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Abstract In product design and quality improvement
fields, the development of reliable 3D machining varia-

tion models for multi-station machining processes is a

key issue to estimate the resulting geometrical and di-

mensional quality of manufactured parts, generate ro-

bust process plans, eliminate downstream manufactur-
ing problems and reduce ramp-up times. In the liter-

ature, two main 3D machining variation models have

been studied: the Stream of Variation (SoV) model, ori-

ented to product quality improvement (fault diagnosis,
process planning evaluation and selection, etc.), and the

Model of the Manufactured Part (MoMP), oriented to

product and manufacturing design activities (manufac-

turing and product tolerance analysis and synthesis).

This paper reviews the fundamentals of each model and
describes step by step how to derive them using a sim-

ple case study. The paper analyzes both models and

compares their main characteristics and applications.

A discussion about the drawbacks and limitations of
each model and some potential research lines in this

field are also presented.
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Nomenclature

CS : Coordinate system.

R : Reference CS.

Fk : Fixture CS at station k.

Hk,j : CS of jth part-holder surface at station k.

Mk: Machine-tool CS at station k.

Mk,o: CS of the oth machining operation at sta-

tion k.

Mk,oi : CS of the cutting-tool tip when machining

surface Si.

G : Gauge CS.

Gp: CS of the pth positioning gauge surface.

Sl: CS of the lth locating datum surface.

Si: CS of the ith machined surface.

Sm: CS of the mth measurement datum sur-

face.

Sq: CS of the qth inspected part surface or tol-

eranced surface.

dR
F : Small translational deviations of F with re-

spect to (w.r.t.) R,
[

dRFx, d
R
Fy, d

R
Fz

]T
.

θR
F : Small orientational deviations of F w.r.t.

R,
[

θRFx, θ
R
Fy, θ

R
Fz

]T
.

xR
F : Differential motion vector (DMV) of F w.r.t.

R,
[

(dR
F )

T , (θR
F )

T
]T

.

{TR,F }G: Small displacement torsor (SDT) of F at
R expressed in the G coordinate system,

{TR,F }G =

{

ΩR,F

DR,F

}

.

ΩR,F Orientation deviations of the SDT of F at

R,
[

α, β, γ
]T

.

DR,F Translational deviations of the SDT of F

at R,
[

u, v, w
]T

.

tRF : Position vector of F w.r.t. R.

ϕR
F : Orientation vector of F w.r.t. R.
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1 Introduction

Traditionally, product design has been separated from

manufacturing process design along the product devel-
opment cycle increasing ramp-up times, product changes

costs and variability of product quality. This product-

oriented approach, named as over-the-wall design due

to the sequential nature of the design activities, pre-
vents the integration of design and manufacturing ac-

tivities to improve product development [1]. In order

to overcome this limitation, manufacturers have begun

to investigate ways to simultaneously evaluate product

designs and manufacturing processes in an attempt to
eliminate downstream manufacturing problems and re-

duce ramp-up times. For this purpose, product design

requires the application of process-oriented approaches

through 3D manufacturing variation models to inte-
grate product and manufacturing process information [2].

However, the application of 3D manufacturing variation

models is nowadays limited, specially in multi-station

machining processes (MMPs) where a large number of

machining operations is conducted in different stations
with different fixture devices. In fact, in product de-

sign and quality improvement fields, the development

of reliable 3D variation models of MMPs is a key issue

to estimate the resulting geometrical and dimensional
quality of manufactured parts.

In the literature, one can distinguish two impor-

tant group of researchers dealing with the development

of 3D variation models for MMPs: i) a first group of

researchers more focused on the quality improvement
field, mostly universities from USA ii) and a second

group of researchers focused on product design, mostly

universities from France and Canada. The research con-

ducted by the first group, that we name as “IO school”

(Industrial Operations school) hereafter, is focused on
modeling the dimensional and geometrical variation of

manufactured parts by the state space model which is

commonly applied in control theory [3]. Through this

model, a large number of quality improvement activ-
ities can be conducted such as part quality control,

optimal placement of inspection stations, robust pro-

cess planning, process-oriented tolerancing, etc. The re-

search conducted by the second group, that we name as

“PD school” (Product Design school) hereafter, is fo-
cused on modeling dimensional and geometrical part

quality variations considering the system workpiece/

fixture/ machine-tool as a mechanical assembly. By this

consideration, well-known approaches for the analysis of
mechanical assemblies can be applied. Specifically, the

PD school applies the concept of small displacement

torsors (SDTs) to describe and propagate surface devi-

ations along different machining stations. The applica-

tion of the PD school investigations are mainly focused

on tolerance analysis and synthesis.

Both schools have been very active during last decade,

and their 3D manufacturing variation models have been

used in a large number of applications. Surprisingly
enough, these schools have been working in parallel,

without using potential synergies or adapting the ad-

vances from one school to the other. Moreover, despite

the success of both schools and the large number of
publications related to them, there is no review in the

literature that analyzes and compares both 3D manu-

facturing variation models. This paper contributes to

fill this literature gap, providing a critical comparison

of both models, paying special attention to: i) fixtures
and processes supported, ii) limitations of virtual in-

spection, iii) GD&T conformance, iv) applicability, v)

modeling accuracy, vi) modeling complexity. Further-

more, the review also exposes future lines of research
that should be addressed by both schools. The paper is

organized as follows. Section 2 describes the fundamen-

tals of the 3D manufacturing variation model applied by

the IO school and its main applications. Similarly, Sec-

tion 3 describes the 3D manufacturing variation model
applied by the PD school together with its main ap-

plications. Section 4 presents two modeling 2D exam-

ples (extensible to any 3D case study) to show, step

by step, the implementation of both models, analyzing
them symbolically and numerically. Section 5 discusses

both 3D variation models, comparing their main draw-

backs and advantages. Finally, Section 6 concludes the

paper and outlines some potential research lines in the

field.

2 Variation modeling and propagation by the

IO school: The Stream of Variation model

2.1 Fundamentals

Manufacturing variability in MMPs and its impact on

part quality can be modeled by capturing the math-

ematical relationship between the sources of variation

of manufacturing process variables that are critical to
part quality (named key control characteristics -KCCs-

of the process) and the deviations of the functional fea-

tures of the product (named key product characteris-

tics -KPCs-). This relationship is modeled through a
non-linear function y1 = f1(u1, u2, . . . , un), where y1 is

a KPC and u1, u2, . . . , un are the KCCs in the MMP.

By the assumption of small variations, the non-linear
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model can be linearized through a Taylor series expan-

sion and the part quality variation can be defined as

∆y1 =
δf1(u)

δu1

∣

∣

∣

∣

u=ū

· (u1 − ū1) + · · ·+

+
δf1(u)

δun

∣

∣

∣

∣

u=ū

· (un − ūn) + ε1, (1)

where u = [u1, u2, . . . , un]
T ; ε1 contains the high-order

non-linear residuals of the linearization, and the lin-

earization point is defined by ū = [ū1, ū2, . . . , ūn]
T .

This linear approximation can be considered good enough

for many MMPs [4]. Considering that there areM KPCs

in the part which are stacked in the vectorY = [∆y1, . . . ,

∆yM ]T , Eq. (1) can be re-written in a matrix form as

Y = Γ ·U+ ε, (2)

where U = [∆u1, . . . , ∆un]
T and ∆uj = uj − ūj for

j = 1, . . . , n defines the small variations of the KCCs in

a MMP; Γ is the matrix
[[

δf1(u)
δu1

∣

∣

∣

u=ū
, . . . , δf1(u)

δun

∣

∣

∣

u=ū

]

;

. . . ;
[

δfM (u)
δu1

∣

∣

∣

u=ū
, . . . , δfM (u)

δun

∣

∣

∣

u=ū

]]

; and ε is the stacked

vector of the high-order non-linear residuals.

In MMPs, the derivation of Eq. (2) is a challenging
task. Researchers from USA universities have proposed

the adoption of the well-known state space model from

control theory [3] to represent mathematically the re-

lationship between the sources of variation of a MMP

and the deviation of the machined surfaces at each sta-
tion, including how the deviation of previous machined

surfaces influences at current station when these sur-

faces are used as locating datums. In this representa-

tion, dimensional deviations of part surfaces from nom-
inal values are defined by 6×1 vectors named state

vectors, in the form of xk,i = [(d
◦i
i )T , (θ

◦i
i )T ]T , where

d
◦i
i = [d

◦i
ix, d

◦i
iy, d

◦i
iz ]

T is the small translational deviation

and θ
◦i
i = [θ

◦i
ix, θ

◦i
iy , θ

◦i
iz ]

T is the small orientation devia-

tion of the local CS of the ith part surface. The notation
◦i refers to the nominal CS and i to the current CS. The

deviation of all part surfaces at the station k are stacked

in the state vector xk = [xT
k,1, . . . ,x

T
k,i, . . . ]

T . Note that

each feature deviation, xk,i, is expressed in its own CS.

In a machining station, three main sources of vari-

ation can be distinguished: datum-induced deviations,

fixture-induced deviations and machining-induced devi-
ations. The state space model defines analytically how

these three main sources of error influence on the final

part quality deviation. To illustrate how these three

main sources of variation influence on part quality, we
consider an N -station machining process shown in Fig-

ure 1 and the kth machining station with the workpiece

and the fixture device shown in Figure 2. At this kth

uk: Machining and fixture errors at station k

wk: Additional errors not modeled in uk at station k
xk: Part feature deviations at station k

Workpiece

Multi-station Machining Process (MMP)

Station 1
x0

u1 w1

x1...
xk-1

Station N

uN wN

xN

Machined part

Inspection

Station

vk

yk

yk: Measurement of the KPCs after station k
vk: Measurement errors at inspection station 

Station k

uk wk

xk

Fig. 1 Manufacturing variation propagation in a MMP

station, the following sources of variation exist.

