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Abstract

DNN-Assisted Speech Enhancement Approaches
Incorporating Phase Information

Hongjiang Yu, Ph.D.

Concordia University, 2021

Speech enhancement is a widely adopted technique that removes the interferences in a corrupted

speech to improve the speech quality and intelligibility. Speech enhancement methods can be

implemented in either time domain or time-frequency (T-F) domain. Among various proposed

methods, the time-frequency domain methods, which synthesize the enhanced speech with the

estimated magnitude spectrogram and the noisy phase spectrogram, gain the most popularity in

the past few decades. However, this kind of techniques tend to ignore the importance of phase

processing. To overcome this problem, the thesis aims to jointly enhance the magnitude and phase

spectra by means of the most recent deep neural networks (DNNs). More specifically, three major

contributions are presented in this thesis.

First, we present new schemes based on the basic Kalman filter (KF) to remove the background

noise in the noisy speech in time domain, where the KF acts as joint estimator for both the mag-

nitude and phase spectra of speech. A DNN-augmented basic KF is first proposed, where DNN is

applied for estimating key parameters in the KF, namely the linear prediction coefficients (LPCs).

By training the DNN with a large database and making use of the powerful learning ability of

DNN, the proposed algorithm is able to estimate LPCs from noisy speech more accurately and

robustly, leading to an improved performance as compared to traditional KF based approaches

in speech enhancement. We further present a high-frequency (HF) component restoration algo-

rithm to extenuate the degradation in the HF regions of the Kalman-filtered speech, in which the
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DNN-based bandwidth extension is applied to estimate the magnitude of HF component from the

low-frequency (LF) counterpart. By incorporating the restoration algorithm, the enhanced speech

suffers less distortion in the HF component. Moreover, we propose a hybrid speech enhancement

system that exploits DNN for speech reconstruction and Kalman filtering for further denoising.

Two separate networks are adopted in the estimation of magnitude spectrogram and LPCs of the

clean speech, respectively. The estimated clean magnitude spectrogram is combined with the phase

of the noisy speech to reconstruct the estimated clean speech. A KF with the estimated parameters

is then utilized to remove the residual noise in the reconstructed speech. The proposed hybrid sys-

tem takes advantages of both the DNN-based reconstruction and traditional Kalman filtering, and

can work reliably in either matched or unmatched acoustic environments.

Next, we incorporate the DNN-based parameter estimation scheme in two advanced KFs: sub-

band KF and colored-noise KF. The DNN-augmented subband KF method decomposes the noisy

speech into several subbands, and performs Kalman filtering to each subband speech, where the

parameters of the KF are estimated by the trained DNN. The final enhanced speech is then ob-

tained by synthesizing the enhanced subband speeches. In the DNN-augmented colored-noise KF

system, both clean speech and noise are modelled as autoregressive (AR) processes, whose param-

eters comprise the LPCs and the driving noise variances. The LPCs are obtained through training

a multi-objective DNN, while the driving noise variances are obtained by solving an optimization

problem aiming to minimize the difference between the modelled and observed AR spectra of the

noisy speech. The colored-noise Kalman filter with DNN-estimated parameters is then applied

to the noisy speech for denoising. A post-subtraction technique is adopted to further remove the

residual noise in the Kalman-filtered speech. Extensive computer simulations show that the two

proposed advanced KF systems achieve significant performance gains when compared to conven-

tional Kalman filter based algorithms as well as recent DNN-based methods under both seen and

unseen noise conditions.

Finally, we focus on the T-F domain speech enhancement with masking technique, which aims

to retain the speech dominant components and suppress the noise dominant parts of the noisy
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speech. We first derive a new type of mask, namely constrained ratio mask (CRM), to better

control the trade-off between speech distortion and residual noise in the enhanced speech. The

CRM is estimated with a trained DNN based on the input noisy feature set and is applied to the

noisy magnitude spectrogram for denoising. We further extend the CRM to the complex spec-

trogram estimation, where the enhanced magnitude spectrogram is obtained with the CRM, while

the estimated phase spectrogram is reconstructed with the noisy phase spectrogram and the phase

derivatives. Performance evaluation reveals our proposed CRM outperforms several traditional

masks in terms of objective metrics. Moreover, the enhanced speech resulting from the CRM

based complex spectrogram estimation has a better speech quality than that obtained without using

phase reconstruction.
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Chapter 1

Introduction

In this chapter, we first present a brief introduction of speech enhancement (SE), and its practical

applications. Next, a general literature review on the existing methods in both time domain and

time-frequency (T-F) domain is followed. The motivation and objectives of this research are dis-

cussed in the subsequent section. At the end, a chapter-by-chapter organization of this thesis and

the major contributions are described.

1.1 Speech Enhancement and Its Applications

Speech signal is the most common and convenient carrier in communication. However, in real-

world environments, clean speech is often corrupted by a wide range of interferences, which causes

the degradation of speech quality and further harms the user experiences in speech communication

applications. SE, which aims to remove the corrupted interferences and improve speech quality and

intelligibility, has been intensively studied over the past several decades, and will likely continue to

be an active topic in speech processing, especially with the development of the artificial intelligence

(AI).

SE plays an important role in a wide variety of applications including mobile phones, voice over

internet protocol, teleconferencing systems, speech recognition, and hearing aids [1]. For instance,

voice communication systems over cellphones suffer from distortion when transmitting in noisy
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environment. SE algorithms are therefore used to improve the quality of speech at the receiving

end. Moreover, the ambient noises in a teleconferencing system will be captured by microphones

and then transmitted to all the receivers. Enhancing the noisy speech before transmission will be

desired to obtain better performance. Finally, SE is also vital to hearing aid devices to help hearing-

impaired listeners gain better communication experience in noisy conditions by pre-processing the

noisy signal before amplification. Thus, with the fast development of the aforementioned speech

and audio systems, there is a growing need for further development of SE algorithms in the future.

SE can be categorized from different aspects. According to the number of the noisy speech

channel, SE can be divided into two categories: single-channel (monaural) and multi-channel.

As well-known, monaural SE is a more challenging problem since we can not access additional

information from other channels. SE can also be classified into different subtasks, i.e., denoising,

separation, and dereverberation. Denoising is to remove the background noise from a noisy speech

signal, while separation aims to extract several different source speech signals from a mixture

signal. Unlike speech denoising or separation, where the desired speech is corrupted by other

interferences, dereverberation is to deal with the echo or late reverberation from the speech signal

itself. The SE problem considered in this paper is single-channel speech denoising, that is, to

recover the desired speech signal from the noisy observation, which can be performed in either

time domain or T-F domain.

1.2 Speech Enhancement in Time Domain

In early works, on time domain SE, an appropriate filter is designed and applied to the noisy ob-

servation to obtain the desired signal [2]. Wiener filter is one of the most famous filters, which is

derived by finding the optimal minimum mean square error (MMSE) estimate of the clean speech

[3, 4]. The performance of Wiener filtering is limited due to the impractical assumptions. For

instance, the enhanced speech suffers from musical noise when dealing with the non-stationary

noise, as both the speech signal and noise are assumed to be stationary in the derivation. Kalman
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filter (KF), which can handle non-stationary signals, has therefore attracted the interests of re-

searchers [5] in SE area. In this context, the KF can be viewed as a time domain, sequential linear

MMSE estimator of the noise corrupted speech, in which the clean speech is characterized by a

dynamical or state-space model, such as the autoregressive (AR) model. As such, the enhancement

performance is largely dependent on the estimation accuracy of the AR parameters, which include

the LPCs and the variances of the driving and observation noises.

Recently, there has been a great deal of interest in data-driven supervised methods for SE. More

specifically, a DNN is used as an encoder-decoder that takes the noisy speech waveform as input,

and outputs the waveform of the clean speech. However, the authors in [6] pointed out that the

fully-connected feed-forward neural network (FNN) is not suitable for time domain SE, because

the sample point does not contain much information. Instead, a fully convolutional neural net-

work (CNN) is investigated to estimate the clean speech waveform, as the convolution operation

can efficiently find useful locally acoustic information. Based on this finding, various CNN-based

frameworks have been proposed for time domain SE in the past few years [6–11]. The multi-

resolution convolutional auto-encoder (MRCAE) [8] consists of two convolution and transposed

convolution layers, and uses different convolutional filter sizes to detect audio frequencies with dif-

ferent resolutions. But MRCAE can only extract little context information as the network does not

perform any resampling and takes only the speech with one time-resolution as input. Another pop-

ular framework is Wave-U-Net with several downsampling blocks in the encoder, and upsampling

blocks in the decoder [12], which can calculate the longer-term dependencies based on feature

maps with more lower-resolution features. More recently, the authors in [11] have proposed a

dense convolutional network (DCN) with self-attention for SE in the time domain, based on the

finding that a SE system with self-attention can better reconstruct the enhanced speech based on

the local signal-to-noise ratio (SNR) of different regions.

Moreover, the deep generative models have also been applied to time domain SE. One of the

pioneering works is the SE generative adversarial network (GAN) proposed in [13], in which the

generator is an auto-encoder based fully-convolutional network that is trained with the help of a

3



discriminator. More specifically, the generator takes the raw noisy speech as input and generates

the estimated clean speech, which is similar to the ideal clean speech as much as possible, while the

discriminator attempts to distinguish whether the input speech is the estimated one from the gener-

ator or ideal one from the dataset. Experimental results in [13] show that the SEGAN outperforms

the Wiener filtering and statistical model based methods. However, the performance of SEGAN

system is still not good enough in the situation where the training data is not sufficient. In this case,

the instability of training and the problem of gradient disappearing result in an inadequate training

process. As such, several improved GAN systems have been proposed in recent works [14–16].

In [14], the Wasserstein conditional GAN with gradient penalty is proposed to improve the perfor-

mance of the model when large traing datasets are not satisfied. In [15], the authors introduced the

relativistic GAN (RGAN) that uses a relativistic loss function at the discriminator, and investigate

whether RGAN can yield a better generator network for SE. The simulation results show that the

RGAN has a more stable training process and better performance than the SEGAN. In [16], the

authors combined the Wave-U-Net with GAN and proposed the UNetGAN. By employing adver-

sarial learning to improve the U-Net in the time domain, the UNetGAM significantly improves the

speech quality and achieves state-of-the-art performance at extremely low SNR conditions.

Another widely-used generative model is WaveNet proposed by Google [17], which is first

applied in speech synthesis to generate raw audio waveforms. WaveNet is then utilized for SE in

[18], in which the model takes the noisy speech waveform as input and outputs the estimated clean

speech waveform. One thing to mention is that although the WaveNet is a generative model, it is

discriminative when used in SE as its output is not explicitly modeling a probability distribution.

The experimental results show that the denoising performance of WaveNet is better than Wiener

filtering.

In conclusion, the time domain SE has attracted much attention in the early days, since it is

an end-to-end process that avoids the computation complexity of Fourier transform. However, the

time domain waveform does not make full use of the acoustic features in the T-F spectrogram.

Therefore, more algorithms are developed in enhancing the short-time Fourier transform (STFT)
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spectrogram within the past decades. Recently, the powerful learning capability of the deep model

offers an opportunity to extract information from the speech waveform. As such, the time domain

SE gains the researchers’ interests again and achieves breakthroughs in recent years.

1.3 Speech Enhancement in Time-Frequency Domain

SE in T-F domain is a popular branch of methods as the STFT spectrogram displays speech infor-

mation in a different view compared to the raw waveform. Since a STFT spectrogram consists of

both magnitude and phase, the following section will introduce the denoising of the magnitude and

the phase spectra separately.

1.3.1 Magnitude Processing

Most previous denoising algorithms are focused only on processing magnitude spectrograms,

among which spectral subtraction [19] is the most intuitive one. The main idea of this method is to

estimate the noise spectrum in the speech-absent segments and subtract it from the noisy speech.

Although spectral subtraction is easy to employ, estimating an accurate noise spectrum is a diffi-

cult task. Either over-estimated or under-estimated could bring extra distortions to speech, such as

the notorious musical noise, which might be more annoying than the background noise. Although

spectral subtraction is intrusive and easy to employ, the difficulty in estimating accurate noise

spectrum hinders the enhancement performance. More flexible spectral subtraction algorithms

with better performance are proposed in [20, 21], where two techniques, i.e., the use of oversub-

traction factor and spectral flooring parameter, were introduced along with the standard spectral

subtraction. These techniques are used to adjust the estimated noise spectrum, and thereby control

the ratio of the remaining residual noise and perceived musical noise in the enhanced speech. In

[22, 23], a multiband spectral subtraction has been proposed based on the fact that the noise affects

the speech at different levels depending on frequency bands. In the multiband approach, the speech

spectrum is divided into several non-overlapping frequency bands, and then spectral subtraction is
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performed independently in each band.

Moreover, the time domain statistical filtering methods can be extended to T-F domain. For

instance, Wiener filtering[24, 25], which aims to find the optimal MMSE estimate of the discrete

Fourier transform (DFT) coefficients of the clean speech, obtains relatively better results compared

with spectral subtraction. However, the filtered speech still suffers distortion as Wiener filtering

introduces residual noise instead of musical noise in the enhanced speech. Another example is the

modulation domain Kalman filtering in [26], where the noisy magnitude spectrum is viewed as

a series of modulating signals that span across time. The KF is then applied to each modulating

signal to estimate the clean speech magnitude spectrum. Subjective listening tests demonstrate that

the modulation domain KF outperforms the time domain counterpart in terms of speech quality.

Unlike Wiener filter which aims to find optimal complex spectral estimator, the short-time

spectral amplitude (STSA) estimators focus on obtaining the optimal spectral amplitude estimator

[27, 28]. A Bayesian framework is employed to derive the STSA estimators, based on the as-

sumptions about the probability distributions of speech and noise DFT coefficients. Early STSA

estimators used a Gaussian assumption in derivation, then a large range of estimators have been

proposed to improve the enhancement performance either with more accurate statistical assump-

tions that are more related with the true probability distribution of speech and that of noise [29–31].

Although the STSA estimators can substantially reduce the residual noise, similarly to the Wiener

filters, a priori SNR has to be estimated in order to use the STSA estimators in practice.

Instead of using STSA estimators to predict the clean speech magnitude spectrum directly,

other kinds of techniques suppress the background noises in the noisy speech magnitude spectrum.

Among them, T-F masking is a famous example, which was first proposed in computational audi-

tory scene analysis to separate speech from noisy mixtures by Wang [32]. Inspired by the masking

effects of human auditory system, an estimated mask is applied to each T-F units of the noisy

speech, in order to conserve the speech-dominant region and suppress the noise-dominant region.

Ideal binary mask (IBM) is the first one in masking techniques [32, 33], which is defined as a bi-

nary matrix with 1 denoting that the speech energy in the corresponding T-F unit exceeds the noise
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energy by a predefined threshold and 0 denoting the opposite. The enhanced T-F unit is obtained

by applying the estimated IBM to the noisy speech spectrogram. However, IBM is not accurate

enough as it is a hard-decision mask. Ideal ratio mask (IRM) [34], as a soft-decision mask, is then

proposed to better suppress the background noise in the T-F unit, providing a better enhancement

performance than IBM.

The recent deep learning techniques are also widely utilized for T-F domain SE. In [35], Xu

et. al have established a regression model to directly learn the mapping between the log-power

spectra (LPS) of noisy speech and that of clean speech based on DNN. By training the DNN with a

large set that encompasses many possible combinations of speech and noise types. The estimated

magnitude spectrum is transformed from the estimated LPS, which is given by the well-trained

DNN. The enhanced speech is then reconstructed from the estimated magnitude and the noisy

phase, leading to significant improvements in terms of both objective and subjective measures over

the conventional MMSE-STSA estimator.

DNN has also been used as a primary tool to predict key parameters in traditional SE methods.

For example, Wang et. al in [36] employ DNN to estimate the IRM for masking based algorithms.

The enhanced speech is then obtained by applying the estimated mask to the noisy speech. In

[37], a DNN is trained to estimate the LPCs of both the clean speech AR model and the noise

AR model given the noisy observation. Then, a Wiener filter is constructed with the estimated

LPCs, which is then applied to the noisy speech spectrogram for noise reduction. In [38], a DNN-

based denoising method is proposed in order to use a harmonic noise model for the estimation of

the clean speech amplitude, where the DNN is employed to map noisy speech features to clean

amplitude parameters of the harmonic noise model. More recently, a long short-term memory

(LSTM) network is utilised in [39] to accurately estimate the a priori SNR for traditional MMSE-

STSA estimators. Because of the powerful learning ability of the DNN, researchers can obtain

the more accurate key parameters estimates, thus the aforementioned DNN-assisted traditional SE

methods achieve better performances in terms of both the objective quality and intelligibility scores

than their counterparts without deep learning. Another breakthrough includes the deep learning
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based generative modeling for SE, wherein the GAN has been successfully employed to generate

clean speech magnitude spectrogram [40, 41] with the acoustic features of the noisy speech as

input.

In the past few decades, researchers have made huge efforts in enhancing the magnitude spec-

trogram and achieved significant improvement. However, a common problem of these methods

is that the noisy phase is directly used in the reconstruction of the enhanced speech in most T-F

methods.

1.3.2 Phase Processing

Mainstream approaches have tended to ignore the phase processing for two reasons. Firstly, re-

searchers hold the opinions that our ears are insensitive to small phase distortions [42] in early

works, which indicates that the enhancement performance would not decrease too much when us-

ing noisy phase for reconstruction. Secondly, unlike the magnitude spectrum, which has a clear

harmonic structure to be estimated, the processing of the phase remains challenging due to its un-

structured characteristic and phase wrapping [43]. As the performance of magnitude-only methods

is limited without considering phase, and as the computational power of speech communication de-

vices, reinvestigation of phase processing in SE is back to the researchers’ sight. Some researchers

have pointed out the importance of estimating clean phase in recent works, especially at low SNRs

[44, 45]. For instance, Paliwal et al. [45] reported that when combining an MMSE estimate of

the clean speech magnitude with the oracle clean speech phase in a perfectly reconstructing STFT

framework, an improvement of 0.2 points of the mean opinion score (MOS) is observed by the

perceptual evaluation of speech quality (PESQ) measure for white Gaussian noise. The research

confirms the importance of developing and improving phase processing algorithms. Therefore,

phase enhancement has recently been the focus of multiple research groups.

Among the first proposals for phase estimation are the iterative approaches, which aim at es-

timating a time domain signal whose STFT magnitude is as close as possible to a target one. The

most well-known and fundamental approach in this category is that of Griffin and Lim [46], which
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applies STFT synthesis and analysis iteratively while retaining the information about the updated

phases and replacing the updated magnitudes with the target magnitudes. This exploits correlations

between neighboring STFT frames to obtain an estimate of the spectral phases and the time domain

signal. One of the problems with this method is its high computational complexity. A solution is

proposed by Le Roux et al. [47] based on the standard operation of classical iterative approaches,

i.e., computing the STFT of the signal obtained by inverse STFT (iSTFT) from a given spectro-

gram, can indeed be considered as a linear operator in the T-F domain. Le Roux et al. noticed that

the result of that operation at each T-F bin can be well approximated by a local weighted sum with

complex coefficients on a small neighborhood of that bin in the original spectrogram. Although

Le Roux’s method is conceptually close to the iterative STFT algorithm introduced by Griffin and

Lim, the computational cost is reduced by employing on local phase coherence conditions and

enabling at each iteration the update of each T-F bin’s phase independently.

In contrast to the iterative approaches, sinusoidal model-based phase estimation does not re-

quire estimates of the clean speech spectral magnitudes. Instead, the clean spectral phase is es-

timated using only an estimate of the fundamental frequency, which can be obtained from the

degraded signal. In [48], Krawczyk et al. proposed a method to recover the clean spectral phase

of voiced speech along time and frequency with the employment of harmonic model, where the

spectral phase is estimated between the harmonic components. They reported that this phase re-

construction between the harmonics achieves better noise reduction during voiced speech when

the phase estimates are employed for SE. Informal listening confirms the noise reduction during

voiced speech at the expense of a slightly audible residual signal, which can be effectively alle-

viated by combination with amplitude enhancement. However, since the usage of the sinusoidal

model is reasonable only for voiced sounds, these approaches do not provide valid spectral phase

estimates for unvoiced sounds, like fricatives or plosives.

Besides the value for signal reconstruction, phase estimation can also be utilized as additional

information for phase-aware magnitude estimation. For example, Gerkmann and Krawczyk [49]
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have derived an MMSE estimator of the spectral magnitude given the clean speech phase. Ex-

periments demonstrate that an improved magnitude estimator derived with the information of the

speech spectral phase can reduce noise outliers that are not tracked by the noise power spectral

density estimator. In [50], the authors suggested incorporating phase estimation during signal re-

construction to improve the quality of the T-F masked separation outcome when applied on mixture

signals. The proposed method replaces the mixed spectral phase with an estimated clean spectral

phase, which is used for the reconstruction of the separated signals. The estimated spectral phase is

calculated by temporal smoothing of the unwrapped phase, which is provided by harmonic phase

decomposition of the mixture phase given the fundamental frequency of the target signal. The

experiments demonstrate that replacing the mixture phase with the estimated clean spectral phase

consistently improves perceptual speech quality, predicted speech intelligibility, and source sepa-

ration performance across all SNRs and different noise scenarios.

