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ABSTRACT

OBLIVIOUS DATA HIDING: A PRACTICAL APPROACH

by
Husrev T. Sencar

This dissertation presents an in-depth study of oblivious data hiding with the

emphasis on quantization based schemes. Three main issues are specifically addressed:

1. Theoretical and practical aspects of embedder-detector design.

2. Performance evaluation, and analysis of performance vs. complexity tradeoffs.

3. Some application specific implementations.

A communications framework based on channel adaptive encoding and channel

independent decoding is proposed and interpreted in terms of oblivious data hiding

problem. The duality between the suggested encoding-decoding scheme and practical

embedding-detection schemes are examined. With this perspective, a formal

treatment of the "processing" employed in quantization based hiding methods is

presented. In accordance with these results, the key aspects of embedder-detector

design problem for practical methods are laid out, and various embedding-detection

schemes are compared in terms of probability of error, normalized correlation, and

hiding rate performance merits assuming AWGN attack scenarios and using mean

squared error distortion measure.

The performance-complexity tradeoffs available for large and small embedding

signal size (availability of high bandwidth and limitation of low bandwidth) cases are

examined and some novel insights are offered. A new codeword generation scheme

is proposed to enhance the performance of low-bandwidth applications. Embedding-

detection schemes are devised for watermarking application of data hiding, where

robustness against the attacks is the main concern rather than the hiding rate or

payload. In particular, cropping-resampling and lossy compression types of non-

invertible attacks are considered in this dissertation work.
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CHAPTER 1

INTRODUCTION

The study of data hiding (information hiding, watermarking) tries to establish the

achievable limits and the design of methods for conveying a message data, embedded

within a host (cover) signal, in an imperceptible and reliable way. Data hiding

techniques aim at achieving three primary goals. These are:

• Hiding rate: The maximum amount of message data that can be embedded in

a given host signal.

• Robustness: The level of resistance of the embedded signal (stego signal) against

all forms of attacks so that the embedded message data can be reliably extracted

by the receiver.

• Transparency: The degree of perceptual degradation in the host signal due to

the embedding operation.

The design of optimum embedding and detection operations is the central issue in

data hiding research.

Data hiding study provides tools that can be employed to serve a variety of

purposes including, but not limited to, copyright control, ownership verification,

secure media distribution, transaction tracking, authentication, captioning, and

hybrid analog and digital communications. Ultimately, data hiding applications are

classified based on how they make use of the tradeoff among the conflicting goals

of hiding rate, transparency and robustness. Designing practical methods that will

achieve wide acceptance depends on exploiting this tradeoff optimally. This requires

an approach that incorporates the findings of many research areas, [1, and the

references therein]. A significant number of researchers have introduced sophisticated

1
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information hiding techniques that approach information theoretic limits of data

hiding capacity, [2, 3, 4, 5, 6].

Performance of data hiding methods is usually restricted by the maximum

amount of distortion that may be introduced to the host signal with no perceptual

distortion. The embedding distortion is ideally derived from a perceptual distortion

measure, and it is the resource of the communication between embedder and detector.

The information hider needs to design the embedder-detector that makes the most

effective use of this core resource.

One conservative assumption in data hiding is that the embedder has no access

to the host signal (oblivious data hiding). Though, not all data hiding applications

are necessarily oblivious, the focus in this dissertation is the oblivious one.

1.1 Data Hiding Framework

Let C E RN be some sampled real valued information signal, and W E RN the

auxiliary message signal. An embedder E embeds the message signal W in the host

signal C to yield the stego signal S E IN given as

Let d(.,.) be a predefined distortion metric suitable to information signal C. In

other words d(S, C), is the "distance" between S and C. A commonly used metric

or distance measure is the mean squared error given by

The embedding distortion, d(S, C) is constrained to be less than a defined threshold

P to ensure that the cover signal C and the stego signal S are perceptually the same

or very similar.
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The stego signal is corrupted by a noise signal Z E R N before it reaches the

detector D. At the detector, an estimate Ŵ Є RN of the message signal W is

obtained from the received signal Y=S+Z as

The problem now boils down to the optimal design of embedder E and detector D to

maximize the "fidelity" of W, subject to the distortion constraint d(S, C) < P.