First, the deviations of the datum surfaces used for

locating the workpiece deviate the workpiece location

from its nominal value. This term can be estimated as

xd
k = Ak · xk−1, where xk−1 is the vector of part sur-

face deviations from upstream machining stations and

Ak linearly relates the datum deviations with the ma-

chined surface deviation due to the locating deviation

of the workpiece.

Secondly, the fixture-induced deviations deviate the

workpiece location on the machine-tool table and pro-

duce a machined surface deviation. This term can be

estimated as xf
k = B

f
k ·u

f
k , where u

f
k is the vector of lo-

cator deviations andB
f
k is a matrix that linearly relates

locator deviations with the machined surface deviation.

Thirdly, the operation or machining deviations such
as those due to geometrical and kinematic errors, tool-

wear errors, etc., deviate the cutting-tool tip during

machining and thus, the machined surface is deviated

from its nominal value. This term is modeled as xm
k =

Bm
k ·um

k , where um
k is the vector that defines the KCCs

related to operation or machining deviations and Bm
k

is a matrix that linearly relates these KCCs with the

machined surface deviations.

Therefore, for an N -station machining process the

derivation of the state space model can be defined in a

generic form as

xk = Ak · xk−1 +Bk · uk +wk, k = 1, . . . , N, (3)

whereBk·uk represents the deviations introduced within

station k due to the KCCs (related to fixturing and ma-

chining) and it is defined as [Bf
k Bm

k ]·[(uf
k)

T , (um
k )T ]T ;

andwk is the unmodeled system noise and linearization

errors.

The derivation of the state space model in MMPs,
named the stream of variation (SoV) model, was firstly

presented by Huang et al. [5]. Djurjanovic et al. [6] ex-

panded Huang’s work in order to explicitly derive the
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Fig. 2 Sources of variation and state space model formulation
for station k

linear equations that model the relationships between

fixtures, locating datum and measurement datum fea-
tures. In their research work, a complex mathematical

derivation was required and the methodology proposed

was not straightforward to be applied. The SoV model

derivation was improved by [4] who applied the DMV
concept from robotics to represent the geometric devi-

ation of each machined feature. In their work, a step-

by-step methodology was proposed in order to derive

the matrices Ak and Bk at each station using product

and process information (i.e. part geometry and fix-
ture layouts). Previous works were limited to 3-2-1 or-

thogonal fixture layouts based on locators and generic

cutting-tool path deviations without explicitly includ-

ing machining-induced errors. Loose et al. [7] extended
the state space model formulation by including general

non-orthogonal fixture layouts based on locators.More

recently, Abellan-Nebot et al. [8] expanded the formu-

lation of matrix Bk in order to include common ma-

chining sources of variation such as those due to tool
wear, thermal expansions, cutting-tool deflections and

geometric-kinematic machine-tool errors.

2.2 Virtual part quality inspection and verification

Somewhere along the MMP, an inspection station can

be placed in order to inspect the KPCs and verify whether

the workpiece/part is within specifications. Following

the state space model formulation from control the-
ory [3], a virtual inspection after the kth machining

station can be conducted using the expression:

yk = Ck · xk + vk, (4)

where yk represents the deviations of the inspected

KPCs; Ck · xk are the deviations of the KPCs that

are defined as a linear combination of the deviations of

workpiece features at the kth station; and vk is the mea-

surement noise of the inspection process. In a similar

way to xk, vector yk is defined as [yT
k,1, . . . ,y

T
k,q, . . . ,y

T
k,M ]T ,

where yk,q is the inspected deviation of the qth KPC

(denoted as Sq) defined by the vector yk,q = [(dSm

Sq
)T , (θSm

Sq
)T ]T ,

where Sm is the measurement datum surface and M is

the number of KPCs inspected. In Eq. (4), matrix Ck

depends on what KPCs they are and which measure-

ment datums are used to locate the part in the inspec-
tion station. How to derive matrix Ck is explained in

detail in [4].

In order to express the part quality measurements
by an explicit linear function of the KCCs presented

along the MMP and considering that the inspection

station is placed at the end of the MMP (after ma-

chining station N), Eqs. (3) and (4) can be combined
and rewritten in the input-output form as:

Y = Γ ·U+ ε, (5)

where the vectorsY and U are the stacking quality vec-

tors after inspection and the vectors of sources of error
respectively from the stations k = 1, 2, . . . , N . In Eq.

(5), vectorY is defined asY = [yT
N,1,y

T
N,2, . . . ,y

T
N,M ]T ,

vector U is defined as U = [uT
1 ,u

T
2 , . . . ,u

T
N ]T , and ma-

trices Γ and ε are defined as:

Γ = [MN,1, . . . ,MN,N ], (6)

ε = [M̄N,1, . . . , M̄N,N ] · [w1, . . . ,wN ]T + vN , (7)

where

MN,j = CN ·ΦN,j ·Bj , j ≤ N,
M̄N,j = CN ·ΦN,j, j ≤ N,

(8)

ΦN,j =

{

AN−1 ·AN−2 · · · ·Aj , if j < N

I, if j = N
(9)

Using Eq. (5), the deviation of the local CS of an

inspected KPC Sq w.r.t. the measurement datum Sm

can be estimated. However, if one wants to verify if

an inspected KPC is within its tolerance zone accord-

ing to geometric dimensioning and tolerancing (GD&T)

practices, the deviation of the boundary points of the

inspected KPC w.r.t. the measurement datum should
be evaluated. For this purpose, the deviation of the rth

boundary point Pr of the inspected qth KPC w.r.t. Sm

can be evaluated according to the expression:

yN,Pr
=

(

I3×3 −
(

t̂
Sq

Pr

)

03×3 I3×3

)

· yN,Sq
, (10)

where yN,Sq
is the deviation of the qth KPC obtained

from Eq. (5); I3×3 is the 3× 3 identity matrix; 03×3 is

the 3× 3 zero matrix; and t̂
Sq

Pr
is the skew matrix of the
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Fig. 3 Gap distance of a boundary point in a deviated toler-
anced surface.

nominal position vector t
Sq

Pr
which describes the posi-

tion of the point Pr w.r.t. the Sq. The resulting devia-
tion of point Pr w.r.t. Sm is then defined by a 6×1 devi-

ation vector in the form of yN,Pr
= [(dSm

Pr
)T , (θSm

Pr
)T ]T .

The deviation of the rth point of the toleranced surface

following the direction of part verification, defined by
the vector n = [nx, ny, nz]

T , is evaluated by the expres-

sion:
[

yN,Pr

]

n
= nT · dSm

Pr
. (11)

The tolerance zone where the variability of the man-

ufactured feature will lie can be obtained by analyz-
ing the deviation from nominal values of all boundary

points of the KPC. If the tolerance of a KPC is defined

from design specifications, then one can be interested in

verifying the part according to a given MMP. For this

purpose, the distance between each deviated bound-
ary point and the specified tolerance zone from design

should be evaluated. For the point Pr , this distance is

defined as the gap distance Gapr and it is formulated

as:

Gapr = min
(

τ +
[

yN,Pr

]

n
, τ −

[

yN,Pr

]

n

)

, (12)

where τ is the maximum deviation of the rth point

according to the tolerance size (e.g. for a positional tol-

erance, τ is t/2, where t is the tolerance value). The rth

point of the inspected surface will be within the toler-
ance zone if Gapr remains positive or null (see Fig. 3).

Analyzing the deviation of all boundary points of the

KPC, the verification of the GD&T tolerances applied

to the KPC can be conducted.

It should be remarked that the virtual inspection

and verification can be conducted following two main

approaches: the worst-case approach and the statistical

approach. Depending on which type of approach is ap-
plied, the estimation of the KPC deviation, and thus,

the estimation of the deviation of its boundary points

in order to analyze a functional specification, will be

more or less conservative. For each approach, the re-

sulting estimation is derived as follows:

– Worst case approach: the estimated deviation of the

qth KPC will be the maximum according to the ex-

pected sources of variation. According to Eq. (5),

the worst-case analysis can be conducted assuming

that all coefficients from matrix Γ and vector U are
positive and the measurement error also increases

the expected deviation. The worst-case deviation of

the Sq CS is:

yN,Sq−wc
= ± (|Γ| · |U|+ |ε|) , (13)

and the worst possible part quality considering the

point boundary deviation is defined as:

Gapwc = min (Gaprwc
) ∀r ∈ boundary, (14)

where Gaprwc
is evaluated by Eqs. (10) and (12)

considering yN,Sq−wc
instead of yN,Sq

.

– Statistical approach: the worst-case analysis pro-

duces an estimation that is highly improbable, spe-

cially for a large number of sources of variation due
to the randomness of the sources of variation in

MMPs. To estimate a more probable scenario, the

statistical analysis is commonly applied. In this anal-

ysis, the sources of variation are assumed to be in-
dependent to each other and normally distributed.

Under these assumptions, the covariance of the Sq

CS can be estimated as:

ΣyN,Sq
= Γ ·ΣU · ΓT +Σε, (15)

where Σ• is the covariance matrix of •. Therefore,
the deviation of the KPC is estimated, according to

6σ, as:

yN,Sq−st
= ±3 ·

[

(

ΣyN,Sq
(1, 1)

)1/2

, . . . ,
(

ΣyN,Sq
(6, 6)

)1/2
]T

,

(16)

where Σ•(ϕ, ϕ) denotes the (ϕ, ϕ) component of

matrix Σ•. The part quality considering the point

boundary deviations is defined as:

Gapst = min (Gaprst) ∀r ∈ boundary, (17)

where Gaprst is evaluated by Eqs. (10) and (12) con-

sidering yN,Sq−st
instead of yN,Sq

.

