3,897 research outputs found

    Zero-point fixture systems as a reconfiguration enabler in flexible manufacturing systems

    Get PDF
    ABSTRACT: Today's manufacturing systems need to be able to quickly adapt to customer demands, ranging from high volumes of mass production to high volumes of mass customization. Flexible Manufacturing Systems provide a high degree of flexibility to cope with these challenges. They consist of machine tools capable of executing a wide range of machining operations while the use of pallets to reference and block the parts allows the decoupling of the setup operations from the machining centers activity. This paper presents an ontology-based framework to support the design and management of flexible manufacturing systems, aimed at integrating the various involved activities including the pallet configuration and process planning, the management policies for short-term production planning and the pallet checking to verify the correct configuration of the physical pallet

    Interaction design for multi-user virtual reality systems: An automotive case study

    Get PDF
    Virtual reality (VR) technology have become ever matured today. Various research and practice have demonstrated the potential benefits of using VR in different application area of manufacturing, such as in factory layout planning, product design, training, etc. However, along with the new possibilities brought by VR, comes with the new ways for users to communicate with the computer system. The human computer interaction design for these VR systems becomes pivotal to the smooth integration. In this paper, it reports the study that investigates interaction design strategies for the multi-user VR system used in manufacturing context though an automotive case study

    Manufacturing variation models in multi-station machining systems

    Get PDF
    In product design and quality improvement fields, the development of reliable 3D machining variation models for multi-station machining processes is a key issue to estimate the resulting geometrical and dimensional quality of manufactured parts, generate robust process plans, eliminate downstream manufacturing problems, and reduce ramp-up times. In the literature, two main 3D machining variation models have been studied: the stream of variation model, oriented to product quality improvement (fault diagnosis, process planning evaluation and selection, etc.), and the model of the manufactured part, oriented to product and manufacturing design activities (manufacturing and product tolerance analysis and synthesis). This paper reviews the fundamentals of each model and describes step by step how to derive them using a simple case study. The paper analyzes both models and compares their main characteristics and applications. A discussion about the drawbacks and limitations of each model and some potential research lines in this field are also presented

    The Integration of Process Planning and Shop Floor Scheduling in Small Batch Part Manufacturing

    Get PDF
    In this paper we explore possibilities to cut manufacturing leadtimes and to improve delivery performance in a small batch part manufacturing shop by integrating process planning and shop floor scheduling. Using a set of initial process plans (one for each order in the shop), we exploit a resource decomposition procedure to determine schedules to determine schedules which minimize the maximum lateness, given these process plans. If the resulting schedule is still unsatisfactory, a critical path analysis is performed to select jobs as candidates for alternative process plans. In this way, an excellent due date performance can be achieved, with a minimum of process planning and scheduling effort

    A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment

    Get PDF
    © 2016 The Authors. Global market pressures and the rapid evolution of technologies and materials force manufacturers to constantly design, develop and produce new and varied products to maintain a competitive edge. Although virtual design and engineering tools have been key to supporting this fast rate of change, there remains a lack of seamless integration between and within tools across the domains of product, process, and resource design-especially to accommodate change. This research examines how changes to designs within these three domains can be captured and evaluated within a component based engineering tool (vueOne, developed by the Automation Systems Group at the University of Warwick). This paper describes how and where data within these tools can be mapped to quickly evaluate change (where typically a tedious process of data entry is required) decreasing lead times and cost and increasing productivity. The approach is tested on a sub-assembly of a hydrogen fuel cell, where an assembly system is modelled and changes are made to the sequence which is translated through to control logic. Although full implementation has not yet been realized, the concept has the potential to radically change the way changes are made and the approach can be extended to supporting other change types provided the appropriate rules and mapping

    A framework for automatically realizing assembly sequence changes in a virtual manufacturing environment

    Get PDF
    Global market pressures and the rapid evolution of technologies and materials force manufacturers to constantly design, develop and produce new and varied products to maintain a competitive edge. Although virtual design and engineering tools have been key to supporting this fast rate of change, there remains a lack of seamless integration between and within tools across the domains of product, process, and resource design - especially to accommodate change. This research examines how changes to designs within these three domains can be captured and evaluated within a component based engineering tool (vueOne, developed by the Automation Systems Group at the University of Warwick). This paper describes how and where data within these tools can be mapped to quickly evaluate change (where typically a tedious process of data entry is required) decreasing lead times and cost and increasing productivity. The approach is tested on a sub-assembly of a hydrogen fuel cell, where an assembly system is modelled and changes are made to the sequence which is translated through to control logic. Although full implementation has not yet been realized, the concept has the potential to radically change the way changes are made and the approach can be extended to supporting other change types provided the appropriate rules and mapping

    A Novel Method for Adaptive Control of Manufacturing Equipment in Cloud Environments