Instead of estimating phase and magnitude separately, a better choice is to estimate them jointly

to explore the relationship between magnitude and phase spectra. The first step in this direction

is to incorporate the phase information as a constraint in deriving the statistical based filters or

STSA estimators, such as the consistent Wiener filter proposed by Le Roux and Vincent [51]. As

a classical Wiener filter only changes the magnitudes in the STFT domain, the modified spectrum

is inconsistent. In contrast to this, the consistent Wiener filter considers the relationship between

STFT coefficients across time and frequency, which modifies both the magnitude and the phase

of the noisy observation to obtain the enhanced speech. With the joint estimation, the consistent

Wiener filter was shown to lead to an improved enhancement performance compared to the clas-

sical Wiener filter. In [52], the authors incorporated the phase information to masking technique

and proposed a phase sensitive mask (PSM). Experiments show that the speech denoised by the

estimated PSM achieves better performance in the subsequent speech recognition task than the one

by IRM.

Another way to jointly enhance magnitude and phase is to process the real and imaginary (RI)

spectrograms of the STFT domain signal, and the enhanced speech is obtained by synthesizing
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with the enhanced RI parts. In [53, 54], the authors used a DNN to learn a spectral mapping

from noisy speech to a complex IRM (cIRM), which is then applied to the noisy speech in the RI

domains for noise reduction. Results show that the estimated cIRM substantially outperforms di-

rectly estimating speech in the time domain, traditional IRM estimation in the magnitude domain.

Furthermore, cIRM estimation is shown to outperform methods that separately enhance the magni-

tude and phase of noisy speech. In [55], a novel CNN model is proposed for complex spectrogram

estimation, which employs CNN for extracting the latent features of the RI spectrograms and uses

an FNN as a regression model to estimate clean RI spectrograms from noisy ones. The estimated

RI spectrograms are directly used to reconstruct the enhanced speech waveforms. Experimental

results confirm the effectiveness of the proposed CNN with RI spectrograms on a SE task. More

recently, the authors further improved the CNN-RI framework by adopting a fully dilated CNN for

complex spectrogram estimation [56].

The aforementioned DNN-based methods do not directly tackle the difficulty of processing

a phase spectrogram, as the phase spectrogram is randomly distributed and highly unstructured.

Even for the DNN, a direct mapping from the noisy phase to the clean phase would not be easy. As

a result, the alternative representations of the phase have been proposed to reveal the structure of

the phase, by considering the relationships between neighboring T-F units. In [57], the derivative of

the STFT phase, namely, instantaneous frequency deviation (IFD), is used as a training target of the

DNN. The estimated IFD is then converted back to the phase for speech reconstruction. However,

the transformation between IFD and phase increases the computational complexity of the approach.

In [58], a two-stream network with two-way information exchange named PHASEN is proposed,

where amplitude stream and phase stream are dedicated to amplitude and phase prediction. The

authors concluded that the phase prediction would be improved a lot if two streams communicate

with each other.

Current researches reveal that considering the phase information of speech signals allows one

to achieve better enhancement performance. However, such studies are still in their preliminary

stages. It is well known that incorporating perceptual rules into the magnitude processing has

11



received considerable attention in the relevant literature [29], but only a few improvements and

modifications of perceptually and simultaneously enhancing magnitude and phase have been pre-

sented so far.

1.4 Motivations and Objectives of the Research

1.4.1 Motivations

From the above literature overview, design of new SE methods with neural networks is desperately

needed for the rapidly growing market of speech and audio processing applications. Even though

SE has been extensively studied over the past three decades, there are still several uncertain and

unresolved issues in this area. In this section, we summarize the motivation behind this research

from the following perspectives.

Time domain vs. T-F domain: As presented in Section 1.2 and Section 1.3, SE can be per-

formed in either time domain or T-F domain. However, the vast majority of studies are conducted

in T-F domain as the acoustic features extracted from STFT spectrogram of a speech signal leads

to a good performance in SE. Early methods in T-F domain only processed the magnitude spec-

trogram, while complex spectrogram enhancement has attracted the researcher’s interest due to

the incorporation of phase information. Even though complex spectrogram enhancement and time

domain enhancement have similar objectives, the latter catches the researchers’ attention for sev-

eral reasons [11]. First, time domain enhancement avoids the computational complexity associated

with the STFT and iSTFT. Second, DNN has the potential to extract better and more suitable fea-

tures for the particular task of SE when trained with raw speech waveforms. Finally, short-time

processing in T-F domain requires frame size to be greater than a certain threshold to have suffi-

cient spectral resolution, whereas in time domain processing frame size is more flexible, which can

be set to an arbitrary value. As time domain enhancement and T-F domain enhancement have their

own advantages, the first motivation of this research is to investigate the enhancement methods in

each domain and further to make use of both advantages.
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Unsupervised vs. supervised: In recent years, deep learning, and especially DNN, has been

successfully applied in SE and quickly becomes one of the most popular techniques. Compared

with the unsupervised statistical-model based methods, the use of DNN offers several advantages.

First, the non-linear structures of DNN confer them with powerful learning capability, suitable to

model the complex mapping relationship between the noisy and clean speech. Furthermore, deep

learning based methods usually do not require the estimation of the noise power spectrum, nor do

they rely on particular assumptions about the statistical properties of the speech and noise, which

allow them to handle non-stationary noises in real-world scenarios under unexpected acoustic con-

ditions. However, deep learning based algorithms require large databases for training in order to

improve their generalization capability. To achieve better performance in unseen noise conditions,

it is common to train a DNN with a large speech database comprising different speakers and noise

types [35].

Although the conventional unsupervised statistical model based methods fail to achieve satis-

factory results in real-world environments, the fact that they can reduce different kinds and levels

of noises to some extent, is attractive to researchers. In other words, the statistical model based

methods do not employ a training stage, and thus treat all noises as unseen noise so that their de-

noising capability, albeit limited, remains available in all situations. Based on such considerations,

the development of hybrid approaches, which take advantage of both unsupervised methods and

deep learning methods, is regarded as another major motivation of this research.

Residual noise vs. speech distortion: In ideal case, to obtain high-quality enhanced speech,

one should remove the background noise as much as possible while do not bring distortion to the

speech. However, such distortion is inevitable in practice as the speech information receives dam-

age along with the noise reduction. Therefore, the trade off between residual noise and speech

distortion has always been an important topic in SE over the past few decades. Existing methods

such as constrained Wiener filtering [59] and perceptual STSA estimators [60] deal with the prob-

lem by incorporating the perception rules in their derivations to exploit the masking properties of

the human auditory system. In the regions where speech energy is high, these methods attenuate
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noise reduction to preserve the speech information, since the background noise is less likely to be

audible in this case. In contrast, the denoising will be strengthened in the speech absent regions or

the regions with small speech energy, so that the residual noise will be maximally removed. For

recent supervised methods, the control of residual noise is realized by modifying the loss function

of the DNN [61]. The perceptually weighted mean square error (MSE) [62–65] and the metric

based loss function [66, 67] are two of the most popular categories. The former helps the DNN

adjust the level of the noise reduction in the T-F regions according to the perceptual rules, while the

latter attempts to obtain better optimization of the specific objective metric to control the speech

quality and intelligibility. In order to obtain better enhancement performance, making a balance

between noise attenuation and speech distortion is worth to be investigated as part of this work.

1.4.2 Objectives

Since recent works demonstrate that incorporating phase information into SE is beneficial to obtain

better performance, jointly enhancing both magnitude and phase spectra is the primary goal in this

research, which is investigated from two aspects: time domain Kalman filtering and T-F domain

Masking. The main objectives in each aspect are summarized as follows:

• As mentioned in Section 1.2, the performance of the traditional unsupervised time domain

KF is limited due to the difficulty of estimating AR parameters from noisy observation.

We therefore propose a DNN-augmented basic Kalman filter, where the DNN is employed

to improve the accuracy of the estimated parameters. However, the enhanced speech from

the basic KF suffers the speech distortion in the high-frequency (HF) component. We then

propose a restoration technique to compensate the HF component. In addition, to investigate

the benefits of combining time domain enhancement and T-F domain enhancement, a hybrid

system of DNN-based speech reconstruction and Kalman filtering is proposed. At last, based

on the fact that the advanced KFs outperform the basic KF, we improve the DNN-augmented

basic KF framework by substituting the basic KF with two advanced versions: the subband

KF and the colored-noise KF, respectively. The former aims to better remove the noise
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according to the noise level in the subbands, while the latter considers both clean speech and

noise as AR processes, and avoids the estimation additive noise variance in the basic KF.

• In the T-F domain, the well-known DNN-assisted masking technique is investigated. Al-

though the current masks, such as IBM and IRM, are proposed to simulate the masking

effects of human auditory system, most of them simply suppress the background noise ac-

cording local SNR and do not take the perception principles into account. To address this

deficiency, we first introduce speech and noise distortions as constraints in the derivation

of the ratio mask; that is, to derive an optimal CRM that controls the trade-off between

the speech distortion and residual noise. Moreover, as the proposed CRM aims to enhance

the magnitude spectrogram only, we further extend the CRM to the complex spectrogram

estimation to jointly enhance both magnitude and phase spectra.
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[2] H. Yu, Z. Ouyang, W.-P. Zhu and B. Champagne. “A Hybrid Speech Enhancement System
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[3] H. Yu, W.-P. Zhu, and B. Champagne. “Subband Kalman Filtering with DNN Estimated

Parameters for Speech Enhancement.” Proc. of INTERSPEECH, pp. 2697-2740, 2020.

[4] H. Yu, W.-P. Zhu, and Y. Yang. “Constrained Ratio Mask for Speech Enhancement Using

DNN.” Proc. of INTERSPEECH, pp.2427-2431, 2020.

[5] H. Yu, W.-P. Zhu, and B. Champagne. “High-frequency Component Restoration for Kalman

15



Filter Based Speech Enhancement.” IEEE Int. Symposium on Circuits and Systems (ISCAS), pp.1-

5, 2020.

[6] H. Yu and W.-P. Zhu, “Deep Neural Network based Complex Spectrogram Reconstruction

for Speech Bandwidth Expansion,” IEEE Int. New Circuits and Systems Conf. (NEWCAS), pp.

110-113, 2020.

[7] H. Yu, Z. Ouyang, W.-P. Zhu, B. Champagne, and Y. Ji. “A Deep Neural Network Based

Kalman Filter for Time Domain Speech Enhancement.” IEEE Int. Symposium on Circuits and

Systems (ISCAS), pp. 1-5. 2019.

[8] Z. Ouyang, H. Yu, W.-P. Zhu and B. Champagne. “A Fully Convolutional Neural Network

for Complex Spectrogram Processing in Speech Enhancement.” IEEE Int. Conf. on Acoustics,

Speech and Signal Processing (ICASSP), pp. 5756-5760. 2019.

[9] Z. Ouyang, H. Yu, W.-P. Zhu and B. champagne. “A Deep Neural Network Based Harmonic

Noise Model for Speech Enhancement.” Proc. of INTERSPEECH, pp. 3224-3228. 2018.

[10] M. Hasannezhad, H. Yu, W.-P. Zhu, and B. Champagne. “PACDNN: A Phase-Aware

Composite Deep Neural Network for Speech Enhancement.” Speech Communication, 2021 (Sub-

mitted).
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1.6 Organization

The thesis is organized as follows. In Chapter 2, a more detailed background on the introduced

topics in this section is presented, based on which new speech enhancement approaches are devel-

oped and evaluated in later chapters, including Kalman filtering-based methods which constitute

the main contributions in chapters 3 and 4, and Masking techniques in chapter 5. Conclusions are

finally presented in Chapter 6. A detailed structure of this thesis is explained below.
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In Chapter 2, a background on the topic of SE with a focus on DNN-based methods is pre-

sented. In Section 2.1, we explain the noisy speech model in both time and T-F domains. In

Section 2.2, we introduce several acoustic features which have been widely applied to form the

input feature set in DNN-based SE methods. In Section 2.3, an overview of popular DNN archi-

tectures for SE is briefly presented and the selection of hyper parameters for better performance is

discussed. Finally, in Section 2.4, several objective metrics are presented for the evaluation of the

enhanced speech.

In Chapter 3, we first present the DNN-augmented basic KF for time domain SE in Section 3.2.

Next, an HF component restoration scheme is proposed in Section 3.3 as a post-processing of the

KF based SE system. Finally, a hybrid system that combines DNN-based speech reconstruction

with Kalman filtering technique is proposed in Section 3.4 to take advantages of both techniques.

Finally, the performance evaluation of the proposed systems is given in Section 3.5.

In Chapter 4, we apply the DNN-based LPCs estimation in the previous chapter in the case of

advanced KFs. More specifically, a subband KF with DNN-estimated parameters is proposed in

Section 4.2, while a DNN-augmented colored-noise KF is introduced in Section 4.3. The experi-

mental results of these two methods are shown in Section 4.4.

Chapter 5 is devoted to the T-F domain SE with masking techniques. In this respect, we derive

a CRM in Section 5.2 to enhance the magnitude spectrogram of the noisy speech. The CRM is then

extended to the complex spectrogram estimation in Section 5.3. At last, we compare the proposed

new systems with several traditional masking methods in Section 5.4.

In Chapter 6, we draw some concluding remarks highlighting the main contributions of this

thesis, and based on this we suggest some possible directions for future research.
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Chapter 2

Background

In this chapter, we present the background of the DNN-based SE, which can be broadly divided into

the following components. First, we give the mathematical expression of the noisy speech. Next,

several speech acoustic features and their applications are explained. Then, we briefly discuss

the DNN structures and hyper parameters. At last, we introduce several prevalent databases and

metrics for objective evaluation of SE performances.

2.1 Noisy Speech Model

Although the interactions between background noise and clean speech are complicated, we aim

to deal with the most common noise, that is, additive noise in our work. The time domain noisy

speech can therefore be modelled as:

y (n) = s (n) + w (n) (1)

where s(n) is the clean speech, w(n) the additive noise and y(n) the noisy speech. n is the time

index. Usually, s(n) and w(n) are assumed to be independent.

The noisy speech model in the T-F domain is obtained by STFT. It converts a time domain

speech signal to a spectro-temporal spectrogram, where the harmonic structure of the speech can
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be observed clearly.

The STFT spectrogram of a clean speech signal s(n) is defined as S(k, l), with k and l indi-

cating the frame index and frequency bin index of the STFT spectrogram, respectively. S(k, l) has

two expressions: one is in the rectangular coordinate system, which decomposes S(k, l) into a real

part and an imaginary part,

S (k, l) = R{S (k, l)}+ I{S (k, l)} (2)

the other is in the polar coordinate system, which decomposes S(k, l) into a magnitude |S (k, l)|

and a phase φs (k, l).

S (k, l) = |S (k, l)| ejφs(k,l) (3)

The corresponding spectrogram of the additive noise and the noisy speech can be donated as

W (k, l) and Y (k, l). For simplicity, we denote the phase (or magnitude) of the clean speech and

noisy speech as clean phase (or magnitude) and noisy phase (or magnitude) respectively.

2.2 Acoustic Features

Acoustic features, as the input of DNN, play an important role in supervised learning. When

the acoustic features are able to fully and precisely represent the speech signal, the DNN-based

system is more likely to obtain better enhancement performance, even without a powerful learning

machine [68].

Early studies use single such as LPS, or a few features in SE [35]. The subsequent study

includes exploring the performance with a combination of several features. In a more systematic

literature research [69], an extensive list of 16 acoustic features are examined for SE at low SNRs.

These features are extracted from different domains such as Mel-domain, modulation-domain,

and gammatone-domain; and obtained with various techniques including linear-prediction, zero-

crossing detection, autocorrelation, medium-time-filtering, and pitch analysis. We then introduce
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the most widely used acoustic features in detail below.

Amplitude modulation spectrum (AMS) [70] is recently used for speech segmentation in as a

useful representation [71]. The detection of envelope fluctuations is a fundamental ability of the hu-

man auditory system which plays a major role in speech perception. Consequently, computational

models have tried to exploit speech and noise specific characteristics of amplitude modulations by

extracting so-called amplitude modulation spectrogram (AMS) features.

Relative spectral transform and perceptual linear prediction (RASTA-PLP) is another widely

used feature in speech recognition [72, 73]. PLP is a popular representation in speech recognition

[72]. The PLP technique derives an estimate of the auditory spectrum by using psychophysics of

hearing, and is more consistent with human perception. RASTA filtering [73] is often coupled

with PLP for robust speech recognition. Subsequently, PLP analysis is undertaken on this filtered

spectrum. In fact, RASTA filtering serves as a modulation-frequency bandpass filter, which em-

phasizes the modulation frequency range most relevant to speech while discarding lower or higher

modulation frequencies.

Mel-frequency cepstral coefficients (MFCC) collectively make up a Mel-frequency cepstrum.

They are derived from a type of cepstral representation of the speech and first used in speech

recognition [74]. In Mel-frequency cepstrum, the frequency bins are equally spaced on the Mel

scale, which approximates the human auditory system’s response more closely than the linearly-

spaced frequency bins used in the normal cepstrum. This frequency warping can allow for better

representation of sound.

Relative autocorrelation sequence MFCC (RAS-MFCC) [75] is designed to improve the ro-

bustness of MFCC in the presence of additive noise by suppressing the noise in the autocorrelation

domain. Firstly, the autocorrelation sequence is computed for each frame of an input signal. A

high pass filter is then applied to the temporal trajectory of each dimension of autocorrelation se-

quences to suppress slow-varying components. The filtered autocorrelation sequences are treated

as the input to the standard MFCC procedure to derive RAS-MFCC. Similar to RAS-MFCC, the

autocorrelation sequence MFCC (AC-MFCC) [76] and phase autocorrelation MFCC (PAC-MFCC)
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[77] are another two well-known features which aim to reduce the interference from background

noise for MFCC.

The main idea of the gammatone frequency cepstral coefficients (GFCC) is based on an au-

ditory periphery model that imitates the human cochlear filtering mechanism [78]. The auditory

model is represented by a bank of Gammatone filters that decompose the input speech into a T-F

representation. The Gammatone filters are obtained historically from several psychophysical and

physiological observations of the human auditory periphery. The input signal is passed through the

gammatone filters to obtain the subband signals, which are then decimated to 100 Hz. The GFCC

is derived by applying cubic root compression and performing discrete cosine transform (DCT) to

the magnitude of the decimated signals.

Power normalized cepstral coefficients (PNCC) is a recent feature for auto speech recognition

that utilizes medium-time processing to mitigate noise corruption and employ power-law compres-

sion instead of log compression in traditional features [79]. Based on the medium-duration tempo-

ral analysis, the main idea behind PNCC is to subtract background noise by performing asymmetric

filtering and temporal masking to the power spectrum of the input speech signal, where the power

spectrum is integrated using gammatone frequency integration. Finally, the PNCC is obtained by

applying power-law nonlinearity and DCT to the processed power spectrum.

Zero-crossing with peak-amplitudes (ZCPA) is also originated from speech recognition [80].

It is to detect the sign changes for every two adjacent samples of discrete signals. In general,

an HF signal is assumed to have a large zero-crossing rate, while an LF signal has a small one.

As such, the zero-crossing rate can be used to separate the background noise and desired speech

when the noise and speech have different frequencies. To compute ZCPA, an input signal is first

decomposed into subband signals by a 32-band gammatone filterbank. For each frame of the

subband signal, the intervals between every two upward zero-crossings are calculated and then

classified into 31 frequency bins. After adding a nonlinear-compressed peak amplitude to the

corresponding frequency bin within each interval, the frequency bins are accumulated across all

sub-bands and form a histogram, i.e. ZCPA.
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Pitch-based features are first proposed in [81] for speech segmentation and are computed in T-F

domain with pitch analysis. Based on the cochleagram of an input signal, the pitch-based features

are derived for each T-F unit to capture how likely a unit is dominated by the target speech by

utilizing periodicity and instantaneous frequency. The pitch-features are then used in supervised

speech separation [82], where the ground truth pitch is used during training while the pitch is

estimated by a recently proposed robust pitch tracker, PEFAC [83], is used during testing.

Multi-Resolution Cochleagram (MRCG) is a new acoustic feature proposed in [69], which

encodes multi-resolution power distributions in the T-F representation of a signal. The authors

combine four cochleagrams at different resolutions to construct the MRCG feature. A high resolu-

tion cochleagram captures the local information while three low resolution cochleagrams capture

spectro-temporal contexts at different scales.

As there are various existing acoustic features, recent studies also investigate feature selections

to obtain better enhancement performance. In [82], the acoustic features are selected by group

Lasso method [84] and are examined the speech segmentation performance with different fea-

ture sets. Four features are then recommended as a complementary feature set comprising AMS,

RASTA-PLP, MFCC and GFCC. Afterwards, the feature set is widely applied in SE. In [69], the

authors compared the classification accuracy of each T-F unit with the estimated IBM, where the

mask is estimated by DNN with different individual features as input. The results indicate that the

gammatone-domain features such as MRCG and GFCC consistently outperform the other features.

The authors also pointed out that the poor performance of pitch features is largely due to inaccurate

estimation at low SNRs, as the ground-truth pitch is shown to be quite discriminative. Recently,

a more comprehensive study considered the enhancement performance of speech denoising, sep-

aration and dereverberation [85]. The study also evaluates the performance of the DNN-based

masking method [36], and reveals that the MRCG is the best under matched noises while PNCC

is the best under unmatched noises in both anechoic and reverberant environment. For feature

combination, this study concludes that the most effective feature set consists of PNCC, GFCC, and

log-MFCC.
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2.3 Basic Knowledge of DNN

Limited by the computing capability of the computer and the gradient vanishing problem in the

training process, the DNN does not become popular until a breakthrough in DNN training was

made by Hinton et al. [86], in which uses layer-wise unsupervised pretraining is employed to

properly initialize a DNN before fine tuning. Afterwards, the DNN has been widely adopted in

many applications including SE. Different architectures and hyper parameters settings are also

investigated to improve the performance of the DNN.

2.3.1 Architectures

Although the DNN always consists of multiple layers between the input and output layers and

each layer has the same components, such as neurons, weights, biases, and activation functions,

the architecture of DNN varies, which makes different networks suitable for specific tasks.