The above setting can be equivalently translated into a classical communications

problem. Consider a message letter m from an alphabet M with size M. (The

message letter m can equivalently be considered as an index 1 <= m <=M.)The

encoder E is to transmit the message letter m to decoder D through N uses of a

noisy channel with varying states at each transmission. The channel state vector

C is also available at the encoder as a side information. The encoder uses a code

with M codewords of length N and power P. At the decoder, the sent message is

decoded from the received noisy codeword as m . In this case, the objective is to find

the optimal encoding and decoding so that reliable communication between E and D

is possible for the given power constraint P and the side information C. When the

state vector C is additive to the sent codeword the two scenarios become identical.

Consequently, the encoder-decoder pair, (E, D), in the communications framework

becomes dual to the embedder-detector pair, (E, D), in data hiding framework with

the inclusion of a mapping rule that maps a message index m to a message signal W

and Ŵ  to m  as

In the text following notation is used. Vectors are denoted by bold-faced

characters. Random variables and their realizations are denoted by the capital and

corresponding lower case letters, respectively, in italic typeface. The matrices are
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denoted by 'blackboard bold' letters. For the general case all signals are assumed

to be vectors of size N. However, in cases where the vector random variables

are independent, identically distributed (iid), the analysis is simplified by using

the individual random variables in derivations where the vector extensions are

straightforward.

1.2 Review of Data Hiding Methods

The early works in the literature for data hiding mainly focused on heuristic

approaches. As the similarities between the issues of data hiding and other fields

become evident, a variety of approaches were made available by exploiting those

similarities. Among these approaches the ones that generated a lot of attention

are inspired from spread-spectrum communications and communication with side

information [7, 8, 9, 10, 11

Data hiding techniques are characterized by the embedding and detection

techniques employed. Methodologically, the proposed embedder-detector designs can

be categorized into two main groups: additive spread-spectrum based methods, and

quantization based methods.

In additive spread spectrum methods, the watermark signal is generated by

modulating the information symbols with a weighted unit energy spreading vector

which is then added to the host signal [12, 13, 14, 15, 16]. By choosing an appropriate

weighting factor, perceptual intactness of the host signal is retained. These methods

are preferable due to their ease in processing, and their reliability under additive

noise interference. With additive embedding, data hiding rate is uncompromisingly

traded off against robustness to severe attacks while complying with the perceptual

constraints. Major drawback of such methods is that host signal affects as a source of

interference at the detector. As a result of this fact, satisfactory performance is not

possible unless the host signal is available during detection or host signal interference
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is negligibly smaller than the channel interference. In additive schemes, optimal

decoding of the watermark signal depends on exact probabilistic characterization of

the host signal at the detector.

The shortcomings of additive spread spectrum methods in suppressing the host

signal interference are handled by adopting the results of communication with side

information to data hiding applications. Costa in [17] introduced the notion that, in

a communication channel, a side information available to encoder but not to decoder

does not necessarily causes a reduction in the communication rate by making an

analogy with a hypothetical case where a writer communicates to a reader by writing

on a sheet of paper that is covered with iid Gaussian dirt spots. Costa showed that

the two party can communicate at a rate as high as using a clean sheet of paper.

His results, when evaluated within data hiding context, encouraged researchers in

designing practical oblivious data hiding schemes that can achieve the hiding capacity.

To achieve the hiding rates that are closer to the upper capacity bound, several

implementations that utilize this approach are proposed, in the literature [18, 8, 19,

20, 21, 22]. These techniques are characterized by the use of enhanced quantization

procedures in order to design embedding-detection methods that approximate the

performance of optimal encoding-decoding. In this class of methods, the optimal

implementation requires higher dimensional quantization for embedding. However, a

satisfactory performance is also achievable through scalar quantization. On the other

hand, the extraction of the hidden message is achieved, most generally, by employing

minimum distance decoding due to the use of lattice structures in embedding. As

a consequence of such an embedding, these methods are vulnerable against signal

scaling. Therefore, they perform well only if the attack is not severe. However, they

are suitable for oblivious data hiding applications.