2.3 Main applications

In the literature, the SoV model has been applied for

a large number of applications such as part quality

estimation and process planning [9–11], manufactur-
ing fault identification [12–20], dimensional quality con-

trol [21–26] and process-oriented tolerancing [27, 28].
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2.3.1 Part quality estimation and process planning

The straightforward application of the SoV model is
part quality estimation (i.e. tolerance analysis) which

leads the designer to estimate if the MMP is able to

manufacture parts within specifications. By this anal-

ysis, the process planner can search the most robust

MMP to manufacturing disturbances from a group of
candidates, and conduct specific modifications to im-

prove the manufacturing process. Zhang et al. [9] pre-

sented a sensitivity analysis based on the SoV model

to assess how sensitive the KPCs are to certain fixture-
induced variations in an MMP. Through the sensitivity

indices, the robustness of each process plan candidate

can be evaluated, and the critical stations and fixture

components of each MMP can be detected and mod-

ified. Liu et al. [10] proposed a quality-assured setup
planning to select the optimal process plan from a group

of process plan candidates with different fixture layouts.

The optimal process plan was referred to as the process

plan candidate that minimizes the cost related to pro-
cess precision and satisfies the quality specifications.

Abellan-Nebot et al. [11] proposed the use of histori-

cal shop-floor quality data from existing MMPs to ex-

tract manufacturing operation capabilities in order to

conduct a more accurate process planning. The process
plan selection procedure was based on three compo-

nents: i) inference on the process capabilities from shop

floor data; ii) sensitivity analysis of candidate process

plans to identify critical fixtures and manufacturing sta-
tions/operations; and iii) optimal selection of candidate

process plans evaluating a multivariate capability ratio.

2.3.2 Fault cause identification

The issue of diagnosability refers to the problem of
whether the measurements of the KPCs contain enough

information for the diagnosis of critical process faults [14].

For instance, knowing the SoV model defined by Eq.

(5) and measuring different KPCs (vector Y), it may
be possible to infer the sources of variation (vector U).

However, the MMPs are usually not diagnosable due to

the inherent dimensional coupling between cutting-tool

deviations and fixture deviations at each machining sta-

tion. That is, fixture-induced deviations and machining-
induced deviations may produce the same pattern de-

viation of KPCs. Consequently, it is difficult to distin-

guish error sources at each operation. To overcome this

limitation, Wang et al. [12] applied the SoV model and
proposed the equivalent fixture error concept. With this

concept, datum-induced and machining-induced errors

are transformed to equivalent fixture-induced errors at

each operation. Using this approach, a sequential root

cause identification can be conducted minimizing the

number of measurements required, isolating firstly the

faulty station. Assuming measurement and un-modeled

noises to be negligible, Ding et al. [13] studied the diag-
nosability of an MMP through the definition of a diag-

nosability matrix. According to this matrix, three dif-

ferent types of diagnosability were defined: i) diagnos-

ability within MMP, ii) diagnosability within station,
and iii) diagnosability between stations. Zhou et al. [14]

extended the diagnosability analysis of MMPs when

measurement and un-modeled noises are not negligible.

Besides analyzing the diagnosis capability of the MMP,

other research works have also studied how to identify a
specific root fault cause when it is diagnosable. For this

purpose, pattern recognition techniques [16] and direct

estimation methods [15] have been tested.

The definition of at which station an inspection of
part/workpiece quality should be conducted and which

features should be inspected is crucial for a successful

identification of the root fault causes and process im-

provement. Djurdjanovic and Ni [17] proposed a Bayesian-

based method to analyze the measurement schemes (i.e.
placement of the inspection station and features to be

inspected) in a MMP. Later, the same authors pre-

sented in [20] other non-Bayesian methods for analyz-

ing different measurement schemes when only statisti-
cal characteristics of the sensor noise term ε are known.

Other research works such as [18,19] tackle the synthe-

sis problem to define which is the optimal placement of

the inspection stations for a given MMP.

2.3.3 Dimensional quality control

As an extension of diagnosis methodologies, some re-

searchers have developed an in-line process adjustment
technique to reduce variability in MMPs. The basic idea

is to control the product quality through in-line adjust-

ments of certain process parameters such as the fix-

ture locations or the cutting-tool path itself. The SoV
model is applied to estimate the impact that those po-

tential control actions will have on the quality of the

final product. Active control for variation reduction re-

quires two enablers [21]: in-line dimensional measure-

ment sensors to measure actual part deviation, and real-
time actuators such as CNC machining stations or flex-

ible tooling [29] to act on the manufacturing process.

By these enablers, dimensional quality control can be

based on feed-back control or feed-forward control [21].
Feed-back control implies that the control actions (cor-

rections) are determined using downstream measure-

ments obtained at the end of the process or in certain
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intermediate stations. This dimensional quality control

can only be used to compensate mean shifts, but not

to reduce variability. On the other hand, feed-forward

control uses in-line measurements to determine the cur-

rent deviation of the workpiece in order to subsequently
apply control actions to minimize the effect of this devi-

ation in the final part quality. In this way, feed-forward

control compensates current deviations instead of re-

acting to past deviations as feed-back control does [21].

The first work in the field of active control for vari-

ation reduction was conducted by Djurdjanovic and

Zhu [22]. The feed-back and feed-forward control strate-

gies for the placement of stations with dimensional ad-

justment capability was proposed. Innovatively address-
ing the dimension compensation problem, this work

considers only the deterministic effects, neglecting the

noise due to the linearization, unmodeled effects, pro-

cess noise, and sensor imperfection. Furthermore, the
concept of compensability was introduced to quantita-

tively evaluate the capability of variation compensation

in a specific system. Izquierdo et al. [21] extended the

feed-forward control strategy to include parts/process

requirements and specific engineering constraints on the
magnitudes of control actions, such as physical lim-

its and inaccuracy of tooling adjustments. These works

were focused on the study of feed-forward control with

full control over all tooling elements. This assumption
may not be realistic, since tooling adjustments through

flexible fixtures or CNC machine-tools may only be as-

signed to selected stations in the system due to their

high costs. Thus, Djurdjanovic and Ni [23] proposed

a feed-forward control strategy with distributed actu-
ation capabilities, taking into consideration the actua-

tion accuracy and noise. However, they only select the

best placement from the potential and distributed tool-

ing adjustments, without considering the interaction of
multiple tooling adjustments. Metaheuristic optimiza-

tion approaches were used in [24,25], where the research

work in [23] was extended to deal with variation reduc-

tion considering multiple tooling adjustments. More re-

cently, Abellan-Nebot et al. [26] proposed a methodol-
ogy to implement sensor-based fixtures in MMPs ana-

lyzing at which stations the sensor-based fixture should

be installed to produce the higher compensability rate,

increasing the final product quality. The paper also
deals with the optimal sensor distribution within the

fixture to increase the compensation capability.

2.3.4 Process-oriented tolerancing

Process-oriented tolerancing approach is a new toler-

ance approach that tries to overcome the traditional

limitations of the product-oriented tolerancing approach.

Unlike product-oriented tolerancing, where part toler-

ances are optimally allocated only considering an as-
sociated manufacturing cost from very generic process

planning guide-lines, process-oriented tolerancing op-

timally allocates tolerances of manufacturing process

variables considering explicitly their associated man-
ufacturing costs and their relationship with product

quality. Basically, process-oriented tolerancing is essen-

tially a tolerance synthesis problem where the quality

specification of the final product is ensured by allocat-

ing tolerances of manufacturing process variables (such
as locator tolerances) for a minimum cost. The frame-

work of process-oriented tolerance synthesis was firstly

proposed in [28, 30]. In these research works, the toler-

ances of process variables in a MMP are optimally allo-
cated by solving a non-linear constrained optimization

problem defined by: cost functions, the SoV model, a

process degradation model of fixture components, a tol-

erance accumulation model, and several constraints re-

lated to part specifications (tolerances). Chen et al. [27]
expanded the work in [28] to integrate process-oriented

tolerancing with maintenance planning in multi-station

assembly processes. They incorporated tool fabrication

cost, fixture maintenance cost and quality loss functions
to optimize the tolerance allocation of manufacturing

process variables and the frequency of fixture mainte-

nance operations.

3 Variation modeling and propagation by the

PD school: The Model of the Manufactured

Part

3.1 Fundamentals

The PD school deals with the manufacturing variation

analysis in MMPs applying some of the concepts used in
analyzing the geometrical variations of mechanical as-

semblies due to the imperfections of their components.

The main idea of the PD school is to consider the manu-

facturing set-up in a machining station as a mechanism,

so the knowledge related to dimensional and geometri-
cal variation analysis in mechanisms can be applied. In

the literature, the study of the variation propagation in

mechanisms can be conducted through different mod-

eling approaches according to the nature of the model.
The most common approaches applied are: i) kinematic

models such as models based on small displacement tor-

sors (SDTs) [31] or vector-loop based models [32, 33],
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and ii) degree of freedom models such as the tolerance

maps models (T-Maps) [34]. The PD school has mainly

applied the SDT approach to model and propagate the

surface variations from parts, fixtures and cutting-tools,

deriving the so-called Model of the Manufactured Part
(MoMP) [35].