FNN

An FNN denotes a conventional multilayer perception with many (often more than two) hidden

layers [35]. Fig. 1 depicts an example process of using an FNN to learn the mapping between the

noisy speech magnitude spectrum and the clean speech one. The FNN is fully-connected and has

a total of five layers that include an input layer, three hidden layers and an output layer. The output

of current layer serves as the input of the next layer and the non-linear mapping capability of the

FNN relies on the activation function of each neuron in the hidden layers. The solid line reflects

the forward propagation that obtains the estimated output, while the dashed line reflects the back

propagation that adjusts the parameters of the FNN with the goal to minimize the prediction error,

which is usually measured by a cost function between the estimated output and the desired output.
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the discriminator (D). The main task of G is to imitate the real data distribution, that is to generate

samples which are close to those of the training data. D typically works as a binary classifier and

receives inputs from both real samples of the dataset and the generated samples in G. The goal

of D is to classify the samples from the training dataset as real and those from G as fake. This

framework is analogous to a two-player adversarial game that trains G to generate samples to fool

D, while D learns to better tell the difference between the real data and generated data. Fig. 4

illustrates the case of employing GAN for enhancing the magnitude spectrum of the noisy speech

[40]. G is structured similarly to an auto-encoder which takes the noisy magnitude as input and

attempts to generate the enhanced speech. D classifies the enhanced speech as fake and the clean

speech as real, and transmits the information to G and guides G to correct its output towards the

realistic distribution. In the training stage, this adversarial learning drives both G and D to improve

their accuracy until the generated enhanced speeches are indistinguishable from ideal clean speech.

In the testing stage, only the trained G will be used for the task of SE.

2.3.2 Hyper Parameters

The performance of DNN-based method is not only determined by its architecture, but also the

selection of the hyper parameters during the training process. As such, a short discussion of pa-

rameters is introduced as below. With proper settings, the DNN is more likely to obtain better

results.

Neurons and Layers

The numbers of the hidden layers and the neurons at each layer are the primary parameters that

should be considered. Firstly, the current layer works as an extractor to learn the features from the

previous layer, which requires the number of neurons at each layer to be large enough to capture

the essential information, especially for the lower layers. Actually, a bottleneck problem might

happen if one of the layers has fewer neurons, which will significantly deteriorate the performance.

Secondly, increasing the number of layers strengthens the learning capability of the DNN in theory.
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linear function is always a constant. In addition, no matter how many layers the model has, the

final activation function of the last layer is nothing but just a linear function of the input of the first

layer. Therefore, the linear function is only used in the output layer.

Sigmoid function: It is a well-known activation function whose mathematical definition is given

as,

sigmoid(x) =
1

1 + e−x
(4)

Sigmoid function has a smooth gradient, and its output is conveniently between 0 and 1 for all x.

However, there are three major disadvantages in using the sigmoid function. First, if the value of

x goes too large or too small, its gradient value approaches zero, which causes gradient vanishing

problem. Second, the exponential function makes the sigmoid function computationally expensive.

Finally, the output of sigmoid function is not symmetric around zero.

Hyperbolic tangent function: This function is also named tanh function and is actually mathe-

matically shifted version of the sigmoid function,

tanh(x) =
2

1 + e−2x
= 2 ∗ sigmoid(2x)− 1 (5)

Tanh function works better than sigmoid function because it is zero-centered, which makes it easier

to model inputs that have strongly negative, neutral, and strongly positive values. However, tanh

function still suffers the problem like sigmoid function, that is, gradient vanishing and computa-

tionally expensive.

ReLU: ReLU is the abbreviation of rectified linear unit, and is the most widely used activation

function, which is given by relu(x) = max(0, x). It gives an output x if x is positive and 0

otherwise. ReLu is less computationally expensive than tanh and sigmoid because it involves

simpler mathematical operations. However, it has the dying ReLU problem, which means that

when the input is negative, the gradient of ReLU becomes zero. Thus, the network cannot perform

back-propagation. This can be solved by using the leaky ReLU function.
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Batch Size

Neural networks are trained using back propagation algorithm, which involves updating the model

weights and biases based on the gradient of the prediction error. This gradient is a statistical

estimate with a batch of training samples. The choice of the batch size will affect both the conver-

gence speed and the resulting model. Based on the different batch size, the gradient descent can be

divided into the following categories:

• Batch Gradient Descent: Batch size is set to the total number of examples in the training

dataset.

• Stochastic Gradient Descent: Batch size is set to one.

• Mini-batch Gradient Descent: Batch size is set to more than one and less than the total

number of examples in the training dataset.

Theoretically, increasing the batch size helps adjust the weights and biases in a way that will

improve the performance of the model. Given that the DNN training process usually involves large

datasets, the batch size is rarely set to the size of the training dataset. The small batch size offers

two main benefits including a regularizing effect and a lower generalization error. In SE task, the

bath size varies from 128 to 2048 works well.

Learning Rate

Learning rate is a configurable parameter that controls the rate or speed of the model training during

performing back-propagation. Specifically, it refers to the amount that the weights of the model

are updated with each time they are updated. The values of learning rates often lie in the range

between 0 and 1. Choosing the learning rate is challenging as a small value may result in a long

training process that could get stuck, whereas a large value may result in learning a sub-optimal

set of weights too fast or an unstable training process. Unfortunately, analytically calculating the

optimal learning rate for a given model on a given dataset is a complex task. Instead, researchers
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usually discover a good learning rate through trial and error. Further, the batch size also affects the

selection of learning rate. In general, smaller batch sizes are better suited to smaller learning rates.

Epoch

Epoch is defined as the times that the training algorithm will work through the entire training

dataset. An epoch is comprised of one or more batches. In one epoch, each sample in the training

dataset will be used to update the model parameters. The number of epoch is traditionally large,

allowing the training algorithm to run enough times to minimize the loss function of the DNN. In

practice, one could observe the curve that the value of loss function changes along with the number

of epoch. This curve can help to diagnose whether the model is underfitting, overfitting, or suitably

fits to the training dataset.

Momentum

It is well-known that the convergence speed can be improved when training a neural network with

all the previous gradients for weights updating instead of only the current one [97]. Specifically,

an exponentially weighted average of the prior gradients to the weight can be included when the

weights are updated. In the DNN training, this is typically achieved with a simple technique

named momentum, which controls the amount of the past gradients used in the updating. The

application of momentum is able to smooth the optimization process and reduce the variance of

the gradient estimation, which avoids the oscillation problems and speeds up the training. The

value of momentum ranges from zero to one, where common values such as 0.9 and 0.99 are used

in practice.

Dropout Rate

Although DNN is a powerful machine learning system, overfitting could be a serious problem due

to DNN’s large number of parameters. Dropout is a popular way to prevent overfitting, which is

performed by randomly omitting a certain percentage of the neurons in each hidden layer for each
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epoch during training. In this case, the remaining neurons depend less on other neurons to learn

the underlying patterns of the data. As such, the random dropout may break up the corporations

of the neurons and reduce the learning capacity of DNN, but dropout improves the performance of

DNN since this technique helps DNN generalize to unseen data. Typical values of dropout rate for

hidden layers are in the range 0.5 to 0.8 [98].

2.4 Objective Evaluation

To date, researchers have put forward numerous SE techniques. The rapid deployment of SE

increases the need for speech quality evaluation, which depends largely on end-user opinion of

perceived speech quality. In this section, two key components of speech quality measurements

have been introduced, that is, the databases used for enhancement and the metrics for evaluation.

2.4.1 Databases

A large training database is required in order to obtain better performance with deep learning

technique. For SE, the databases are prepared from two aspects: clean speech and noise.

Clean Speech

The clean speech database should embrace good audio characteristics and text characteristics. Au-

dio characteristics include the total duration of speech, speech quality, the number of speakers, and

the attribute of speakers such as the distribution of gender and age group, and their dialect, accent,

and tempos. Text characteristics refer to the language of speech and the richness of contexts, such

as the number of words and the frequency a word appears. For DNN-based SE, the duration of

speech, the number of speakers, and speech quality are the first three considerations. We introduce

some widely used clean speech databases below.

1) IEEE corpus [99]: This corpus is recommended by IEEE subcommittee for speech quality

measurements. The text contents of IEEE corpus, also known as Harvard sentences, which are
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a collection of sample phrases that are originally used for standardized testing of communication

systems such as Voice over IP, cellular, and other telephones. The corpus is then used for speech

recognition and enhancement where standardized and repeatable sequences of speech are needed.

The corpus consists of 72 lists with 10 utterances in each list. The utterances are produced by

three male and three female speakers, and are phonetically balanced sentences that use specific

phonemes at the same frequency they appear in English. The original sampling frequency of the

utterance is 25 kHz.

2) TIMIT [100]: The TIMIT corpus is designed to provide speech data for acoustic-phonetic

studies and for the development and evaluation of automatic speech recognition systems. TIMIT

contains broadband recordings of 630 speakers, including 192 female speakers and 438 male

speakers, and the speakers cover eight major dialects of American English. Each speaker read

10 phonetically rich sentences, which results in 6300 utterances in total and a duration of ap-

proximately 5 hours. The TIMIT corpus includes time-aligned orthographic, phonetic, and word

transcriptions as well as a 16-bit, 16kHz speech waveform file for each utterance.

3) TED-LIUM [101]: This corpus is a public database that is developed by the LIUM (Labora-

toire Informatique de l’Universite du Maine) for automatic speech recognition, based on the TED

(Technology, Entertainment, Design) Talks in English. The first released version [101] is built

during the international workshop on spoken language translation campaign, and is composed of a

total of 774 talks with an average duration of 9 minutes per talk, representing 118 hours of speech:

82 hours of male and 36 hours of female. The second [102] and third versions [103] continue to

enrich the dataset by collecting more TED talks, which makes the corpus fairly rich in terms of

languages, with 2.56m words covered in talks. However, the recorded utterance is noticeably re-

verberant and affected by the environment noise such as cough and applause, since the TED talks

are recorded in conference halls that were full of audiences.

4) MUSAN [104]: The MUSAN corpus is originally designed for voice activity detection

(VAD) and music/speech discrimination. The dataset consists of music from several genres, speech

from twelve languages, and a wide assortment of technical and non-technical noises. For the
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speech sub-dataset, the total duration of this portion is about 60 hours, which can be divided into

two parts. The first part is the read speech from Librivox (20 hours and 21 minutes), which is a

multi-language speech dataset with approximately 50% English and 50% eleven other languages.

The content of each speech file is an entire chapter of a book read by one speaker. The second

part is the speech from US government hearings, committees and debates (40 hours and 1 minute).

These files have been obtained from the Internet archive and the Missouri channel senate archives.

These recordings are entirely in English.

5) LibriSpeech [105]: LibriSpeech is originally prepared for auto speech recognition. The

audio file is recorded by reading the audio-books LibriVox, and the total duration of all files is

approximately 1000 hours. The recorded speech is with a sampling rate of 16 kHz and carefully

segmented and aligned. The dataset is divided into several subsets: two training sets with 100 hours

and 383.6 hours, respectively, one development set of 5.4 hours, and one test set of 5.1 hours. For

development set and test set, 20 male and 20 female speakers are drawn at random and assigned,

and each speaker read approximately eight minutes of speech. For each speaker in the training set,

the amount of speech was limited to 25 minutes, in order to avoid major imbalances in per-speaker

audio duration. The LibriSpeech only contains English [105], while the subsequent work extends

LibriSpeech to multi-language [106].

Noise

In our research, the noisy speech is constructed by the addition of clean speech and noise. There-

fore, the collection of noise database is another required step. The noise signal can be recorded

either in a simulated environment or in a real-world place. Generally, a noise dataset should contain

more types of noise in order to obtain a deep model with higher generalization capability. Below,

we briefly introduce several prevalent noise datasets.

1) Aurora-2 [107]: In order to represent the most probable application scenarios for telecom-

munication terminals, the noises in this corpus are recorded at different places: subway, babble,

car, exhibition hall, restaurant, street, airport, train. Each noise sample in the corpus is 10 seconds
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long, and is sampled at 8 kHz.

2) NOISEX-92 [108]: This corpus is one of the earliest and most popular noise datasets, which

contains white noise and a variety of non-stationary noises such as voice noise (babble), factory

noise, HF radio channel noise, pink noise, and various military noises including fighter jets (Buc-

caneer, F16), destroyer noises (engine room, operations room), tank noise (Leopard, M109) and

machine gun, and lastly, car noise (Volvo). Each noise signal has a duration of approximately 4

minutes. The dataset is widely used in speech processing tasks because of its rich types of noise,

while a lack of real-world recordings is the biggest drawback of this dataset. Fig. 5 shows the spec-

trograms of 8 sample noises in NOISEX-92. As shown in the figure, the structure of non-stationary

noises is more complex and irregular than that of white noise, thus to remove the non-stationary

noise is more difficult, especially for the babble noise.

Figure 5: Spectrograms of different noises.

3) CHiME-5 [109]: CHiME is a competition of speech separation and recognition which is held

every two years. Each time the organizer will publish its corresponding dataset for competition.

After publishing, the dataset is also widely used in academic research. For the CHiME-5, the

background noise is real-life noise which is made up of the recording of twenty separate dinner

parties that are taking place in real homes, with three different locations: kitchen, dining, and living
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room. The recording in each location lasts at least half an hour. Four participants (two hosts and

two guests) participate in the party, and the party members are familiar with each other and behave

naturally.

2.4.2 Metrics

There are two main groups of methods to assess speech quality: subjective listening test and ob-

jective metrics. Subjective assessment is the most trustful method as it reveals the real feelings

towards a speech signal. However, conducting subjective assessments requires large resources and

experienced listeners, which is quite a time-consuming task. Therefore, various objective metrics

have been proposed to assess the processed speech signal, which evaluates with knowledge from

psychoacoustics, semantics, linguistics. The objective scores should have a high correlation with

the subjective test results. Below, we introduce several common objective metrics.

SegSNR

The segmental SNR (SegSNR) [110] can be evaluated either in the time or frequency domain.

The time domain measure is perhaps one of the simplest objective measures used to evaluate SE

algorithms. To use SegSNR, the original signal x(n) and processed signals are required to be

time-aligned. The time domain segSNR is defined as,

SNRseg =
10

M

M−1∑
m=0

log10

∑Nm+N−1
n=Nm ‖x(n)‖2∑Nm+N−1

n=Nm ‖x̂(n)− x(n)‖2
(6)

where N and M are the frame size and the number of the frames, respectively.
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SDR

Source-to-distortion ratio (SDR) is a widely-used measurement in speech separation and source

enhancement [111], which is given by,

SDR = 10 log10

‖starget‖2

‖einterf + enoise + eartif‖2
(7)

where starget is the estimated target source signal with low distortion, and einterf , enoise, and eartif

are the error terms caused by the interferences, noise, and artifacts, respectively.

PESQ

PESQ is proposed in the ITU-T recommendation P.862 [112]. Compared with the SegSNR and

SDR, which measure the speech distortion physically, PESQ aims to model the subjective listening

test results and characterize the speech quality as perceived by users. Firstly the original and

processed signals are equalized to a standard listening level, then aligned in time to correct for

time delays, and then processed through an auditory transform to obtain the loudness spectra. The

difference between the loudness spectra of the processed signal and that of the original signal is

computed and averaged over time and frequency to produce the prediction of subjective MOS.

Although PESQ is an objective metric for evaluating speech quality, it also reflects faithfully the

subjective score of the processed speech.

STOI

Besides speech quality, speech intelligibility is also an important index when evaluating a pro-

cessed speech signal. Short-time objective intelligibility (STOI) is then put forward in recent years

for objective assessment of the speech intelligibility [113]. It extracts short-time envelope vectors

of the original and processed signals, to compute the average of the correlations across the en-

velope vectors, and the average correlation is then taken as the intelligibility score. Experiments

demonstrate that the STOI score yields a high correlation with subjective intelligibility score.
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Chapter 3

DNN-Augmented Basic Kalman Filter for

Speech Enhancement

3.1 Introduction

In this chapter, we develop a DNN-augmented basic KF method to remove the background noise

in time domain. KF was first applied to SE in [5], and remains of particular interest due to its

several advantages: (1) ability to handle and process non-stationary signals; (2) absence of musical

noise in the denoised speech given ideal parameters; (3) possibility of enhancing both the speech

magnitude and phase.

As mentioned in Section 1.2, the enhancement performance of Kalman filtering is largely de-

pendent on the estimation accuracy of the AR parameters. Ideally, the AR parameters of the clean

speech can lead to the excellent performance of the KF [5], but they are not accessible in prac-

tice. Therefore, various estimation algorithms have been proposed to obtain the above parameters

from the noisy speech, which can be divided into two categories: online estimation [114–117] and

offline estimation [118, 119]. The former algorithms usually estimate and update the denoised

speech and the model parameters in an iterative manner, while the latters require a training stage

on a clean speech database to predict the parameters beforehand.
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Recently, the authors in [120] make the first attempt to employ DNN for LPCs estimation in

the area of extending monaural signal to stereo signal. More specifically, the monaural signal

is assumed as the mid signal for the extended stereo signal. In addition, the residual signal is

synthesized with the AR speech model, whose LPCs are estimated with the DNN by learning the

mapping from the LPCs of mid signal to the LPCs of the residual signal. Inspired by this research,

in this chapter, we apply DNN to estimate the LPCs of clean speech from those of noisy speech. In

particular, we propose a DNN-augmented KF for SE, with an objective to improve the performance

of traditional Kalman filtering by estimating the AR parameters with DNN.

This chapter is organized as follows. Section 3.2 describes the proposed DNN-augmented

KF, including the detailed process of Kalman filtering for speech denoising as well as the DNN-

based parameter estimation for constructing the KF. In Section 3.3, we propose an HF component

restoration scheme to further improve the performance of Kalman filtering-based SE. Performances

of the proposed three basic Kalman filtering-based methods are evaluated in Section 3.4 in terms

of objective performance measures. Conclusions are drawn in Section 3.5.

3.2 DNN-Augmented Basic Kalman Filter

The overall block diagram of our proposed SE system with DNN-augmented basic KF is depicted

in Fig. 6. It consists of two stages: the training stage and the enhancement stage. In the training

stage, a DNN is trained to learn the mapping from the noisy line spectrum frequencies (LSFs)

to the clean ones. In the enhancement stage, a KF with the DNN-based estimated parameters is

applied to the noisy speech to obtain the enhanced speech. The main components of the SE system

are introduced in the following subsections.

3.2.1 Basic Kalman Filter

As mentioned in Section 2.1, the noisy speech y (n) is an additive mixture of the clean speech

s (n) and the background noise w (n), where n ∈ N is the discrete time index. As usual, w(n) is
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Figure 6: Block diagram of DNN-augmented basic KF for SE

regarded as a zero-mean white noise with variance σ2
w, uncorrelated with s(n). The clean speech

s (n) is usually represented by a linear model as a dynamic process of speech production. For the

widely-adopted AR model, we have

s (n) =

p∑
i=1

as,is (n− i) + v (n) (8)

where as,i are the LPCs of the clean speech, p the order of the model, and v (n) the driving noise,

i.e., a zero-mean white noise with variance σ2
v .

To facilitate the KF presentation for SE, the above model equations for s(n) and y(n) can be

rewritten in matrix form as,

 s (n) = Fss (n− 1) + Gsv (n)

y (n) = HT
s s (n) + w (n)

(9)
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where s (n) = [s (n− p+ 1) , . . . , s (n− 1) , s (n)]T denotes the speech state vector. Moreover,

the transition matrix Fs is given by

Fs =



0 1 · · · 0 0

0 0 · · · 0 0

...
... . . . ...

...

0 0 · · · 0 1

as,p as,p−1 · · · as,2 as,1


(10)

and Hs = Gs = [0, · · · , 0, 1]T ∈ Rp.

The denoising process with a KF amounts to recursively calculate an unbiased, linear MMSE

estimate of the state vector s(n), given the corrupted speech y(n). This process can be summarized

by the following equations:



e (n) = y (n)−HT
s ŝ (n|n− 1)

K (n) = P (n|n− 1)Hs

(
σ2
w + HT

sP (n|n− 1)Hs

)−1

ŝ (n|n) = ŝ (n|n− 1) + K (n) e (n)

P (n|n) =
(
I−K (n)HT

s

)
P (n|n− 1)

ŝ (n+ 1|n) = Fsŝ (n|n)

P (n+ 1|n) = FsP (n|n)FT
s + σ2

vGsG
T
s

(11)

where ŝ (n|n− 1) is the a priori estimate of the current state vector s (n), given observations up to

a time index n− 1, i.e., y(1), ..., y(n− 1), P (n|n− 1) the predicted state error correlation matrix

of ŝ (n|n− 1), e (n) the innovation, K (n) the Kalman gain matrix, ŝ (n|n) the filtered estimate of

state vector s (n), and P (n|n) the filtered state error covariance matrix of ŝ (n|n). The denoised

speech ŝ (n) is finally given by

ŝ (n) = GT
s ŝ (n|n) . (12)
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We note that several parameters appearing in the above equations should be estimated or calcu-

lated from the noisy observations in order to perform Kalman filtering. Those parameters include

the driving noise variance σ2
v , the additive noise variance σ2

w, and the transition matrix Fs, which

contains the LPCs of the clean speech model.

3.2.2 DNN-Based LPCs Estimation

The LPCs of the clean speech AR model are estimated with a trained DNN, which consists of two

steps: LPCs-to-LSFs conversion and DNN-based LSFs estimation.

