research

Inter-Organizational Learning and Collective Memory in Small Firms Clusters: an Agent-Based Approach

Abstract

Literature about Industrial Districts has largely emphasized the importance of both economic and social factors in determining the competitiveness of these particular firms\' clusters. For thirty years, the Industrial District productive and organizational model represented an alternative to the integrated model of fordist enterprise. Nowadays, the district model suffers from competitive gaps, largely due to the increase of competitive pressure of globalization. This work aims to analyze, through an agent-based simulation model, the influence of informal socio-cognitive coordination mechanisms on district\'s performances, in relation to different competitive scenarios. The agent-based simulation approach is particularly fit for this purpose as it is able to represent the Industrial District\'s complexity. Furthermore, it permits to develop dynamic analysis of district\'s performances according to different types of environment evolution. The results of this work question the widespread opinion that cooperative districts can answer to environmental changes more effectively that non-cooperative ones. In fact, the results of simulations show that, in the presence of turbulent scenarios, the best performer districts are those in which cooperation and competition, trust and opportunism balance out.Firm Networks, Collective Memory, Agent Based Models, Uncertainty

    Similar works