5 research outputs found

    Impact of incubation conditions on protein and C-Phycocyanin recovery from Arthrospira platensis post- pulsed electric field treatment

    Get PDF
    Pulsed electric field (PEF) was conducted for the extraction of proteins/C-Phycocyanins from Arthrospira platensis. The cyanobacterial suspension was treated with 1 μs long pulses at an electric field strength of 40 kV·cm−1 and a treatment energy of 114 kJ·kgsus−1 and 56 kJ·kgsus−1. For benchmarking, additional biomass was processed by high pressure homogenization. Homogeneity of the suspension prior to PEF-treatment influenced the protein/C-phycocyanin extraction efficiency. Stability of C-Phycocyanin during post-PEF incubation time was affected by incubation temperature and pH of the external medium. Biomass concentration severely affect proteins/C-Phycocyanins extraction yield via PEF-treatment. The optimum conditions for extraction of proteins/ C-Phycocyanin was obtained at 23 °C while incubating in pH 8-buffer. The energy demand for PEF-Treatment amounts to 0.56 MJ·kgdw−1 when processing biomass at 100 gdw·kgsus−1. PEF treatment enhances the protein/CPhycocyanin extraction yield, thus, it can be suggested as preferential downstream processing method for the production of C-Phycocyanin from A. platensis biomass

    Impact of incubation conditions on protein and C-Phycocyanin recovery from Arthrospira platensis post- pulsed electric field treatment

    Get PDF
    Pulsed electric field (PEF) was conducted for the extraction of proteins/C-Phycocyanins from Arthrospira platensis. The cyanobacterial suspension was treated with 1 μs long pulses at an electric field strength of 40 kV·cm−1 and a treatment energy of 114 kJ·kgsus−1 and 56 kJ·kgsus−1. For benchmarking, additional biomass was processed by high pressure homogenization. Homogeneity of the suspension prior to PEF-treatment influenced the protein/C-phycocyanin extraction efficiency. Stability of C-Phycocyanin during post-PEF incubation time was affected by incubation temperature and pH of the external medium. Biomass concentration severely affect proteins/C-Phycocyanins extraction yield via PEF-treatment. The optimum conditions for extraction of proteins/ C-Phycocyanin was obtained at 23 °C while incubating in pH 8-buffer. The energy demand for PEF-Treatment amounts to 0.56 MJ·kgdw−1 when processing biomass at 100 gdw·kgsus−1. PEF treatment enhances the protein/CPhycocyanin extraction yield, thus, it can be suggested as preferential downstream processing method for the production of C-Phycocyanin from A. platensis biomass

    High-order numerical methods for 2D parabolic problems in single and composite domains

    Get PDF
    In this work, we discuss and compare three methods for the numerical approximation of constant- and variable-coefficient diffusion equations in both single and composite domains with possible discontinuity in the solution/flux at interfaces, considering (i) the Cut Finite Element Method; (ii) the Difference Potentials Method; and (iii) the summation-by-parts Finite Difference Method. First we give a brief introduction for each of the three methods. Next, we propose benchmark problems, and consider numerical tests-with respect to accuracy and convergence-for linear parabolic problems on a single domain, and continue with similar tests for linear parabolic problems on a composite domain (with the interface defined either explicitly or implicitly). Lastly, a comparative discussion of the methods and numerical results will be given.Comment: 45 pages, 12 figures, in revision for Journal of Scientific Computin

    Biological response of Chlorella vulgaris to pulsed electric field treatment for improvement of protein extraction