LPCs-to-LSFs Conversion

When employing DNN for LPCs estimation, the LSFs, instead of LPCs, are usually adopted as the

training target, since the former have a well-contained dynamic range of values, while the latter has

a larger dynamic range. Therefore, we can maintain the stability of the training part more easily in

the LSFs domain.

In the training part, LPCs are calculated using both noisy and clean speech databases, and

then converted into LSFs for the DNN training. In the enhancement part, the estimated LSFs are

converted to LPCs for Kalman filtering. The conversion process [121] is briefly summarized below.

A short segment of speech under the linear prediction analysis model is assumed to be gener-

ated as the output of finite impulse response filter A(z). In order to define LSFs, the p-th order

linear predictor A(z) is decomposed into symmetrical and anti-symmetrical parts, represented by

the polynomials P (z) and Q(z), respectively,

P (z) = A (z) + z−(p+1)A
(
z−1
)

Q (z) = A (z)− z−(p+1)A
(
z−1
)
. (13)

The LSFs ωi are expressed as the zeroes (or roots) of P (z) and Q(z) in terms of the angular

frequency.
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The conversion from LSFs back to LPCs requires to obtain A(z). Since A(z) is expressed as

the linear combination of P (z) and Q(z), i.e., A(z) = 0.5[P (z) + Q(z)], we can easily construct

A(z) by using the ordered LSFs ωi of P (z) and Q(z), i.e.:

P (z) = (1− z−1)
∏

i=2,4,··· ,p

(
1− 2z−1 cosωi + z−2

)
Q (z) = (1 + z−1)

∏
i=1,3,··· ,p−1

(
1− 2z−1 cosωi + z−2

)
. (14)

DNN-Based LSFs Estimation

For supervised training, the DNN architecture adopted in our method is an FNN with many levels

of non-linear units to represent a highly non-linear regression function that maps noisy LSFs to

clean ones. Besides the noisy LSFs, we also investigate the use of other possible acoustic features

in combination with the LSFs to form an extended input feature set, in order to better explore

the relationship between the noisy LSFs and the clean LSFs, we would first like to. In [82], the

following four feature types are shown to have good performance when acting as input to DNN.

They are AMS, RASTA-PLP, MFCC and GFCC. Then, we will investigate the performance when

these four features and their deltas are combined with LSFs as our input feature set. The total

dimension of the combined input feature set is 258, i.e., (12+2×(15+31+13+64))

The input features are computed for each frame of the noisy speech, and represented as a row

vector f(m) with m denoting the frame index. To make full use of the temporal information of

the speech, it is common to incorporate the features of adjacent frames into a single extended

feature vector. Hence, the extended feature vector centered at the m-th frame is constructed as

f̃ (m) = [f (m−m0) , · · · , f (m) , · · · , f (m+m0)], where m0 is the number of adjacent frames

to be included on each side. The value ofm0 is set to 2 in our experiment. Note that all the different

features are normalized to the range [0, 1) in order to balance the training errors.

The structure of the FNN is depicted in Fig. 1. Our FNN is composed of one input layer, one

output layer and three hidden layers with 1024 units in each layer. This structure has been verified

to yield the best results in[120]. The rectified linear unit (ReLU) model is employed for the hidden
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layers, while the linear model is used for the output layer.

Back propagation with the MMSE-based cost function between the estimated clean LSFs and

the reference clean LSFs is adopted to train the DNN. During the training, our DNN can automati-

cally learn the complex mapping from noisy LSFs to clean LSFs given sufficient training samples.

The well-trained DNN will be used in the enhancement stage to obtain estimated clean LSFs from

the noisy LSFs.

3.2.3 Variance Estimation

The variance σ2
w of the additive noise w(n) is usually estimated and updated during the unvoiced

frames. The calculation involves a VAD procedure [122] to detect whether a given speech frame

is voiced or unvoiced. In this method, three different features are used to determine a voiced

frame. They are short-term energy, spectral flatness measure, and the most dominant frequency

component of the speech frame spectrum. An audio frame is marked as a speech frame, if more

than one of the feature values go over the precomputed threshold as proposed in [122].

The variance of the driving noise v(n) can be then estimated as:

σ2
v = σ2

y − σ2
w

= E
[
y2(n)

]
− rTy ay − σ2

w

(15)

where ay = [ay,1, · · · , ay,p]T is the LPC vector of the noisy speech, and ry = E [y (n) y (n)] the

autocorrelation vector of the noisy speech y(n) with its past p samples, represented by the vector

y(n) = [y(n− 1), . . . , y(n− p)]T .

3.2.4 Summary of the Enhancement Stage

In conclusion, the DNN-augmented basic KF consists of an off-line training stage and an on-line

enhancement stage. The former aims to learn the mapping between the noisy LSFs from clean

LSFs with the proposed FNN, while the latter contains the following main steps:
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• Computing the LPCs of the noisy speech and then converting the LPCs to LSFs.

• Combining the noisy LSFs with the acoustic features of the noisy speech as the input feature

set.

• Estimating the LSFs of the clean speech from the input noisy feature set with the trained

FNN.

• Updating the additive noise variance during non-speech frame and computing the driving

noise variance with Eq. (15).

• Performing Kalman filtering with the estimated parameters to the noisy speech, and the final

enhanced speech ŝ(n) as given by (12).

3.3 High-Frequency Restoration for Kalman Filtering

Despite the performance gain from the KF based methods, it is found that the enhanced speech

suffers from the loss or attenuation of its HF component. To address this problem, subband KFs

have been investigated in [123, 124], wherein the noisy speech is decomposed into HF and LF

components. The iterative KFs with different parameters are then applied into the HF subband and

LF subband separately. Experimental results demonstrate that the subband KF algorithm outper-

forms the fullband counterpart. However, the HF component is still suppressed relative to the LF

component. In other words, the desired speech in the HF subband is removed together with the

noise when conducting Kalman filtering.

In this subsection, we propose an HF component restoration algorithm for KF based SE to

further improve the performance. Inspired by the speech bandwidth expansion [125], the Kalman

filtering denoised speech is first divided into HF and LF components. The LF component, which is

considered to be of good quality, is then used to restore the HF component. At last, the enhanced

speech is resynthesized by the LF component of the KF denoised speech and the recovered HF

component, where the HF component restoration is accomplished with a DNN model.
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The overall block diagram of our SE system with Kalman filtering and HF component restora-

tion is depicted in Fig.7. The system is composed of the off-line training stage and the enhancement

stage. In the training stage, an FNN is trained to learn the mapping from the log-magnitude of the

LF component to that of HF component for clean speech. In the enhancement stage, the noisy

speech is first processed by a KF to obtain denoised speech. Subband analysis is followed to de-

compose the denoised speech into HF and LF components. Then, the estimated HF component is

recovered with the estimated magnitude predicted by the well-trained DNN and the phase from the

denoised speech. Finally, the enhanced speech is obtained by a combination of the estimated HF

component and the LF component of the denoised speech.

Clean Speech DNN Training
Subband
Analysis

Magnitude of HF Component

Noisy
Speech

Trained DNN

HF Component
RestorationReconstructionEnhanced

Speech

Training Stage

Enhancement stage

Denoised
Speech

Kalman Filtering
Subband
Analysis

LF Component

Estimated HF
Component

Magnitude of LF Component

Magnitude of LF
component

Estimated
Magnitude of HF

Component

Phase of HF
Component

Figure 7: Block diagram of HF component restoration.

3.3.1 Training Stage

Data processing: the clean speech s(n) is first transformed into its corresponding STFT spec-

trogram S(k, l), with k and l denote the frequency bin and frame index, respectively. Subband

46



analysis is then followed to divide S(k, l) into HF component SH(n) and LF component SL(n) in

T-F domain. For simplification, the index k and l will be omitted in the remaining discussion.

Feature and target: The magnitude of SL is extracted as the input feature of DNN, while the

magnitude of SH is set as the training target. Since the magnitude spectrum usually has a very

large dynamic range, the log-function and normalization are adopted to compress both the feature

and target for better training. As usual, the features of the neighbouring frames are incorporated

with the features of the current frame as an extended input feature set to make use of temporal

information.

DNN structure: We adopted the same FNN structure as showed in Fig. 1 for the HF component

estimation. The FNN has three hidden layers with 1024 units in each layer between the input layer

and the output layer. The activation function used in the hidden layer is the ReLU, while a linear

function is used in the output layer.

To update weights and biases until the network is able to achieve good performance, back

propagation following a gradient-based optimization algorithm is commonly adopted. Back prop-

agation computes the gradient, whereas stochastic gradient descent uses the gradients to train the

FNN model, to minimize the value of the cost function, which is defined as the mean square error

between the reference and the estimated log-magnitude spectrogram of the HF component

MSE =
1

M

M∑
m=1

[(
ln|ŜH | − ln|SH |

)2]
(16)

where M denotes the speech frames, |ŜH | the estimated magnitude and |SH | the reference one.

The well-trained FNN will be used in the enhancement stage to obtain the estimated magnitude of

the HF component from that of the LF component.

3.3.2 Enhancement Stage

The procedure of the enhancement stage can be briefly summarized as the following steps. Firstly,

Kalman filtering introduced in Section 3.2 is applied to the noisy speech y(n) for denosing in time

47



domain. The denoised speech d(n) is then transformed into T-F domain D. Subsequently, the D

is decomposed into HF component DH(n) and LF component DL by subband analysis.

Secondly, the aforementioned DNN-based HF component restoration algorithm is required to

compensate the distortion in DH . Here, the LF component DL of the denoised speech is employed

as input in restoration for the reason that the LF component is of high quality after Kalman filtering.

The STFT spectrogram D̂H of the recovered HF component is reconstructed with the estimated

magnitude given by the well-trained DNN and the phase of DH , i.e., D̂H = |D̂H |ejφDH .

Finally, the STFT of the enhanced speech Ŝ is obtained by the subband synthesis of the restored

HF component D̂H and the unprocessed LF component DL. The inverse STFT is performed to

achieve the time domain enhanced speech ŝ(n).

It should be pointed out that the Kalman filtering is performed in time domain, while the HF

component restoration is accomplished in T-F domain. As such, the DNN-augmented Kalman

filtering with HF component restoration as post-processing can be viewed as SE in both time and

T-F domain.

3.4 Hybrid System of DNN-Based Speech Reconstruction and

Kalman Filtering

In this section, we propose a two-level hybrid denoising system that exploits DNN-based speech

reconstruction in conjunction with Kalman filtering in order to achieve improved performance. In

the first level, a DNN is trained for the estimation of the speech magnitude spectrum, which is then

used to reconstruct the clean speech. In the second level, another DNN is trained for predicting

the LSFs of the clean speech, which will be transformed to LPCs. Meanwhile, the additive noise

and driving noise variances are extracted from the reconstructed speech. Finally, a KF with the

estimated parameters is applied to the reconstructed speech to obtain further enhancements. The

main features of the hybrid system are summarized as follows.

• As well-known, the current deep learning based methods often suffer from performance
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degradation due to the data mismatch between the training and testing stages. Consequently,

the reconstructed speech from DNN-based method inevitably contains residual noise in un-

matched acoustic environment. By incorporating and combining Kalman filtering with a

DNN-based speech reconstruction method, the hybrid system makes it possible to further

reduce the residual noise in unmatched conditions.

• Further advantages of employing DNN include the following: First, DNN is used to estimate

clean speech amplitude in order to perform preliminary SE. The additive noise and driving

noise variances required for Kalman filtering are then more accurately estimated from the

DNN pre-enhanced speech. Second, DNN is used to obtain accurate LPCs estimates which

is critical for improved Kalman filtering.

• The speech reconstruction is performed in the frequency domain, that is, the reconstructed

speech is obtained by synthesizing the estimated magnitude and the noisy phase spectra,

while the denoising process of Kalman filtering is realized in the time domain. With such a

combination, our hybrid system can be viewed as a joint estimator for both magnitude and

phase of the spectra of the clean speech.

The overall block diagram of our hybrid system is depicted in Fig. 8. It consists of two stages:

training stage and enhancement stage. In the training stage, we first extract noisy speech acoustic

features, and then input them to two FNNs which are trained separately to learn the mapping

from the noisy features to different targets: the magnitudes and LSFs of the clean speech. In

the enhancement stage, the noisy speech features are extracted and processed by the well-trained

FNNs to predict the clean magnitudes and LSFs. The estimated spectral magnitudes together with

the noisy phase spectrum are then synthesized to obtain the reconstructed speech. Finally, a KF

with the estimated parameters is applied to the reconstructed speech to obtain the enhanced speech.

The key components and processing steps involved in the hybrid system are described in further

detail below.
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Figure 8: Block diagram of proposed hybrid SE system.

3.4.1 DNN Training

Two different training targets are set as the output of the DNNs, i.e., : the spectral magnitudes and

LSFs. The magnitudes are employed in the speech reconstruction, while the LSFs are converted

to LPCs as key parameters for Kalman filtering. The magnitudes are chosen as training target

because the authors in [38] point out that, directly using magnitudes as training target can yield

good performance and furthermore requires lower computational complexity. The LSFs are chosen

as mentioned in Section 3.2.2.

For the input features, we adopt the acoustic features in [82] as additional input features in

our work. Note that we include the LSFs into the input feature set when the training targets are

LSFs, and included the speech spectral magnitudes of the speech spectrum when the targets are

magnitudes. With these two specific feature sets, we are able to better learn the mapping from the
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Back propagation is used to adjust the weights and biases in the training part. The cost function

for each training utterance is defined as the mean square error (MSE) of the magnitudes (or LSFs).

The respective MSE is computed between the clean and estimated targets, i.e.,

MSEMAG =
1

KF

K∑
k=1

F∑
l=1

(
|Ŝ (k, l) | − |S (k, l) |

)2
(17)

or

MSELSF =
1

Kp

K∑
k=1

p∑
i=1

(ω̂ (k, i)− ω (k, i))2 (18)

where |S(k, l)| and |Ŝ(k, l)| are the clean and estimated magnitudes, respectively, with K indi-

cating the number of frames and F the number of frequency bins, while ω(k, i) and ω̂(k, i) are

the clean and estimated LSFs, respectively, with i indicating the order index and p the AR speech

model order.

3.4.2 Two-level Enhancement

The first level is speech reconstruction, which aims to obtain the STFT of the reconstructed speech,

R (k, l) by combining the estimated clean magnitudes from the well-trained DNN together with

the noisy spectral phase values φy , i.e., R (k, l) =
∣∣∣Ŝ (k, l)

∣∣∣ ejφy(k,l). The reconstructed speech

r (n) is then obtained by computing the inverse STFT of R (k, l).

The second level is Kalman filtering, which further removes the residual noise in the recon-

structed speech. Note that although we have used the noisy phases for synthesis in the first level,

the reconstructed speech will be Kalman filtered in the time domain, which can be regarded as a

joint form of enhancement of the magnitude and phase spectra.

The parameters of the KF are obtained as follow. Firstly, the LSFs are estimated from the

FNN and then converted to LPCs to form the transition matrix F. Secondly, the additive noise

variance can be estimated during the speech-absent frames. Thus, estimation accuracy of σ2
w is

highly dependent on the ability to detect the voice and unvoiced parts of the noisy speech. Here,

the voice activity detector (VAD) algorithm [122] based on speech energy and spectral flatness is
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adopted for this purpose. Fig.10 depicts the VAD results of one noisy speech and its corresponding

reconstructed speech. The blue waveform is the original clean speech. The decision line represents

an unvoiced part when its value equals to 0, and a voiced part otherwise. The noisy speech is

corrupted with pink noise at -3 dB. As seen in Fig.10, applying VAD to the reconstructed speech

r(n) rather than the noisy speech, helps make a correct decision of the unvoiced parts as seen in

Fig.10, and in turn, improve the estimation accuracy of the additive noise variance.

Figure 10: The VAD results of noisy and reconstructed speech.

For the estimation of the variance of the driving noise σ2
v , we solve the Yule-Walker equations

for the linear prediction model of the reconstructed speech, instead of using the estimation algo-

rithm given in Eq. (15). Fig.11 shows the comparison of the estimated variance σ2
v of a noisy

speech, which is corrupted with pink noise at -3 dB. Our algorithm (black) is closer to the true one

(blue), which shows that the new algorithm achieves a better performance.

3.4.3 Summary of Hybrid System

The main processing steps of the proposed hybrid system are summarized as follows:
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Figure 11: The estimation of driving noise variance through different methods.

1) Estimating clean LSFs and magnitudes from noisy features with the proposed DNNs.

2) Synthesising the reconstructed speech r(n) with the estimated magnitude and the noisy

phase spectra.

3) Converting LSFs to LPCs to form the state transition matrix.

4) Computing the the additive noise variance σ2
w and the driving noise variance σ2

w from the

reconstructed speech.

5) Performing Kalman filtering to the reconstructed speech to obtain û (n|n), and the final

enhanced speech d(n) as given by (12).
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3.5 Experimental Results

3.5.1 Experimental Setup

The clean speech is selected from the IEEE sentence database1 [99]. We choose 670 utterances for

the training part and the remaining 50 utterances for the enhancement part. The noises are selected

from the NOISEX-92 database [108], Four types of noises (babble, white, street and factory) are

regarded as seen noise, and another four types (pink, buccaneer2, destroyerengine and hfchannel)

as unseen noise.

For SE. In the training stage, the noisy speech is obtained by mixing clean training utterances

with seen noise at four different levels of SNRs, i.e., -3dB, 0dB, 3dB and 6dB, which results in

10720 utterances. In the enhancement stage, both seen and unseen noises are mixed with clean

testing utterances at the above mentioned four SNR levels. The number of noisy utterances used

in the enhancement part is 800 for both seen and unseen noises. The sampling frequency for the

speech and noise signals is set to 16kHz.

For HF component restoration, the deep model is trained only on clean speech database to

explore the relationship between its LF and HF components. Since 670 utterances are not enough

for deep learning, we repeat them for 16 times to get 10720 utterances.

Reference methods

To evaluate the performance of the proposed new system, we choose several existing approaches

for comparison, which include one traditional Kalman filtering algorithm: Iter-KF; and three recent

DNN-based methods, i.e.: FNN-MAG, FNN-IRM, FSEGAN. These are introduced briefly in the

following.

Iter-KF [115]: The enhanced speech is obtained by iteratively performing conventional Kalman

filtering, in which the LPCs are updated in each iteration.

1 Available at website https://www.crcpress.com/downloads/K14513/K14513_CD_Files.zip
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FNN-MAG [96]: An FNN is employed to directly explore the mapping from the noisy magni-

tude spectrum to the clean one. The enhanced speech is synthesized with the estimated magnitude

and noisy phase spectra.

FNN-IRM [126]: An FNN is trained for better predicting the IRM. The estimated IRM is then

applied to the noisy magnitude spectrogram to reduce the noise part, and the enhanced speech is

then reconstructed from the masked magnitude and noisy phase spectra.

FSEGAN [40]. A least-square GAN is utilized to generate the clean speech magnitude spec-

trogram from the noisy one. The enhanced speech is reconstructed from the generated clean mag-

nitude and noisy phase spectra.

Our proposed methods with basic KF can be concluded as below.

FNN-KF: An FNN is used to predict the LSFs for Kalman filtering. The noisy speech is

processed by the KF to obtain the enhanced speech. We note that the FNN-MAG and FNN-IRM

are frequency-domain SE methods, while the FNN-KF is a time domain method.

FNN-KFBE: The FNN-KF is adopted to obtain the Kalman filtered speech, whose HF compo-

nent is then compensated with the FNN-based bandwidth extension algorithm.

Hybrid: A Hybrid system which consists of speech reconstruction and Kalman filtering. The

reconstructed speech is first synthesizing with the estimated magnitude spectrum and the noisy

phase spectrum, and is then further denoised with the FNN-augmented Kalmen filter.

In order to fairly evaluate the performance of the method proposed in this paper, we use the

same DNN configuration in all the methods except FSEGAN. For FSEGAN, we adopt the settings

provided in [40] and adjust other network parameters to optimize performance. For the remaining

DNN-based methods, we use the standard FNN configuration. For FNN-MAG, FNN-IRM, and

the HF component restoration, the Hamming window is selected to divide each utterance into 20

ms frames with a 10 ms frame shift (50% overlap). A 320-point DFT is then computed for each

frame resulting in 161 samples. For FNN-KF, a rectangular window is used to divide the audio

signals into 20 ms frames with no overlap. For the hybrid system, the STFT setting used in the

magnitude spectrogram computation is the same as that of FNN-MAG, and the framing process in
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the LSFs estimation is the same as that of FNN-KF. In the implementation of the Kalman filtering

algorithm, we set u(0|0) = 0, P(0|0) as an identity matrix, and the speech AR order as p = 12.

For the DNN training, we adopt the same settings of hyper parameters for all tested methods,

which is describes as following. The gradient descent optimization algorithm is Adam (Adaptive

moment estimation). The batch size is 1024 and the training epoch is 20. The learning rate is lin-

early decreasing from 0.08 to 0.001 during the training process. The initial and finial momentums

are 0.5 and 0.9, respectively. The drop out ratio is 0.2 in the hidden layers.

Objective metrics

To evaluate the enhancement performance, two objective metrics are selected: the PESQ measure

and the STOI measure. PESQ and STOI evaluate the processed speech from two different aspects:

speech quality and intelligibility, and a large objective score refers to a better performance for both

metrics.

3.5.2 Investigation of Input Feature Set

In the training stage, we use the following feature sets as the input of our proposed system: LPS-

only set, LSF-only set, multi-feature set consisting of AMS+RASTAPLP+MFCC+GFCC, and

joint set formed by combining the LSF-only set with the multi-feature set. In this experiment,

we investigate the performance of the proposed FNN-KF with these different feature sets when

using FNN for LSFs estimation. The objective results of the enhanced speech are shown in Table

1.

