17,367 research outputs found

    Living Through the Looking Glass

    Full text link
    In Lewis Carrollā€™s (1871, 1992) well-known poem from Through the Looking Glass, ā€œJabberwockyā€, nonsense words combine with known English words to create a whimsical effect appealing to readers of all ages. The words seem to gambol and dance in the ear as one imagines the valiant son with the bloody ā€œvorpal swordā€ in one hand and the head of the monstrous Jabberwock in the other as he goes ā€œgalumphingā€ back to his father (Carroll,1871, 1992). Alice senses there is meaning in the poem but confesses that she cannot quite understand it. She exclaims, ā€œā€˜Somehow it seems to fill my head with ideas ā€“only I donā€™t exactly know what they are! However, somebody killed something: thatā€™s clear, at any rateā€“ā€™ā€ (p. 182). Figuring out what words ā€œmeanā€, or the interpretation of text, is a complex and contested undertaking. Like Alice, readers often sense that they grasp the meaning but certainty eludes them. Determining the meaning of a text or ā€œcomprehensionā€ is a crucial issue for teachers at all levels. Although reading theorists fundamentally disagree on how reading should be taught, comprehension lies at the heart of reading instruction, regardless of which approach to reading one favors. Born just after 1900, Louise M. Rosenblatt, literary critic and English educator, has powerfully influenced reading instruction for six decades. The purpose of this paper is to summarize Louise Rosenblattā€™s transactional theory of reader response, to evaluate her work from a biblically informed frame of reference and to suggest practical implications for Christian teachers

    Pseudo-random Sequences Generated by Cellular Automata

    Get PDF
    International audienceGeneration of pseudo random sequences by cellular automata, as well as by hybrid cellular automata is surveyed. An application to the fast evaluation and FPGA implementation of some classes of boolean functions is sketched out

    Trends in qualitative research in language teaching since 2000

    Get PDF
    This paper reviews developments in qualitative research in language teaching since the year 2000, focusing on its contributions to the field and identifying issues that emerge. Its aims are to identify those areas in language teaching where qualitative research has the greatest potential and indicate what needs to be done to further improve the quality of its contribution. The paper begins by highlighting current trends and debates in the general area of qualitative research and offering a working definition of the term. At its core is an overview of developments in the new millennium based on the analysis of papers published in 15 journals related to the field of language teaching and a more detailed description, drawn from a range of sources, of exemplary contributions during that period. Issues of quality are also considered, using illustrative cases to point to aspects of published research that deserve closer attention in future work, and key publications on qualitative research practice are reviewed

    Does gender matter? A cross-national investigation of primary class-room discipline.

    Get PDF
    Ā© 2018 Informa UK Limited, trading as Taylor & Francis GroupFewer than 15% of primary school teachers in both Germany and the UK are male. With the on-going international debate about educational performance highlighting the widening gender achievement gap between girl and boy pupils, the demand for more male teachers has become prevalent in educational discourse. Concerns have frequently been raised about the underachievement of boys, with claims that the lack of male ā€˜role modelsā€™ in schools has an adverse effect on boysā€™ academic motivation and engagement. Although previous research has examined ā€˜teachingā€™ as institutional talk, menā€™s linguistic behaviour in the classroom remains largely ignored, especially in regard to enacting discipline. Using empirical spoken data collected from four primary school classrooms in both the UK and in Germany, this paper examines the linguistic discipline strategies of eight male and eight female teachers using Interactional Sociolinguistics to address the question, does teacher gender matter?Peer reviewedFinal Accepted Versio

    Inter-Organizational Learning and Collective Memory in Small Firms Clusters: an Agent-Based Approach