Chen, et al. in [23] provide a formal treatment of data hiding methods that use

quantization to embed signals, that is called quantization index modulation (QIM).
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In this type of methods, quantization is used to force the host signal coefficients to

take desired values depending on the information signal to be embedded. Similarly,

Chou, et al. in [10, 22], based on a duality with distributed source coding problem,

implemented the exhaustive codeword generation for Costa's scheme by using a robust

optimization method through the utilization of optimal quantizers. In this research

direction, the most popular embedding technique is a low complexity implementation

of QIM which relies on uniform scalar quantization, that is called dither modulation

(DM) [24]. In fact the earliest data hiding methods [25, 26, 27, 28], which modified

only 1 or 2 least significant bits (LSBs) of the host signal, are based on the same

principle in rejecting the host signal interference, so called low bit modulation (LBM).

For example, a method which modifies only 2 LSBs may be considered as a form of

quantization index modulation where the step size of quantizer used is 4. Even-odd

modulation is another embedding technique that operates similarly. In the data

hiding scheme proposed by Wang, et al., [29], the significant wavelet coefficients are

modified such that they quantize to an even or odd value depending on the bit to be

embedded. In [30], Wu, et al., introduced a similar scheme based on JPEG quantizers

by altering the DCT coefficients.

The additive spread spectrum and quantization based methods have poor

performances for the "no attack" and "severe attack" cases, respectively. In the

former, the performance becomes independent of the additive attack level. Whereas

in the latter, the performance drops rapidly with the increase in the attack. These

deficiencies point out to a non-optimal design procedure compared to Costa's scheme

which can deliver perfect host signal interference rejection at all attack levels. The

need for a class of practical methods where the hider has better control over the

operating characteristics is immediately recognized by various researchers.

In quantization based data hiding methods, this effort resulted by incorporating

a processing stage that follows the embedding quantization and by employing forms
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of redundancy coding. In [8] and [31], Chen, et al. respectively introduced distortion

compensated version of QIM (DC-QIM) (that can achieve the capacity under

AWGN attacks), and spread transform (ST) technique for practical implementations

(that embeds the message signal by spreading the resulting embedding distortion

over many host signal coefficients). Ramkumar, et al. [20], considering scalar

embedding, employed a thresholding type of processing at the embedder and, also,

used a continuous triangular periodic function for extracting the embedded binary

watermark signal. In [21], Eggers, et al. optimized the performance of DC-DM by a

more careful optimization of embedding-detection parameters. They also combined

multi-level signaling with binary coding techniques for low attack applications, and

provided some performance results, [5, 32]. Perez-Gonzalez, et al. [33] proposed a

probability density function (pdf) transformation type of processing for embedding.

Furthermore, they provided a calculation of upper bound on the probability of error

for multidimensional embedding case considering various noise distributions.

In order to improve the performance of additive spread spectrum methods, a

similar approach to quantization based methods is also developed. Reference [33],

inspired by ST-DM, proposed a decoding technique that integrates the underlying

principles of quantization based methods with the additive schemes. In this method,

watermark signal is selected such that when the linear correlation between the

watermark signal and the undistorted stego signal is quantized, the resulting signal

is a centroid of the lattice associated with the embedded signal. The probability of

error performance of this method is improved by further processing. Consequently,

the watermark signal is selected such that, rather than the quantized correlation

metric itself, the properly scaled error due to quantization of the correlation metric

is mapped to the desired centroid. Similarly, in [34], the watermark signal energy

is properly shaped to compensate for the host signal interference at the detector.

This is achieved by designing the weighting as a function of the projection of the
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host signal onto the spreading sequence, so that at the detector, host signal's effect

is diminished.

1.3 Dissertation Overview

This dissertation is a study of theory and practice of oblivious data hiding with

the emphasis on efficient embedding and detection techniques. The dissertation

is organized as follows. Chapter 2 starts with a discussion on the theory of

communication with side information with reference to earlier works in the field.

Then, an alternate communications framework is proposed from a data hiding

perspective, and the duality between the communications and data hiding frameworks

is elaborated from this point of view. Finally, codebook design and generation for

data hiding methods is addressed.

In Chapter 3, the intricacies of the high performance embedder-detector design

is explored in terms of the proposed framework assuming mean squared error

distortion measure. The performance evaluation criteria needed for a fair comparison

of those methods is laid out as: the type of post-processing, the type of demodulation,

and the optimization criterion used to determine embedding-detection parameters.

Various practical embedding-detection schemes are compared with respect to their

rate, correlation, and probability of error performances under AWGN attacks.