The aim of the MoMP is to simulate the devia-

tions generated in the manufacturing process consider-

ing two independent phenomena: positioning deviations
and machining deviations. These deviations are accu-

mulated over successive setups propagating the manu-

facturing variability. Positioning deviations are caused

by fixture surface deviations and locating datum sur-

face deviations which have been generated in previous
setups. Machining deviations are caused by multiple

sources of error such as geometric and kinematic errors,

thermal errors, cutting force-induced errors, cutting-

tool wear errors, etc. The positioning and machining
deviations of part surfaces are modeled by the SDT

approach assuming that the expected manufacturing

variations are small and parts behave as solid rigid. By

this approach, dimensional and geometrical variations

of manufactured parts are obtained by propagating the
deviations of the elements that take part in the man-

ufacturing process (e.g. part-holder surfaces and work-

piece surfaces), modeled as a chain of small displace-

ment torsors.

The dimensional and geometrical deviation of each

element, described by an SDT, depends on the types of

surfaces and tolerances involved. An SDT of a surface

is composed of the small translation and orientation de-
viations that define the deviation between the nominal

surface and the substitute surface, which is an ideal rep-

resentation of the real one. For instance, a surface with

a planar geometry can only present translation varia-

tions on the Z-axis, and orientation variations around
the X- and Y -axes, considering the normal vector of

the planar surface in Z direction of its local CS. Other

variations (translation in X- and Y -axes and rotations

around the Z-axis) keep the surface invariant and thus,
these deviations are considered to be undetermined.

The SDT that describes the deviation between the sub-

stitute plane Si and the nominal plane Ni, denoted as

TSi,Ni
, is thus defined as a translation deviation vector

D = U · x + U · y + w · z and an orientation deviation
vector Ω = α · x+ β · y+U · z. This SDT is defined as:

TSi,Ni
=

{

Ω

D
=

{

α · x+ β · y + U · z
U · x+ U · y + w · z

=







α U

β U
U w







,

(18)

where U is an undetermined component, w is the trans-

lation deviation around the Z-axis, and α and β are

the orientation deviations around the X- and Y -axes,

respectively. Similar SDTs have been defined in the lit-

erature [35–37] for other types of surfaces , and some of
them are shown in Table 1. Note that the torsor com-

ponents are constrained to keep the surface within the

tolerance range.

In addition to the surface torsors, it is also defined

the link torsor and the part torsor. The link torsor rep-

resents the link between two substitute surfaces from

different parts and shows the degrees of freedom con-

strained by the link (joint). The part torsor represents
the part’s displacement within the assembly in relation

with geometric errors, joints and its the nominal posi-

tion of the part. For each part, a part torsor is defined

and for each contact between parts, a link torsor is de-
fined.

In assemblies, the resulting deviation of a part of an

assembly can be directly computed from the summation

of torsors of the assembled parts that define the position
of the part analyzed. For instance, consider an assembly

of two parts, A and B. The computation of the part

torsorTR,B (SDT of partB w.r.t. frame R) is evaluated

for any set of joints between parts A and B (i.e., for any

set of two interacting surfaces Ai,Bj) as follows [35]:

TR,B = TR,A +TA,Ai
+TAi,Bj

+TBj ,B

= TR,A +TA,Ai
+TAi,Bj

−TB,Bj
. (19)

where TA,Ai
and TB,Bj

are the surface torsors that
represent the deviation of surface Ai and Bj of part

A and B respectively in the reference frame R; TAi,Bj

is the link torsor that represents the deviation of the

link between surface Ai and surface Bj in the reference
frame R; and TR,A is the SDT of part A w.r.t. frame

R. Note that TR,B is identical whatever the contact

surface is considered, i.e., if there are n interacting sur-

faces Ai-Bj that compose the joints in the assembly of

parts A and B, thus there are n equations defined as
Eq. (19) that result in the same value of TR,B. In the

system of n linear equations, the unknown parameters

are the link torsors. Obviously, different joints suppress

different degrees of mobility, so for isostatic assemblies
the resulting system of linear equations can be solved.

In the MoMP, the resulting variation in part qual-

ity at the end of the MMP is obtained by evaluating

the chain of torsors that influence the manufacturing
performance at each station, expressed all torsors in

the same CS. This chain of torsors considers the po-

sitioning and the machining deviation at each station.
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Table 1 SDTs according to the type of surface and torsor constraints according to the type of tolerance.

Surface Surface torsor Tolerance zone Torsor constraints
Plane Planar size tolerance

z

x

y

y

TSi,Ni
=







α U
β U
U w







z

x
y

t

Lp2

Lp1

y

−t
2

≤ w ≤ t
2
,

−t
Lp1

≤ α ≤ t
Lp1

,
−t
Lp2

≤ β ≤ t
Lp2

Cylinder Cylindrical annulus

y

z x

z

TSi,Ni
=







α u
β v
U U







y

z

x

t
Lc

u2 + v2 ≤ ( t
2
)2,

− t
Lc

≤ α ≤ t
Lc

,

− t
Lc

≤ β ≤ t
Lc

Generic surface

TSi,Ni
=







α u
β v
γ w







Offsetting of a surface

Undefined

z

z

x
y

zLp

z

x
y

t

Following the research work in [35], the position and

machining deviation can be evaluated as follows:

– Positioning deviation: positioning deviation, expressed

as the torsor TFk,D, is the deviation of the nominal

design reference (D) at the nominal fixture set-up

(Fk) and it is formulated as:

TFk,D = −TD,Sl
+TFk,Hk,j

+THk,j ,Sl
. (20)

In this expression, TD,Sl
is the SDT of locating da-

tum surfaces (Sl) atD and it is obtained from previ-

ous stations. Torsor TFk,Hk,j
indicates the jth part-

holder surface deviation at the k station and the

maximum values of the parameters of this torsor

represent the part-holder precision (maximum devi-

ations expected from part-holder surfaces). Torsor

THk,j ,Sl
represents the relative position between the

locating datum surface Sl and the jth part-holder

surface which depends on how both surfaces con-

tact (joint type). The torsor THk,j ,Sl
is also called

the link torsor, and its parameters are called link pa-
rameters. Depending on the joint type of each pair

of mating surfaces in the workpiece/part-holder as-

sembly, different link torsors are defined [37]. Some

of these torsors are shown in Table 2. The method-

ology to obtain the values of the link parameters
for a generic workpiece/part-holder assembly (hy-

perstatic or isostatic assembly) is shown in detail

in [38]. Note that Eq. (20) should be accomplished

for any pair of locating datum and part-holder sur-
faces Sl and Hk,j that define the workpiece/part-

holder assembly.

– Machining deviation: machining deviation, expressed

as the SDTTFk,Si
for the machining station k, is the

deviation of the surface machining operation (Mk,oi

that generates surface Si) at the nominal machine-
tool set-up (i.e. the Fk) and it is formulated as:

TFk,Si
= TFk,Mk,oi

= TFk,Mk,o
+TMk,o,Mk,oi

, (21)

where TFk,Mk,o
is the SDT of the oth machining op-

eration due to geometrical-kinematic variations and
thermal distortions of the machine-tool; TMo,Mk,oi

is the SDT of the machining operation due to cutting-

tool wear or cutting force-induced deviations when

machining the surface Si. It is considered thatTFk,Si

is equal to TFk,Mk,oi
, that is to say that there is

an identity between the surface generated by the

machining operation and the surface machined on

the part. Note that the parameters of the torsors

TFk,Mk,o
andTMk,o,Mk,oi

and their constraints (max-
imum values) represent the machine-tools and tool-

ing capabilities (i.e. maximum expected deviations

of the cutting-tool path due to machining inaccura-

cies). The torsor TFk,Mk,oi
will be defined according

to the type of the surface geometry generated and
the capability of the manufacturing process. For in-

stance, for a face milling operation that generates

a planar surface parallel to the machine-tool table,

the following torsor will be defined:

TFk,Mk,oi
=







αk
Mi

U

βk
Mi

U

U wk
Mi







, (22)

where wk
Mi

, αk
Mi

and βk
Mi

are the machining devia-

tions (translation and orientation deviations).
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Table 2 SDTs (link torsors) according to the joint type of mating surfaces.

Joint type Link torsor Joint type Link torsor

Punctual
THk,j ,Sl

=







U U
U U
U w







Plane-Plane
THk,j ,Sl

=







α U
β U
U w







z

x

y

z

z

x

y

yCyl-Cyl
THk,j ,Sl

=







α u
β v
U U







Rigid pair
THk,j ,Sl

=







α u
β v
γ w







y

x
z

z

z

x

y

According to the positioning deviation and the ma-

chining deviation, the deviation of the actual part sur-

face at the D CS in a single set-up, defined by the SDT
TD,Si

, can be evaluated as follows:

TD,Si
= −TFk,D +TFk,Si

. (23)

Note that the resulting torsors TD,Si
,TD,Si+1

, . . . re-
lated to the ith, (i + 1)th, . . . manufacturing features

at one station may be used as inputs in subsequent sta-

tions in case that these features are used as locating

datums. Thus, the deviation of machined surfaces are
propagated in the subsequent stations through the SDT

TFk,D. As shown in Figure 4, the station-by-station

evaluation of all torsors defines the MoMP.

The derivation of the MoMP was firstly proposed by

Villeneuve et al. [35] for milling processes, considering

both isostatic and hyperstatic fixtures, the later with a

specific hierarchy of positioning surfaces (primary, sec-
ondary and tertiary positioning surfaces). Vignat and

Villeneuve [39] extended the formulation of MoMP for

modeling manufacturing variation in turning processes

considering negligible the vibration effects and the ro-
tation defect of the lathe. The generic resolution of the

positioning problem between workpiece and part-holder

was studied by Villeneuve and Vignat [38] providing a

straightforward methodology to obtain the values of the

link parameters. More recently, Nejad et al. [40] pro-
posed the combination of the MoMP and the unified

Jacobian-torsor model developed by Ghie et al. [41] for

modeling mechanical assemblies. They used the inter-

val arithmetic to associate bounds on the components
of small displacement torsors in order to determine the

lower an upper limit between which the actual surfaces

must lie.

