9 research outputs found

    Oblivious data hiding : a practical approach

    Get PDF
    This dissertation presents an in-depth study of oblivious data hiding with the emphasis on quantization based schemes. Three main issues are specifically addressed: 1. Theoretical and practical aspects of embedder-detector design. 2. Performance evaluation, and analysis of performance vs. complexity tradeoffs. 3. Some application specific implementations. A communications framework based on channel adaptive encoding and channel independent decoding is proposed and interpreted in terms of oblivious data hiding problem. The duality between the suggested encoding-decoding scheme and practical embedding-detection schemes are examined. With this perspective, a formal treatment of the processing employed in quantization based hiding methods is presented. In accordance with these results, the key aspects of embedder-detector design problem for practical methods are laid out, and various embedding-detection schemes are compared in terms of probability of error, normalized correlation, and hiding rate performance merits assuming AWGN attack scenarios and using mean squared error distortion measure. The performance-complexity tradeoffs available for large and small embedding signal size (availability of high bandwidth and limitation of low bandwidth) cases are examined and some novel insights are offered. A new codeword generation scheme is proposed to enhance the performance of low-bandwidth applications. Embeddingdetection schemes are devised for watermarking application of data hiding, where robustness against the attacks is the main concern rather than the hiding rate or payload. In particular, cropping-resampling and lossy compression types of noninvertible attacks are considered in this dissertation work

    Information theoretic analysis of watermarking systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 185-193).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Watermarking models a copyright protection mechanism where an original data sequence is modified before distribution to the public in order to embed some extra information. The embedding should be transparent (i.e., the modified data should be similar to the original data) and robust (i.e., the information should be recoverable even if the data is modified further). In this thesis, we describe the information-theoretic capacity of such a system as a function of the statistics of the data to be watermarked and the desired level of transparency and robustness. That is, we view watermarking from a communication perspective and describe the maximum bit-rate that can be reliably transmitted from encoder to decoder. We make the conservative assumption that there is a malicious attacker who knows how the watermarking system works and who attempts to design a forgery that is similar to the original data but that does not contain the watermark. Conversely, the watermarking system must meet its performance criteria for any feasible attacker and would like to force the attacker to effectively destroy the data in order to remove the watermark. Watermarking can thus be viewed as a dynamic game between these two players who are trying to minimize and maximize, respectively, the amount of information that can be reliably embedded. We compute the capacity for several scenarios, focusing largely on Gaussian data and a squared difference similarity measure.(cont.) In contrast to many suggested watermarking techniques that view the original data as interference, we find that the capacity increases with the uncertainty in the original data. Indeed, we find that out of all distributions with the same variance, a Gaussian distribution on the original data results in the highest capacity. Furthermore, for Gaussian data, the capacity increases with its variance. One surprising result is that with Gaussian data the capacity does not increase if the original data can be used to decode the watermark. This is reminiscent of a similar model, Costa's "writing on dirty paper", in which the attacker simply adds independent Gaussian noise. Unlike with a more sophisticated attacker, we show that the capacity does not change for Costa's model if the original data is not Gaussian.by Aaron Seth Cohen.Ph.D

    Fundamental limits in Gaussian channels with feedback: confluence of communication, estimation, and control

