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Abstract

We present a Voronoi Interface approach to the study of cell electropermeabilization. We consider
the nonlinear electropermeabilization model of Poignard et al. [20], which takes into account the
jump in the voltage potential across cells’ membrane. The jump condition is imposed in a sharp
manner, using the Voronoi Interface Method of Guittet et al. [14], while adaptive Quad-/Oc-tree
grids are employed to automatically refine near the cells boundary for increased accuracy. Numer-
ical results are provided to illustrate the accuracy of the methods. We also carry out simulations
in three spatial dimensions to investigate the influence of shadowing and of the cells shape on the
degree of permeabilization.

Keywords: Sharp methods, Finite Volume method, Cell modelling, Level-Set method,
Quad/Oc-tree, Voronoi
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1. Introduction

Electropermeabilization, also known as electroporation or electropulsation, is a significant in-
crease in the permeability and in the electrical conductivity of the cell membrane that occurs when
electric pulses of large amplitude (a few hundred volts per centimeter) are applied to cell mem-
brane [27, 11, 37]. For high electric fields, the membrane is (reversibly or irreversibly) permeabi-
lized, which enables the transfer of non-permeable molecules into the cell cytoplasm by diffusion
through the electropermeabilized membrane areas. If the pulses are too long, too numerous, or
if their amplitude is too high, the cell membrane is irreversibly destroyed and the cells are killed.
Electroporation is important in the treatment of some cancers, as it provides an avenue to deliver
therapeutic molecules directly into the cells of targeted areas.

Even though cell electropermeabilization is a well-known phenomenon, at least from the ex-
perimental point of view, there is a lack of predictive computational models that are validated
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by experiments [34, 33]. This prevents a systematic use of electropermeabilization in config-
urations far from the experimental settings. This is particularly pertinent to deep-seated tumor
treatments for which irreversible electropermeabilization (IRE) or electrochemotherapy (ECT)
need an accurate distribution of the electroporated region. The lack of a predictive computa-
tional framework is mainly due to the complexity of the electropermeabilization models at the
cell scale [4, 38, 36, 18, 20], which are written in terms of partial differential equations in irregular
geometries and that utilize non-standard transmission conditions through the cell’s membrane. The
reader may refer to the recent review [30] on different ways to model cell electroporation. In ad-
dition, the experimental settings are usually far from the standard numerical configurations since
most of the simulations deal with one single cell, while in vitro experiments, a large number of
cells (in suspension or aggregated in spheroids) is considered. Therefore, important phenomena,
such as cell screening, or electropermeabilization at the mesoscale (scale of cell aggregates) cannot
be accounted for by existing computational approaches.

The aim of this paper is to present an accurate numerical method that provides a first step
in that direction by enabling the computation of the voltage potential in cell aggregates when
an electropermeabilizing electric field is applied. A cell membrane is very thin and acts as a
capacitor, thus leading to a discontinuity in the electric potential where the jump is proportional
to the electric flux. A variety of methods exist to solve elliptic systems with discontinuities. The
finite element method is one of the most popular approach [1, 2, 5, 17]. It is well studied and
guarantees high accuracy and a symmetric positive definite linear system. However, its efficiency
relies on the quality of the mesh that must body-fit the irregular domain’s boundary. In contrast,
interface capturing methods are based on Cartesian grids that are easily generated and impose
the discontinuous boundary condition implicitly. The Immersed Interface Method [21] and its
development, the Immersed Finite Element Method and the Immersed Finite Volume Method [22,
13, 6], produce second-order accurate solutions in the L∞ norm but produce asymmetric linear
system in the case of discontinuous diffusion coefficients. This is also the case for the interface
treatment used in Mirzadeh et al. [28]. Cisterno and Weynans developed a second-order accurate
method [3] and applied it to the electropermeabilization problem [19], though their method is not
compact and leads to asymmetric linear systems. The philosophy of the Ghost Fluid Method [8],
originally developed to treat in a sharp fashion shocks and contact discontinuities in compressible
flows, has also been applied to discontinuous elliptic problems [23]. In this case, the resulting
linear system is symmetric positive definite and the jump conditions only affect the right-hand side
of the linear system. The method is first-order accurate (in the maximum norm) in the general case
[24], although second-order accuracy (in the maximum norm) is achieved in the particular case
of both a constant discontinuity in the solution and a constant diffusion coefficient. The drop to
first-order accuracy comes from the dimension-by-dimension approach of the Ghost Fluid Method,
leading to non-converging gradients in the general case. The Voronoi Interface Method, introduced
in Guittet et al. [14], considers a capturing Voronoi mesh based on an underlying Cartesian grid
before applying a one-dimensional ghost-fluid philosophy of [23]. As a result, the discretized
fluxes are normal to the interface so that second-order accuracy is achieved in the general case.
The gradients converge with first-order accuracy and the method preserves the symmetry positive
definiteness of the linear system with only the right-hand side affected by the jump conditions.
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In this paper, we develop a VIM approach for the simulation of electropermeabilization for
both single cells and spheroids. Multicellular tumor cells spheroids are particular cell aggregates
that mimic the behavior of tumors [16], in particular from the electropermeabilization point of
view [12]. Therefore, providing a computational framework that makes it possible to compute
accurately the electric field in such cell aggregates is a crucial step forward for the clinical use of
electropermeabilization-based therapies. In the first part of this article, we present the non-linear
model for cell electropermeabilization before describing the numerical method. We then validate
the computational method in two and three spatial dimensions and investigate the behavior of cell
aggregates.