The final enhanced speech for the LPS-only and LSF-only feature sets exhibit similar PESQ

and STOI scores, while the dimension of LSF-only set is much smaller than the dimension of

LPS-only set. In addition, the objective scores could be improved notably for the multi-feature and

joint sets, which indicates that using more acoustic features provides useful additional information

about the speech. Finally, the enhanced speech from the joint set achieves the highest PESQ and

STOI scores. As a result, the joint set is considered as the optimal input feature set for the proposed
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methods considering both the dimension and the performance of all feature sets.

Table 1: Objective results with different feature sets in FNN-KF system
-3dB 0dB 3dB 6dB

Noisy 1.41 1.52 1.68 1.86
LPS-only 1.61 1.84 2.02 2.19

PESQ LSF-only 1.62 1.85 2.04 2.21
Multi Set 1.67 1.89 2.10 2.27
Joint Set 1.71 1.93 2.13 2.30

Noisy 0.66 0.72 0.78 0.83
LPS-only 0.68 0.74 0.79 0.83

STOI LSF-only 0.67 0.73 0.79 0.83
Multi Set 0.70 0.76 0.80 0.84
Joint Set 0.71 0.77 0.81 0.85

3.5.3 Evaluation of Proposed Methods

Tables 2 and 3 show the average objective scores of the different SE algorithms on both seen and

unseen noises respectively. In general, for the seen noise, the overall objective scores achieved by

FNN-IRM and the proposed hybrid method are close, and are superior to the remaining methods.

For the unseen noise, the overall objective scores clearly show that the proposed hybrid method

performs better than the other DNN-based methods in most cases, except for the STOI score of

FNN-IRM at 6dB SNR. A more detailed analysis of the results is provided in the following.

Seen noise

In the case of seen noise (Table 2), we serially present the evaluations of the proposed three meth-

ods, i.e., FNN-KF, FNN-KFBE and the hybrid system.

Evaluation of FNN-KF: We first compare our proposed FNN-KF with the traditional KF based

methods. Obviously, Iter-KF achieves the worst performance among all tested methods, which

is mainly caused by the inaccurate estimation of the AR parameters. The objective score can

be significantly improved with the proposed FNN-KF, which infers that the adoption of FNN for

LSFs estimation provides more accurate LPCs to further improves the enhancement capability of
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the KF. Moreover, compared with the DNN-based approaches, we note that the performance of

FNN-KF is better than that of FSEGAN on our tested database. One possible reason could be that

the generative model requires a larger amount of training data to learn the underlying distribution

of the target features; otherwise mode collapse may happen in the training stage [127]. On the

other side, the performance of FNN-KF is not as good as those of FNN-MAG and FNN-IRM. The

performance degradation lies in the HF component distortion of the Kalman filtered speech, due

to the inaccurate of the calculation of the two parameters in Kalman filtering, i.e., driving noise

variance and additive noise variance.

Evaluation of FNN-KFBE: It is shown in Table 2 that the enhanced speeches from FNN-KFBE

have better PESQ and STOI scores in comparison to those from FNN-KF, which demonstrates

the advantage of introducing the HF component restoration as a post-processing for FNN-KF.

In addition, by comparing the results between the enhanced speeches from the FNN-KFBE with

respect to input SNRs, it can be found that the improvement is greater at high SNRs. One possible

reason for this phenomenon is that the quality of the denoised speech at high SNRs is better than

the one at low SNRs, which is beneficial to the restoration of the HF component. However, the

bandwidth extension in HF component restoration algorithm uses the LF component of the clean

speech to restore the corresponding HF component in training stage, while the LF component of

the Kalman filtered speech is used in enhancement stage. The residual noise in the LF component

leads to a degraded the restored HF component. Therefore, the performance of the FNN-KF is still

not comparable to those of FNN-MAG and FNN-IRM.

Evaluation of the hybrid system: We compare the performance of the hybrid system with the

other four FNN-related approaches, i.e., FNN-MAG, FNN-IRM, FNN-KF and FNN-KFBE. Obvi-

ously, FNN-IRM shows the best overall performance, especially in the high SNR region for PESQ.

One possible reason for this outcome under matched condition is the use of different targets: for

FNN-MAG and FNN-KF, the targets (clean magnitudes or LSFs) are the same across different

noises and SNRs, and thus the FNN has to learn a many-to-one mapping; whereas for FNN-IRM,

the targets (IRM) depend on the noise type and SNR, and thus the FNN is faced with the simpler
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task of learning a one-to-one mapping [126].

The hybrid system also exhibits better performance than FNN-KF and FNN-MAG. For FNN-

KF, which has a limitation in accurately estimating the parameters σ2
v and σ2

w from the noisy speech,

suffers distortion in the final output speech. For FNN-MAG, the quality of the enhanced speech

is hindered by the residual noise, especially at lower SNR. The hybrid system, which can be re-

garded as a combination of FNN-MAG and FNN-KF, leads to a better enhanced speech because

it employs the reconstructed speech as the input of Kalman filtering, and thus can provide more

accurate estimates of σ2
v and σ2

w, which in turn helps the KF better reduce the residual noises in the

reconstructed speech. In addition, although the hybrid system and FNN-KFBE can be viewed as

a two-level SE in both time and T-F domain, the performance of the hybrid system is much better

because the hybrid system gains better denoised speech in the first level.

Compared to FNN-IRM, the hybrid system achieves about the same level of performance. The

PESQ score is slightly better than FNN-IRM at -3dB SNR and a little worse at higher SNR, while

the STOI scores for both methods are quite close at all SNRs. Hence, in the case of seen noise,

our proposed hybrid system and FNN-IRM achieve the best performance among all the evaluated

methods.

Table 2: Objective scores of different methods on seen noise

PESQ STOI

Methods -3dB 0dB 3dB 6dB -3dB 0dB 3dB 6dB
Noisy 1.41 1.52 1.68 1.86 0.66 0.72 0.78 0.83

Iter-KF 1.55 1.79 2.01 2.25 0.66 0.72 0.79 0.84
FNN-MAG 1.89 2.13 2.34 2.55 0.75 0.82 0.86 0.88
FNN-IRM 2.01 2.28 2.47 2.67 0.80 0.84 0.88 0.91
FSEGAN 1.85 2.02 2.19 2.35 0.70 0.75 0.80 0.84
FNN-KF 1.71 1.93 2.13 2.30 0.71 0.77 0.81 0.85

FNN-KFBE 1.75 2.02 2.20 2.39 0.73 0.79 0.84 0.88
Hybrid 2.05 2.23 2.44 2.61 0.79 0.84 0.88 0.90
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Unseen noise

We first investigate the generalization capability of the tested methods by considering unseen noise.

Upon comparison of the results in Table 2 and 3, we note that all the methods suffer from a per-

formance degradation. Comparing the results in Table 2 and 3, we find that at high SNR, the

performance of Iter-KF remains at a similar level as it belongs the class of unsupervised meth-

ods. In contrast, the objective scores of FSEGAN, FNN-IRM and FNN-MAG suffer a noticeable

decrease, suggesting that the trained DNNs cannot achieve the same prediction accuracy under

unseen noise. However, such a decrease in objective scores is not observed with FNN-KF and

FNN-KFBE, whose PESQ scores now exceed those of FNN-MAG for SNR ≥ 0dB. This may be

explained by the fact that the use of FNN in FNN-KF is limited to the LSFs estimation, while

the core processing function, i.e. Kalman filtering, is a conventional method and therefore its per-

formance should remain at a similar level whether in seen or unseen noise situations. While the

performance of our proposed system drops slightly in the case of unseen noise, this degradation is

not as significant as that observed with the FNN-MAG and FNN-IRM methods.

The overall performance of the proposed hybrid system is significantly better than the other

methods in terms of both PESQ and STOI scores, except for the STOI scores of FNN-IRM at high

SNRs. However, at high SNR, intelligibility is less of a concern, as it is not difficult to understand

the speech in this case, while the speech quality remains our major concern, which is well handled

by the proposed system as reflected by PESQ scores. At low SNR, the speech intelligibility is

severely impacted by the additive noise and should be our priority task. Clearly, the proposed

hybrid method gives better STOI scores in low SNR situations. In conclusion, the proposed hybrid

system achieves the best overall performance in unseen noise, after considering the various aspects

of objective evaluation metrics.

We also characterize the enhancement performances of the proposed hybrid system on the

different types of noise. The objective scores of the processed speech on each unseen noise at 0dB

SNR are given in Figs. 12 and 13, respectively.

As can be seen from the results in Figs. 12 and 13, the overall performance of the processed
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Figure 14: Time domain waveforms of the clean, noisy and enhanced speech signals for different
methods.

Fig. 15 demonstrates the effects of the residual noises and the distortions in the harmonic struc-

tures of the enhanced speech in the T-F domain. For Iter-KF, we can see the musical noise structure

in the spectrogram in the region between 2kHz and 3kHz. The spectrogram of FSEGAN also ex-

hibits some undesirable structures, which likely cause the degradation of performance. We make

further comparison among the four DNN-related methods. While the harmonic structures of the

voiced parts with FNN-MAG are well preserved up to about 3kHz, a significant amount of residual

noise is present during the unvoiced parts. The processed speech with FNN-IRM is affected by

high-level residual broadband noise, which the method cannot adequately remove. While intro-

ducing less noise during the unvoiced parts, FNN-KF tends to suppress the HF components of the

voiced parts of speech, leading to a decrease of speech quality. This problem could be alleviated
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by FNN-KFBE, whose spectrogram clearly shows that the HF component of the enhanced speech

has been partly restored. Finally, the spectrogram of the enhanced speech with the proposed hybrid

system seems to provide the best quality, i.e., clearer harmonic structures of the voiced part, and

the fewer residual noises during unvoiced parts.

Figure 15: Spectrograms of the clean, noisy and enhanced speech signals for different methods.

3.6 Conclusion

In this chapter, we have first presented a DNN-augmented basic KF for time domain SE, in which

an FNN is trained to estimate LPCs of clean speech model. With the help of the powerful learning

capability of the DNN, our proposed system offers more accurate parameters for Kalman filtering,

and thus achieves better performance than traditional iterative Kalman filtering. We further have
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applied a DNN-based bandwidth extension scheme for the HF component restoration of Kalman

filtered speech, in order to compensate the speech degradation in the filtering process. Next, we

have proposed a two-level hybrid SE system that combines DNN-based speech reconstruction and

Kalman filtering. The first level aims to reconstruct the speech with estimated magnitude and noisy

phase in T-F domain, and the second level further removes the residual noise in the reconstructed

speech with Kalman filtering in time domain. Performance evaluation shows that the enhanced

speech from the hybrid system has the best quality among all tested methods. Moreover, the pro-

posed three systems embrace a better generalization capacity under unmatched noisy environment

compared to existing DNN-based SE methods.
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Chapter 4

DNN-Augmented Advanced Kalman Filter

for Speech Enhancement

4.1 Introduction

In previous chapter, the DNN-augmented basic KF has been introduced and achieved good de-

noising performance. However, one limitation can not be ignored is that the HF component of the

enhanced speech has been auttenuated. This is because the adoption of basic KF in the denoising

process. To this end, several advanced versions of KFs have been proposed. The first category

is the subband Kalman filtering technique [123, 124], which divides the noisy speech into sev-

eral contiguous frequency bands, and performs Kalman filtering separately in each band. Subband

Kalman filtering makes use of the fact that the noise does not affect the speech signal uniformly

over the whole spectrum, and removes the noise with respect to the different frequencies to achieve

better performance. The second category is the colored-noise KF [128, 129], which models both

clean speech and noise as AR processes. This kind of method does not require the additive noise

variance estimation in basic KF, and works better in color noise environments. Another category

of the advanced KF is the perceptual KF [130, 131], which incorporates an additional post-filter

to further remove the residual noise, by scaling the estimation error of the KF below the masking
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threshold. The threshold is calculated based on the perceptual theories of human ear system.

In this chapter, we extend our DNN-based parameter estimation technique to advanced KFs.

In particular, we apply the DNN-based parameter estimation technique to the subband KF and

colored-noise KF, respectively, in order to provide more accurate parameters for Kalman filtering

and achieve better performances. This chapter is organized as follows. Section 4.2 presents a sub-

band KF with DNN-estimated parameters, which contains three main parts: subband analysis and

synthesis, Kalman filtering and DNN-based parameter estimation. In Section 4.3, we propose SE

system based on a DNN-augmented colored-noise KF with spectral subtraction as post-processing.

Performance of the proposed DNN-augmented advanced KFs are evaluated in Section 4.4 in terms

of objective performance measures. Conclusions are drawn in Section 4.5.

4.2 Subband Kalman Filtering with DNN-Estimated Parame-

ters

Subband analysis is widely adopted in speech processing, such as speech coding. It has also

been applied to SE to separately reduce the background noise in different subbands [23, 123, 124,

132]. Experimental results of [123] and [23] have shown that the subband methods yield better

performances compared to their respective full-band counterparts [19, 115].

In light of the successes of the previous subband techniques, we propose a novel DNN-augmented

subband Kalman filtering system for SE, where the noisy speech is divided into subband speeches

using discrete wavelet transform (DWT). For each noisy subband speech, the DNN is employed

for the estimation of AR parameters and the KF is then applied to obtain the enhanced subband

speech. The inverse DWT (iDWT) is finally used to obtain the enhanced full-band speech. Com-

pared with the DNN-augmented basic KF, the DNN-augmented subband KF performs denoising

at each subband, and is thus able to not only suppress the background noise but also reduce the

speech distortion in the enhanced speech, especially at higher frequencies.

The overall block diagram of our DNN-assisted subband Kalman filtering system is depicted
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signals, as denoted by

xb = DWT J{x}, b = 1, 2, · · · , J + 1, (19)

where xb is the b-th subband signal produced by DWT with b denoting the subband index.

Similarly, for subband synthesis, the iDWT is adopted to reconstruct a full-band signal x̂ from

the subband signals, which is given by

x̄ = iDWT J{x}, (20)

where x denotes the set of all subband signals {xb}J+1
b=1 . The reconstructed signal x̂ is identical to

the original signal x in the perfect reconstruction case.

4.2.2 Kalman filtering for Each Subband

While the noisy speech y(n) is decomposed into subband speeches {yb(n)}J+1
b=1 in the subband

analysis, KF is then applied to each noisy subband speech for denoising. The process of Kalman

filtering for each noisy subband speech yb (n) is identical to the process introduced in Section 3.2.1.

Given the corrupted subband speech yb(n), the KF recursively calculates an unbiased and linear

MMSE estimate of the state vector sb(n) as illustrated in Eq. (11). Three parameters should be

determined beforehand, that is, the additive noise variance σ2
w, the driving noise variance σ2

v , and

the transition matrix F with the LPCs of the clean subband speech. The additive noise variance is

estimated and updated during the unvoiced frames and the driving noise variance is given by Eq.

(15) The estimation of the LPCs of sb(n) is introduced in the following subsection.

4.2.3 DNN-Based LSFs Estimation

To begin with, the LPCs are converted to the LSFs in DNN-based estimation. The DNN-based

LSFs estimation is divided into off-line and on-line stages. In the off-line stage, a DNN is trained

to learn the mapping between the acoustic features of noisy subband speeches and the LSFs of the
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clean counterparts. In the on-line stage, given the features of a noisy subband speech, the well-

trained DNN predicts the LSFs of the clean subband speech. It should be mentioned that instead

of training several DNNs for different subbands separately, we employ a single DNN for all the

subband speeches to better exploit the relationships within different subbands as well as to reduce

the computational and structural complexity.

The input feature set is the same as introduced in Section 3.2.2. The structure of the DNN is

a five-layer FNN, which consists of one input layer, three hidden layers with 1024 units in each

layer, and one output layer. The activation function used in the hidden layer is the ReLU, while a

linear function is used in the output layer.

Back propagation is used to find the optimal weights and biases of the DNN to minimize the

cost function, which is defined as the mean square error (MSE) between the reference LSFs and

the estimated ones for all subbands,

Er=
1

J+1

J+1∑
b=1

{
1

Mb

Mb∑
m=1

{
1

p

p∑
i=1

[ω̂b,i (m)−ωb,i (m)]2
}}

(21)

where Mb denotes the total number of frames for the b-th noisy subband speech, ωb,i(m) and

ω̂b,i(m) are the reference and the estimated LSFs for frame m, respectively, where i ∈ {1, ..., p} is

the order index of the clean speech AR model.

In summary, the proposed DNN-assisted subband Kalman filtering system includes an off-line

training stage and an on-line enhancement stage. The former trains a DNN with subband noisy

and clean speech pairs, while the latter is described in detail below.

• Decompose the full-band noisy speech y(n) into the subband versions {yb(n)} with DWT.

• Extract the features of each noisy subband speech and employ the trained DNN to obtain the

estimated LSFs, which are converted to the LPCs to form the transition matrix.

• Estimate the additive noise variance σ2
w during unvoiced frames and compute the driving

noise variance σ2
v using Eq. (15).
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• Perform Kalman filtering with Eq. (11) for each noisy subband speech yb(n) to obtain the

enhanced counterpart ŝb(n).

• Synthesize the enhanced subband speeches {ŝb(n)} to reconstruct the final enhanced speech

ŝ(n) with iDWT.

4.3 Multi-Objective DNN-Augmented Colored-Noise Kalman

Filter

Although in Section 3.2, the performance of the basic KF method for SE has been improved no-

tably by using the FNN for parameter estimation, several limitations have been identified. Firstly,

the additional VAD procedure needed for the estimation of the additive noise variance increases

the computational and structural complexity of the system. In addition, accurately detecting the

unvoiced frames remains a difficult task, and the detection errors lead to inaccurate variance esti-

mation of the additive noise, which brings further distortion to the enhanced speech.

To counter the difficulties posed by the VAD procedure and improve the accuracy of the vari-

ance estimation, we propose a SE system that implements DNN-based parameter estimation to the

colored-noise KF. The overall block diagram of our new system is depicted in Fig.17, which is

composed of two stages: the training stage and the enhancement stage. In the training stage, the

input feature set to the DNN consists of the combination of the noisy speech LSFs along with four

acoustic features from [82]. The output targets are the LSFs of both the clean speech and the noise.

Then, a multi-objective DNN is trained to learn the mapping from the noisy input feature set to the

targets. In the enhancement stage, given a noisy speech signal, we obtain first the input feature set,

and then process it by the trained DNN to predict the clean speech LSFs and noise LSFs. The esti-

mated LPCs are then obtained from the LSFs, and applied to both variance estimation and Kalman

filtering. Subsequently, the noisy speech is enhanced by the colored-noise KF. This operation is

followed by a post subtraction to further remove the residual noise in the filtered speech. The key
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where x(n) =

[
s(n),w(n)

]T
is the p+ q dimensional concatenated state vector constituted by the

clean speech vector s (n) = [s (n− p+ 1) , . . . , s (n− 1) , s (n)] together with the noise vector

w (n) = [w (n− q + 1) , . . . , w (n− 1) , w (n)], and u(n) =

[
v(n), z(n)

]T
is the concatenated

driving noise vector. Moreover, the augmented matrices G, H, and the overall transition matrix F

are given as follows:

F =

Fs 0

0 Fw

 , G =

Gs 0

0 Gw

 , H =

Hs

Hw

 (24)

with

Fw =



0 1 · · · 0 0

0 0 · · · 0 0

...
... . . . ...

...

0 0 · · · 0 1

aw,q aw,q−1 · · · aw,2 aw,1


(25)

and Hw = Gw = [0, · · · , 0, 1]T ∈ Rq.

Given a noisy observation y(n), the estimate of the state vector x(n) can be obtained by the

following Kalman filtering recursive equations:



e (n) = y (n)−HT x̂ (n|n− 1)

K (n) = P (n|n− 1)H
(
HTP (n|n− 1)H

)−1

x̂ (n|n) = x̂ (n|n− 1) + K (n) e (n)

P (n|n) =
(
I−K (n)HT

)
P (n|n− 1)

x̂ (n+ 1|n) = Fx̂ (n|n)

P (n+ 1|n) = FP (n|n)FT + GQuG
T

(26)

where e (n) is the innovation, K (n) the Kalman gain matrix, x̂ (n|n) the filtered estimate of state

vector x (n), x̂ (n|n− 1) a priori estimate of the state vector x (n). P (n|n) is the filtered state

error covariance matrix, and P (n|n− 1) the predicted state error correlation matrix. Qu is the
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covariance matrix of the driving noise vector u(n), which is given by

Qu = E[u(n)u(n)T ] =

σ2
v 0

0 σ2
z

 . (27)

The denoised speech is the output of the colored-noise KF, i.e.,

ŝ (n) = [GT
s ,0

T ]x̂ (n|n) (28)

Note that two parameterized matrices that appear in the process equations (26) should be es-

timated from the noisy speech to carry out Kalman filtering, namely, the overall transition matrix

F and the covariance matrix Qu of the concatenated driving noise vector u(n). The first depends

on the clean speech and noise LPCs, which can be converted to the LSFs and predicted through

a DNN, while the second one is obtained by solving an optimization problem. The details of this

parameter estimation are provided in the following subsections.

4.3.2 DNN-Based LSFs Estimation

Recently, in [133], we have demonstrated that FNN offers a convenient means for LSFs estimation

in speech processing applications. Here, we propose to employ two different networks, i.e., FNN

and LSTM, to predict both the clean speech LSFs and noise LSFs. The specific configuration

of FNN is described in Section 3.2.2. The LSTM network is obtained by stacking by one input

layer for high-level feature extraction, two LSTM layers with 512 units in each layer for temporal

modelling, one feed-forward layer with 512 units and one output layer for LSFs estimation.