    Get PDF
    The emerging study of integrating information theory and control systems theory has attracted tremendous attention, mainly motivated by the problems of control under communication constraints, feedback information theory, and networked systems. An often overlooked element is the estimation aspect; however, estimation cannot be studied isolatedly in those problems. Therefore, it is natural to investigate systems from the perspective of unifying communication, estimation, and control;This thesis is the first work to advocate such a perspective. To make Matters concrete, we focus on communication systems over Gaussian channels with feedback. For some of these channels, their fundamental limits for communication have been studied using information theoretic methods and control-oriented methods but remain open. In this thesis, we address the problems of characterizing and achieving the fundamental limits for these Gaussian channels with feedback by applying the unifying perspective;We establish a general equivalence among feedback communication, estimation, and feedback stabilization over the same Gaussian channels. As a consequence, we see that the information transmission (communication), information processing (estimation), and information utilization (control), seemingly different and usually separately treated, are in fact three sides of the same entity. We then reveal that the fundamental limitations in feedback communication, estimation, and control coincide: The achievable communication rates in the feedback communication problems can be alternatively given by the decay rates of the Cramer-Rao bounds (CRB) in the associated estimation problems or by the Bode sensitivity integrals in the associated control problems. Utilizing the general equivalence, we design optimal feedback communication schemes based on the celebrated Kalman filtering algorithm; these are the first deterministic, optimal communication schemes for these channels with feedback (except for the degenerated AWGN case). These schemes also extend the Schalkwijk-Kailath (SK) coding scheme and inherit its useful features, such as reduced coding complexity and improved performance. Hence, this thesis demonstrates that the new perspective plays a significant role in gaining new insights and new results in studying Gaussian feedback communication systems. We anticipate that the perspective could be extended to more general problems and helpful in building a theoretically and practically sound paradigm that unifies information, estimation, and control

    Successive structuring of source coding algorithms for data fusion, buffering, and distribution in networks

    Get PDF
    Supervised by Gregory W. Wornell.Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 159-165).(cont.) We also explore the interactions between source coding and queue management in problems of buffering and distributing distortion-tolerant data. We formulate a general queuing model relevant to numerous communication scenarios, and develop a bound on the performance of any algorithm. We design an adaptive buffer-control algorithm for use in dynamic environments and under finite memory limitations; its performance closely approximates the bound. Our design uses multiresolution source codes that exploit the data's distortion-tolerance in minimizing end-to-end distortion. Compared to traditional approaches, the performance gains of the adaptive algorithm are significant - improving distortion, delay, and overall system robustness.by Stark Christiaan Draper

    Coding for Cooperative Communications

    Get PDF
    The area of cooperative communications has received tremendous research interest in recent years. This interest is not unwarranted, since cooperative communications promises the ever-so-sought after diversity and multiplexing gains typically associated with multiple-input multiple-output (MIMO) communications, without actually employing multiple antennas. In this dissertation, we consider several cooperative communication channels, and for each one of them, we develop information theoretic coding schemes and derive their corresponding performance limits. We next develop and design practical coding strategies which perform very close to the information theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian relay channel, (b) the quasi-static fading relay channel, (c) cooperative multiple-access channel (MAC), and (d) the cognitive radio channel (CRC). For the Gaussian relay channel, we propose a compress-forward (CF) coding strategy based on Wyner-Ziv coding, and derive the achievable rates specifically with BPSK modulation. The CF strategy is implemented with low-density parity-check (LDPC) and irregular repeataccumulate codes and is found to operate within 0.34 dB of the theoretical limit. For the quasi-static fading relay channel, we assume that no channel state information (CSI) is available at the transmitters and propose a rateless coded protocol which uses rateless coded versions of the CF and the decode-forward (DF) strategy. We implement the protocol with carefully designed Raptor codes and show that the implementation suffers a loss of less than 10 percent from the information theoretical limit. For the MAC, we assume quasi-static fading, and consider cooperation in the low-power regime with the assumption that no CSI is available at the transmitters. We develop cooperation methods based on multiplexed coding in conjunction with rateless codes and find the achievable rates and in particular the minimum energy per bit to achieve a certain outage probability. We then develop practical coding methods using Raptor codes, which performs within 1.1 dB of the performance limit. Finally, we consider a CRC and develop a practical multi-level dirty-paper coding strategy using LDPC codes for channel coding and trellis-coded quantization for source coding. The designed scheme is found to operate within 0.78 dB of the theoretical limit. By developing practical coding strategies for several cooperative communication channels which exhibit performance close to the information theoretic limits, we show that cooperative communications not only provide great benefits in theory, but can possibly promise the same benefits when put into practice. Thus, our work can be considered a useful and necessary step towards the commercial realization of cooperative communications