2. Electrical model for a single cell

Cell membranes are very thin and very resistive, therefore they are usually described as a two
spatial dimensions surface, Γ, with given capacitance, C, and surface conductance, S, as described
by Schwan, Stuchly et al. [10, 7] and depicted in figure 1.

∂Ω

(Oc,σ
c)

(Oe,σ
e)

(Γ,S,C)

nnn

Figure 1: Geometry of the problem. The cell Oc is imbedded in the extra-cellular matrix Oe. The entire domain Ω is
defined by Ω = Oe∪Oc.

Denoting by Oc the cell cytoplasm and by Oe the extracellular medium and defining by σ the
conductivity of the medium as:

σ =

{
σ e, in Oe,

σ c, in Oc,

the electric potential satisfies the following boundary value problem:

u(0, ·) = 0 in Oe∪Oc, (1a)

and for any t > 0,

∆u = 0, in (0,T )× (Oe∪Oc) , (1b)

u(t, ·) = g(t, ·) on (0,+∞)×∂Ω, (1c)
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with the jump conditions:

[σ∂nu] = 0, on (0,T )×Γ, (1d)

C∂t [u](t, ·)+S(t, [u])[u] = σ∂nu(t, ·)|
Γ
, on (0,T )×Γ. (1e)

The jump condition (1d) enforces the continuity of the flux and the transmission condition on
the jump of the potential (1e) captures the influence of the thin resistive membrane.

We note that it is necessary to discretize the flux σ c ∂nu|
Γ

in (1e) implicitly to avoid the drastic
CFL condition, as previously observed by Guyomarc’h et al. [15]. In [19], Poignard and col-
leagues proposed a second-order accurate finite volume method based on Cartesian grids to solve
the equations in (1). However, the interface treatment they propose leads to wide stencils and large
linear systems so that their approach cannot be readily applied to the simulation of a cluster with
a large number of cells. The aim of this paper is to provide an efficient numerical method that
makes it possible to solve the electric potential in a many-cell system. Such a numerical method
is of great importance since it can help in understanding the macroscopic behavior of the potential
in cell aggregates and therefore could lead the way to provide a numerical tool to compare micro-
and meso-scale phenomena.

2.1. Electropermeabilization model
Electropermeabilization modeling consists in deriving a non-linear law for the surface mem-

brane conductance S, or equivalently to add an electropermeabilization current in the Kirchhoff’s
law (1e). Generally speaking, these models describe the membrane conductance as follows:

S(t,λ ) := SL +Sep(t,λ ), (1f)

where SL is the linear surface conductance of the membrane in the resting state and Sep is the non-
linear conductance due to the high transmembrane voltage. In this paper, we focus on the LMSP
electropermeabilization model derived by Poignard and colleagues in [20], although our numerical
method can also be used for the standard model of Krassowska and colleagues [4].

2.1.1. The LMSP model
Leguèbe, Poignard et al. have recently proposed in [20] a new phenomenological model, which

discriminates the electroporated state of the membrane and the long-lasting permeabilized state.
The electroporated state of the membrane is the highly conducting state of the membrane during
the pulse delivery, while the long-lasting permeabilized state is persistent after the pulse. The
model reads then as:

S(t,λ ) = SL +S0X0(t,λ )+S1X1(t,X0(t,λ )), (2)

where SL, S0 and S1 are the surface conductance of the membrane in the respective resting state, po-
rated state and permeabilized state, and X0 and X1 are the degree of poration and permeabilization
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respectively, which are solutions of
∂X0(t,λ )

∂ t
=

β0(λ (t))−X0

τep
,

X0(0,λ ) = 0,
(3)

and
∂X1(t,X0)

∂ t
= max

(
β1(X0)−X1

τperm
,
β1(X0)−X1

τres

)
,

X1(0,λ ) = 0,
(4)

where β0 and β1 are even-regularized step functions

for all λ ∈ R, β0(λ ) := e−V 2
ep/λ 2

, (5)

for all X ∈ R, β1(X) := e−X2
ep/X2

, (6)

with Vep and Xep are given and correspond respectively to the threshold of the membrane voltage
and of the degree of poration. The coefficients τep, τperm and τres are the poration characteristic
time, the permeabilization characteristic time and the resealing characteristic time, respectively.