3.2 Virtual part quality inspection and verification

The formulation of the MoMP ends with the inclu-

sion of the virtual inspection of the part using a vir-

tual gauge. The virtual gauge is a perfect gauge made

up of positioning surfaces and tolerance zone surfaces.
The gauge and the resulting part from the MoMP are

assembled and, similar to the assembly process of the

workpiece/part-holder in the machining setup, a posi-

tioning deviation can be defined when the virtual in-
spection is conducted (see Figure 4). For the virtual

gauge, the gauge CS G and gauge surfaces are defined,

the pth gauge surface being defined as Gp. The gauge

positioning deviation is defined as:

TD,G = −TG,Gp
+TD,Sm

+TSm,Gp
, (24)

where torsor TG,Gp
indicates the deviation of the posi-

tioning surface p of the gauge and the maximum values
of the parameters of this torsor represent the gauge pre-

cision (if we assume the inaccuracy of the gauge to be

negligible, TG,Gp
= {03×1 03×1}); torsor TD,Sm

rep-

resents the deviation of the measurement datum surface
Sm; and the link torsor TSm,Gp

represents the relative

position between Sm and the positioning gauge surface

Gp, which depends on the part/gauge assembly condi-

tion (joint type).

After assembling the gauge and the final part, the

functional tolerance compliance is verified by measur-

ing the signed distance between the virtual gauge and

the inspected surface Sq. This distance is evaluated
at the boundary points of the toleranced surface pro-

jected along the inspection direction, obtaining the dis-

tance Gapr for each rth boundary point. To calculate

the Gapr distance, first, the deviation between the in-

spected surface and its tolerance zone (defined as TZq)
should be calculated. This deviation is expressed with

the SDT TTZq ,Sq
, and it is evaluated following the Eq.

(25) (see Ref. [42]):

TTZq,Sq
= −TD,G +TD,Sq

−TG,TZq
, (25)
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where TD,Sq
represents the deviation of the surface to

be inspected Sq andTG,TZq
is the deviation of the toler-

ance zone of the inspected surface w.r.t. the gauge CS,

which is assumed to be {03×1 03×1} if gauge errors

are negligible. Considering the SDT TTZq ,Sq
as follows:

TTZq ,Sq
=

{

ΩTZq,Sq

DTZq,Sq

}

, (26)

the SDT that defines the deviation of the rth boundary

point of the toleranced surface Sq is expressed as:

TTZq ,Pr
=

{

ΩTZq,Pr

DTZq,Pr

}

=

{

ΩTZq,Sq

DTZq,Sq
+ΩTZq,Sq

× t
Sq

Pr

}

,

(27)

where t
Sq

Pr
is the translation vector from Sq to Pr, and

× is the cross product operator. By knowing the SDT

TTZq ,Pr
, the deviation of the rth point of the toleranced

surface along the direction of part verification, defined
by the vector n = [nx, ny, nz]

T , is evaluated by the

expression:
[

TTZq,Pr

]

n
= n ·DTZq,Pr

. (28)

Analyzing the distance between the point deviation

and the tolerance zone, the gap distance defined as

Gapr is formulated as:

Gapr = min
(

τ +
[

TTZq,Pr

]

n
, τ −

[

TTZq,Pr

]

n

)

(29)

where τ is the maximum deviation of the rth boundary

point according to the tolerance value. The rth bound-

ary point of the inspected surface will be within the

tolerance zone if Gapr remains positive or null.

In a similar way to the virtual verification by the

SoV model, the virtual measurement and verification

by the MoMP can be conducted following two main
approaches: the worst-case approach and the statistical

approach. For each approach, the resulting estimation

is derived as follows:

– Worst case approach:

Villeneuve and Vignat [43] reported that for a worst-
case analysis, the tolerance compliance is conducted

by solving an optimization problem in which the

minimum gap distance from Eq. (29) at all bound-

ary points of the toleranced surface is evaluated.
This optimization problem is defined as:

Gapwc =
CM,CH,CGP

min
DM,DH,LHP

(

CGP
max
LGP

(Gapmin)
)

, (30)

where

Gapmin = min (Gapr) , ∀r ∈ boundary points.

(31)

In Eq. (30), the term Gapmin is the minimum dis-

tance between the virtual gauge and the toleranced

surface inspected after measuring the distance at all

boundary points. The expression maxCGP
LGP (Gapmin)

defines the inspection process, where the gauge is

assembled with the part according to the standard

ISO or ASME tolerance specifications shown in the

design drawings. The resulting assembly depends on

how the part is inspected (defined by the link pa-
rameters denoted as LGP, which are the parameters

of the torsor TSm,Gp
) and the positioning limits de-

fined by the constraints of the positioning algorithm

(denoted as CGP), as explained in [38]. Within the
limits of these displacements, the most favorable po-

sition for the virtual gauge relative to the part can

be found by maximizing the Gapmin value. In Eq.

(30), material condition modifiers or incomplete da-

tum frames can be considered in the tolerance verifi-
cation, since they are related to the link parameters

LGP of the gauge/part assembly and the position-

ing constraints CGP. The termminCM,CH,CGP
DM,DH,LHP (·) is

the search expression of the worst-case combination
of the manufacturing defects DM, DH, LHP (ma-

chining, part-holder, and workpiece-fixture assem-

bly deviations, respectively) within the estimated
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range of variations expressed by the constraints CM,

CH, CHP (machining, part-holder, and workpiece-

fixture assembly constraints, respectively, which are

related to machine-tool and fixture capabilities and

workpiece-fixture configurations). According to this
worst-case analysis, a process plan will be consid-

ered able to satisfy the functional tolerance if Gapwc

remains positive or null, which means that the devi-

ation of the inspected surface is within the tolerance
zone defined in the part drawing.

– Statistical approach: As reported above, the worst-

case search is defined in Eq. (30) by the term

minCM,CH,CGP
DM,DH,LHP (·). For a statistical analysis, instead

of conducting a search for the worst-case combina-

tion, a large number of simulations are conducted in

which the sources of variation DM, DH, LHP (ma-

chining, part-holder, and workpiece-fixture assem-
bly deviations, respectively) are simulated following

a specific probability distribution function. For each

simulation, the Gapmin is evaluated. After running

thousands of simulations, the resulting probability

distribution of the variable Gapmin defines whether,
statistically, the parts comply with the functional

tolerances [44].

3.3 Main applications

Basically, two main applications of the MoMP are dis-

tinguished: tolerance analysis [40, 42, 45–48] and toler-
ance synthesis [43, 49, 50].

3.3.1 Tolerance analysis

The purpose of a tolerance analysis is to verify whether

the design tolerance requirements can be met for a given

process plan with specified manufacturing deviations.
In tolerance analysis, the cumulative effect of individ-

ual variations with respect to the specified functional

tolerance in all machining operations is studied in or-

der to check a products functionality compared with
its design requirements. This is also referred to as error

propagation, error stack-up, and tolerance stack-up in

a MMP.

In this field, Ayadi et al. [45] applied the MoMP
for MMPs based on 3-2-1 generic fixtures. The pro-

posed an ascendant transfer method to simplify the

resolution of the virtual inspection equation (e.g. the

worst case analysis given by Eq. (30)) and make pos-
sible to run the tolerance analysis more straightfor-

ward. Louati et al. [46] applied the MoMP to quan-

tify the part quality variation due to different setups

in order to select the best setting solution. Tichadou

et al. [47] compared the use of the MoMP and an in-

tegrated CAD/CAM system for tolerance analysis in

MMPs remarking the acceptable accuracy of the MoMP

according to common requirements in mechanics, and
the difficulty of translating the GD&T specifications

to be applied within the MoMP. Nejad et al. [42] pro-

posed a detailed mathematical formulation of tolerance

analysis based on searching the worst case using two
different optimization methods such as genetic algo-

rithms and sequential quadratic programming. To sim-

plify the resolution of Eq. (30), the optimization prob-

lem was broken down into two subproblems: the worst

possible part produced according to the MMPs, and
the optimal inspection of one individual part. The res-

olution of the first subproblem is considered the in-

put for the second subproblem. The tolerance analy-

sis presented also considered different strategies to es-
timated the constraints related to the deviation tor-

sor parameters of fixture and machine tool’s capabil-

ities. Nejad et al. [40] studied the tolerance analysis

problem using a combined approach of the MoMP and

the JacobianTorsor model. This work applied the in-
terval arithmetic so all torsors were expressed by inter-

val ranges. The worst-case analysis is obtained study-

ing the error stack-up on the functional elements ex-

pressed in interval ranges, and makes the resolution
quite rapid compared with previous methods. However,

the approach is nonetheless limited by the fact that it

considers the torsor parameters independently, so they

can reach their extreme values simultaneously which is

not realistic. A detail comparison of both solution tech-
niques presented in [40,42] was reported in [48], consid-

ering both worst-case and statistical analysis. The com-

parison showed that the interval approach performance

is faster and accurate when using the simple quality
constraints whereas the first approaches were time con-

suming but allows the realistic quality constraints. Ad-

ditionally, the comparison was also conducted apply-

ing different strategies to simulate the torsors related

to the performance of fixtures and machine-tools (con-
straints parameters that define the machine-tool capa-

bility and fixture accuracy). These strategies were pre-

viously studied in other research works [51, 52].