Chapter 4 discusses and investigates the techniques for boosting the performance

of embedding-detection techniques for the two extreme cases of large and small

embedding signal sizes. These methods are the spread transforming and multiple

codebook hiding, respectively, corresponding to cases where the embedding signal size

is large and limited. General form of spread transforming for an arbitrary spreading

gain is given with a transform domain embedding approach. Multiple codebook

hiding method is introduced. The use of multiple codebooks offers freedom in the

choice of the codeword that is more "friendly" with the host signal, especially when



9

the embedding signal size is small. In proposed scheme, each codebook is designed by

the use of a real unitary transformation selected from a set of transformations that

is known to both embedder and detector.

Chapter 5 proposes scalar quantization based embedding-detection methods

against cropping and compression type of non-invertible attacks. Attacks on

the stego signals can be classified into two main groups, namely, invertible and

non-invertible attacks. Invertible attacks can be reversed by some intelligent

and usually computationally intense manipulations. Therefore, hiding rate is

not decreased. On the other hand, non-invertible attacks like cropping, AD-DA

conversion, and compression may lead to insignificant hiding rates if they are not

taken into account in advance by the designer. A true watermark embedding

methodology should either be invariant to these attacks or include practical means

of undoing and reducing the disturbing effects of them. In Section 5.1, a method to

recover the message signal from a stego content that has undergone cropping and

resampling consecutively is presented. The information loss due to the cropping is

coped with by multiple embedding of the watermark signal, and the synchronization is

restored by using cyclic autocorrelation features of the cropped-resampled signal and

redundancy coding. In Section 5.2, embedder-detector operation is modified to make

use of the compression scheme's quantization characteristics (i. e. quantization tables)

assuming information hider has access to details of the compression algorithm prior

to embedding. This is achieved by fine tuning the embedding-detection parameters

to minimize the disturbing effects of the quantization noise.

Conclusions are given in Chapter 6.



CHAPTER 2

COMMUNICATION WITH SIDE INFORMATION

AND DATA HIDING

Shannon [35], introduced the first analysis of discrete memoryless channels with side

information, in the form of varying channel states from a finite set, causally known

to the encoder. He proved that this channel is equivalent (in terms of capacity) to

a usual memoryless channel that has the same output alphabet and an expanded

input alphabet with no side information. Accordingly, each letter of the new input

alphabet is generated as a mapping from the set of states into the input alphabet of

the original channel. In [36], Kusnetsov et al. examined a practical version of the same

problem where the errors in the channel are invariant, namely memory with defective

cells. They offered an encoding scheme for reliable storage of information when the

encoder is given the defect information, and they investigated the redundancy bounds

for such codes. Gelfand, et al. in [37] considered a similar channel as in [35] by

removing the causality condition on the encoder such that, at any transmission time,

the encoder has the whole channel state information for all times. They proceeded

to derive the capacity of this channel assuming an input alphabet X, an output

alphabet y, an auxiliary alphabet U, and a finite set C of side information where

X, 3), U, C, E RN . The channel capacity, Co , is expressed in terms of random variables

X E X, Y E y , U E U, and C E C by a maximization over all conditional joint

probability distributions p c (c)p u,x (u, x|c)py(y|x, c) as

where px (x) is the probability mass function of a random variable X and /(X, Y)

is the mutual information between two random variables X and Y. Heegard, et al.

10
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[38] also using this formulation, extended the idea to establish achievable storage

rates for memory when defect information is given only to encoder or to decoder and

completely to decoder but partially to encoder.

Costa [17], applied the results of [37] to memoryless channels with discrete

time and continuous alphabets, and presented an information-theoretic analysis of

a problem that also applies to oblivious data hiding. He studied a communications

scenario where encoder transmits a message index to decoder in the presence of a

side information and designed the auxiliary variable in Gelfand's formulation as U =

X + αC , where X is the power constrained input, C is the channel state information

available at the encoder, and a is a scaling factor. Costa showed that for an additive

white Gaussian noise (AWGN) channel with Gaussian input and side information,

the channel capacity does not depend on the side information.