3. Description of the computational method

3.1. Representation of irregular interfaces on Quad-/Oc-trees
The irregular interface (i.e. the cell’s boundary), denoted by Γ, is implicitly captured as the zero

level of the level-set function ϕ as first suggested by [29]. The extracellular domain Oe corresponds
ϕ > 0 and the cell cytoplasm Oc corresponds to ϕ < 0.

In the case of the electropermeabilization model, the region where the solution undergoes rapid
variations is focused along the cell membrane, where the discontinuities are located. Furthermore,
we wish to model a large number of cells while still capturing the bulk behavior. A uniform
grid would lead to a large number of points and a linear system costly to solve, we therefore
choose to work with adaptive Cartesian grid of type Quad-/Oc-trees [9, 25] in order to focus the
computational effort along the membrane and enable the accurate representation of a large number
cells. A Quadtree is constructed by starting from a computational cell representing the entire
domain and splitting it in 4 (respectively 8 if working with Octrees in three spatial dimensions)
recursively. We use the following refinement criteria, proposed by Strain [32] and extended by
Min [26]: split a cell C if

min
v∈vertices(C)

|ϕ(v)| ≤ Lip(ϕ) ·diag(C)

is satisfied. Here Lip(ϕ) is the Lipschitz constant associated to the level-set function ϕ , and
diag(C) is the length of the diagonal of C. The process is illustrated in figure 2. In practice, we
choose ϕ to be the signed distance function to the irregular interface Γ, and set Lip(ϕ) conserva-
tively to 1.2. A tree is characterized by its minimum and maximum level where a level is the depth
in the tree. Thus a Quadtree of level 4/6 has a coarsest resolution equivalent to a uniform grid with
162 cells and a finest resolution equivalent to a uniform grid with 642 cells.
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Level = 0

Level = 1

Level = 2

Level = 3

Level = 4

Figure 2: Illustration of a Quadtree mesh and its associated data structure.

3.2. The Voronoi Interface Method for electropermeabilization
The Voronoi Interface Method (VIM) introduced in [14] is designed to solve elliptic problems

with discontinuities on irregular interfaces and with second-order accuracy. It consists in defining a
Voronoi mesh based on an underlying Cartesian grid and solving the discontinuous elliptic problem
on that new mesh. We now present an extension of the methodology for the electropermeabilization
model where the discontinuity in the flux is non-trivial.

The first step consists in defining new degrees of freedom near the interface, placed along the
normal to the interface, and building a corresponding Voronoi mesh. We define a Voronoi mesh
as the collection of Voronoi cells such that each Voronoi cell is associated to a degree of freedom
and defines the area of the computational domain that is closer to that degree of freedom than to
any other. The degrees of freedom are the centers of the Quadtree cells except when the interface
crosses a Quadtree cell, in which case the cell center is replaced by a pair of points on either side
of the projection of the cell’s center onto the interface, as illustrated in figure 3. The procedure
enforces a minimum distance between the new degrees of freedom, as explained in [14].

We now proceed to present the numerical scheme and refer to the nomenclature presented in
figure 4. In order to lighten the notations, for any function f defined in Ω, we denote by f e (resp.
f c) the restriction of f to Oe (resp. to Oc). We generically denote by fi, f j and fp respectively the
values of f at the point xi, x j and xp on a Voronoi mesh.

We present the derivation for ϕi > 0 and ϕ j < 0 and start by discretizing the time evolution of
the membrane voltage, [u], given by equation (1e) by a standard Backward Euler scheme:

C
[u]n+1− [u]n

∆t
+Sn[u]n+1 = (σ∂nun+1)|Γ

from which we infer:

[u]n+1 =
C[u]n +∆tσ∂nun+1

C+∆tSn . (7)

We then use the continuity of the flux across the interface Γ at any time given by (1d) to write:

σ
e ue

p−ue
i

d/2
= σ

c uc
j−uc

p

d/2
.
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Figure 3: Illustration of the process to build a Voronoi mesh from a Quadtree grid. The cells crossed by the interface
yield two new degrees of freedom on either side of the interface, avoiding the creation of points that are too close to
each other. The left figure shows the original Quadtree Cartesian grid and the right figure depicts the corresponding
Voronoi mesh.

Figure 4: Nomenclature for the discretization on a Voronoi mesh. p is the projection of i on the interface Γ. It is also
the projection of j on Γ and the halfway point between i and j. Furthermore, s is the length of the edge connecting the
Voronoi cell of point i and the Voronoi cell of point j, and d is the distance between i and j.