3.3.2 Tolerance synthesis

From the functional requirements of a part, the man-

ufacturing requirements at each setup can be derived

using the MoMP. In fact, from the functional inequal-
ities system the corresponding manufacturing inequal-

ities are determined. These inequalities limit the de-

fect allowed for each setup to produce a final part con-



Manufacturing variation models in multi-station machining systems 13

form with the functional tolerance. The general tol-

erance synthesis problem is presented in [43]. Ansel-

metti and Louati [49] described in detail the tolerance

synthesis considering the ISO standard. A simple al-

gorithm is used to directly provide a complete set of
manufacturing specifications in compliance with ISO

standards, with the orientation and location specifica-

tions and datum reference frame. The method is applied

for each functional requirements, deriving for each case
the corresponding manufacturing specifications. Simi-

larly, Vignat and Villeuve [50] studied the derivation

of ISO manufacturing tolerances for each station. By

their method, it can be determined if the proposed set

of manufacturing tolerances is complete and if there are
unnecessary manufacturing specifications whose can be

eliminated from the optimization problem.

4 Modeling examples

4.1 Modeling example: SoV model

For illustrative purposes of the SoV model derivation,
consider the part design and its associated raw ma-

terial shown in Fig. 5, and the 2-station machining

process used in the manufacturing process shown in

Fig. 6. In order to evaluate the final part variability

due to both fixture- and machining-induced deviations,
the SoV methodology was applied. The methodology to

derive the SoV model can be summarized in the follow-

ing steps:

– Step 1: Define the CSs of fixtures and part surfaces.

For the case study, Tables 3 and 4 are defined.
– Step 2: Define the coordinates of fixture locators

w.r.t. Fk, as it is also shown in Table 4.

– Step 3: For the first station, define the deviation of

the raw part surfaces from nominal values. With-
out loss of generality, we assume nominal values of

raw material surfaces (initial surface deviations are

negligible), so x0 = 042×1.

– Step 4: For each k station, derive the vector uk. For

the case study, the vector uk is defined as [(uf
k)

T ,

(um
k )T ]T , where uf

k are the locator deviations at sta-

tion k defined by [∆lk1y, ∆lk2y, ∆lk3x]
T , and∆lkj∗ refers

to the deviation of the jth locator in the ∗ direc-

tion; and um
k are the machining deviations when ma-

chining surface i, defined by [uk
Mi

, vkMi
, 0, 0, 0, γk

Mi
]T ,

where uk
Mi

, vkMi
and γk

Mi
refer to the translation de-

viation of the cutting-tool path along X- and Y -

axis, and orientation deviations around Z-axis, re-
spectively.

– Step 5: For each k station, derive the matrices Ak

and Bk as shown in [4].

Table 3 Nominal location and orientation of each local fea-
ture CS. Dimensions in mm and rad.

CS (ϕD
Si
)T (tDSi

)T CS (ϕD
Si
)T (tDSi

)T

S1 [0, 0, 0] [37.5, 50, 0]
S2 [0, 0, π/2] [75, 25, 0] S5 [0, 0, 0] [37.5, 45, 0]
S3 [0, 0, π] [37.5, 0, 0] S6 [0, 0, π] [70, 5, 0]
S4 [0, 0,−π/2] [0, 25, 0] S7 [0, 0, π/2] [65, 2.5, 0]

Table 4 Nominal location and orientation of Fixture CS (Fk)
at each station. Position of locators is also shown. Dimensions
in mm and rad.

Fk (ϕD
Fk

)T (tDFk
)T Locators w.r.t. Fk

F1 [0, 0, 0] [0, 0, 0] l1x = 25, l1y = 0, l2x = 50,
l2y = 0, l3x = 0, l3y = 22.5

F2 [0, 0, π] [75, 45, 0] l1x = 25, l1y = 0, l2x = 50,
l2y = 0, l3x = 0, l3y = 22.5

– Step 6: Derive the matrix CK where K is the in-

spection station, as shown in [4].
– Step 7: For each KPCs, evaluate the deviation of the

boundary points of each toleranced surface w.r.t. the

measurement datum by Eqs. (10-12).

4.1.1 Symbolic resolution

Applying the SoV model for the 2D case study, the

resulting deviation of each KPC due to fixture- and

machining-induced deviations is defined as follows:

– KPC1: the deviation of the KPC1 is defined as

KPC1 = max

(∣

∣

∣

∣

[

y3,P6A

]

y

∣

∣

∣

∣

,

∣

∣

∣

∣

[

y3,P6B

]

y

∣

∣

∣

∣

)

, (32)

where these deviations are related to fixture and

machining deviations as:
[

y3,P6A

]

y
= −27.5γ1

M5
+ 5γ2

M6
− 1.6∆l21y + 0.6∆l22y

−0.6∆l11y + 1.6∆l12y − v1M5
+ v2M6

, (33)
[

y3,P6B

]

y
= −37.5γ1

M5
− 5γ2

M6
− 2∆l21y + 2∆l12y

+∆l22y −∆l11y − v1M5
+ v2M6

. (34)

Note that most of the deviations in the first station
are propagated downstream, affecting the KPC1.

However, note that locator deviations∆l13x and∆l23x
and machining deviations along X direction (u1

M5

and u2
M6

) do not influence on KPC1.

– KPC2: the deviation of the KPC2 is defined as

KPC2 = max

(
∣

∣

∣

∣

[

y4,P7A

]

y

∣

∣

∣

∣

,

∣

∣

∣

∣

[

y4,P7B

]

y

∣

∣

∣

∣

)

, (35)
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Fig. 5 2D case study. Raw material and part design. Dimen-
sions in mm.

where
[

y4,P7A

]

y
= +22.5γ1

M5
+ 2.5γ2

M7
+ 0.9∆l11y − 0.9∆l12y

−0.9∆l22y + 0.9∆l21y +∆l23x − u2
M7

, (36)
[

y4,P7B

]

y
= +17.5γ1

M5
− 2.5γ2

M7
+ 0.7∆l11y − 0.7∆l12y

−0.7∆l22y + 0.7∆l21y +∆l23x − u2
M7

. (37)

In this case, note that the locator deviations∆l13x do

not influence on this KPC, however the same locator
deviation in station 2 (∆l23x) does influence. Fur-

thermore, only machining deviations when milling

surface S7 influence on the KPC (except the de-

viation v2M7
), and the machining deviations when

milling surface S6 and S5 do not influence at all.

– KPC3: the deviation of KPC3 is defined as

KPC3 =

∣

∣

∣

∣

[

y3,P6A

]

y
−
[

y3,P6B

]

y

∣

∣

∣

∣

, (38)

where
[

y3,P6A

]

y
and

[

y3,P6B

]

y
are defined by Eqs.

(33) and (34) respectively. By substituting, the de-

viation of KPC3 is defined as |10γ1
M5

+ 10γ2
M6

+
0.4∆l11y−0.4∆l12y−0.4∆l22y+0.4∆l21y|. Note that as

this KPC is a parallelism relationship, locator devi-

ations ∆l13x and ∆l23x, and translational machining

deviations at any station do not influence.

4.1.2 Numerical resolution

The case study is numerically solved analyzing the worst-

case and the statistical approach. The expected vari-

ability range for each manufacturing process variable is

Station 1 Station 2

Nominal operation

S1

S2

S3

S4

S5

S4

S5

S2
S6

S7

F1

l1 l2

l3
y

x
F2

y
x

l1 l2

l3

Fig. 6 Multi-station machining process to manufacture the
2D case study.

Table 5 Ranges of locators and machining deviations for the
SoV case study. Dimensional deviations in -mm-, angular de-
viations in -rad-.

Station 1
∆l11y ±0.02 ∆l12y ±0.02 ∆l13x ±0.02
u1
M5

±0.01 v1
M5

±0.01 γ1
M5

±0.001

Station 2
∆l21y ±0.02 ∆l22y ±0.02 ∆l23x ±0.02
u2
M6

±0.01 v2M6
±0.01 γ2

M6
±0.001

u2
M7

±0.01 v2M7
±0.01 γ2

M7
±0.001

Table 6 Numerical resolution according to the worst-case
(WC) and the statistical (ST) analysis for the SoV case study.
Dimensions in -mm-.

KPC1 KPC2 KPC3

WC (Pro/E) ±0.183 ±0.127 ±0.051
WC ±0.182 ±0.127 ±0.052
ST (6σ interval) ±0.075 ±0.048 ±0.021

shown in Table 5 and all manufacturing process vari-
ables are assumed to be independent to each other. For

the statistical analysis the manufacturing process vari-

ables are assumed to be normally distributed and the

ranges shown in Table 5 cover the 6σ interval. In or-
der to validate the model, the worst-case analysis was

also conducted using Pro/Engineer Wildfire 5.0. Using

this software, the assembly of the workpiece and the

fixture at each machining station was generated, and a

material removal operation to simulate the machining
operation was also defined. As a result, the final ma-

chined part was obtained as a function of the previous

assemblies and operations. The worst-case analysis was

then conducted by analyzing the resulting part at the
extreme values of the manufacturing sources of varia-

tion and measuring all KPCs. Table 6 shows the KPC

variations according to the type of analysis conducted.
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4.2 Modeling example: MoMP model

For illustrative purposes, the same 2D case study shown
in Fig. 5 is used to describe the use of the MoMP. Unlike

the previous example, the current 2-station manufac-

turing process applies fixture surfaces instead of fixture

locators as it is shown in Fig. 7, since this modeling

approach lets model surface-based fixtures. The MoMP
is built applying the methodology composed of the fol-

lowing steps:

– Step 1: Define the CSs for parts, fixtures, gauge,

part surfaces, fixture surfaces and gauge surfaces.