    Get PDF
    Angesichts des Klimawandels und einer stetig wachsenden Weltbevölkerung können Mikroalgen eine wichtige Rolle als nachhaltige Energie- und Nahrungsquelle der Zukunft spielen. Zur Extraktion wertvoller Inhalts- und Nährstoffe ist ein Zellaufschluss notwendig. Die Elektroimpulsbehandlung (EIB) bietet eine energieeffiziente und schonende Alternative im Vergleich zu mechanischen Zellaufschlussmethoden. Jedoch sind die biologischen Prozesse und zellulären Mechanismen hinter dem Zelltod nach EIB noch wenig untersucht. Aus diesem Grund wurden die einzellige grüne Mikroalge Chlorella vulgaris und das Cyanobakterium Spirulina als Modellorganismen verwendet, um die Wirkung von EIB auf biologische Zellen zu untersuchen. Dafür wurde eine Methode zur Überwachung der Viabilität nach EIB unter Verwendung von Fluoresceindiacetat (FDA) in C. vulgaris etabliert. Im Anschluss wurden die experimentellen EIB-Parameter so eingestellt, dass ein fixes Verhältnis von Zellen nach der Behandlung abstirbt, während der andere Teil überlebt. Mit diesen Werkzeugen war eine quantitative Analyse des Zelltodes nach EIB möglich. Basierend auf den Analyseergebnissen wurde die EIB-Extraktion von Proteinen und dem wertvollen blauen Farbstoff Phycocyanin aus Spirulina unter verschiedenen post-EIB Inkubationsbedingungen untersucht. Zur Optimierung der Elektroextraktionseffizienz in Spirulina wurden die Einflüsse des pH des externen Mediums, der Biomassekonzentration, der Zellaggregation sowie der Energiereduktion untersucht. Das optimierte Elektroextraktionsprotokoll mit höherer Biomassekonzentration und geringerer Behandlungsenergie erfordert eine post-EIB-Inkubation unter kontrollierten Bedingungen (Raumtemperatur, pH 6 oder 8, homogene Suspension), die für die Freisetzung und Stabilität von Phycocyanin entscheidend sind. Mit diesem Wissen besteht eine mögliche biotechnologische Anwendung darin, schonende EIB mit niedrigstem Energieeintrag durchzuführen, was zu einer effizienten Protein- und Phycocyanin-Gewinnung führt. An C. vulgaris konnte gezeigt werden, dass EIB mit niedrigem Energieeintrag auch als abiotisches Stresssignal wirken kann. Dies wurde sichtbar in Form einer gestörten Redox-Homöostase, bei der sowohl die Freisetzung von Wasserstoffperoxid als auch Lipidoxidation gemessen werden konnten. Die Hemmung von Prozessen, die mit dem programmierten Zelltod (PCD) zusammenhängen, zeigten, dass höchstwahrscheinlich Ca-Signalwege, Aktindynamik und Membranversteifung keine notwendige Rolle beim EIB-induzierten Zelltod spielen. Die Freisetzung von Cytochrom f konnte nur im Hochdruckhomogenisations (HPH) Extrakt und nicht nach EIB nachgewiesen werden. Zellsuspensionen mit hoher Zelldichte, die an der Überlebensschwelle gepulst wurden, zeigten nur eine langsame Manifestation des Zelltods. Dies führte zur Entdeckung eines Zelltod-induzierenden Faktors (CDIF). Es konnte nachgewiesen werden, dass durch EIB und HPH-Behandlung der CDIF aus C. vulgaris extrahiert werden kann. Wasserlöslicher Extrakt, der diesen CDIF enthielt, führte zum Absterben von unbehandelten Mikroalgen (insbesondere nur bei C. vulgaris). Weitere Experimente zeigten die Entstehung des CDIF in der stationären Wachstumsphase, Hitzelabilität und Dosisabhängigkeit. Ebenso wie die Empfindlichkeit gegenüber direkter EIB hing die Empfindlichkeit der Empfängerzellen gegenüber dem CDIF vom Zellzyklusstadium ab. Untersuchungen zur Extraktionseffizienz von Proteinen aus C. vulgaris führten zu dem Ergebnis, dass die erforderliche spezifische Energie für maximalen Ertrag der zuvor bestimmten Behandlungsenergie an der Überlebensschwelle entspricht. Alle experimentellen Ergebnisse weisen darauf hin, dass der EIB-induzierte Zelltod und die damit verbundene hohe Extraktionseffizienz nicht nur auf rein physikalische Phänomene zurückzuführen sind, sondern einen biologischen Prozess beinhalten müssen. Das Arbeitsmodell bezüglich des CDIF beinhaltet, dass der Faktor aus zellwandabbauenden Enzymen wie Chitinasen besteht. EIB bei sehr geringem Energieeintrag wirkt als abiotisches Stresssignal. In Kombination mit einer beschädigten Zellintegrität aufgrund von Poren in der Zellmembran führen PCD-Prozesse zu einer enzymatischen Autolyse, bei der der CDIF (Chitinasen) freigesetzt wird. Die Zellwand wird durch den CDIF geschwächt. Wird der CDIF-haltige Extrakt unbehandelten Empfängerzellen zugesetzt, zeigt er zunächst über den Zellwandabbau eine äußere Wirkung. Nach Internalisierung kann der CDIF als internes Signal fungieren, das PCD auslöst

    A Voronoi Interface approach to cell aggregate electropermeabilization

    Get PDF
    We present a Voronoi Interface approach to the study of cell electropermeabilization. We consider the nonlinear electropermeabilization model of Poignard et al. [20], which takes into account the jump in the voltage potential across cells' membrane. The jump condition is imposed in a sharp manner, using the Voronoi Interface Method of Guittet et al. [14], while adaptive Quad-/Oc-tree grids are employed to automatically refine near the cells boundary for increased accuracy. Numerical results are provided to illustrate the accuracy of the methods. We also carry out simulations in three spatial dimensions to investigate the influence of shadowing and of the cells shape on the degree of permeabilization
    corecore