The discontinuity condition at the interface uc
p = ue

p− [u]n+1 and the expression of the flux across

the interface σ∂nun+1 = σ e ue
i−ue

p
d/2 leads to:

σ e

d/2
(
ue

p−ue
i
)
=

σ c

d/2
(
uc

j−ue
p +[u]n+1)
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hence using (7) the equality

σ
e (ue

p−ue
i
)
= σ

c
(

uc
j−ue

p +
C[u]n +∆tσ∂nun+1

C+∆tSn

)
and thus

σ
e (ue

p−ue
i
)
= σ

c
(

uc
j−ue

p +
C[u]n

C+∆tSn +
∆t

C+∆tSn σ
e ue

i −ue
p

d/2

)
,

which leads to the expression of ue
p:

ue
p =

(
σ

eue
i +σ

cuc
j +

σ cC[u]n

C+∆tSn +
σ eσ c∆t

(C+∆tSn)d/2
ue

i

)
/

(
σ

e +σ
c +

σ eσ c∆t
(C+∆tSn)d/2

)
.

We can then use ue
p into the discretization for the Laplacian equation on the Voronoi cells. More

precisely, integrating Laplace equation on the Voronoi cell leads to

∑
k∈{∂C \Γ}

skσ
e ue

k−ue
i

dk
+σ

es
ue

p−ue
i

d/2
= 0.

In the above equality, the first sum represents the contribution from the faces of the Voronoi cell
where the neighbor point uk is in the same domain, and the second term captures the interface
contribution. We then get the following:

∑
k∈{∂C \Γ}

skσ
e ue

k−ue
i

dk
+s

σ eσ c

σ e +σ c + σ eσ c∆t
(C+∆tSn)d/2

uc
j−ue

i

d/2
=−s

σ eσ c

σ e +σ c + σ eσ c∆t
(C+∆tSn)d/2

C[u]n

(C+∆tSn)d/2
.

Similarly, we obtain the final expression for the case when ϕi < 0 and ϕ j > 0:

∑
k∈{∂C \Γ}

skσ
e ue

k−ue
i

dk
+ sσ̂

u j−ui

d/2
= sgn(ϕi)sσ̂

C[u]n

(C+∆tSn)d/2
,

with
σ̂ =

σ eσ c

σ e +σ c + σ eσ c∆t
(C+∆tSn)d/2

.

The points far from the interface are treated with a classical finite volume discretization on the
Voronoi partition. Since all the coefficients involved in σ̂ are positive and the discontinuity [u]n

appears only in the right hand side, this produces a symmetric positive definite linear system.

Remark 1 (Formula for BDF2). The numerical simulations of Section 4 only deal with standard
Backward Euler scheme, which is accurate enough for our problem. However second-order Back-
ward Differentiation (BDF2) may be needed for the time-discretization. The above expression has
then to be replaced by

∑
k∈{∂C \Γ}

skσ
e ue

k−ue
i

dk
+ sσ̃

u j−ui

d/2
= sgn(ϕi)sσ̃

C
(
2[u]n− 1

2 [u]
n−1)

(3
2C+∆tSn)d/2

,
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with
σ̃ =

σ eσ c

σ e +σ c + σ eσ c∆t
( 3

2C+∆tSn)d/2

.

We next present numerical results that show the accuracy of our method in section 4. We then
study numerically the permeabilization of cell aggregates in 3D configurations in section 5.

4. Numerical results

Throughout this section, the parameters described in table 1 are used. All the computations are
performed with double precision.

Variable Symbol Value Unit
Extracellular conductivity σ e 15 S/m
Intracellular conductivity σ c 1 S/m
Capacitance C 9.5 ·10−3 F/m2

Membrane surface conductivity SL 1.9 S/m2

Cell radius R1 50 µm
Voltage threshold for poration Vep 258 ·10−3 V
Threshold for poration degree Xep 0.5 -
Poration characteristic time τep 10−6 s
Permeabilization characteristic time τperm 10−6 s
Resealing characteristic time τres 60 s
Porated membrane conductance S0 1.1 ·106 S/m2

Permeabilized membrane conductance S1 104 S/m2

Table 1: Physical and computational parameters used for the simulations.

4.1. Solution to the static linear problem in two spatial dimensions
Consider the static linear problem, i.e. C = 0 in equation (1e), in the case where the cell is a

disk of radius R1, embedded in a concentric bath of radius R2. Assume that the electric potential
at R2 is u|R2 =

1
2gcosθ , with g = R2E. In practice, we choose E = 40kV/m, R1 = 50µm and

R2 = 0.6mm. Then the exact solution of the static problem is explicitly given by:

ue = (αer+
β e

r
)cos(θ), (8a)

uc = α
cr cos(θ), (8b)

9



where the coefficients αc, αe and β e are given by

α
c =

((
σ c

SLR1
+1+

σ c

σ e

)
R2 +

(
σ c

SLR1
+1− σ c

σ e

)
R2

1
R2

)−1

g, (8c)

α
e =

1
2

(
σ c

SLR1
+1+

σ c

σ e

)
α

c, (8d)

β
e =

1
2

(
σ c

SLR1
+1− σ c

σ e

)
α

cR2
1, (8e)

from which we infer the static membrane voltage:

[u] =
σ c

SL
α

c cos(θ). (9)

For the numerical tests, we choose a computational domain entirely contained in the larger circle
and we project the explicit solution ue given by (8) on the boundary of the simulation box in order
to impose the appropriate Dirichlet boundary condition on our numerical solution.