The input feature set is the same as presented in Section 3.2.2. For the training targets, we

adopt a multi-objective learning architecture to estimate both the clean speech LSFs and noise

LSFs. Compared to a standard DNN, the output layer in the proposed architecture is divided into

two parts: one for the clean speech LSFs and the other for the noise LSFs. The advantages of multi-

objective learning are twofold. On one hand, it has lower computational complexity compared to
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training two separate DNNs (i.e., one for clean speech and one for noise). On the other hand,

estimating the two sets of LSFs simultaneously can help better exploit the relationship between the

clean speech and noise.

In the training stage, back propagation is used to adjust the weights and biases so as to minimize

the cost function, which is defined as the mean square error (MSE) between the reference LSFs

and the estimated ones for each training utterance. Note that the cost function is composed of two

parts: one for the clean speech LSFs and the other for the noise LSFs, as given by,

MSELSF =
1

M

M∑
m=1

{
1

p

p∑
i=1

[ω̂s,i (m)− ωs,i (m)]2

+
1

q

q∑
j=1

[ω̂w,j (m)− ωw,j (m)]2
} (29)

where m is the frame index of the input noisy speech and M the total number of the frames. The

quantities ωs,i(m) and ω̂s,i(m) are the reference clean speech LSFs and the estimated ones at frame

m, where i ∈ {1, ..., p} is the order index of the clean speech AR model. Similarly, ωw,j are the

reference noise LSFs and ω̂w,j the estimated ones at frame m, where i ∈ {1, ..., q} is the order

index of the noise AR model.

In the enhancement stage, the clean speech LSFs and noise LSFs are first obtained by the well-

trained DNN, and then converted to their respective LPCs. The estimated LPCs are used along with

the estimated variances in the KF equations (26) in order to estimate the desired speech signal.

4.3.3 Variance Estimation

The covariance matrix Qu in (27) is another key parameter that needs to be estimated prior to

the application of the Kalman filtering equations. Proceeding as in [134], we now formulate an

optimization problem to estimate σ2
v and σ2

z . Our goal is to minimize the difference between the

noisy spectrum and the sum of the estimated clean speech spectrum and noise spectrum.
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From equations (1), (8) and (22), the spectrum of the AR-modelled noisy speech can be ex-

pressed as:

P̂y (k) = P̂s (k) + P̂w (k)

=
σ2
v

|As (k)|2
+

σ2
z

|Aw (k)|2
(30)

with

As (k) = 1−
p∑
i=1

as,ie
−j2πik/K

Aw (k) = 1−
q∑
i=1

aw,ie
−j2πik/K

(31)

where K is the frame length. Note that the clean speech LPCs as,i and the noise LPCs aw,i can be

obtained from the LSFs at the output of the trained DNN.

The AR spectrum of the observed noisy speech Py(k) can be written as,

Py(k) =
σ2
y

|Ay (k)|2
(32)

with

Ay (k) = 1−
p∑
i=1

ay,ie
−j2πik/K (33)

σ2
y = E

[
y(n)2

]
− rTy ay. (34)

We can obtain the variance estimates by minimizing the difference between the AR spectrum of

the modelled noisy speech P̂y (k) and that of the observed one Py (k), that is,

σ∗2
v , σ

∗2
z = arg min

σ2
v ,σ

2
z

d
(
P̂y (k) , Py (k)

)
(35)
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where the difference is measured in the log-spectral domain as given by,

d
(
P̂y (k) , Py (k)

)
=

1

K

K∑
k=1

∣∣∣lnP̂y (k)− lnPy (k)
∣∣∣2

≈ 1

K

K∑
k=1

∣∣∣∣∣σ2
v/ |As (k)|2 + σ2

z/ |Aw (k)|2 − Py (k)

Py (k)

∣∣∣∣∣
2

.

(36)

To obtain the approximate equation in (36), we have used equation (30) and the approximation

of ln(x+1) ≈ x. Then by applying partial differentiation to the difference d
(
P̂y (k) , Py (k)

)
with

respect to σ2
v and σ2

z , we obtain the following linear system of equations:

Ess Esw

Esw Eww


σ2

v

σ2
z

 =

Eys
Eyw

 (37)

with

Ess =

∥∥∥∥∥ 1

P 2
y (k) |As (k)|4

∥∥∥∥∥ , Eww =

∥∥∥∥∥ 1

P 2
y (k) |Aw (k)|4

∥∥∥∥∥
Esw =

∥∥∥∥∥ 1

P 2
y (k) |As (k)|2 |Aw (k)|2

∥∥∥∥∥
Eys =

∥∥∥∥∥ 1

Py (k) |As (k)|2

∥∥∥∥∥ , Eyw =

∥∥∥∥∥ 1

Py (k) |Aw (k)|2

∥∥∥∥∥
(38)

The norms involved in equation (38) are defined as ‖f(k)‖ ,
∑K

k=1 |f(k)|.

When the AR spectrum of the observed noisy speech Py (k) is calculated and As(k) and Aw(k)

are obtained with the estimated LPCs from the trained DNN, we can finally obtain the optimal

variances σ2
v and σ2

z using equation (37).

4.3.4 Post Subtraction

To further remove the residual noise in the Kalman-filtered speech, a post subtraction algorithm is

applied right after Kalman filtering. We adopt multiband spectral subtraction because of its good
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performance in reducing speech distortion [23]. The main idea of this method is described as

follows.

The fast Fourier transform (FFT) is first applied to the windowed Kalman-filtered speech to

obtain the magnitude spectrum. Next, the noise spectrum is estimated and updated during the

unvoiced frames. The detection of unvoiced frames is accomplished by comparing the total power

of the estimated clean speech, say P̂ 2
s and that of the estimated noise, P̂ 2

w, which can easily be

obtained from the estimated spectra in Section 4.3.3. Specifically, a frame is labelled as a voiced

frame if P̂ 2
s > P̂ 2

w, and as an unvoiced frame otherwise.

Then, the magnitude spectra of the filtered speech and noise are divided into L subbands. In

each subband, the Kalman-filtered magnitude spectrum is enhanced by subtracting a noise power

spectrum term,

|Ĉl (k) |2 = |Ŝl (k) |2 − α δl |D̂l (k) |2 (39)

where |Ĉl (k) |2 denotes the modified subband speech power spectrum, |Ŝl (k) |2 the Kalman-

filtered speech power spectrum and |D̂l (k) |2 the estimated noise power spectrum (obtained and

updated during unvoiced frames), with k being the discrete frequency and l the subband index.

Moreover, α is the oversubtraction factor and δl the additional subtraction factor that can be indi-

vidually set for each subband to customize the noise removal process.

The factors α and δl are used to control the noise subtraction level within each band. The value

of α is defined as a function of the SegSNR (in dB), i.e.,

α =


4.75 , SNR < −5

4− 3

20
SNR , − 5 ≤ SNR ≤ 20

1 , SNR > 20

(40)

with

SNR = 10 log10

(
|Ŝl (k) |2

|D̂l (k) |2

)
(41)
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The value of δl is determined as,

δl =


1 , fl < 1kHz

2.5 , 1kHz ≤ fl ≤
Fs
2
− 2kHz

1.5 , fl >
Fs
2
− 2kHz

(42)

where fl is the upper frequency of the l-th band and Fs the sampling frequency. The above values

of the factors α and β are taken from [23] where they have been determined empirically based

large experiments.

Finally, we synthesize the modified subband spectrum from the modified magnitude (39) and

the phase of the Kalman-filtered speech. The final enhanced speech is obtained by computing the

inverse FFT of the modified subband spectrums.

4.4 Experimental Results

4.4.1 Experimental Setup

The clean speech is selected from the IEEE sentence database [99], while the noise is from the

NOISEX-92 database [108]. For the preparation of the pairs of noisy speech and clean speech,

we adopt the same setting as described in Section 3.5.1. PESQ and STOI are adopted to evaluate

the enhancement performance, with a higher score means a better speech quality or intelligibility,

respectively.

4.4.2 Reference Methods

To evaluate the proposed SE system, we adopt several existing methods for performance compar-

ison. Our reference methods include both KF based algorithms and DNN-based approaches. The

following provides a brief conceptual summary of each one of the reference methods.
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• P-IKF (Perceptual iterative KF) [131]: This algorithm calculates a perceptual mask accord-

ing to human hearing system and applies it to the Kalman-filtered speech in order to further

remove the residual noises.

• S-IKF (Subband iterative KF) [124]: In this method, the noisy speech is first divided into

subband signals. Iterative Kalman filtering is then applied separately for each subband noisy

speech. The final enhanced speech is obtained by synthesising the subband enhanced speech

signals.

• FNN-MAG [96]: An FNN is employed to directly explore the mapping from the noisy

speech magnitude spectrum to the clean one. The enhanced speech is synthesised with the

estimated clean magnitude and noisy phase.

• FNN-WF [37]: An FNN is trained for the estimation of AR parameters of the clean speech.

Then, a Wiener filter is estimated by calculating the ratio of the estimated clean speech power

spectrum to that of the noisy speech. The enhanced speech is then obtained by applying the

estimated Wiener filter to the noisy speech.

• FNN-KF [133]: An FNN is used to predict the LPCs needed for conventional Kalman filter-

ing. The DNN learns the mapping from the acoustic features of the noisy speech to the LSFs

of the clean speech. The estimated LSFs are then converted to the desired LPCs.

Besides these benchmarks, we consider the proposed subband Kalman filtering and three ver-

sions of the proposed DNN-augmented colored-noise KF method, namely,

• FNN-SKF: Subband Kalman filtering system using FNN for LSFs estimation

• FNN-CKF: Colored-noise Kalman filtering system using FNN for LSFs estimation while

without post subtraction.

• FNN-CKFS: Colored-noise Kalman filtering system using FNN for LSFs estimation and

with post subtraction.
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• LSTM-CKFS: Colored-noise Kalman filtering system using LSTM for LSFs estimation and

with post subtraction.

In order to make fair comparisons, we use the same configuration for the FNN in the related

methods as mentioned in Section 3.5.1. For FNN-MAG, a Hamming window is selected to divide

each utterance into 20 ms time frames with a 10 ms frame shift (50% overlap). A 320-point DFT

is then computed for each frame. For the other reference methods and the proposed system, a

rectangular window is used to divide the audio signals into 20 ms frames with no overlap.

For the conventional KF, we set s(0|0) = 0, P(0|0) = I, and the AR model order of the clean

speech as p = 12. For the colored-noise KF, we set x(0|0) = 0, P(0|0) = I, and the orders of

AR models for clean speech and additive noise as p = q = 12 . For the post subtraction in FNN-

CKFS and LSTM-CKFS, the spectrum is evenly divided into 4 bands. For the subband analysis in

FNN-SKF, we use the Symlets 13 for DWT.

4.4.3 Level of Subband Analysis

First, we decompose the noisy speech at different levels to find the optimal subband analysis level

J in the FNN-SKF system. Three levels (J = 1, 2, 3) are tested under seen noise. Table 4 shows

the objective results under the assumption that the clean speech is accessible to obtain ideal AR

parameters for Kalman filtering. In this case, the three subband KFs outperform the full-band

processing, which indicates that denoising in each subband indeed removes the additive noise

better and introduces less speech distortion. In addition, decomposing the speech with a deeper

level contributes to a better performance when the ideal parameters are available.

Table 5 shows the objective results where the DNN-estimated AR parameters are employed for

Kalman filtering. We find that adopting 1-level DWT for subband analysis, namely decomposing

the noisy speech into two subband speeches, leads to the best result. As the subband analysis level

gets deeper, the number of the input subband signals is increased, which requires a more complex

structure to perfectly learn the relationships between more input features and the targets. As such,

the 1-level led to better enhancement result. Another possible reason is that if we decompose
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at a deeper level, more KFs are required. Since the parameters cannot be ideally estimated for

each KF, the estimation error leads to a degradation of the enhanced subband speeches. Thus, the

synthesized full-band speech suffers more performance decrease for high-level subband analysis

cases. As a result, we choose 1-level decomposition for the FNN-SKF system.

Table 4: Objective results using ideal AR parameters for subband Kalman filtering under seen
noise

-3dB 0dB 3dB 6dB
Noisy 1.41 1.52 1.68 1.86

Full-band processing 2.37 2.54 2.70 2.86
PESQ 1-level analysis 2.38 2.55 2.72 2.90

2-level analysis 2.39 2.56 2.74 2.91
3-level analysis 2.40 2.57 2.75 2.93

Noisy 0.66 0.72 0.78 0.83
Full-band processing 0.84 0.87 0.89 0.90

STOI 1-level analysis 0.86 0.88 0.90 0.92
2-level analysis 0.87 0.89 0.91 0.92
3-level analysis 0.88 0.90 0.92 0.93

Table 5: Objective results using estimated AR parameters for subband Kalman filtering under seen
noise

-3dB 0dB 3dB 6dB
Noisy 1.41 1.52 1.68 1.86

Full-band processing 1.70 1.93 2.13 2.30
PESQ 1-level analysis 1.92 2.16 2.36 2.57

2-level analysis 1.81 2.05 2.27 2.50
3-level analysis 1.68 1.88 2.12 2.36

Noisy 0.66 0.72 0.78 0.83
Full-band processing 0.71 0.77 0.81 0.85

STOI 1-level analysis 0.72 0.78 0.84 0.87
2-level analysis 0.71 0.77 0.83 0.87
3-level analysis 0.69 0.75 0.82 0.86

4.4.4 Evaluation of LPCs Estimation Accuracy

In this subsection, the LPCs estimation error is evaluated to verify the learning capability of the

proposed multi-objective training in DNN-augmented colored-noise Kalman filtering system. We
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first define the LPCs estimation error of the speech as the mean square error (MSE) between the

estimated LPCs and the ideal LPCs calculated from the clean speech for each utterance as given

below,

MSELPC =
1

M

M∑
m=1

{
1

p

p∑
i=1

[âs,i (m)− as,i (m)]2
}

(43)

where M denotes the number of the speech frames in the utterance, as,i(m) the ideal LPCs of the

clean speech and âs,i(m) the estimated ones. The estimated LPCs are obtained by three methods

for comparison. The first one applies the Levinson-Durbin (LD) algorithm to obtain the LPCs

of the noisy speech directly [135]. The second and third ones adopt the proposed DNN-based

LSFs estimation algorithm, where FNN and LSTM are used to estimate the LSFs, which are then

converted to LPCs. Similarly, we compute the LPCs estimation error of the additive noise for each

noise type by using (43), where the estimated and ideal LPCs of the speech are replaced by those

of the additive noise, and the order of the speech model, p is replaced by that of the noise, q.

Fig. 18 shows the LPCs estimation error comparison for the speech. The average MSE is

computed over all the testing utterances for both seen and unseen noise. In general, the FNN and

LSTM based approaches give a slightly smaller error than the LD method does for the eight types

of noises and different SNRs. In addition, the error from LSTM is smaller than that from FNN

in most cases. Another important finding is that the errors from the DNN methods decrease with

an increase of the SNR, which means that DNN achieves a better performance at higher SNR.

The LPCs estimation performance also varies for different noise types. In particular, the best

estimation accuracy is achieved for street noise, and the worst for white noise. Interestingly, we

note that the estimation error of FNN and LSTM based algorithm under unseen noise does not

increase considerably compared with that under seen noise, which indicates that using DNN in

LPCs estimation offers robustness and has a good generalization capability.

The LPCs estimation error comparison for the additive noise is shown in Fig. 19, where we

notice important differences with the case of clean speech. Firstly, as SNR increases, the strong

speech component more strongly affects the noise LPCs estimation, and hence the LPCs estimation
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Figure 18: LPC estimation error comparison for speech among Levinson-Durbin (LD), FNN and
LSTM methods.

error of additive noise gets larger. Secondly, compared with speech, noise exhibits less structure

and correlation, and the mapping from the noisy speech feature to the noise LSFs is thus more

difficult to learn. Therefore, we can find that the DNN estimation result is not always better than

the traditional LD method, especially at low SNR.
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Figure 19: LPC estimation error comparison for additive noise among LD, FNN and LSTM meth-
ods.
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4.4.5 Speech Enhancement Performance under Seen Noise

Here, we compare the different SE methods under seen noise. Table 6 gives the average objective

scores of different SE methods on seen noise. We first note that the performances of the unsuper-

vised Kalman filtering algorithms are worse than those of the DNN-based methods. The P-IKF,

which incorporates a perceptual mask to further suppress the residual noise, is the best among the

three unsupervised Kalman filtering algorithms. However, P-IKF still can not achieve as good per-

formance as FNN-KF, not to mention our FNN-SKF, FNN-CKF, FNN-CKFS and LSTM-CKFS.

These results demonstrate the benefit from employing DNN in parameter estimation. The DNN

can predict more accurate LPCs from the noisy speech, thus improving the performance of Kalman

filtering algorithms.

Moreover, FNN-KF has lower objective scores compared with the proposed methods. This is

because FNN-KF requires a VAD procedure to detect the unvoiced frame for estimating and up-

dating the additive noise variance σ2
w. However, VAD in noisy condition is a difficult task, which

causes variance estimation error and introduces extra distortion to the enhanced speech. Compared

with FNN-KF, although FNN-SKF also requires VAD for the additive noise variance estimation,

the subband processing enables FNN-SKF to adaptively remove the additive noise in each band,

thus contributes to obtaining a higher objective score. For the colored-noise Kalman filtering

system, an AR model is adopted to represent the background noise. As such, the Kalman filter-

ing equations in (26) no longer involve σ2
w, and we can therefore overcome the speech distortion

problem due to the inaccurate estimation of σ2
w. The performance can be further improved by em-

ploying post subtraction to remove the residual noise due to the inaccurate parameters of the noise

AR model. Indeed, FNN-CKFS achieves a better performance than FNN-CKF, which approaches

closely that of FNN-MAG. Comparing FNN-SKF with FNN-CKFS, we notice that the FNN-SKF

has higher PESQ scores, while the FNN-CKFS has higher STOI scores, which indicates that the

enhanced speech from FNN-CKFS has a better intelligibility. Finally, although FNN-MAG has the

best performance among all tested FNN-based approaches, by employing LSTM for LSFs estima-

tion in the proposed system, LSTM-CKFS can achieve the best PESQ scores, which demonstrates
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the LSTM’s advantage in modelling long temporal dependencies.

Table 6: Objective scores of different SE methods under seen noise

Method PESQ STOI

-3 dB 0 dB 3 dB 6 dB -3 dB 0 dB 3 dB 6 dB

Noisy 1.41 1.52 1.68 1.86 0.66 0.72 0.78 0.83
P-IKF 1.57 1.83 2.08 2.31 0.68 0.75 0.81 0.85
S-IKF 1.56 1.81 2.04 2.29 0.67 0.75 0.81 0.84

FNN-MAG 1.89 2.13 2.34 2.55 0.75 0.82 0.86 0.88
FNN-WF 1.65 1.83 2.15 2.36 0.71 0.78 0.82 0.86
FNN-KF 1.70 1.93 2.13 2.30 0.71 0.77 0.81 0.85

FNN-SKF 1.92 2.16 2.36 2.57 0.72 0.78 0.84 0.87
FNN-CKF 1.73 2.01 2.26 2.49 0.72 0.78 0.84 0.87

FNN-CKFS 1.88 2.12 2.32 2.51 0.73 0.79 0.85 0.88
LSTM-CKFS 1.93 2.16 2.38 2.58 0.74 0.80 0.85 0.88

4.4.6 Speech Enhancement Performance under Unseen Noise

Table 7 gives the average objective scores of the different SE methods in the case of unseen noise.

In this case, the performances of the unsupervised Kalman filtering algorithms are still worse

than those of the FNN-based methods. Comparing FNN-KF with our proposed system, we can

find again that FNN-SKF, FNN-CKF, FNN-CKFS and LSTM-CKFS outperform FNN-KF because

of the adoption of colored-noise KF. However, the STOI scores of FNN-CKF are slightly lower

than those of FNN-KF at low SNR. This degradation is possibly caused by the inaccuracy in

estimating the noise LPCs, as shown in Fig.19 where the FNN estimation error is higher than the

LD estimation error under low input SNR conditions.

In the case of unseen noise, we find that LSTM-CKFS achieves the best objective scores due

to its advanced network structure. More interestingly, FNN-MAG no longer holds the best perfor-

mance among FNN-based methods. In fact, the objective scores of FNN-MAG decease largely,

indicating that mapping the noisy magnitude spectrum to the clean one is prone to errors when

the noise is unmatched with those in the training stage. In contrast, FNN-WF, FNN-KF and our
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Table 7: Objective scores of different SE methods under unseen noise

Method PESQ STOI

-3 dB 0 dB 3 dB 6 dB -3 dB 0 dB 3 dB 6 dB

Noisy 1.37 1.51 1.65 1.82 0.65 0.72 0.78 0.83
P-IKF 1.67 1.88 2.09 2.32 0.69 0.76 0.81 0.85
S-IKF 1.66 1.87 2.08 2.31 0.68 0.75 0.81 0.84

FNN-MAG 1.73 1.92 2.13 2.32 0.70 0.76 0.82 0.87
FNN-WF 1.68 1.92 2.15 2.33 0.67 0.74 0.81 0.85
FNN-KF 1.73 1.95 2.21 2.38 0.71 0.77 0.82 0.85

FNN-SKF 1.87 2.10 2.33 2.55 0.71 0.78 0.83 0.88
FNN-CKF 1.76 2.02 2.26 2.48 0.70 0.76 0.82 0.86

FNN-CKFS 1.89 2.11 2.32 2.50 0.71 0.78 0.83 0.87
LSTM-CKFS 1.91 2.15 2.36 2.55 0.73 0.79 0.84 0.88

proposed advanced Kalman filtering system suffer less performance degradation. Indeed, the de-

noising process in these methods is accomplished by Wiener and Kalman filtering. Therefore, as

the DNN can provide more accurate parameters, their performances would not fluctuate as much

whether on seen noise or unseen noise. Based on these results, and considering the robustness

of the DNN-based LPCs estimation, we can conclude that our FNN-SKF, FNN-CKF, FNN-CKFS

and LSTM-CKFS, have a better generalization capability than FNN-MAG.