    Get PDF
    Literature about Industrial Districts has largely emphasized the importance of both economic and social factors in determining the competitiveness of these particular firms\' clusters. For thirty years, the Industrial District productive and organizational model represented an alternative to the integrated model of fordist enterprise. Nowadays, the district model suffers from competitive gaps, largely due to the increase of competitive pressure of globalization. This work aims to analyze, through an agent-based simulation model, the influence of informal socio-cognitive coordination mechanisms on district\'s performances, in relation to different competitive scenarios. The agent-based simulation approach is particularly fit for this purpose as it is able to represent the Industrial District\'s complexity. Furthermore, it permits to develop dynamic analysis of district\'s performances according to different types of environment evolution. The results of this work question the widespread opinion that cooperative districts can answer to environmental changes more effectively that non-cooperative ones. In fact, the results of simulations show that, in the presence of turbulent scenarios, the best performer districts are those in which cooperation and competition, trust and opportunism balance out.Firm Networks, Collective Memory, Agent Based Models, Uncertainty

    Pseudorandom sequence generation using binary cellular automata

    Get PDF
    Tezin basılısı Ä°stanbul Şehir Ɯniversitesi KĆ¼tĆ¼phanesi'ndedir.Random numbers are an integral part of many applications from computer simulations, gaming, security protocols to the practices of applied mathematics and physics. As randomness plays more critical roles, cheap and fast generation methods are becoming a point of interest for both scientiļ¬c and technological use. Cellular Automata (CA) is a class of functions which attracts attention mostly due to the potential it holds in modeling complex phenomena in nature along with its discreteness and simplicity. Several studies are available in the literature expressing its potentiality for generating randomness and presenting its advantages over commonly used random number generators. Most of the researches in the CA ļ¬eld focus on one-dimensional 3-input CA rules. In this study, we perform an exhaustive search over the set of 5-input CA to ļ¬nd out the rules with high randomness quality. As the measure of quality, the outcomes of NIST Statistical Test Suite are used. Since the set of 5-input CA rules is very large (including more than 4.2 billions of rules), they are eliminated by discarding poor-quality rules before testing. In the literature, generally entropy is used as the elimination criterion, but we preferred mutual information. The main motive behind that choice is to ļ¬nd out a metric for elimination which is directly computed on the truth table of the CA rule instead of the generated sequence. As the test results collected on 3- and 4-input CA indicate, all rules with very good statistical performance have zero mutual information. By exploiting this observation, we limit the set to be tested to the rules with zero mutual information. The reasons and consequences of this choice are discussed. In total, more than 248 millions of rules are tested. Among them, 120 rules show out- standing performance with all attempted neighborhood schemes. Along with these tests, one of them is subjected to a more detailed testing and test results are included. Keywords: Cellular Automata, Pseudorandom Number Generators, Randomness TestsContents Declaration of Authorship ii Abstract iii Ɩz iv Acknowledgments v List of Figures ix List of Tables x 1 Introduction 1 2 Random Number Sequences 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Theoretical Approaches to Randomness . . . . . . . . . . . . . . . . . . . 5 2.2.1 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 Computability Theory . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Random Number Generator Classiļ¬cation . . . . . . . . . . . . . . . . . . 7 2.3.1 Physical TRNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Non-Physical TRNGs . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.3 Pseudorandom Number Generators . . . . . . . . . . . . . . . . . . 10 2.3.3.1 Generic Design of Pseudorandom Number Generators . . 10 2.3.3.2 Cryptographically Secure Pseudorandom Number Gener- ators . . . . . . . . . . . . . .11 2.3.4 Hybrid Random Number Generators . . . . . . . . . . . . . . . . . 13 2.4 A Comparison between True and Pseudo RNGs . . . . . . . . . . . . . . . 14 2.5 General Requirements on Random Number Sequences . . . . . . . . . . . 14 2.6 Evaluation Criteria of PRNGs . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Statistical Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.8 NIST Test Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8.1 Hypothetical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8.2 Tests in NIST Test Suite . . . . . . . . . . . . . . . . . . . . . . . . 