Note that this problem is time independent and discretized implicitly, and is therefore a Poisson
equation with a jump condition on the irregular interface, which is solved by a single iteration of
the solver. Figure 5 presents a visualization of the computed electric potential and the computed
membrane voltage. We monitor the convergence of the solver on the membrane voltage and report
the results in table 2. The computed error corresponds to the largest error over the membrane
between the exact membrane potential and the computed membrane potential. The convergence
results indicate that second-order accuracy is achieved.

level (min/max) L∞ error on u order L∞ error on [u] order
3/5 3.76 ·10−6 - 3.95 ·10−6 -
4/6 1.98 ·10−6 0.93 1.98 ·10−6 1.00
5/7 7.84 ·10−7 1.34 7.75 ·10−7 1.35
6/8 2.56 ·10−7 1.62 2.52 ·10−7 1.62
7/9 7.33 ·10−8 1.80 7.20 ·10−8 1.81

8/10 1.98 ·10−8 1.89 1.91 ·10−8 1.91
9/11 5.35 ·10−9 1.89 5.11 ·10−9 1.90

Table 2: Convergence of the solver for the static case of subsection4.1.

4.2. Dynamic solution in two spatial dimensions
We now study the convergence of our method for the dynamic solution to the time-dependent

linear problem in the two spatial dimensions case of a circular single cell. The geometrical frame-
work is similar to that of section 4.1. We focus on the membrane voltage, which is the biophysically
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Figure 5: Representation of the numerical potential (left) and of the membrane voltage (right). These functions are
approximations of the potential u and the membrane voltage [u] given by equations (8) and (9), respectively.

relevant quantity. Applying a time-dependent Dirichlet condition (t,θ) :→ g(t)cosθ on the outer
boundary, we infer that the membrane voltage satisfies the ordinary differential equation

∂t [u]+
SL−B

C
[u] =

A
C

gcos(θ),

with

A = 2σ
c
σ

eR2K, B =−σ
c
σ

e(R1 +R2
2/R1)K where K =

1
R2

1(σ
e−σ c)+R2

2(σ
e +σ c)

.

Given that the initial discontinuity is [u]t=0 = 0, we obtain:

[u](t,θ) =
A

SL−B
gcos(θ)

(
1− e−

SL−B
C t
)
.

The solution and the membrane potential are represented in figure 6. We choose the time step as
∆t = ∆xmin/40 and solve the problem until the final time t f = 1µs. The convergence of the solver
on the membrane potential [u] is presented in table 3 and figures 6 and 7. The error is computed as
the maximum error over the entire membrane between the calculated membrane potential [u] and
the expected exact value. The results indicate an order of accuracy of about 1.5.

4.3. Validation with the static linear case in three spatial dimensions
In spherical coordinates, a possible form of the solution to the homogeneous Laplace equation

that is independent of the azimuthal angle ϕ is

f (r,θ ,ϕ) = f (r,θ) =
∞

∑
l=0

(
Alrl +

Bl

rl+1

)
Pl(cos(θ)),
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Figure 6: Representation of the electric potential and the transmembrane voltage given by equation (1), in the bidi-
mensional circular framework of section 4.2.

first order time second-order time
level (min/max) error (L∞) order error (L∞) order

3/5 2.58 ·10−5 - 3.29 ·10−6 -
4/6 1.26 ·10−5 1.03 2.75 ·10−6 0.26
5/7 5.91 ·10−6 1.09 1.18 ·10−6 1.22
6/8 2.76 ·10−6 1.10 3.98 ·10−7 1.57
7/9 1.30 ·10−6 1.08 1.19 ·10−7 1.74
8/10 6.30 ·10−7 1.05 3.91 ·10−8 1.61
9/11 3.09 ·10−7 1.03 1.33 ·10−8 1.56

Table 3: Error on the membrane electric potential discontinuity [u] in the dynamic case 4.2 after t f = 1µs, with
E = 40kV/m and ∆t = ∆xmin/40, using the second order time discretization.

where Pl is the lth Legendre polynomial and θ is the angle with the z-axis, θ = tan−1(
√

x2 + y2/z).
For instance P1(x) = x. We then choose:

Ue = (αer+
β e

r2 )cos(θ) and Uc = α
cr cos(θ).
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Figure 7: Visualization of the L∞ error on the electric potential u (left) and on the membrane discontinuity [u] (right)
as a function of time for the dynamic analytical example 4.2, and for grid resolutions 3/5 (top curves) through 9/11
(bottom curves).