Finally, we make comparison in terms of each objective metric. Although the enhanced speech

from LSTM-CKFS has the best speech quality according to the PESQ scores, the improvement of

speech intelligibility is not obvious as seen from the STOI scores. In fact, the LSTM-CKFS gives

similar STOI scores to FNN-MAG. Actually, there is a trade-off between residual noise and speech

distortion for SE algorithms, leading to decreased speech intelligibility. For our LSTM-CKFS, the

enhanced speech achieves similar speech intelligibility as that of FNN-MAG but far better speech

quality, indicating that LSTM-CKFS could preserve the information content of clean speech well,

while significantly removing the additive noise.
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4.4.7 Spectrograms of Enhanced Speeches

To better understand the characteristics of the enhanced speech, Fig. 20 shows the spectrograms

of the enhanced speech signals from several selected methods, demonstrating the effects of the

residual noises and the distortions in the harmonic structures in the T-F domain. The noisy speech

is obtained by mixing a selected clean speech utterance with buccaneer noise at 3dB SNR. For the

best unsupervised Kalman filtering in our experiment, i.e., P-IKF, we can find the musical noise

structure in the spectrogram in the region between 4kHz and 8kHz. The spectrogram of FNN-MAG

also exhibits some musical noise structures in the HF component as well as residual noise in the LF

component. For FNN-WF, the HF components look better than the previous two spectrograms, but

still have undesired structures, which are likely caused by the difficulty of Wiener filter in removing

non-stationary noise. Finally, for the five Kalman filtering related methods, it is observed that FNN-

KF, FNN-CKFS and LSTM-CKFS can remove the background noise quite well. However, the HF

components of FNN-KF still suffer from various degradations. While this situation is improved in

the cases of FNN-SKF, FNN-CKFS and LSTM-CKFS. Such as FNN-SKF, its denoising process

is separately conducted according to the noise level in each subband, thus it preserves the HF

component better. However, the amount of the residual noise is larger compared to FNN-KF and

FNN-CKFS. Finally, the LSTM-CKFS can preserve the harmonic structures best among all the

tested methods, thus achieving the best objective scores.

4.5 Conclusion

In this chapter, we have extended the idea of DNN-based parameter estimation to the advanced

KFs. First, we have presented a subband KF with DNN-estimated parameters for time domain SE,

in which the noisy speech is divided into several subband, and Kalman filtering is then applied to

each subband signals separately. Next, based on the knowledge that both clean speech and noise

can be modelled as AR processes, we have proposed a DNN-augmented colored-noise KF system

with post subtraction to better counter the non-stationary noise.
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Figure 20: Spectrograms of the clean, noisy and enhanced speech signals for different methods

Performance comparison is conducted among tradition KF based methods, current DNN-based

methods, and our proposed DNN-augmented basic KF, subband KF and colored-noise KF systems.

The experimental results reveal that applying DNN to advanced KF provides accurate parameters

in filtering and thus improves the enhancement performance. Moreover, the DNN-augmented sub-

band KF shows a considerable advantage, since subband analysis allows the filter to individually

remove the background noise according to the noise level in each subband. The DNN-augmented

colored-noise KF achieves the best performance because the noise signal is also considered as an

AR process, which avoids the VAD procedure in basic KF. Besides, employing spectral subtraction

as post processing helps further remove the residual noise.

Experiments on adopting different networks for parameter estimation are also conducted, which
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reveals the LSTM’s superiority in modeling temporal dependencies. Finally, similar to the DNN-

augmented basic KF, the DNN-augmented advanced KFs also show better generalization capabil-

ity as compared to other tested DNN-based methods.
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Chapter 5

Constrained Masking Techniques for

Speech Enhancement

5.1 Introduction

In this chapter, we target the problem of SE by using a well-known category of methods, i.e., the

masking techniques, which have received much attention and achieved a series of progresses [136].

Inspired by the masking effect of the human auditory mechanism, the goal of this kind of methods

is to estimate a mask, which can be applied to the noisy speech to retain the speech-dominant

regions and suppress the noise-dominant regions. An appropriate and accurate mask is of great

importance to the enhancing performance. To this end, researchers have made large efforts from

two aspects: designing an efficient mask and developing reliable mask estimation algorithms.

The IBM [137] is one of the pioneering masks investigated in the literature. Given a clean

speech in a T-F representation, the mask value of a T-F unit is set to 1 if the local SNR is greater

than a preset threshold, otherwise it is set to 0. This simplifies SE to a binary classification problem.

However, SE using IBM has some limitations such as introducing the residual musical noise. As a

result, the IRM [34, 36], which can be viewed as a smoothed form of IBM, is proposed. The IRM

is obtained by computing the ratio between the energy of clean speech and that of noisy speech for
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each T-F unit. Denoising with IRM is actually assigning large ratios to the T-F units with higher

local SNR and small ratios to those with lower local SNR. Another mask with similar concept is

the spectral magnitude mask or ideal amplitude mask (IAM) [126], which computes the ratio of

the magnitude of clean speech to that of noisy speech. Note that IRM and IAM are motivated by

the frequency response of the Wiener filter, which achieves the optimal SNR gain for stationary

signals. However, speech signals and many real-world noises are nonstationary. To overcome

this problem, the optimal ratio mask (ORM) is proposed in [138], by considering the correlation

between the desired speech and noise, leading to an improved SNR of the enhanced speech. The

above mentioned masks only focus on enhancing the magnitude spectrogram. More recently, the

phase information has been considered in masking techniques, such as the PSM [52] and cIRM

[53], to better recover the complex speech spectrogram.

Probably, supervised learning algorithms, such as Gaussian mixture model [71] or support

vector machine [139], are the most popular mask estimation methods in early works. In recent

years, the deep learning based methods have made a great progress. An FNN is adopted in [36] to

learn the mapping between noisy acoustic features and IRM. Other architectures can be found in

[140, 141], where recurrent neural network and CNN are, respectively, employed as the estimation

model. The deep structure and powerful learning capability enable DNN to better explore the

non-linear relationship between noisy features and masks, leading to a better estimation result.

Although the DNN-estimated masks have achieved good performance in improving speech in-

telligibility, none of these works further investigates the trade-off between speech distortion and

residual noise in the enhanced speech. Several traditional methods have been proposed to de-

noise with less speech distortion and remove residual noise as much as possible. In [142], the

authors proposed a new weighting rule using masking properties, which calculates the weighting

coefficients to keep the perceived noise to be equal to a pre-defined level. However, the speech

distortion is not explicitly considered in their processing. In [59], a spectral constraint is applied

into the STSA estimator, which adaptively suppresses the noise-dominant regions and reduces the

speech distortion in the speech dominant regions.
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In this chapter, we will develop a new type of mask, called constrained ratio mask, for SE.

The rest of this chapter is organized as follows. Section 5.2 describes the proposed CRM and its

application in SE. In Section 5.3, we extend the CRM to enhance the complex spectrogram of the

speech signal. Performance assessment is presented in Section 5.4 and conclusions are drawn in

Section 5.5.

5.2 Speech Enhancement with Constrained Ratio Mask

In this section, we propose a new type of mask, namely CRM, for SE, which is derived to minimize

the speech distortion while suppressing the residual noise such that it falls below a threshold level.

A DNN is then trained for CRM estimation, which learns a mapping from the noisy features to

the CRM. Finally, the enhanced speech is obtained by applying the estimated CRM to the noisy

speech. Compared with the previous mask based algorithms, which mainly focus on retaining the

speech information, our CRM based system is the first one to consider both speech distortion and

the residual noise level in the enhanced speech, by adaptively adjusting the value of the CRM for

different T-F units according to their local SNRs.

5.2.1 Constrained Ratio Mask

As usual, we consider a noisy speech y(n) as the addition of clean speech s(n) and background

noise w(n), with n denoting the time index. The time domain noisy speech can be transformed

into a spectro-temporal spectrogram using STFT, namely, Y (k, l) = S(k, l) + W (k, l), where

Y (k, l), S(k, l) and W (k, l) denote the STFT spectrograms of the noisy speech, clean speech and

noise, respectively, with k and l indicating the frequency bin and frame index. We denote the ratio

mask as M(k, l) ∈ [0, 1], which will be applied into the magnitude of the noisy speech to get the

enhanced magnitude, i.e., |Ŝ| = M · |Y |. For simplicity, we have omitted k and l without loss of

generality. By directly using the noisy phase for speech reconstruction, we obtain the STFT of the
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enhanced speech,

Ŝ = (M · |Y |) ejφy = M · Y (44)

To derive a CRM, we first introduce the mathematical definitions of the speech and noise dis-

tortions as given in [142, 143]. The estimation error e of Ŝ can be decomposed into two items as

follows,

e = Ŝ − S = M · (S +W )− S

= (M − 1) · S +M ·W

= es + ew (45)

The power spectrums of es and ew can be written as,

ds = E
[
es

2
]

= (M − 1)2 · Ps

dw = E
[
ew

2
]

= M2 · Pw (46)

where Ps and Pw are the power spectrums of the clean speech and noise, respectively; ds denotes

the speech distortion and dw the noise distortion. We regard ds as the distortion to the original

clean speech introduced by the enhancement algorithm, while dw is the distortion caused by the

residual noise. The above mentioned two distortion terms with respect to the value of mask M are

plotted in Fig.21 for three different values of input SNR ξ = Ps/Pw.

Ideally, we prefer a large value of M to yield a small speech distortion ds under the circum-

stance of the clean speech being much stronger than the noise (i.e., ξ � 1). Conversely, if the signal

is weaker than the noise (i.e., ξ � 1), a small value ofM is required so that the residual noise or dw

will be small. However, we found that when employing a DNN to estimate the IRM (tested under

four different noises and input SNRs), the values of estimated IRM are 0.15% ∼ 5.67% higher than

those of reference IRM, which results in a larger dw, indicating that the enhanced speech suffers

more residual noise.
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Figure 21: The relationship between M and distortions

To better remove the residual noise with no noticeable speech distortion, we need to derive a

mask to minimize the speech distortion while constraining the noise distortion below a threshold.

To this end, we establish the following constrained optimization problem,

min
M

ds

subject to dw ≤ δ (47)

where δ is a preset threshold. It has been shown in [59] that the optimal M for (47) satisfies the

following equation:

(M − 1)Ps + µMPw = 0 (48)

where µ (µ ≥ 0) is the Lagrange multiplier (also named as the controlling factor in our paper).
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From (48), the CRM can be expressed as

M =
Ps

Ps + µPw
=

ξ

ξ + µ
(49)

It should be noted that due to the unknown SNR ξ, the controlling factor µ is to be determined.

In other words, µ can be viewed as a function of the local SNR or ξ in dB. Using (49) into (46),

the speech and noise distortions can be rewritten as,

ds = (M − 1)2 · Ps =

(
µ

ξ + µ

)2

· Ps

dw = M2 · Pw =

(
ξ

ξ + µ

)2

· Pw (50)

By adaptively adjusting the value of µ for each T-F unit, our CRM can balance the trade-off

between the speech and noise distortions. For example, we would like to set a small value of µ

for the speech dominant unit, in order to minimize the speech distortion and conserve the speech

information; while for the noise dominant unit, a large value of µ is chosen to remove the noise as

much as possible. As such, we propose the following empirical expression for µ:

µ =


µ0 − SNR/s , Sl ≤ SNR ≤ Su

µmin , SNR > Su

µmax , SNR < Sl

(51)

where SNR = 10 log10 ξ, µmax and µmin are the maximum and minimum values of µ, respectively,

Sl and Su are the lower and upper bounds of the local SNR, respectively, and µ0 and s are constants

related to µmax and µmin.

5.2.2 Proposed System with CRM

The proposed system is made of two stages: the off-line training stage and the on-line enhancement

stage. In the training stage, a DNN is employed to learn the mapping between the noisy acoustic
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features and the reference CRM computed from speech databases. In the enhancement stage, given

a new noisy speech, its features are extracted and sent to the well-trained DNN to obtain the CRM

estimate, which is then applied to obtain the enhanced magnitude. Finally, the enhanced speech

is reconstructed with the enhanced magnitude and noisy phase. The main steps involved in the

proposed SE system are explained below.

DNN-Based CRM Estimation

In [82], the authors have investigated several acoustic features are investigated for supervised mask

estimation and verified that using the feature set, which contains AMS, RASTA-PLP, MFCC, and

GFCC, can obtain the best performance. Since these features lie in different ranges, normalization

is required to scale the input features for achieving better results. Moreover, to make use of the

temporal information of the speech, the features of two adjacent time frames are incorporated with

the current frame to form a input feature set.

The architecture adopted is five-layer FNN that includes an input layer, an output layer and

three hidden layers with 1024 units in each layer. We employ the ReLU as activation function in

the hidden layers, and employ the linear function in the output layer.

To learn the weights and biases in the network, the famous back propagation is adopted to

update the parameters in the training process. Ideally, the model parameters are trained to minimize

the cost function J , which is defined as the mean square error between the reference and the

estimated CRM.

J =
1

2L

L∑
l=1

K∑
k=1

(
M̂(k, l)−M(k, l)

)2
(52)

where L denotes the total number of speech frames.
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Waveform Reconstruction

In the enhancement stage, the estimated CRM is first output by the well-trained DNN. Afterwards,

we apply the estimated CRM to the noisy magnitude spectrum to obtain the estimated magnitude.

The enhanced speech spectrum is then reconstructed with the estimated magnitude Ŝ(k, l) and the

noisy phase φy(k, l) as Ŝ(k, l) = |Ŝ(k, l)|ejφy(k,l). Finally, the enhanced speech ŝ(n) is obtained

by performing the inverse STFT of Ŝ(k, l).

5.3 Extension of CRM for Complex Spectrogram Estimation

As explained in Section 1.3.2, phase processing has attracted more and more interests in SE. In

[57], the authors proposed a complex spectrogram estimation system, which employs a multi-

objective DNN to jointly estimate the mask: IRM, and the phase derivative: IFD. The estimated

mask has two usages: estimating the clean magnitude and guiding the IFD in the phase reconstruc-

tion. To extend CRM for complex spectrogram estimation, we propose to updating the training

target of the system in [57] as shown in Fig. 22. More specifically, we substitute the IRM with

our proposed CRM, and investigate two phase derivatives: IFD and GD. Then, we evaluate the

performance of the modified complex spectrogram estimation system under various noisy condi-

tions. Since the procedure of DNN-based estimation and the magnitude processing are similar as

presented in Section 5.2.2, the remaining of this section will focus on the explanation of phase

reconstruction.

As Fig.23 (b) depicts, the phase spectrogram fluctuates rapidly along the time and frequency

axes in contrast to the magnitude spectrogram, and the values of the phase are uniformly distributed

due to phase wrapping [144]. The irregularities of the phase spectrogram cause difficulties in

phase-aware enhancement by DNN-based approach. To overcome this barrier, a highly-structured

new target derived from the phase is strongly required.
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Figure 23: Spectrogram plot of 3 seconds clean speech with sampling frequency 8 KHz, (a) Mag-
nitude, (b) Phase, (c) IFD, (d) GD

approximated by the phase difference between two successive units:

IF(k, l) = princ {φ(k + 1, l)− φ(k, l)} (53)

where the function princ{·} denotes the principal value operator, which projects the phase differ-

ence onto [−π, π). Since the IF is limited to its principle value, the wrapping effects would occur

along frequency axis. To alleviate the problem, the IFD is then adopted [145], which is given by,

IFD(k, l) = IF(k, l)− l (54)
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Basically, the IF values track the frequencies of pitch harmonic peaks and IFD magnitude de-

notes the accuracy of tracking. It is also demonstrated that IFD magnitude is inversely proportional

to the spectral magnitude [145]. Therefore, the spectrogram of IFD captures the pitch and formant

structure in a manner similar to the magnitude spectrogram. Similar findings are presented in [57],

in which the authors reconstructed the phase with the estimated IFD for SE. They also proved that

the IFD is able to be estimated with DNN, because IFD and the magnitude spectrogram have a

similar pattern, which is shown in Fig. 23 (a) and (c).

GD is the negative derivation of the spectral phase with respect to frequency. In discrete case,

GD is give by:

GD(k, l) = − [φ(k, l + 1)− φ(k, l)] (55)

The GD can also be computed from the signal as in [146] using,

GD(k, l) =
SR(k, l)XR(k, l) + SI(k, l)XI(k, l)

|S(k, l)|2
(56)

where the subscripts R and I denote the RI parts of the Fourier transform. S(k, l) and X(k, l)

are the Fourier transform of s(t) and t(t), respectively. In [146], the authors demonstrated that

the GD function behaves like a squared magnitude response at the resonance frequency. Similar

structures can also be found by comparing (a) and (d) in Fig.23. Moreover, the high-resolution

property discussed in [147] reveals that the GD function has a higher resolving power compared

to the magnitude spectrum, i.e., the formants are resolved better in the group delay spectrum when

compared to the magnitude or linear prediction spectrum. Based on this finding, we infer that GD

can also be employed as a training target of DNN-based SE, just like the widely-adopted targets:

magnitude or its variants.

5.3.2 Phase Reconstruction

Phase reconstruction is performed after obtaining the estimation phase derivatives by the well-

trained DNN. Since the estimated phase derivatives are only the difference between the T-F units
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of the phase spectrogram along the time or frequency axis. Therefore, appropriate initial phase

estimates in some T-F units is required to recover the phase spectrogram. Based on the initial

estimates, the entire phase spectrogram can be reconstructed along the time and frequency axes

with the estimated phase derivatives.

1) Initial phase estimation: It has been demonstrated that when the clean speech power is much

larger than the noise power, the noisy phase is approximately equal to the clean phase. In other

words, in high local SNR regions, using the noisy phases as initial estimate has a higher reliability.

As suggested in [57], we also adopt the noisy phase spectrogram as the initial estimate of the clean

phase spectrogram,

φ̂init (k, l) = φy (k, l) ,∀k,∀l. (57)

Then, we use the local SNR of each T-F unit as index to determine the reliability of the initial

estimate, where the local SNR is given by the estimated mask M̂(k, l).

2) Phase reconstruction with GD: At first, we must obtain the estimated GD by denormalizing

the normalized GD. Then, the phase can be estimated by using the initial phase estimate together

with the GD between the initial estimate and the target phase. For each T-F unit, we generate

(2Ns + 1) frame-conditioned phase estimates, which is given by:

φ̂i (k, l) =


φ̂init (k, l+i)+

i−1∑
n=0

ĜD (k, l+n) , i 6= 0

φ̂init (k, l+i) , i = 0

,

∀ −Ns ≤ i ≤ Ns

(58)

where i is the frame distance between an initialized T-F unit and the target T-F unit.

The final reconstructed phase of the (k, l)− th unit is obtained by integrating the frame-

conditioned estimates with the weighted sum linear interpolation:

φ̂s (k, l) =

∑Ns

i=−Ns

(
s(i)M̂ (k, l + i)

)
φ̄i (k, l)∑Ns

i=−Ns
s(i)M̂ (k, l + i)

(59)
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where the φ̄i (k, l) is the smooth version of φ̂i (k, l), which is given by,

φ̄i (k, l) = unwrap(φ̂i (k, l) |φ̂i (k, l − 1)) (60)

and s(i) denotes the proximity weight for φ̄i (k, l), which is inversely proportional to the absolute

value of the frame distance, that is, the phase estimate φ̄i (k, l) with a larger distance |i| is assigned

to a smaller proximity weight s(i), and has a less effect to the final reconstructed phase. In our

paper, we also set s(i) to be the Hamming window as mentioned in [57].

3) Phase reconstruction with IFD: First of all, we calculate the estimated IF from the estimated

normalized IFD.

Then, phase reconstruction with IF is similar to the process with GD. The only difference is

that the former is reconstructed along with time axis, while the latter is along frequency axis. We

generate the (2Ns + 1) frame-conditioned phase estimates for the (k, l)− th T-F unit, which is

given by:

φ̂i (k, l) =


φ̂init (k+i, l)+

i−1∑
n=0

ÎF (k+n, l) , i 6= 0

φ̂init (k+i, l) , i = 0

,

∀ −Ns ≤ i ≤ Ns

(61)

with i denoting the frame distance.

Again, the phase reconstruction is considered as an integration of the frame-conditioned esti-

mates using the weighted sum linear interpolation:

φ̂s (k, l) =

∑Ns

i=−Ns

(
s(i)M̂ (k+i, l)

)
φ̄i (k, l)∑Ns

i=−Ns
s(i)M̂ (k+i, l)

(62)

with the smooth version φ̂i (k, l) given by

φ̄i (k, l) = unwrap(φ̂i (k, l) |φ̂i (k − 1, l)) (63)
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Unlike the work [57], which performs phase reconstruction with IFD only, our reconstruction is

conducted with two phase derivative: IFD or GD. Finally, the estimated clean speech spectrogram

can be obtained by

Ŝ (k, l) =
∣∣∣Ŝ (k, l))

∣∣∣ ejφ̂s(k,l) (64)

where the estimated magnitude is given by masking the noisy magnitude with the estimated mask

M̂ (k, l) from our DNN: ∣∣∣Ŝ (k, l)
∣∣∣ = M̂ (k, l) |Y (k, l))| (65)

The enhanced speech is then achieved by conducting the inverse STFT:

ŝ (n) = iSTFT{Ŝ (k, l)} (66)

5.4 Experimental Results

5.4.1 Experimental Setup

The clean speech database used in our experiment is the TIMIT corpus [100], in which 731 ut-

terances from different female and male speakers are used for the training and 87 utterances used

for testing. Several types of noises are picked from the NOISEX-92 corpus [108], in which four

types (babble, white, buccaneer1, factory) are regarded as seen noises, and the other four (pink,

buccaneer2, street, hfchannel) as unseen noises. In the training stage, we mix the clean training

speeches with seen noises at four levels (-3dB, 0dB, 3dB, 6dB) of signal-to-noise rates (SNRs) to

obtain 11696 noisy speeches. In the enhancement stage, both seen noises and unseen noises are

mixed with clean testing speeches at the above four SNR levels. The number of noisy utterances

used in enhancement stage is 1392 for both seen noises and unseen noises. The sampling rate of

all speech utterances and noises is set to 16 kHz. Hamming window is used in framing and the

window size of STFT is 320 with 75% overlap. To assess the enhancement performance, three

objective metrics are adopted in our experiment: PSEQ, STOI and SDR. For all metrics, a larger
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score indicates a better performance.