For this example, Tables 3 (the same as in the SoV
example), 7 and 8 apply.

– Step 2: Define the coordinates of fixture surfaces at

the fixture CS and the coordinates of gauge surfaces

at the G CS. For the case study, Tables 7 and 8 also

show this information.
– Step 3: For the first station, define the deviation of

the raw part surfaces from nominal values. Without

loss of generality, we assume nominal values of raw

material surfaces, so {TD,Sl
}D = {03×1 03×1} for

l = 1, 2, 3 and 4. A torsor {T•,•}D refers to a torsor

expressed in the frame D. Note that torsors should

be expressed in the same frame to be summed.

– Step 4: For the next kth machining station (starting

from station 1), derive the following torsors:
– {TFk,Hk,j

}D, according to fixture accuracy.

– {THk,j ,Sl
}D, according to each workpiece/part-

holder joint.

– {TD,Sl
}D, according to surface deviations from

previous stations.

– Step 5: Derive the SDT {TFk,D}D by Eq. (20) fol-

lowing the methodology shown in [38], taking into

account the datum hierarchy (primary and secondary

datums).
– Step 6: Derive the SDT {TFk,Mk,oi

}Fk
by Eq. (21)

according to the machine-tool precision.

– Step 7: Derive the torsor {TD,Si
}D by Eq. (23).

– Step 8: Repeat the steps 4-7 for all machining sta-
tions. Note that some SDTs in one station depend

on other SDTs from previous stations, so the reso-

lution of the problem should be station by station

starting from upstream stations and propagating

the results in downstream stations.
– Step 9: To measure the deviation of the KPCs by a

virtual gauge, derive the following torsors:

– {TG,Gp
}D, according to gauge accuracy. With-

out loss of generality, we can assume negligible
this deviation, so {TG,Gp

}D = {03×1 03×1}.

– {TSm,Gp
}D, according to each part/gauge-surface

joint.

Table 7 Nominal location and orientation of Fk and Hj . Di-
mensions in mm and rad.

Fk (ϕD
Fk

)T (tD
Fk

)T Hj (ϕFk
Hj

)T (tFk
Hj

)T

F1 [0, 0, 0] [0, 0, 0] H1 [0,0,0] [37.5,0,0]
H2 [0,0,π/2] [0,10,0]

F2 [0, 0, π] [75, 45, 0] H3 [0,0,0] [37.5,0,0]
H4 [0,0,π/2] [0,10,0]

Table 8 Nominal location and orientation of G and gauge
surfaces Gp. Dimensions in mm and rad.

KPC (ϕD
G
)T (tD

G
)T Gp (ϕG

Gp
)T (tG

Gp
)T

KPC1 [0, 0, 0] [0, 0, 0] G1 [0,0,0] [37.5,0,0]
KPC2 [0, 0, π/2] [−45, 75, 0] G2 [0,0,0] [-25,0,0]
KPC3 [0, 0, 0] [0, 0, 0] G1 [0,0,0] [37.5,0,0]

– {TD,Sm
}D, according to surface deviations from

previous stations.

By these SDTs and applying Eq. (24), the position-
ing deviation torsor for the gauge/fixture assembly

({TD,G}D) can be evaluated. Then, the deviation

torsor between the actual toleranced surface and its

tolerance zone is evaluated by Eq. (25). Finally, the

deviation of each rth boundary point of the toler-
anced surface from its nominal value is evaluated by

Eq. (29).

4.2.1 Symbolic resolution

Following this methodology, the final part variability of

each KPC due to fixture- and machining-induced devi-

ations can be obtained. For the 2D case study shown in

Fig. 7, the resulting torsor of positioning deviation in

each station depends on how the part contacts on the
secondary part-holder surface. In fact, there are differ-

ent possible workpiece/fixture configurations since the

workpiece can be located in the X direction by con-

tacting on point B or A in the station 1, and on point
I or E in station 2, assuming no form error exists. At

which point the workpiece contacts on the secondary

part-holder surface depends on the deviations of part-

holder and workpiece surfaces. For the 2D case study,

the contact at point B in the first station and at point I
in the second station occurs if, applying the resolution

of the generic positioning problem shown in [38], Eqs.

(39) and (40) apply for station 1 and 2 respectively.

γ1
H2,S4

= (γ1
H1

− γ1
H2

) > 0, (39)

γ2
H4,S2

= (γ2
H3

− γ1
M5

+ γ1
H1

− γ2
H4

) > 0. (40)

If Eqs. (39) and (40) hold, the deviation of the joint

workpiece/fixture at the secondary locating datum inX
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direction (expressed in the fixture CS) at each station

is defined as:

v1H2,S4
= −pF1

B · (γ1
H1

− γ1
H2

), (41)

v2H4,S2
= −pF2

I · (γ2
H3

− γ1
M5

+ γ1
H1

− γ2
H4

). (42)

For these workpiece / fixture configurations at sta-
tion 1 and 2, the resulting final part variability is de-

fined as follows:

– KPC1: the deviation of KPC1 is defined as

KPC1 = max

(
∣

∣

∣

∣

[

TTZ1,P6A

]

y

∣

∣

∣

∣

,

∣

∣

∣

∣

[

TTZ1,P6B

]

y

∣

∣

∣

∣

)

,

(43)

where:
[

TTZ1,P6A

]

y
= −v1H1

+ v1M5
+ v2H3

− v2M6
− 5γ2

M6

+27.5 · (γ1
M5

− γ2
H3

− γ1
H1

), (44)
[

TTZ1,P6B

]

y
= −v1H1

+ v1M5
+ v2H3

− v2M6
+ 5γ2

M6

+37.5 · (γ1
M5

− γ2
H3

− γ1
H1

), (45)

Note that deviations of part-holder surfaces H2 and

H4 do not influence on this KPC.

– KPC2: the deviation of KPC2 is defined as

KPC2 = max

(∣

∣

∣

∣

[

TTZ2,P7A

]

y

∣

∣

∣

∣

,

∣

∣

∣

∣

[

TTZ2,P7B

]

y

∣

∣

∣

∣

)

,

(46)

where
[

TTZ2,P7A

]

y
= −v2H4

− v2M7
− 10γ2

H4
− 2.5γ2

M7

−25 · (γ1
M5

− γ2
H3

− γ1
H1

), (47)
[

TTZ2,P7B

]

y
= −v2H4

− v2M7
− 10γ2

H4
+ 2.5γ2

M7

−20 · (γ1
M5

− γ2
H3

− γ1
H1

). (48)

In this case, note that deviations of the part-holder

surface H2 do not influence on this KPC. Further-

more, the machining deviations of surface S6 do not
either influence.

– KPC3: the deviation of KPC3 is defined as

KPC3 =

∣

∣

∣

∣

[

TTZ1,P6A

]

y
−
[

TTZ1,P6B

]

y

∣

∣

∣

∣

, (49)

where
[

TTZ1,P6A

]

y
and

[

TTZ1,P6B

]

y
are defined by

Eq. (44) and (45) respectively. By substituting, the

deviation is defined as |10γ1
M5

+ 10γ2
M6

− 10γ2
H3

−
10γ1

H1
|. Similar to the example shown previously,

as this KPC is a parallelism relationship, transla-

tional machining deviations in any station do not in-

fluence. Furthermore, deviations of part-holder sur-
faces H1 and H3 in X or Y direction do not influ-

ence, and only their orientation deviation influences

on the parallelism relationship.
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Fig. 7 Multi-station machining process to manufacture the
2D example. Dimensions in mm.

Note that if Eqs. (39) and (40) do not apply, it
means that the workpiece-fixture assembly is different

than the configurations analyzed and the resulting posi-

tioning deviation torsor varies. To analyze those cases,

Eqs.(41) and (42) should be re-evaluated considering
the points A and E as contact points between work-

piece and part-holder at station 1 and 2 respectively.

4.2.2 Numerical resolution

Similar to the SoV case study, the case study of the

MoMP is numerically solved analyzing the worst-case
and the statistical approach. The variability range for

each manufacturing process variable is shown in Ta-

ble 9. Unlike the SoV case study, where the locators

variability is independent to each other, in the MoMP
the variability of a surface depends on different torsor

parameters and those parameters are not independent

to each other since they are subjected to the geometri-

cal/dimensional tolerance of the surface. For this case

study, part-holder surfaces are planar and a position
tolerance zone applies for each one.

The numerical resolution for worst-case analysis re-

quires a search algorithm. In this case study it is applied
two algorithms sequentially. Firstly, a genetic algorithm

(GA) in order to find a region close to the optimal so-

lution. Secondly, the solution provided by the GA is

used as the initial point in a mesh adaptative direct

search (MADS) algorithm for tuning the optimal re-
sult. The resolution was repeated 10 times to ensure

the optimization convergence, so the global minimum

reached provides the worst-case solution. The numerical

resolution for the statistical analysis requires the eval-
uation of thousands of samples through Monte Carlo

simulations. For this case study, 5,000 Monte Carlo sim-

ulations were run assuming that all torsor parameters
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Table 9 Precision of part-holder surfaces and machined surfaces for the MoMP case study. Dimensional deviations in -mm-,
angular deviations in -rad-.