Later research gained considerable momentum first by reinterpreting these

results in terms of oblivious data hiding, and later, by formulating the problem from

a game theoretic perspective. References [39] and [40] assumed Gaussian distributed

host signal and squared error distortion measure, and studied the problem as a

data hiding game between the hider-extractor and attacker. In [39], Moulin, et al.

introduced an information-theoretic model for data hiding considering memoryless

attacks. In their model, the information hider determines the embedding strategy

without knowing the attack, whereas the attacker uses the stego signal to design the

attack. The extractor, on the other hand, is assumed to be in a position to learn the

strategy of the attacker. It is shown that for squared error distortion measure and

white Gaussian distributed host signal, Gaussian test channel is the optimal attack

and the hiding capacity is the same as in the case when the host signal is known to the

detector. They also showed that Costa's results are valid for this setting of the data

hiding game under the small distortions scenario which assumes host signal power is

much higher than that of the distortions introduced by the hider and attacker. Cohen,
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et al. [40] presented a detailed discussion and the results of hiding capacity assuming

Gaussian distributed host signal and squared error distortion measure, similar to [39],

except the removal of the assumption that extractor knows the attack. They showed

that independent, identically distributed (iid) Gaussian host signal maximizes the

hiding capacity among all finite fourth moment distributions for the host signal. It

is also discussed that additive attacks are sub-optimal. Furthermore, they extended

Costa's results by considering non-white noise attacks and non-Gaussian embedding

distortions.

These studies showed that the solution for the hiding capacity varies with the

setting of the game, and Costa's framework yields the upper bound on the coding

capacity among all versions of the game, since attacker has a fixed strategy (additive

noise) that is known to both encoder and decoder. Therefore, Costa's framework

and his results serve as a test-bed for comparing and evaluating the performances of

various practical embedding-detection techniques.

2.1 Costa's Framework

Costa in [17], based on the results of [37], considered a power constrained AWGN

channel with iid Gaussian input X and side information C (in the form of channel

state) that is available only at the encoder in a non-causal manner. A message

index m is transmitted to the receiver by properly selecting the codeword X that is

distorted during transmission by the additive channel state C and the channel noise

Z. Consequently, the channel output is defined as Y = X + C + Z. Considering

the design of U = X + aC, 0 < a < 1, and assuming X, C, Z are iid length N

sequences of random variables with zero covariance matrices and Gaussian marginal

distributions (i.e. X ti A1(0, P), C ti N.(0, 4), Z N N (0, σ^2 σ^ 2z)), the communication

rate is computed as [17]



where H(X) is defined as the entropy of random variable X . Since X , C and

Z are assumed independent Gaussian random variables, X + C and X + C + Z

are respectively distributed as N(0, P + a26) and N(0, P + + 4 2z). The joint

distribution of X + C + Z and X + C is also Gaussian with the density function

given as

Hence, the rate in Equation (2.2) is obtained by calculating the entropies for the

corresponding distributions as [41]

Maximizing R(a) over a, Costa showed that communication rate achieves 2 log2 (1 +

) bits per transmission for a* = P+σ^2 z that is the capacity of the same AWGN
σ^2 z

channel with the side information available to both encoder and decoder. Thus, for

a properly chosen a, the lack of side information at the decoder does not reduce the

capacity.

The channel model for Costa's framework is displayed in Figure 2.1. In order

to transmit message m, encoder E generates the codeword X that is additive to the

channel state C at the given channel noise variance. Decoder D, not knowing the

random channel state C, detects the message m from the received signal Y.



14

Figure 2.1 The channel model for Costa's framework corresponding to codebook
design of U = X + αC.

Costa outlined the capacity achieving encoding-decoding scheme based on
|

random coding techniques. The optimal codebook has M = [2NR] 1 codewords

corresponding to M messages. Each message is transmitted in N uses of the channel.

For optimal encoding and decoding, 2N(I(U,Y-Є)  (for an arbitrarily small f) number of

length N iid sequences with individual distributions N(0, P + a* . 2 a- ,) are generated

and then partitioned into 2NR bins. Each bin is associated with the index of a

message and points to 2N(I(U,C+Є) number of sequences. This collection of sequences

is made known to both encoder and decoder. In order to generate the codeword, the

side information C is weighted by the proper a and subtracted from the sequences in

the bin corresponding to the message to be conveyed. Among the resulting signals,

,	 ,the one that is orthogonal to C (|(Ui — α*C)^T 	
< 6 , j = 1, . . . 2N(I(U,C)+Є)C|	 for a

proper 6 value) and also satisfies the power constraint (*||X||2 < P) is the optimal

codeword corresponding to message index being sent.