    Get PDF
    The ability to adaptively control manufacturing equipment, both in local and distributed environments, is becoming increasingly more important for many manufacturing companies. One important reason for this is that manufacturing companies are facing increasing levels of changes, variations and uncertainty, caused by both internal and external factors, which can negatively impact their performance. Frequently changing consumer requirements and market demands usually lead to variations in manufacturing quantities, product design and shorter product life-cycles. Variations in manufacturing capability and functionality, such as equipment breakdowns, missing/worn/broken tools and delays, also contribute to a high level of uncertainty. The result is unpredictable manufacturing system performance, with an increased number of unforeseen events occurring in these systems. Events which are difficult for traditional planning and control systems to satisfactorily manage. For manufacturing scenarios such as these, the use of real-time manufacturing information and intelligence is necessary to enable manufacturing activities to be performed according to actual manufacturing conditions and requirements, and not according to a pre-determined process plan. Therefore, there is a need for an event-driven control approach to facilitate adaptive decision-making and dynamic control capabilities. Another reason driving the move for adaptive control of manufacturing equipment is the trend of increasing globalization, which forces manufacturing industry to focus on more cost-effective manufacturing systems and collaboration within global supply chains and manufacturing networks. Cloud Manufacturing is evolving as a new manufacturing paradigm to match this trend, enabling the mutually advantageous sharing of resources, knowledge and information between distributed companies and manufacturing units. One of the crucial objectives for Cloud Manufacturing is the coordinated planning, control and execution of discrete manufacturing operations in collaborative and networked environments. Therefore, there is also a need that such an event-driven control approach supports the control of distributed manufacturing equipment. The aim of this research study is to define and verify a novel and comprehensive method for adaptive control of manufacturing equipment in cloud environments. The presented research follows the Design Science Research methodology. From a review of research literature, problems regarding adaptive manufacturing equipment control have been identified. A control approach, building on a structure of event-driven Manufacturing Feature Function Blocks, supported by an Information Framework, has been formulated. The Function Block structure is constructed to generate real-time control instructions, triggered by events from the manufacturing environment. The Information Framework uses the concept of Ontologies and The Semantic Web to enable description and matching of manufacturing resource capabilities and manufacturing task requests in distributed environments, e.g. within Cloud Manufacturing. The suggested control approach has been designed and instantiated, implemented as prototype systems for both local and distributed manufacturing scenarios, in both real and virtual applications. In these systems, event-driven Assembly Feature Function Blocks for adaptive control of robotic assembly tasks have been used to demonstrate the applicability of the control approach. The utility and performance of these prototype systems have been tested, verified and evaluated for different assembly scenarios. The proposed control approach has many promising characteristics for use within both local and distributed environments, such as cloud environments. The biggest advantage compared to traditional control is that the required control is created at run-time according to actual manufacturing conditions. The biggest obstacle for being applicable to its full extent is manufacturing equipment controlled by proprietary control systems, with native control languages. To take the full advantage of the IEC Function Block control approach, controllers which can interface, interpret and execute these Function Blocks directly, are necessary

    Workstation Configuration and Process Planning for RLW Operations

    Get PDF
    The application of Remote Laser Welding (RLW) has become an attractive assembly technology in various branches of industry, as it offers higher efficiency at lower costs compared to traditional Resistance Spot Welding (RSW) when high volumes of sheet metal assemblies are to be produced. However, the introduction of RLW technology raises multiple new issues in designing the configuration, the layout, and the behavior of the assembly system. Since configuring an RLW workstation and planning the welding process are closely interrelated problems, a hierarchical decision process must be applied where configuration and planning go hand in hand. The paper presents a hierarchical workflow forworkstation configuration and process planning for RLW operations, and proposes methods for solving the decision problems related to each step of this workflow. A software toolbox is introduced that has been developed to facilitate a semi-Automatic, mixed-initiative workstation design and t o guide the expert user throughout the configuration, planning, programming, evaluation, and simulation of the RLW workstation. A case study from the automotive industry is presented, where the software tools developed are applied to configuring and planning the behavior of an RLW workstation that replaces RSW technology in assembling a car door

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Standardizing the Process Information for Machining Operations Through Self-Contained Structures

    Get PDF
    A mechanical product is manufactured through multiple processes and procedures. The process information is coded in a part program, and a large amount of unstructured information comes from the shop floor. This results in the loss of logic formulated for the creation of a code. Moreover, it is impossible to track the modifications carried out during these processes. Thus, the unavailability of appropriate and standard knowledge of part processing leads to the situation where the information must be recreated every time a similar part is manufactured, hence, increasing the process planning time. One solution is to divide it into two steps: first, by fetching the information and coding it in a standardized structure; second saving it in a suitable form, facilitating in improving the efficiency and effectiveness of process design for available parts as well as anticipating the new parts. This was achieved by using the previous information related to the process combined with the one obtained from the shop floor. The proposed work concerns capturing the unstructured information from the existing part programs and regaining it using process simulation (VERICUT). Through the extraction of theoretical and graphical geometric data, the interactions between the operations were analyzed. The operational knowledge in this work includes: origin, feed-rate, rotating speed of the tool, rapid movement, cutting tool, material knowledge, and some geometric information of the process. The proposed approach based on simulations and mathematical programming logic is a way to improve flexibility at process and system level by formalizing the available operational knowledge. To illustrate the applicability of the proposed approach, a case study was carried out on a real industrial part program
    • …
    corecore