o de reconocimiento de voz automático y las cada vez mayores exigencias de las personas con pérdidas auditivas han dado un impulso definitivo a este área de investigación. Esta tesis doctoral se centra en la mejora de la calidad de la voz en aplicaciones audiológicas. La mayoría del trabajo de investigación desarrollado en esta tesis está dirigido a la mejora de la inteligibilidad de la voz en audífonos digitales, teniendo en cuenta las limitaciones de este tipo de dispositivos. La combinación de técnicas de separación de fuentes y filtrado espacial con técnicas de aprendizaje automático y computación evolutiva ha originado novedosos e interesantes algoritmos que son incluidos en esta tesis. La tesis esta dividida en dos grandes bloques. El primer bloque contiene un estudio preliminar del problema y una exhaustiva revisión del estudio del arte sobre algoritmos de mejora de la calidad de la voz, que sirve para definir los objetivos de esta tesis. El segundo bloque contiene la descripción del trabajo de investigación realizado para cumplir los objetivos de la tesis, así como los experimentos y resultados obtenidos. En primer lugar, el problema de mejora de la calidad de la voz es descrito formalmente en el dominio tiempo-frecuencia. Los principales requerimientos y restricciones de los audífonos digitales son definidas. Tras describir el problema, una amplia revisión del estudio del arte ha sido elaborada. La revisión incluye algoritmos de mejora de la calidad de la voz mono-canal y multi-canal, considerando técnicas de reducción de ruido y técnicas de separación de fuentes. Además, la aplicación de estos algoritmos en audífonos digitales es evaluada. El primer problema abordado en la tesis es la separación de fuentes sonoras en mezclas infra-determinadas en el dominio tiempo-frecuencia, sin considerar ningún tipo de restricción computacional. El rendimiento del famoso algoritmo DUET, que consigue separar fuentes de voz con solo dos mezclas, ha sido evaluado en diversos escenarios, incluyendo mezclas lineales y binaurales no reverberantes, mezclas reverberantes, y mezclas de voz con otro tipo de fuentes tales como ruido y música. El estudio revela la falta de robustez del algoritmo DUET, cuyo rendimiento se ve seriamente disminuido en mezclas reverberantes, mezclas binaurales, y mezclas de voz con música y ruido. Con el objetivo de mejorar el rendimiento en estos casos, se presenta un novedoso algoritmo de separación de fuentes que combina la técnica de clustering mean shift con la base del algoritmo DUET. La etapa de clustering del algoritmo DUET, que esta basada en un histograma ponderado, es reemplazada por una modificación del algoritmo mean shift, introduciendo el uso de un kernel Gaussiano ponderado. El análisis de los resultados obtenidos muestran una clara mejora obtenida por el algoritmo propuesto en relación con el algoritmo DUET original y una modificación que usa k-means. Además, el algoritmo propuesto ha sido extendido para usar un array de micrófonos de cualquier tamaño y geometría. A continuación se ha abordado el problema de la enumeración de fuentes de voz, que esta relacionado con el problema de separación de fuentes. Se ha propuesto un novedoso algoritmo basado en un criterio de teoría de la información y en la estimación de los retardos relativos causados por las fuentes entre un par de micrófonos. El algoritmo ha obtenido excelente resultados y muestra robustez en la enumeración de mezclas no reverberantes de hasta 5 fuentes de voz. Además se demuestra la potencia del algoritmo para la enumeración de fuentes en mezclas reverberantes. El resto de la tesis esta centrada en audífonos digitales. El primer problema tratado es el de la mejora de la inteligibilidad de la voz en audífonos monoaurales. En primer lugar, se realiza un estudio de los recursos computacionales disponibles en audífonos digitales de ultima generación. Los resultados de este estudio se han utilizado para limitar el coste computacional de los algoritmos de mejora de la calidad de la voz para audífonos propuestos en esta tesis. Para resolver este primer problema se propone un algoritmo mono-canal de mejora de la calidad de la voz de bajo coste computacional. El objetivo es la estimación de una mascara tiempo-frecuencia continua para obtener el mayor parámetro PESQ de salida. El algoritmo combina una versión generalizada del estimador de mínimos cuadrados con un algoritmo de selección de características a medida, utilizando un novedoso conjunto de características. El algoritmo ha obtenido resultados excelentes incluso con baja relación señal a ruido. El siguiente problema abordado es el diseño de algoritmos de mejora de la calidad de la voz para audífonos binaurales comunicados de forma inalámbrica. Estos sistemas tienen un problema adicional, y es que la conexión inalámbrica aumenta el consumo de potencia. El objetivo en esta tesis es diseñar algoritmos de mejora de la calidad de la voz de bajo coste computacional que incrementen la eficiencia energética en audífonos binaurales comunicados de forma inalámbrica. Se han propuesto dos soluciones. La primera es un algoritmo de extremado bajo coste computacional que maximiza el parámetro WDO y esta basado en la estimación de una mascara binaria mediante un discriminante cuadrático