Encoder sends the codeword over the channel. Decoder receives the signal Y and

searches over all U sequences for the jointly typical (Uj , Y) pair a (Uj — αY)^TY| <

6, j = 1, . . . , 2N (I (U,y)._ 0) . The sent message is decoded successfully from the U j

sequence and the received signal Y, for a = a* and large N, as

1 [x] is the greatest integer smaller than or equal to x



The message index associated with the bin that contains the sequence Ui is declared

as the sent message. Such a code generation is asymptotically optimal as N → ∞

[17].

2.2 An Alternate Framework Based on Channel Adaptive Encoding

and Channel Independent Decoding (CAE-CID)

For the same communications scenario, let the channel model of Costa's framework

be modified in two respects. First modification is by redefining the channel input as

Xn = A — X t . The term X t will be referred to as "processing distortion" since it is by

nature, a "disturbance" to encoder output A. The processing distortion X t may be a

function of the encoder output A, and the correlation between X and Xt is denoted

by p. Also, Xt , like X is iid and independent of C. In the CAE-CID framework, since

the codeword transmitted by the encoder is Xn , the power constraint that needs to be

satisfied by the codeword X in Costa's framework, applies to Xn , viz., *||Xn||^2 <= P.

Consequently, the received signal at the decoder is expressed as Y = An  + C + Z.

Second modification is by designing the shared variable as U = X + C, where the a

value employed in codebook generation is set to one regardless of the channel's noise

level.

The transmission rate for the modified channel can now be computed for U =



The formulation given in Equation (2.8) can be solved for rate R assuming random

variables X, Xt , C, and Z are mutually independent except for the known dependence

between X and Xt , and they are distributed according to X(0, °1), X(0, 42xt),

N.(0, 4), and X.(0, 4), respectively. The normalized correlation between X and

17 	 - 

On the other hand, Xi, is a random variable with the second moment set to P and its

distribution depends on how X t is related to X. Furthermore, the random variables

Z — Xt and X + C are jointly Gaussian with the probability density function given

by

Consequently, the rate in Equation (2.8) is derived by computing the entropies for

the marginal and joint distributions as [41]

The achievable transmission rate for this channel can be found by maximizing

the rate R over ax, ax e , and p under the constraint *|| A Xt || 2 -= P. Since p is a

normalized variable, it does not depend on the variances of X and Xt . Hence, setting

p = 1 (Xt is a linear function of X) will maximize Equation (2.12) in p. Moreover,



17

the power constraint on the input relates ax and σ xt as

As a result, maximization of rate given in Equation (2.12) reduces to a maximization

over a for n = 1 and ay. = σ x — √P . Then.

This is tine capacity of the channel where Lice Niue information  known

to the decoder, as first derived by Costa [17]. The results above show that the

optimal codebook design in Costa's framework based on a particular a* can be

equivalently achieved in the CAE-CID framework with the corresponding σ* x when

p = 1. Therefore, the two frameworks are equivalent, and they can be translated

into each other through cX = 4 at the same transmission rate. The corresponding

channel model for the proposed CAE-CID framework is displayed in Figure 2.2. When

compared with Figure 2.1, main difference is that a dependency of (E, D) pair is

replaced by the inclusion of t that is generated by the processing P at the encoder.

Optimal encoding-decoding scheme of the CAE-CID framework is similar to the

one described in [17]. However, the encoding-decoding operations rely on the design

of U = X + C as a is set to one. Correspondingly, the shared U sequences are iid

with an underlying marginal distribution N(0 , P . The channel dependence,

however, is reflected in the appropriate choice of processing that generates t from

X. At the encoder, for the given C, the jointly typical (U, C) pair is searched in

the bin corresponding to the message signal being sent. The codeword is generated

from the Uj sequence that satisfies the orthogonality constraint (|(Uj — C) TC| <



18

(5, j = 1, ... , 2N(I(U,C)+Є)) and yields codeword A, such that the power constraint

(1/n||xn|| 2 < P) is satisfied. It should be noted that, in order to achieve capacity, Xt

is a linear function of A. Therefore, the codeword x n is readily obtained from the

encoder output A by the relation A„, =  xP A.