    Systematic hybrid analog/digital signal coding

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 201-206).This thesis develops low-latency, low-complexity signal processing solutions for systematic source coding, or source coding with side information at the decoder. We consider an analog source signal transmitted through a hybrid channel that is the composition of two channels: a noisy analog channel through which the source is sent unprocessed and a secondary rate-constrained digital channel; the source is processed prior to transmission through the digital channel. The challenge is to design a digital encoder and decoder that provide a minimum-distortion reconstruction of the source at the decoder, which has observations of analog and digital channel outputs. The methods described in this thesis have importance to a wide array of applications. For example, in the case of in-band on-channel (IBOC) digital audio broadcast (DAB), an existing noisy analog communications infrastructure may be augmented by a low-bandwidth digital side channel for improved fidelity, while compatibility with existing analog receivers is preserved. Another application is a source coding scheme which devotes a fraction of available bandwidth to the analog source and the rest of the bandwidth to a digital representation. This scheme is applicable in a wireless communications environment (or any environment with unknown SNR), where analog transmission has the advantage of a gentle roll-off of fidelity with SNR. A very general paradigm for low-latency, low-complexity source coding is composed of three basic cascaded elements: 1) a space rotation, or transformation, 2) quantization, and 3) lossless bitstream coding. The paradigm has been applied with great success to conventional source coding, and it applies equally well to systematic source coding. Focusing on the case involving a Gaussian source, Gaussian channel and mean-squared distortion, we determine optimal or near-optimal components for each of the three elements, each of which has analogous components in conventional source coding. The space rotation can take many forms such as linear block transforms, lapped transforms, or subband decomposition, all for which we derive conditions of optimality. For a very general case we develop algorithms for the design of locally optimal quantizers. For the Gaussian case, we describe a low-complexity scalar quantizer, the nested lattice scalar quantizer, that has performance very near that of the optimal systematic scalar quantizer. Analogous to entropy coding for conventional source coding, Slepian-Wolf coding is shown to be an effective lossless bitstream coding stage for systematic source coding.by Richard J. Barron.Ph.D

    Global International Economic Models

    Get PDF
    This volume, which contains selected papers from the Eighth IIASA Global Modeling Conference, surveys the state-of-the-art of global international economic modeling. All 15 models included in the survey feature national or regional disaggregation of the world economy and interdependencies among the various nations and regions. A few are constructed for short-term forecasting, but the primary focus is on long-run models and applications. Macro-economic, input-output, general equilibrium, trade and exchange rate, and several hybrid models are included. A cross-sectional analysis by the editor compares the structures, linkage mechanisms, methodologies, and applications of the various models and concludes with some observations on prospective research trends

    Maritime expressions:a corpus based exploration of maritime metaphors

    Get PDF
    This study uses a purpose-built corpus to explore the linguistic legacy of Britain’s maritime history found in the form of hundreds of specialised ‘Maritime Expressions’ (MEs), such as TAKEN ABACK, ANCHOR and ALOOF, that permeate modern English. Selecting just those expressions commencing with ’A’, it analyses 61 MEs in detail and describes the processes by which these technical expressions, from a highly specialised occupational discourse community, have made their way into modern English. The Maritime Text Corpus (MTC) comprises 8.8 million words, encompassing a range of text types and registers, selected to provide a cross-section of ‘maritime’ writing. It is analysed using WordSmith analytical software (Scott, 2010), with the 100 million-word British National Corpus (BNC) as a reference corpus. Using the MTC, a list of keywords of specific salience within the maritime discourse has been compiled and, using frequency data, concordances and collocations, these MEs are described in detail and their use and form in the MTC and the BNC is compared. The study examines the transformation from ME to figurative use in the general discourse, in terms of form and metaphoricity. MEs are classified according to their metaphorical strength and their transference from maritime usage into new registers and domains such as those of business, politics, sports and reportage etc. A revised model of metaphoricity is developed and a new category of figurative expression, the ‘resonator’, is proposed. Additionally, developing the work of Lakov and Johnson, Kovesces and others on Conceptual Metaphor Theory (CMT), a number of Maritime Conceptual Metaphors are identified and their cultural significance is discussed
    corecore