que utiliza los valores ILD e ITD de cada punto tiempo-frecuencia para clasificarlo entre voz o ruido. El segundo algoritmo propuesto, también de bajo coste, utiliza además la información de puntos tiempo-frecuencia vecinos para estimar la IBM mediante una versión generalizada del LS-LDA. Además, se propone utilizar un MSE ponderado para estimar la IBM y maximizar el parámetro WDO al mismo tiempo. En ambos algoritmos se propone un esquema de transmisión eficiente energéticamente, que se basa en cuantificar los valores de amplitud y fase de cada banda de frecuencia con un numero distinto de bits. La distribución de bits entre frecuencias se optimiza mediante técnicas de computación evolutivas. El ultimo trabajo incluido en esta tesis trata del diseño de filtros espaciales para audífonos personalizados a una persona determinada. Los coeficientes del filtro pueden adaptarse a una persona siempre que se conozca su HRTF. Desafortunadamente, esta información no esta disponible cuando un paciente visita el audiólogo, lo que causa perdidas de ganancia y distorsiones. Con este problema en mente, se han propuesto tres métodos para diseñar filtros espaciales que maximicen la ganancia y minimicen las distorsiones medias para un conjunto de HRTFs de diseño

    Speech enhancement algorithms for audiological applications

    Get PDF
    Texto en inglés y resumen en inglés y españolPremio Extraordinario de Doctorado de la UAH en el año académico 2013-2014La mejora de la calidad de la voz es un problema que, aunque ha sido abordado durante muchos años, aún sigue abierto. El creciente auge de aplicaciones tales como los sistemas manos libres o de reconocimiento de voz automático y las cada vez mayores exigencias de las personas con pérdidas auditivas han dado un impulso definitivo a este área de investigación. Esta tesis doctoral se centra en la mejora de la calidad de la voz en aplicaciones audiológicas. La mayoría del trabajo de investigación desarrollado en esta tesis está dirigido a la mejora de la inteligibilidad de la voz en audífonos digitales, teniendo en cuenta las limitaciones de este tipo de dispositivos. La combinación de técnicas de separación de fuentes y filtrado espacial con técnicas de aprendizaje automático y computación evolutiva ha originado novedosos e interesantes algoritmos que son incluidos en esta tesis. La tesis esta dividida en dos grandes bloques. El primer bloque contiene un estudio preliminar del problema y una exhaustiva revisión del estudio del arte sobre algoritmos de mejora de la calidad de la voz, que sirve para definir los objetivos de esta tesis. El segundo bloque contiene la descripción del trabajo de investigación realizado para cumplir los objetivos de la tesis, así como los experimentos y resultados obtenidos. En primer lugar, el problema de mejora de la calidad de la voz es descrito formalmente en el dominio tiempo-frecuencia. Los principales requerimientos y restricciones de los audífonos digitales son definidas. Tras describir el problema, una amplia revisión del estudio del arte ha sido elaborada. La revisión incluye algoritmos de mejora de la calidad de la voz mono-canal y multi-canal, considerando técnicas de reducción de ruido y técnicas de separación de fuentes. Además, la aplicación de estos algoritmos en audífonos digitales es evaluada. El primer problema abordado en la tesis es la separación de fuentes sonoras en mezclas infra-determinadas en el dominio tiempo-frecuencia, sin considerar ningún tipo de restricción computacional. El rendimiento del famoso algoritmo DUET, que consigue separar fuentes de voz con solo dos mezclas, ha sido evaluado en diversos escenarios, incluyendo mezclas lineales y binaurales no reverberantes, mezclas reverberantes, y mezclas de voz con otro tipo de fuentes tales como ruido y música. El estudio revela la falta de robustez del algoritmo DUET, cuyo rendimiento se ve seriamente disminuido en mezclas reverberantes, mezclas binaurales, y mezclas de voz con música y ruido. Con el objetivo de mejorar el rendimiento en estos casos, se presenta un novedoso algoritmo de separación de fuentes que combina la técnica de clustering mean shift con la base del algoritmo DUET. La etapa de clustering del algoritmo DUET, que esta basada en un histograma ponderado, es reemplazada por una modificación del algoritmo mean shift, introduciendo el uso de un kernel Gaussiano ponderado. El análisis de los resultados obtenidos muestran una clara mejora obtenida por el algoritmo propuesto en relación con el algoritmo DUET original y una modificación que usa k-means. Además, el algoritmo propuesto ha sido extendido para usar un array de micrófonos de cualquier tamaño y geometría. A continuación se ha abordado el problema de la enumeración de fuentes de voz, que esta relacionado con el problema de separación de fuentes. Se ha propuesto un novedoso algoritmo basado en un criterio de teoría de la información y en la estimación de los retardos relativos causados por las fuentes entre un par de micrófonos. El algoritmo ha obtenido excelente resultados y muestra robustez en la enumeración de mezclas no reverberantes de hasta 5 fuentes de voz. Además se demuestra la potencia del algoritmo para la enumeración de fuentes en mezclas reverberantes. El resto de la tesis esta centrada