Matching the boundary conditions for a unidirectional external potential of magnitude g = ER2
and a cell of radius R1, from

ue(R2) = g

[σ∂nu]|R1 = 0

[u]|R1 =Ue−Uc

, we infer:



αe = R2
2(σ

c +2σ e)Kg−R2
1σ cK [u]

cos(θ)

β e = R3
1R2

2(σ
e−σ c)Kg+R2

1R3
2σ cK [u]

cos(θ)

αc = 3σ eR2
2Kg−σ e(R2

1 +2R3
2

R1
)K [u]

cos(θ)

,

with K−1 = R3
1(σ

e−σ c)+R3
2(2σ e +σ c). Since we are working with the static linear case (i.e.

S = SL), [u] is given by:

[u] =
A

SL−B
gcosθ , with A = 3σ

c
σ

eR2
2K and B =−σ

c
σ

e(R2
1 +2

R3
2

R1
)K. (10)

We monitor the convergence of the solver for this exact solution with E = 10 kV/m, Ω= [−10−4,10−4]3,
R1 = 5 · 10−6 and R2 = 6 · 10−4. The results are presented in table 4 and seem to an order of ac-
curacy slightly above one, though the asymptotic regime is not reached yet. Unfortunately, larger
simulations are not practical with the current framework and would require a parallel environment,
to which we plan to extend our method in the future.

4.4. Validation with the dynamic linear case in three spatial dimensions
For this validation, we use the time-independent data g as in the previous section. However, [u]

now satisfies the dynamic equation given, for a constant S = SL, as:

C∂t [u]+SL[u] = σ
c
∂nUc,
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potential U Membrane potential [u]
level (min/max) error (L∞) order error (L∞) order

3/5 4.14 ·10−6 - 5.71 ·10−6 -
4/6 3.72 ·10−6 0.15 3.80 ·10−6 0.59
5/7 2.01 ·10−6 0.89 1.87 ·10−6 1.02
6/8 7.49 ·10−7 1.42 7.14 ·10−7 1.39
7/9 2.43 ·10−7 1.62 2.32 ·10−7 1.62

Table 4: Convergence of the solver for the linear static case in three spatial dimensions 4.3.

hence

∂t [u]+
SL−B

C
[u] =

A
C

gcos(θ),

where A and B are given by equation (10). Given that the initial discontinuity is [u]t=0 = 0, we
obtain:

[u](t,θ) =
A

SL−B
gcos(θ)

(
1− e−

SL−B
C t
)
.

We monitor the convergence of the solver for this exact solution with E = 40 kV/m, Ω =
[−10−4,10−4]3, R1 = 5 · 10−5, R2 = 6 · 10−4, t f = 10−6s and ∆t = ∆xmin/40. The results are
presented in table 5 and in figures 8 and 9. We observe first order convergence when using the first
order time discretization. However, the second order time discretization does not produce second
order convergence. It is possible that this is due to the non-linearity of the problem. The errors
resulting from the second order time discretization are almost an order of magnitude smaller than
the ones observed for the first order time discretization.
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Figure 8: Visualization of the L∞ error on the electric potential u (left) and on the membrane discontinuity [u] (right)
as a function of time for the dynamic analytical example 4.4, for grid resolutions 3/5 through 7/9, using the first order
discretization in time.
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First order time discretization
potential U Membrane potential [u]

level (min/max) error (L∞) order error (L∞) order
3/5 2.62 ·10−5 - 3.38 ·10−5 -
4/6 1.34 ·10−5 0.93 1.78 ·10−5 1.10
5/7 6.44 ·10−6 1.06 8.49 ·10−6 1.07
6/8 3.09 ·10−6 1.06 3.86 ·10−6 1.14
7/9 1.66 ·10−6 0.90 1.95 ·10−6 0.99

Second order time discretization
potential U Membrane potential [u]

level (min/max) error (L∞) order error (L∞) order
3/5 4.16 ·10−6 - 9.99 ·10−6 -
4/6 3.71 ·10−6 0.17 5.63 ·10−6 0.83
5/7 1.99 ·10−6 0.90 2.46 ·10−6 1.19
6/8 7.41 ·10−7 1.43 8.24 ·10−7 1.58
7/9 3.39 ·10−7 1.13 6.11 ·10−7 0.43

Table 5: Convergence of the solver for the linear dynamic case in three spatial dimensions 4.4 for E = 40kV/m
and ∆t = ∆xmin/40 at the final time t f = 1µs using the first order time discretization (top) and second order time
discretization (bottom).
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Figure 9: Visualization of the L∞ error on the electric potential u (left) and on the membrane discontinuity [u] (right)
as a function of time for the dynamic analytical example 4.4, for grid resolutions 3/5 through 7/9, using the second
order discretization in time.