Station 1

Precision of part-holder surface 1: t = 0.1 mm; torsor constraints: − 0.1
2

≤ v1H1
+ 37.5 · γ1

H1
≤ 0.1

2

Precision of part-holder surface 2: t = 0.02 mm; torsor constraints: − 0.02
2

≤ v1H2
+ 10 · γ1

H2
≤ 0.02

2

Machining precision: −0.01 ≤ u1
M5

≤ 0.01 −0.01 ≤ v1
M5

≤ 0.01 −0.001 ≤ γ1
M5

≤ 0.001

Station 2

Precision of part-holder surface 3: t = 0.1 mm; torsor constraints: − 0.1
2

≤ v2
H3

+ 37.5 · γ2
H3

≤ 0.1
2

Precision of part-holder surface 4: t = 0.02 mm; torsor constraints: − 0.02
2

≤ v2H4
+ 10 · γ2

H4
≤ 0.02

2

Machining precision: −0.01 ≤ u2
M6

≤ 0.01 −0.01 ≤ v2
M6

≤ 0.01 −0.001 ≤ γ2
M6

≤ 0.001

Machining precision: −0.01 ≤ u2
M7

≤ 0.01 −0.01 ≤ v2
M7

≤ 0.01 −0.001 ≤ γ2
M7

≤ 0.001

Table 10 Numerical resolution according to the worst-case
(WC) and the statistical (ST) analysis for the MoMP case
study. Dimensions in -mm-.

KPC1 KPC2 KPC3

WC (Pro/E) ±0.163 ±0.114 ±0.047
WC ±0.162 ±0.114 ±0.047
ST (6σ interval) ±0.091 ±0.037 ±0.018

are normally distributed with the 6σ ranges shown in

Table 9 subjected to their tolerance constraints. In or-

der to validate the model, the same worst-case analysis
using Pro/Engineer Wildfire 5.0 as explained in sub-

section 4.1.2 was conducted. Table 10 shows the KPC

variations according to the type of analysis conducted.

5 Comparison and discussion

5.1 Fixture and processes supported

The SoV model is based on a linear system of equations

described in a matricial form in a similar way as the

well-know state space model from control theory. For

this reason, the SoV model has been used for modeling
isostatic fixtures based on punctual locators according

to the 3-2-1 layout. Hyperstatic fixtures based on loca-

tors or other workholding devices such as vises or 4-jaws

chucks have not been considered. The MoMP overcomes
this limitation since the formulation lets consider non-

punctual contacts for modeling the fixture assembly.

Therefore, hyperstatic fixtures with a defined hierar-

chy of contacts, and industrial fixtures such as vises or

chucks can be derived.

In terms of machining systems, the SoV model deals

only with milling operations since in this process all

degrees of freedom are constrained, and the applica-

tion of the SoV model in its matricial form for diag-
nosis and process improvement is straightforward. The

MoMP has been derived for both milling and turning

processes, making it more applicable in real MMPs.

5.2 Limitations of virtual inspection

At the virtual inspection station, the SoV model con-

ducts a point-based inspection similar to that conducted

by a coordinate measuring machine (CMM) including

in the model the measurement error in the inspection
process. The virtual inspection and verification can be

conducted straightforward for the worst-case and statis-

tical analysis by evaluating one single expression (with-

out conducting a large number of simulations or using
an optimization algorithm). In the case of the MoMP,

the deviation of the inspected surfaces is analyzed through

a virtual gauge, so the inspection is a surface-based pro-

cess where the precision of the gauge system can be

considered. According to the tolerance accumulation,
the MoMP can conduct both worst-case and statisti-

cal analysis. However, the worst-case analysis requires

the resolution of a complex optimization problem where

the global minimum solution (and thus, the real worst-
case solution) may not be reached. On the other hand,

the statistical analysis requires time-consuming Monte

Carlo simulations to infer, from thousands of simulated

samples, the statistical results of the virtual inspection.

Thus, the resolution of both worst-case and statistical
analysis are quite complex in comparison with the same

analysis conducted under the SoV model. This is be-

cause the SoV model includes the individual source of

errors in the manufacturing process (e.g. individual lo-
cator errors in isostatic fixture devices) which are inde-

pendent to each other, whereas the MoMP models the

deviations of surfaces by the SDT whose parameters
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are not independent. In other words, the SoV model is

applied only in simple isostatic fixture configurations

based on locators that greatly facilitates both worst-

case and statistical analysis. For more complex fixtures,

the SoV cannot be applied and the resolution should be
conducted applying the MoMP solving a complex op-

timization problem for both worst-case and statistical

cases.

5.3 GD&T conformance

The SoV model virtually inspects the parts as they
were inspected in a CMM. Therefore, the SoV model

is oriented to vectorial dimensioning and tolerancing

(VD&T) specifications and common product design spec-

ifications based on GD&T should be translated in order
to be applied correctly. The mathematical translation

of some GD&T specifications such as parallelism, an-

gularity and perpendicularity to be used by the SoV

was investigated in [53]. Kong et al. [54] also included

into the SoV model other GD&T specifications such as
material condition modifiers.

Unlike SoV model, the MoMP describes surface de-

viations using SDTs and uses gauges for inspection.

These two characteristics make the MoMPmore friendly

to deal with GD&T specifications than the SoV model.
For instance, the MoMP has been successfully applied

for manufacturing tolerancing according to ISO stan-

dards and GD&T specifications [49]. The MoMP has

been also applied to deal with material condition mod-
ifiers and incomplete datum frames [39, 42].

5.4 Applicability

The state space model formulation in the SoV model

makes it to be preferred to the MoMP model when the

applicability of the model is mainly focused on part

quality improvement activities such as fault diagno-
sis, process diagnosability analysis, dimensional qual-

ity control and fixture maintenance planning. However,

this applicability can be only conducted in milling pro-

cesses with isostatic fixtures. In this field, the formula-
tion of the MoMP makes it more difficult to be applied

since there is no single matrix equation to be straigh-

forward analyzed as there is in the SoV model.

Unlike the SoV model, the MoMP is oriented to

product design activities. This is mainly because of the
ability of SDTs to model surface tolerances and because

of the contact between surfaces is not only based on

punctual contacts but also on surface contacts.

5.5 Model accuracy

Considering the modeling mechanism, both SoV and

MoMP models are based on kinematic chains and ho-
mogeneous transformation matrices. Both assume solid

rigid parts and they can not deal with form errors (in-

trinsic part tolerances), so they are focused on position

and orientation errors (extrinsic part tolerances). In

manufacturing context, angular deviations due to man-
ufacturing error remain very small, so the general ma-

trix approach con be simplified using SDT or DMV [55].

Simulations conducted with Pro/Engineer are shown in

Tables 6 and 10, and they reveal that, for the worst case
analysis, the estimation error of KPCs is below 1 µm

for both approaches.

It should be noted that both models require a com-

prehensive information of the product and the man-

ufacturing process such as geometry of nominal part

surfaces, manufacturing and fixture capabilities, geo-
metrical information of fixture configurations, place-

ment of the inspection stations, capability of the in-

spection systems, etc. The large quantity of a priori en-

gineering knowledge required and its level of accuracy

has an important impact on the final accuracy of the
model, which might prevent their application in large-

scale MMPs [56]. However, for low and medium-scale

systems the application of SoV and MoMP models is

highly recommended to eliminate downstream manu-
facturing problems and reduce ramp-up times.

5.6 Modeling complexity

The derivation of the SoV model is, in authors’ opin-

ion, more oriented to multi-station systems than the

MoMP due to the adoption of the state space model of
control theory, and it is more easily to be automated

due to its matrix formulation. The multi-station repre-

sentation by the SoV model is clearer than that from

the MoMP model, and the inclusion of the inspection

stations is also straightforward. Furthermore, the reso-
lution of worst-case and statistical analysis are also eas-

ier and faster since it requires only the evaluation of a

system of equations in matrix form. However, it should

be noted that there are more limitations applied in the
SoV model, so complex MMPs based on turning-milling

processes and non-punctual isostatic fixtures should re-

quire the application of the MoMP.
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6 Conclusion and future work

The development of 3D manufacturing variation models
for integrating product and manufacturing process de-

sign is essential to improve product development, elim-

inate downstream manufacturing problems and reduce

ramp-up times. In the literature, two main 3D manu-
facturing variation models in MMPs have been studied:

the Stream of Variation (SoV) model and the Model of

the Manufactured Part (MoMP). This paper has pre-

sented both SoV and MoMP models, analyzing and

comparing their main characteristics and applications.
Furthermore, the methodology to derive both models

has been described step by step by a simple 2D case

study (extensible for any 3D part). As future work,

some potential improvements on manufacturing varia-
tion propagationmodels in MMPs should be conducted.

As some ideas, the authors suggest:

– Both SoV and MoMP models are restricted to solid

rigid components. Industrial machining operations

also require the analysis of manufacturing variabil-
ity on complaint parts due to deformations induced

by clamp forces or cutting-tool forces.

– Both SoV and MoMP models do not include form

errors. Although form errors are considered to be
not as critical as dimension or orientation errors for

3D manufacturing variation, research efforts should

be conducted to include in somehow these geomet-

rical variations.

– SoV models deal with fixtures composed of locators,
but their extension to cover common industrial fix-

tures such as vises or chucks should be addressed.

– SoV models can deal with non-orthogonal 3-2-1 fix-

ture layouts but common hyperstatic fixture schemes
in industry such as N-2-1 layouts are still unad-

dressed.

– The derivation of the MoMP includes generic machine-

tools capabilities by defining different torsor com-
ponents. However, machine-tool capabilities can be

expressed by their sources of variation themselves

such as cutting-tool deflections, tooling wear, etc.

The inclusion of additional chain of torsors to ex-

plicitly indicate the effect of these machining varia-
tions could be interesting for future applications in

manufacturing tolerancing.

– The application of the MoMP for process tolerance

allocation is still unaddressed. This process toler-
ance allocation should be analyzed by integrating

the different cost functions of the manufacturing

process such as fixture maintenance operations or

cutting-tool replacement policies among others.
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