20 2.8.2.1 Frequency Test . . . . . . . . . . . . . . . . . . . . . . . . 20 2.8.2.2 Block Frequency Test . . . . . . . . . . . . . . . . . . . . 20 2.8.2.3 Runs Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8.2.4 Longest Run of Ones in a Block . . . . . . . . . . . . . . 21 2.8.2.5 Binary Matrix Rank Test . . . . . . . . . . . . . . . . . . 21 2.8.2.6 Spectral Test . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.8.2.7 Non-overlapping Template Matching Test . . . . . . . . . 22 2.8.2.8 Overlapping Template Matching Test . . . . . . . . . . . 22 2.8.2.9 Universal Statistical Test . . . . . . . . . . . . . . . . . . 23 2.8.2.10 Linear Complexity Test . . . . . . . . . . . . . . . . . . . 23 2.8.2.11 Serial Test . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.8.2.12 Approximate Entropy Test . . . . . . . . . . . . . . . . . 24 2.8.2.13 Cumulative Sums Test . . . . . . . . . . . . . . . . . . . . 24 2.8.2.14 Random Excursions Test . . . . . . . . . . . . . . . . . . 24 2.8.2.15 Random Excursions Variant Test . . . . . . . . . . . . . . 25 3 Cellular Automata 26 3.1 History of Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . .26 3.1.1 von Neumannā€™s Work . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Conwayā€™s Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.3 Wolframā€™s Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Cellular Automata and the Deļ¬nitive Parameters . . . . . . . . . . . . . . 31 3.2.1 Lattice Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.2 Cell Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.3 Guiding Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.4 Neighborhood Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 A Formal Deļ¬nition of Cellular Automata . . . . . . . . . . . . . . . . . . 37 3.4 Elementary Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 Rule Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.6 Producing Randomness via Cellular Automata . . . . . . . . . . . . . . . 42 3.6.1 CA-Based PRNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6.2 Balancedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.3 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.4 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Test Results 47 4.1 Output of a Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Testing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Interpretation of the Test Results . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Rate of success over all trials . . . . . . . . . . . . . . . . . . . . . 49 4.3.2 Distribution of P-values . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 Testing over a big space of functions . . . . . . . . . . . . . . . . . . . . . 50 4.5 Our Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.6 Results and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Change in State Width . . . . . . . . . . . . . . . . . . . . . . . . 53 4.6.2 Change in Neighborhood Scheme . . . . . . . . . . . . . . . . . . . 53 4.6.3 Entropy vs. Statistical Quality . . . . . . . . . . . . . . . . . . . . 58 4.6.4 Mutual Information vs. Statistical Quality . . . . . . . . . . . . . . 60 4.6.5 Entropy vs. Mutual Information . . . . . . . . . . . . . . . . . . . 62 4.6.6 Overall Test Results of 4- and 5-input CA . . . . . . . . . . . . . . 6 4.7 The simplest rule: 1435932310 . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 Conclusion 74 A Test Results for Rule 30 and Rule 45 77 B 120 Rules with their Shortest Boolean Formulae 80 Bibliograph

    Getting in Sync: Revamping Licensure and Preparation for Teachers in Pre-K, Kindergarten and the Early Grades

    Get PDF
    Outlines the challenges in teacher preparation and licensure, with a focus on pre-K through third grade; promising practices such as increased classroom experience and selectivity; and suggestions for improving teacher preparation programs and policies

    Building Correlation Immune Functions from Sets of Mutually Orthogonal Cellular Automata

    Get PDF
    Correlation immune Boolean functions play an important role in the implementation of efficient masking countermeasures for side-channel attacks in cryptography. In this paper, we investigate a method to construct correlation immune functions through families of mutually orthogonal cellular automata (MOCA). First, we show that the orthogonal array (OA) associated to a family of MOCA can be expanded to a binary OA of strength at least 2. To prove this result, we exploit the characterization of MOCA in terms of orthogonal labelings on de Bruijn graphs. Then, we use the resulting binary OA to define the support of a second-order correlation immune function. Next, we perform some computational experiments to construct all such functions up to n=12n=12 variables, and observe that their correlation immunity order is actually greater, always at least 3. We conclude by discussing how these results open up interesting perspectives for future research, with respect to the search of new correlation-immune functions and binary orthogonal arrays
    • ā€¦
    corecore