4.5. Convergence in time and space for the non-linear model in a single cell
We propose to monitor the convergence of the solver in time and space for the full non-linear

model. We consider a spherical cell with radius r0 = 50µm, centered in a box of length 4r0. We
apply an electric field in the z-direction with intensity E = 40kV/m and compute the solution at a
final time of t f = 1.5 ·10−6s.
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Starting with the convergence in space, we solve the problem for increasing spatial resolutions
and with a fixed time step ∆t = 9.77 ·10−9s. Starting with a mesh of resolution 3/6, i.e. with finest
resolution equivalent to 643 cells, we increase the maximum resolution up to 9, i.e. equivalent to
5123. The electric discontinuity [u] at the pole of the cell is monitored in figure 10 and we observe
convergence towards a solution.
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Figure 10: Convergence of the solver in space for the non-linear dynamic case with a single cell. The time step
∆t = 9.77 ·10−9s is kept constant while the spatial resolution is increased. We observe convergence.

Next, we observe the convergence of the solver for a fixed space resolution of 3/7 as the time
step is halved successively. Again, we monitor the electric discontinuity [u] at the pole of the
cell and the results are presented in figure 11 together with the finest resolution from the previous
spatial convergence study. The solver converges, and furthermore we observe similar accuracy
with a resolution 3/7 than for the fine resolution 3/9 for the same time step.

These results are consistent with the model which is highly non-linear in time but well-behaved
in space. Therefore, as long as the geometry is correctly resolved, the spatial accuracy is dominated
by the temporal errors and a finer time step is more critical than a fine spatial resolution.

5. Computational study of the permeabilization of three dimensional cell arrays

The combination of the sharp treatment of the interfacial jump condition, the symmetry and
definite positiveness of the linear system, with the adaptive Cartesian grid, enables the study of
electroporation beyond a single cell. In what follows, we present electroporation simulations on
arrays of cells and study the influence of cells’ geometry and the shadowing effects.

5.1. Shadowing effect
We study the behavior of the solver for a 3×3×3 array of spherical cells with radii r0 = 5µm,

located periodically in an inner box of 1 cm3. In order to ensure that the entire aggregate is embed-
ded in an homogeneous electric field, we place it at the center of a 2 cm3 computational domain as
illustrated in the left part of figure 13. We take a time step small enough to capture the non-linear

16



0 0.5 1 1.5
time (s) #10-6

0

0.1

0.2

0.3

0.4

0.5

0.6

[u]

dt = 3.91e-8 s

dt = 1.95e-8 s

dt = 9.77e-9 s

reference

1 1.5 2 2.5 3
time (s) #10-7

0.5

0.52

0.54

0.56

0.58

0.6

0.62

[u]

dt = 3.91e-8 s

dt = 1.95e-8 s

dt = 9.77e-9 s

reference

Figure 11: Convergence of the solver in time for the non-linear dynamic case with a single cell. The reference solution
is computed on a mesh of level 3/9 and with ∆t = 9.77 · 10−9 = ∆xmin/40. The other solutions are calculated on a
mesh of level 3/7 for decreasing ∆t ( ∆xmin

40 , ∆xmin
80 and ∆xmin

160 ). The system’s response converges.

behavior of the system in time and selected experimentally, ∆t = ∆xmin
400 , and we impose an elec-

tric field E = 40kV/m in the z-direction. The Octree has a resolution 5/10, leading to a Voronoi
mesh with 2,219,552 cells. The permeabilization of the cells averaged on each of the slices in the
z-direction is presented in figure 12. We observe a shadowing effect on the middle slice, which
presents a lower degree of permeabilization. The same setup with 5x5x5 cells exhibits a more
pronounced shadowing, as depicted in figure in figure 13. The tree this time is level 5/9, leading
to 2,614,488 Voronoi cells. Figure 14 summarizes this section by showing the average permeabi-
lization of the entire cluster of cells for different densities of cells, from a single cell to a 5x5x5
array, demonstrating the effect of shadowing. Such results are consistent with the experimental
observations of Pucihar et al. [31], in which dense cell suspensions increase shadowing effects.
This example demonstrates the ability to study quantitatively shadowing effects with respect to the
density of cell suspensions.

5.2. Influence of the shape
We propose to investigate the influence of the cells’ geometry on the poration. We choose an

array of N3 cells spread evenly in a box of size 1cm3 located in a computational domain of size
2cm3 and apply a electric potential in the z-direction with magnitude 40kV. We select three shapes:
spheres with radii 50µm, oblate ellipsoids with radii 46µm and prolate ellipsoids with radii 53µm.
Here, an ellipsoid with radius r0 is given by:

x2

a2 +
y2

b2 +
z2

c2 = r2
0.