en audífonos digitales. El primer problema tratado es el de la mejora de la inteligibilidad de la voz en audífonos monoaurales. En primer lugar, se realiza un estudio de los recursos computacionales disponibles en audífonos digitales de ultima generación. Los resultados de este estudio se han utilizado para limitar el coste computacional de los algoritmos de mejora de la calidad de la voz para audífonos propuestos en esta tesis. Para resolver este primer problema se propone un algoritmo mono-canal de mejora de la calidad de la voz de bajo coste computacional. El objetivo es la estimación de una mascara tiempo-frecuencia continua para obtener el mayor parámetro PESQ de salida. El algoritmo combina una versión generalizada del estimador de mínimos cuadrados con un algoritmo de selección de características a medida, utilizando un novedoso conjunto de características. El algoritmo ha obtenido resultados excelentes incluso con baja relación señal a ruido. El siguiente problema abordado es el diseño de algoritmos de mejora de la calidad de la voz para audífonos binaurales comunicados de forma inalámbrica. Estos sistemas tienen un problema adicional, y es que la conexión inalámbrica aumenta el consumo de potencia. El objetivo en esta tesis es diseñar algoritmos de mejora de la calidad de la voz de bajo coste computacional que incrementen la eficiencia energética en audífonos binaurales comunicados de forma inalámbrica. Se han propuesto dos soluciones. La primera es un algoritmo de extremado bajo coste computacional que maximiza el parámetro WDO y esta basado en la estimación de una mascara binaria mediante un discriminante cuadrático que utiliza los valores ILD e ITD de cada punto tiempo-frecuencia para clasificarlo entre voz o ruido. El segundo algoritmo propuesto, también de bajo coste, utiliza además la información de puntos tiempo-frecuencia vecinos para estimar la IBM mediante una versión generalizada del LS-LDA. Además, se propone utilizar un MSE ponderado para estimar la IBM y maximizar el parámetro WDO al mismo tiempo. En ambos algoritmos se propone un esquema de transmisión eficiente energéticamente, que se basa en cuantificar los valores de amplitud y fase de cada banda de frecuencia con un numero distinto de bits. La distribución de bits entre frecuencias se optimiza mediante técnicas de computación evolutivas. El ultimo trabajo incluido en esta tesis trata del diseño de filtros espaciales para audífonos personalizados a una persona determinada. Los coeficientes del filtro pueden adaptarse a una persona siempre que se conozca su HRTF. Desafortunadamente, esta información no esta disponible cuando un paciente visita el audiólogo, lo que causa perdidas de ganancia y distorsiones. Con este problema en mente, se han propuesto tres métodos para diseñar filtros espaciales que maximicen la ganancia y minimicen las distorsiones medias para un conjunto de HRTFs de diseño

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    Deep Learning-based Speech Enhancement for Real-life Applications

    Get PDF
    Speech enhancement is the process of improving speech quality and intelligibility by suppressing noise. Inspired by the outstanding performance of the deep learning approach for speech enhancement, this thesis aims to add to this research area through the following contributions. The thesis presents an experimental analysis of different deep neural networks for speech enhancement, to compare their performance and investigate factors and approaches that improve the performance. The outcomes of this analysis facilitate the development of better speech enhancement networks in this work. Moreover, this thesis proposes a new deep convolutional denoising autoencoderbased speech enhancement architecture, in which strided and dilated convolutions were applied to improve the performance while keeping network complexity to a minimum. Furthermore, a two-stage speech enhancement approach is proposed that reduces distortion, by performing a speech denoising first stage in the frequency domain, followed by a second speech reconstruction stage in the time domain. This approach was proven to reduce speech distortion, leading to better overall quality of the processed speech in comparison to state-of-the-art speech enhancement models. Finally, the work presents two deep neural network speech enhancement architectures for hearing aids and automatic speech recognition, as two real-world speech enhancement applications. A smart speech enhancement architecture was proposed for hearing aids, which is an integrated hearing aid and alert system. This architecture enhances both speech and important emergency noise, and only eliminates undesired noise. The results show that this idea is applicable to improve the performance of hearing aids. On the other hand, the architecture proposed for automatic speech recognition solves the mismatch issue between speech enhancement automatic speech recognition systems, leading to significant reduction in the word error rate of a baseline automatic speech recognition system, provided by Intelligent Voice for research purposes. In conclusion, the results presented in this thesis show promising performance for the proposed architectures for real time speech enhancement applications
    corecore