2,677 research outputs found

    A first attempt at constructing genetic programming expressions for EEG classification

    Get PDF
    Proceeding of: 15th International Conference on Artificial Neural Networks ICANN 2005, Poland, 11-15 September, 2005In BCI (Brain Computer Interface) research, the classification of EEG signals is a domain where raw data has to undergo some preprocessing, so that the right attributes for classification are obtained. Several transformational techniques have been used for this purpose: Principal Component Analysis, the Adaptive Autoregressive Model, FFT or Wavelet Transforms, etc. However, it would be useful to automatically build significant attributes appropriate for each particular problem. In this paper, we use Genetic Programming to evolve projections that translate EEG data into a new vectorial space (coordinates of this space being the new attributes), where projected data can be more easily classified. Although our method is applied here in a straightforward way to check for feasibility, it has achieved reasonable classification results that are comparable to those obtained by other state of the art algorithms. In the future, we expect that by choosing carefully primitive functions, Genetic Programming will be able to give original results that cannot be matched by other machine learning classification algorithms.Publicad

    Investigating the Use of Geometric Semantic Operators in Vectorial Genetic Programming

    Get PDF
    Azzali, I., Vanneschi, L., & Giacobini, M. (2020). Investigating the Use of Geometric Semantic Operators in Vectorial Genetic Programming. In T. Hu, N. Lourenço, E. Medvet, & F. Divina (Eds.), Genetic Programming - 23rd European Conference, EuroGP 2020, Held as Part of EvoStar 2020, Proceedings (pp. 52-67). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12101 LNCS). Springer. https://doi.org/10.1007/978-3-030-44094-7_4 ------- This work was partially supported by FCT, Portugal through funding of LASIGE Research Unit (UID/CEC/00408/2019), and projects PREDICT (PTDC/CCI-IF/29877/2017), BINDER (PTDC/CCI-INF/29168/2017), GADgET (DSAIPA/DS/0022/2018) and AICE (DSAIPA/DS/0113/2019).Vectorial Genetic Programming (VE_GP) is a new GP approach for panel data forecasting. Besides permitting the use of vectors as terminal symbols to represent time series and including aggregation functions to extract time series features, it introduces the possibility of evolving the window of aggregation. The local aggregation of data allows the identification of meaningful patterns overcoming the drawback of considering always the previous history of a series of data. In this work, we investigate the use of geometric semantic operators (GSOs) in VE_GP, comparing its performance with traditional GP with GSOs. Experiments are conducted on two real panel data forecasting problems, one allowing the aggregation on moving windows, one not. Results show that classical VE_GP is the best approach in both cases in terms of predictive accuracy, suggesting that GSOs are not able to evolve efficiently individuals when time series are involved. We discuss the possible reasons of this behaviour, to understand how we could design valuable GSOs for time series in the future.authorsversionpublishe

    Towards a Vectorial Approach to Predict Beef Farm Performance

    Get PDF
    Abbona, F., Vanneschi, L., & Giacobini, M. (2022). Towards a Vectorial Approach to Predict Beef Farm Performance. Applied Sciences, 12(3), 1-16. [1137]. https://doi.org/10.3390/app12031137 ------------------------------------ Funding: This work was partially supported by FCT, Portugal, through funding of projects BINDER (PTDC/CCI-INF/29168/2017) and AICE (DSAIPA/DS/0113/2019).Accurate livestock management can be achieved by means of predictive models. Critical factors affecting the welfare of intensive beef cattle husbandry systems can be difficult to be detected, and Machine Learning appears as a promising approach to investigate the hundreds of variables and temporal patterns lying in the data. In this article, we explore the use of Genetic Programming (GP) to build a predictive model for the performance of Piemontese beef cattle farms. In particular, we investigate the use of vectorial GP, a recently developed variant of GP, that is particularly suitable to manage data in a vectorial form. The experiments conducted on the data from 2014 to 2018 confirm that vectorial GP can outperform not only the standard version of GP but also a number of state-of-the-art Machine Learning methods, such as k-Nearest Neighbors, Generalized Linear Models, feed-forward Neural Networks, and long- and short-term memory Recurrent Neural Networks, both in terms of accuracy and generalizability. Moreover, the intrinsic ability of GP in performing an automatic feature selection, while generating interpretable predictive models, allows highlighting the main elements influencing the breeding performance.publishersversionpublishe

    Evolutionary Algorithms for Segment Optimization in Vectorial GP [Poster]

    Get PDF
    875441 Vektor-basierte Genetische Programmierung für Symbolische Regression und Klassifikation mit Zeitreihen (SymRegZeit), funded by the Austrian Research Promotion Agency FFG. It was also partially supported by FCT, Portugal, through funding of research units MagIC/NOVA IMS (UIDB/04152/2020) and LASIGE (UIDB/00408/2020 and UIDP/00408/2020).Vectorial Genetic Programming (Vec-GP) extends regular GP by allowing vectorial input features (e.g. time series data), while retaining the expressiveness and interpretability of regular GP. The availability of raw vectorial data during training, not only enables Vec-GP to select appropriate aggregation functions itself, but also allows Vec-GP to extract segments from vectors prior to aggregation (like windows for time series data). This is a critical factor in many machine learning applications, as vectors can be very long and only small segments may be relevant. However, allowing aggregation over segments within GP models makes the training more complicated. We explore the use of common evolutionary algorithms to help GP identify appropriate segments, which we analyze using a simplified problem that focuses on optimizing aggregation segments on fixed data. Since the studied algorithms are to be used in GP for local optimization (e.g. as mutation operator), we evaluate not only the quality of the solutions, but also take into account the convergence speed and anytime performance. Among the evaluated algorithms, CMA-ES, PSO and ALPS show the most promising results, which would be prime candidates for evaluation within GP.publishersversionpublishe

    Python bindings for the open source electromagnetic simulator Meep

    Get PDF
    Meep is a broadly used open source package for finite-difference time-domain electromagnetic simulations. Python bindings for Meep make it easier to use for researchers and open promising opportunities for integration with other packages in the Python ecosystem. As this project shows, implementing Python-Meep offers benefits for specific disciplines and for the wider research community

    Multicriterion Synthesis of Intelligent Control Systems of Generating Unit of Nuclear Power Station

    Get PDF
    The paper is devoted to solution of some problems in nuclear power station generating unit intellectual control systems using genetic algorithms on the basis of control system model development, optimizations methods of their direct quality indices and improved integral quadratic estimates. Some mathematical vector models were obtained for control system multicriterion quality indices with due consideration of stability and quality indices criteria, this increasing the reliability of optimal control system synthesis. Optimal control systems with fuzzy controllers were synthesized for nuclear reactor, steam generator and steam turbine, thus allowing comparison between fuzzy controllers and traditional PID controllers. Mathematical models built for nuclear power station generating unit control systems, including nuclear reactor, steam generator, steam turbine and their control systems interacting under normal operational modes, which permitted to perform parametrical synthesis of system and to study various power unit control laws. On the basis of power unit control system models controllers were synthesized for normal operational modes
    corecore