It is oblate for a = b > c and prolate for a = b < c. The coefficients a, b and c are chosen such that
the surface of the ellipsoidal cells is the same than that of the spherical cells, and a = b = 1

c or 1
a =

1
b = c, leading to a≈ 1.225878 for the oblate case and a≈ 1.259835 for the prolate case. Figure 15
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Figure 12: Left: Visualization of the permeabilization X1 of a 3× 3× 3 array of cells. Right: Evolution in time of
the average permeabilization of the cell membranes for each z-slice of the 3× 3× 3 array of cells. Note that due to
symmetry the curves for the first and third slices are superposed.
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Figure 13: Left: setup for the simulation 5.1. The blue box represents the computational domain and the red corners
mark the inner box in which the cells are located. The cells are colored with the electric potential u. Right: average
permeabilization X1 by z-slice as a function of time. The first and fifth slices are superposed due to symmetry, and so
are the second and the fourth slices.

provides a visualization of the three shapes. The tree is level 5/9, leading to approximately 610,784
Voronoi cells for the spherical cells, 597,968 Voronoi cells for the oblate cells and 561,176 Voronoi
cells for the prolate cells. The time step is set to ∆t = ∆xmin

400 ≈ 9.77 ·10−9s. The relevant physical
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Figure 14: Influence of the cell packing on the average permeabilization X1. A packing of N corresponds to a N×N×N
array of spherical cells. As N increases and the cells get closer, the shadowing effects become more pronounced and
the permeabilization decreases.

parameters, i.e. the average conductance S, the average discontinuity in the electric potential [u] at
the tip of the cells, the average poration X0 and the average permeabilization X1, are represented
in figures 16 and 17 for N = 3 and N = 5 respectively. We observe a strong influence of the cell
shapes, with orders of magnitude of difference in the case of the permeabilization X1. These results
are consistent with the biological experiments demonstrating that, in order to increase the efficacy
of electroporation in muscles, the electric field has to be applied orthogonally to the fibers [35].
This computational example demonstrates that the approach described in this manuscript is capable
of studying the influence of cells’ geometries. In turn, this will enable the study of electroporation
in more complex cell distributions, such as in brain tissue for example, and will help determine the
optimal distribution of the electric field for maximizing cell electroporation.

5.3. Random cluster with 100 cells
For this last example, we consider 100 cells located in a box of size 1cm3 in a domain twice that

size. We impose an electric field in the z-direction with intensity 40kV and choose ∆t = ∆xmin
400 ≈

9.77 · 10−9s. The tree resolution is 5/9 and the cells are ellipsoids with random eccentricities,
orientations and locations. The results are depicted in figure 18 and illustrate the capacity of our
solver to handle complex layouts of numerous cells. This example is interesting for biological
applications, for which cells do not have exactly the same shape and volume. Yet, it is possible to
determine the distribution of ellipsoidal shapes and diameters in a sample. Hence, our numerical
method makes it possible to predict quantitatively the average degree of cell permeabilization as
well as the distribution of permeabilized cells in such set up.
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Figure 15: Visualization of an array of 3× 3× 3 cells with oblate (left), spherical (center) and prolate (right) shapes
colored with the electric potential u.
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Figure 16: Representation of the relevant physical parameters as a function of time for the three different cell shapes
decribed in section 5.2 and for an array of 3×3×3 cells. Note that X1 is represented with a logarithmic scale.

6. Conclusion

We have presented a Voronoi Interface approach for the simulation of cell electropermeabiliza-
tion. In particular, we have considered a nonlinear electropermeabilization model and imposed the
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Figure 17: Representation of the relevant physical parameters as a function of time for three different cell shapes
decribed in section 5.2 and for an array of 5×5×5 cells. Note that X1 is represented with a logarithmic scale.

jump condition in electrical potential in a sharp manner. The numerical treatment at the interface
leads to a symmetric positive definite linear system that can be inverted efficiently. Together with
the use of adaptive grids, this approach enables the study of cell aggregates. Computational exper-
iments have illustrated the accuracy of the numerical approach and have been used to investigate
the shadowing effects as well as the influence of cell’s geometries on the degree of permeabiliza-
tion. We find that cells with elongated shapes are more prone to be electropermeabilized if the
field is orthogonal to the long axis; this is consistent with the biological experiments of Corovic et
al. in the context of muscles. Our work is a first-step towards studying electropermeabilization of
mesoscale cell spheroids, which provide an interesting biological model of tumors. Future work
will consider the extension to massively parallel architectures, which will provide a computational
tool that makes it possible to compare with macroscale models obtained by either phenomenologi-
cal considerations or by rigorous homogenization of a microscale single-cell model. Our approach
can also serve as an advanced numerical tool that can enable the comparison between theoretical
models and biological experiments of electropermeabilization of mesoscale spheroids.
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Figure 18: Representation of a cluster of 100 cells (left) and the corresponding permeabilization X1 (right). The
average, maximum and minimum levels of permeabilization are represented by the red lines.
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