5.4.2 Selection of Controlling Factor

In this section, we investigate the enhancement performance when setting different values for the

controlling factor µ. Firstly, we consider the following three types of lower and upper bounds for

the local SNR as given in Table 8. Moreover, we set µmin = 1, µmax = 10 and s = 25/(µmax −

µmin). A T-F unit will be treated as a noise dominant unit when the local SNR is under Sl. In

contrast, a T-F unit is regarded as a speech dominant unit when the local SNR is above Su.

Table 8: Different settings of lower and upper bounds
Type Sl (dB) Su (dB) µ0

#1 -15 10 (3µmin + 2µmax)/5

#2 -10 15 (2µmin + 3µmax)/5

#3 -5 20 (µmin + 4µmax)/5

#4 0 25 µmax

As shown in Table 9, if Sl and Su are very small, the noise dominant unit would be falsely

classified to speech dominant unit, the residual noise would be fully removed and thus the scores

of SDR and PESQ will decrease. On the contrary, if the Sl and Su are too large, the speech

unit with low local SNR will be mistakenly considered as noise, which could suppress the speech

information leading to a decrease of STOI score. In terms of all metrics, the optimal case is type 3.

The corresponding improvement of PESQ and SDR scores is significant, while the STOI score has

no obvious degradation, which indicates that it removes the background noise quite well without

extra speech distortion. For type 4, although it has the best PESQ and SDR scores, this setting is

not perfect as the decrease of STOI score shows that the speech information is damaged compared

with other settings. Secondly, we also investigate the different settings for µmin (varies from 0.5 to

1.5) and µmax (varies from 5 to 15). However, the objective results of the enhanced speech do not

change significantly.

106



Table 9: Objective results with different controlling factors (on seen noise)

PESQ STOI (%) SDR

Methods -3dB 0dB 3dB 6dB -3dB 0dB 3dB 6dB -3dB 0dB 3dB 6dB
Noisy 1.35 1.54 1.75 1.97 60.57 67.54 74.47 80.86 −2.85 0.11 3.08 6.07
Type1 1.98 2.25 2.51 2.78 75.05 81.31 86.22 89.89 7.08 9.29 11.33 13.46
Type2 2.00 2.27 2.53 2.79 74.82 81.18 86.08 89.76 7.29 9.49 11.52 13.62
Type3 2.01 2.29 2.55 2.81 74.79 81.02 86.01 89.61 7.44 9.63 11.64 13.73
Type4 2.02 2.30 2.56 2.81 74.71 80.95 85.91 89.57 7.54 9.71 11.72 13.78

5.4.3 Performance Comparison

Performance evaluation includes two main parts. First, we only consider magnitude-only masking

techniques and compare our CRM with several existing masks. Second, we evaluate the complex

spectrogram estimation methods by combining mask techniques with phase reconstruction. We

adopted type 3 as the setting of the controlling factor. For fair comparison, all masks are estimated

by the DNN with the same input features and configurations. As the difference between any two

comparison methods is that the training targets of the DNN. Hence, we use the targets’ names to

represent each method in this section.

Table 10 illustrates the comparison masks as well as their definitions. Note that the first four

masks (IRM, IAM, ORM and proposed CRM) only modify the magnitude spectrogram, while the

cIRM enhances the complex spectrogram with Yr and Yi denote the RI parts of noisy speech, Sr

and Si the RI parts of clean speech, respectively.

Table 10: Comparison masks and definitions

Mask Definition

IRM [36]
√
Ps/(Ps + Pw)

IAM [126] |S|/|Y |

OPM [138] (Py + Ps − Pw)/2Py

CRM (proposed) Ps/(Ps + µPw)

cIRM [53] (YrSr + YiSi)/(Y
2
r + Y 2

i ) + i(YrSi − YiSr)/(Y 2
r + Y 2

i )
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For the phase reconstruction based complex spectrogram estimation, we consider four methods,

whose names are represented by mask + phase derivative. They are IRM+IFD [57], and proposed

IRM+GD, CRM+IFD, CRM+GD. The mask is used for magnitude estimation, while the phase

derivative is for phase reconstruction.

Seen noise

Table 11 gives the average objective score on seen noise. First, we compare proposed CRM with

other traditional masking techniques. Obviously, the enhanced speech from CRM reaches the high-

est score under the metrics of PESQ and SDR as compared to IRM, IAM and OPM. More specif-

ically, the proposed method has a large improvement on SDR scores, which means our enhanced

speech has a higher SNR. The improvement indicates that our system strengthens the suppression

of noise in noise dominant units using a large controlling factor. Our enhanced speech also ob-

tains the best PESQ score, which reflects a good perceptual speech quality. The improvement of

SDR and PESQ demonstrates that our CRM is better at noise suppression, especially in the noise

dominant regions. Compared with the SDR and PESQ, the improvement of STOI is not that ob-

vious. This is because the STOI algorithm mainly focuses on evaluating the intelligibility of the

high-energy speech frames, and our CRM employs a small value of µ in speech dominant units.

In this case, the value of our CRM is similar to those of other masks and thus the STOI scores are

close for all tested methods. In terms of three metrics, we can conclude that our proposed CRM

removes more residual noise while minimizing the speech distortion.

Furthermore, by comparing IRM with IRM+IFD and IRM+GD, we can clearly find that the

methods with phase reconstruction show a considerable advantage over the magnitude-only method.

Similar results can be found when comparing CRM with CRM+IFD and CRM+GD. However, the

SDR score of CRM is better than the others in this group. Note that a multi-objective DNN is

trained to estimate the mask and phase derivative simultaneously, with the assumption that these

two training targets share similar structures. As CRM is a modified type of IRM, whose struc-

ture is less similar to the structure of phase derivative. Thus, the joint estimation of CRM and
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Table 11: Objective scores of different methods on seen noise

PESQ STOI (%) SDR

Methods -3dB 0dB 3dB 6dB -3dB 0dB 3dB 6dB -3dB 0dB 3dB 6dB
Noisy 1.35 1.54 1.75 1.97 60.57 67.54 74.47 80.86 −2.85 0.11 3.08 6.07
IRM 1.97 2.23 2.47 2.70 74.71 81.01 85.96 89.66 5.72 8.03 10.19 12.45
IAM 1.98 2.24 2.47 2.71 75.18 81.98 86.50 89.94 5.89 8.18 10.33 12.55
OPM 2.00 2.27 2.50 2.74 75.11 81.13 85.87 89.57 5.71 8.01 10.15 12.43
cIRM 2.02 2.28 2.54 2.78 77.07 83.08 87.69 91.03 6.71 8.97 11.01 13.07

IRM+IFD 2.01 2.27 2.52 2.75 76.50 82.34 86.69 90.35 6.08 8.39 10.53 12.68
IRM+GD 2.02 2.28 2.53 2.75 77.04 82.73 87.05 90.36 5.90 8.18 10.25 12.39

CRM 2.01 2.29 2.55 2.81 74.79 81.02 86.01 89.61 7.44 9.63 11.64 13.73
CRM+IFD 2.02 2.30 2.55 2.79 77.11 83.15 87.72 91.04 6.74 9.02 11.07 13.04
CRM+GD 2.02 2.29 2.54 2.78 77.32 83.25 87.67 90.92 6.42 8.65 10.65 12.60

the phase derivatives is not as accurate as the joint estimation of IRM and the phase derivatives.

Therefore, although applying phase reconstruction to constrained masking technique has better ob-

jective scores in terms of PESQ and STOI, the improvement is not that significant and even suffers

a decrease of SDR score. We can further understand the importance of complex spectrogram es-

timation by comparing the cIRM with the magnitude-only masks, whose objective scores are also

better than the scores of IRM, IAM and OPM. Moreover, we notice that the improvement of STOI

scores is the most significant when comparing the complex spectrogram estimation and magnitude-

only enhancement, which indicates that the phase processing focuses more on increasing speech

intelligibility.

Finally, we compare the performance of different complex spectrogram estimation methods.

It should be pointed out that cIRM restores the complex spectrogram with the estimated RI spec-

trograms, while the mask+phase derivative method synthesizes the complex spectrogram with the

estimated magnitude and reconstructed phase. The performance of cIRM is slightly better than

IRM+IFD and IRM+GD, partly because IRM+IFD and IRM+GD still use noisy phase as the ini-

tial phase in the phase reconstruction. The CRM+IFD and CRM+GD achieve the best scores

among all tested methods, which demonstrates the success of extending constrained masking to

complex spectrogram.
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Unseen noise

Table 12 shows the average objective scores on unseen noise. In general, our CRM+IFD still

outperforms the other reference methods even under the unseen noise environment. However,

compared to seen noise, the improvements of the objective scores on the enhanced speech de-

crease a bit, due to the increasing prediction error of masks. This result is not surprising since

the mismatch in the types of the noises between the enhancement stage and the training stage

makes the estimation of mask and phase derivative with DNN more difficult. Therefore, to im-

prove the generalization capability under unmatched environments continues to be an important

task for DNN-based methods. Comparing the results of complex spectrogram estimation methods

on seen and unseen noises. We notice that the performance degradation of CRM+GD is larger than

that of CRM+IFD. Similar results can be found with IRM+GD and IRM+IFD. This phenomenon

indicates that the IFD is more robust under different noise conditions.

Table 12: Objective scores of different methods on unseen noise

PESQ STOI (%) SDR

Methods -3dB 0dB 3dB 6dB -3dB 0dB 3dB 6dB -3dB 0dB 3dB 6dB
Noisy 1.34 1.52 1.73 1.94 62.61 69.46 76.20 82.69 −2.84 0.10 3.07 6.06
IRM 1.73 1.97 2.19 2.43 71.10 77.94 83.41 88.23 2.54 5.31 8.03 10.77
IAM 1.74 1.98 2.20 2.44 71.98 78.77 84.13 88.69 2.68 5.49 8.23 10.94
OPM 1.76 1.99 2.21 2.45 70.86 77.75 83.31 88.18 2.42 5.20 7.93 10.70
cIRM 1.77 2.00 2.23 2.44 71.99 79.58 85.12 89.24 3.61 6.42 8.82 11.46

IRM+IFD 1.78 2.02 2.23 2.47 72.77 79.47 84.73 89.20 2.92 5.73 8.41 11.04
IRM+GD 1.76 2.00 2.22 2.46 72.65 79.25 84.41 88.89 2.67 5.46 8.12 10.74

CRM 1.77 2.01 2.23 2.47 70.51 77.52 83.26 88.03 3.92 6.72 9.39 12.01
CRM+IFD 1.80 2.06 2.28 2.52 74.20 81.02 86.07 90.14 3.79 6.59 9.21 11.70
CRM+GD 1.78 2.02 2.25 2.49 73.73 80.35 85.38 89.57 3.26 6.05 8.66 11.19

5.4.4 Spectrograms of Enhanced Speeches

To better illustrate the benefits of constrained masking and phase reconstruction, the STFT spec-

trograms of the enhanced speeches from different methods are plotted and compared. The selected
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noisy speech is a mixture of clean speech and buccaneer noise at 0 dB. The whole STFT spectro-

gram is displayed in Fig. 24, from which we can observe the amount of the residual noise and the

degree of speech distortion. Fig. 25 is obtained by zooming in the whole spectrogram and shows a

part of the spectrogram with a time duration of 0.07 s to 0.15 s and a frequency range of 0 kHz to

4 kHz.

Figure 24: Spectrograms of the clean, noisy and enhanced speech signals for different methods
(Whole spectrogram)

As Fig. 24 shows, the spectrogram of CRM is much clear than that of IRM, especially in the
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unvoiced frames. This indicates the enhanced speech from constrained masking technique contains

less residual noise. Besides, the voiced frames of CRM-enhanced speech do not suffer notable

distortion, which reveals the CRM’s capability of controlling the trade-off between residual noise

and speech distortion. We can also find that the amount of the residual noise in the spectrograms

of CRM+IFD and CRM+GD is larger than that of CRM, this explains why CRM obtains better a

SDR score than CRM+IFD and CRM+GD in Table 11 and 12.

Fig. 25 takes a closer look at the harmonic structures of the enhanced speeches. We focus

on comparing the region in the red block of each enhanced speech and discover that the spectro-

grams with phase reconstruction (IRM+IFD, IRM+GD, CRM+IFD and CRM+GD) preserve better

harmonic structures than the methods without phase reconstruction (IRM and CRM). Moreover,

although the cIRM is also a method that jointly enhances the magnitude and phase spectra, its

spectrogram is not as good as the spectrograms with phase reconstruction.

5.5 Conclusion

In this chapter, we have focused on improving the traditional T-F masking techniques for speech

enhancement. First, we have proposed a new type of mask: CRM, by introducing a controlling

factor to better adjust the trade-off between the speech distortion and residual noise in the enhanced

speech. An FNN is then trained to estimate CRM from noisy feature set. The enhanced speech

is synthesized with the enhanced magnitude processed by CRM and the noisy phase. Next, we

have extended the CRM to the complex spectrogram estimation, where the enhanced magnitude

spectrogram is obtained by applying the estimated CRM to the noisy magnitude spectrogram, and

the estimated phase spectrogram is reconstructed with the noisy phase spectrogram and estimated

phase derivatives. Performance evaluation demonstrates that the enhanced speech processed by the

proposed CRM removes more background noise while does not suffer significant speech distortion

as compared to existing mask techniques. Moreover, the performance has been further improved

after extending CRM to complex spectrogram estimation. Objective results show that the speech
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Figure 25: Spectrograms of the clean, noisy and enhanced speech signals for different methods
(Local region)

intelligibility could be improved a lot with the phase reconstruction and the STFT spectrogram of

the enhanced speech also exhibits a better harmonic structure.
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

Thanks to its powerful learning capability, the DNN has been applied to SE in various ways and

is still an ongoing area of research. In this thesis, we targeted the DNN-based joint enhancement

of both magnitude and phase spectra from two aspects, i.e., time domain and T-F domain. In the

time domain, we have developed several SE systems with DNN-augmented KF, whereas in the T-F

domain, we aim at the modification of masking technique and then extend it to complex spectro-

gram estimation. Within each category, we proposed a few methods that resulted in performance

improvements in various noisy conditions with respect to the most recent state-of-the-art variants.

In Chapter 3, we have presented a few novel systems based on basic KF. First, a DNN-

augmented basic KF is proposed, where the DNN is adopted in parameter estimation to learn

the LPCs variants: LSFs, from the feature set of the noisy speech. Then the basic KF with the

estimated parameters is applied to the noisy speech for denoising. Experiments demonstrate that

the DNN-augmented basic KF outperforms the traditional iterative KF. Moreover, by conducting

extensive experiments under seen and unseen noises, we have observed that the DNN-augmented

basic KF has a better generalization capability than the traditional DNN-based methods, as our
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system takes advantages of both supervised DNN-based technique and unsupervised statistical fil-

tering. More specifically, the DNN-based parameter estimation offers more accurate parameters for

Kalman filtering, whereas the denoising process with Kalman filtering is robust to different types

of noises. Next, to further alleviate the degradation in HF component of the enhanced speech,

we have implemented a DNN-based bandwidth extension procedure to the filtered speech for HF

component restoration. Objective assessment shows improved speech quality resulting from the

implementation of the restoration scheme. Finally, as an extension of the DNN-augmented ba-

sic KF, a hybrid system that combines DNN-based speech reconstruction and Kalman filtering is

designed. The two-level processes in the hybrid system are performed in time and T-F domain,

respectively, to make full use of the advantages in both domains. Performance assessment of the

hybrid system reveals the improvement over the existing DNN-based methods.

Regarding the advanced KF in Chapter 4, we mainly focused on introducing DNN-based pa-

rameter estimation to two popular KFs: subband KF and colored-noise KF, respectively. The

former divides the noisy speech into several subband speeches and performs Kalman filtering with

each subband speech. The latter considers both clean speech and noise as AR processes, and re-

moves the noise within colored-noise KF equations. In subband KF, an FNN is trained to estimate

the LSFs of clean subband speech model. Whereas in colored-noise KF, both FNN and LSTM

are used to estimate the LSFs of clean speech model and the LSFs of noise model simultaneously.

A post subtraction is further applied to the colored-noise KF to remove the residual noise in the

enhanced speech. Performance evaluation reveals that the proposed DNN-augmented advanced

KFs outperform several traditional KF algorithms and existing DNN-based methods. Moreover,

the DNN-augmented advanced KFs significantly alleviate the HF component degradation of the

enhanced speech as compared to their counterpart: DNN-augmented basic KF.

In Chapter 5, the speech enhancement in the STFT domain using widespread T-F masking

techniques is considered. First, we have derived a new type of mask: CRM, by introducing a

spectral constraint to traditional T-F mask. The proposed mask aims to minimize the speech dis-

tortion while keeping the power of residual noise under a certain threshold. The CRM is estimated
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with an FNN trained on the noisy feature set and is then applied to the magnitude spectrogram for

denoising. It is shown that the CRM better controls the trade-off between speech distortion and

residual noise, thus achieves an improved performance in comparison to several existing masks.

Next, we have extended the CRM to jointly enhance the magnitude and phase spectra, where the

magnitude spectrogram is still denoised by the CRM, while the phase spectrogram is reconstructed

using the noisy phase and the phase derivatives with the guide of CRM. Experiments demonstrate

that the enhanced speech from the proposed complex spectrogram enhancement method has higher

objective scores in terms of speech quality and intelligibility than that obtained by magnitude only

enhancement.

6.2 Scope for the Further Work

Based on the literature review, technical contributions and experimental results made in this thesis,

the following topics can be considered as prospective directions for future research.

• Implementation with advanced DNN: Most of the DNN structures in our proposed SE

systems are the FNN or LSTM, which are not the most state-of-the-art ones. In Chapter

4, we have shown that LSTM outperforms FNN in the LSFs estimation for colored-noise

KF, which proved the superiority of LSTM in modelling the temporal dependency of the

sequence signals. However, one limitation of LSTM is the long processing time due to its

expensive computational complexity. To improve the estimation accuracy of the DNN in

our proposed DNN-based SE systems, more advanced DNNs, such as GAN or Transformer,

could be adopted to substitute the FNN or LSTM. The GAN is able to generate more ac-

curate data with the mini-max training scheme, while Transformer is a new structure which

outperforms LSTM due to the reduced training time benefiting from parallel computation

and the improved performance from processing long dependencies.

• DNN-augmented modulation-domain KF: The KF used in our SE system is time domain

KF. Recently, several works have been proposed which apply the modulation-domain KF to
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SE [26]. The modulation domain views the magnitude spectrum as a series of N modulating

signals that span across time. Each modulating signal is then processed using a Kalman fil-

ter. The enhanced speech is obtained by synthesizing the processed magnitude spectrogram

with the noisy phase spectrogram. Experiments in [26] demonstrate that the enhancement

performance with modulation-domain KF is better than the one with time domain KF, if the

ideal parameters are available for Kalman filtering. However, the system suffers significant

performance degradation in practice, since the authors failed to provide accurate estimated

parameters for KF with an iterative estimation algorithm. In our further work, we plan to

apply the DNN-based parameter estimation into modulation-domain KF and compare its

enhancement performance with the DNN-augmented time domain KF.

• Perceptual ratio mask: In Chapter 5, we have proposed the CRM to better control the

trade-off between speech distortion and residual noise. However, the selection of the con-

trolling factor is a difficult task in practice and does not take the perceptual properties into

consideration. Inspired by the perceptual weighting filter in code-excited linear prediction

(CELP) [148], which is originally used to shape the quantization noise by exploiting the

masking properties of human ear, researchers have also proposed several algorithms to con-

trol the residual noise level by incorporating the perceptual weighting in speech enhancement

[149, 150]. Therefore, we will propose a novel perceptual ratio mask for DNN-based speech

enhancement. Unlike the traditional masks, which simply set large or small values for dif-

ferent T-F units according to the speech energy level in the noisy speech spectrum, our PRM

makes use of the masking principle by incorporating a perceptual weighting filter in mask

computation, which adaptively adjusts the value of PRM for each unit according to the per-

ceptual weighting rules. As such, the enhanced speech is expected to keep the residual noise

less audible while bringing no extra distortion to speech information.

• Comparison between proposed time domain SE and T-F domain SE: In this thesis, we

have proposed two classes of methods incorporating phase information, that is, time-domain
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KF-based SE systems and T-F domain masking based algorithms. The proposed methods

show better performance over several SE algorithms existing in literature. However, the

comparison between the two proposed classes has not been investigated. Therefore, our next

work is to further investigate the time domain Kalman filtering with the T-F masking, in

order to understand the benefits and limitations of each method and decide what method has

overall minimum computational cost and best fits to a given specific application.
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