On the decoder side, the sent message is decoded as the index of the bin that

contains the U sequence which is jointly typical with the received signal Y. The

particular sequence Uj is found, for large N, as

where E[X Xt ] = σ*x σ*xt, Equation (2.9) for p = 1, is used. The cancellation of the

terms in Equation (2.18), completely relies on the choice of X and the corresponding

t at the encoder.

In CAE-CID framework, since the design of the shared variable is fixed as

U = X + C, the optimal encoding and decoding merely relies on the proper of

statistics of the encoder output A and its dependence with processing distortion t .

2.2.1 Advantages of CAE-CID Framework

When compared to Costa's framework, the CAE-CID framework has the following

advantages:

1. In Costa's scheme, both the encoder and decoder need to know the channel

noise variance, while for the CAE-CID scheme only the encoder needs to know

the channel noise variance. The channel dependent nature of the encoding, for

the CAE-CID framework, is reflected on both inputs A and xt. Thus, channel

state interference rejection at the decoder is achieved solely by the encoder's
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Figure 2.2 The channel model for the proposed CAE-CID framework corresponding
to codebook design of U = X + C.

ability to properly select ax and a xt depending on the given σz, Equation

(2.15).

2. When the channel noise variance changes, in Costa's framework, successful

decoding can no longer be sustained due to dependence of decoder on the

channel noise level. However, in the CAE-CID framework, if the channel noise

level changes, encoder-decoder can continue successful operation at a lower or

higher rate by adjusting P at the encoder without updating the shared collection

of U sequences as long as

where 2 z is the new channel noise power (derivation details are given in

Appendix A).

3. CAE-CID framework provides a better theoretical basis for practical

embedder detector designs, as the post-processing, employed in practical methods, can be

represented by the processing distortion term t in the formulations.

2.3 On the Duality of Communications and Data Hiding Frameworks

The theory of data hiding has been developed mainly through employing analytical

tools of communication with side information and spread spectrum communications.



Table 2.1 Duality Between Communications and Data Hiding Frameworks
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Communications Framework

Side information

Encoder-Decoder

Channel noise

Power constraints

Bandwidth

Signal to Noise ratio

Data Hiding Framework

Host signal

Embedder-Detector

All forms of modification on the stego signal (Attack)

Perceptual distortion limits

Embedding signal size

Embedding distortion to attack distortion ratio

This is achieved by reinterpreting and adapting basic concepts such as channel, side

information, and power constraints within the context of data hiding.

In data hiding, channel is the medium between the hider and extractor, and it

includes all forms of disturbances that affect the stego signal, which is an intelligent

combination of the host signal and the message to be conveyed. Side information

available at the encoder in a communication channel model, is associated with

the host signal at the embedder in the equivalent data hiding model. Similarly,

encoder-decoder pair (E, D) is functionally equivalent to embedder-detector pair

(E ,D) . Power constraints in a channel communication scenario are analogous to the

perceptual distortion limits that are determined based on the features of the host

signal. The bandwidth is somewhat dual to embedding signal size as they are both

resources of the communication, and signal to noise ratio (SNR) measure corresponds

to embedding distortion to attack distortion ratio (WNR) measure. Table 2.3 shows

the duality between the communications and data hiding frameworks.
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Based on the communication frameworks given in Sections 2.1 and 2.2,

encoding and decoding of a message index relies on proper selection of the codeword.

Correspondingly, in the dual data hiding problem, the performance of an embedding

and detection technique depends on the underlying codeword generation scheme.

Hence, main goal of a data hiding method is to design practical codebook and

codeword generation schemes that can deliver perfect host signal interference rejection

at all noise levels.

A codebook is a collection of mappings from the set of messages to be conveyed.

Each mapping, or codeword, is generated from the host signal by an intelligent process

based on the imposed distortion constraints and the expected noise level. However, in

the formulations of data hiding, a codeword is defined in two different ways. From the

communications point of view, the side information is a state of the channel and the

codeword is the signal transmitted through the channel. Then, due to the analogy

with the communications framework, a codeword can be defined as the distortion

introduced to the host signal due to the embedding operation. However, within the

context of data hiding, side information is the host signal, and it is also transmitted

through the channel. Correspondingly, one can define the stego signal to be the

codeword, as it is the channel input. In order to better exploit the duality between

the communications and data hiding frameworks, the former definition for codeword

is adopted.

A typical data hiding system can be modeled as



22

where detector is assumed to have no access to the host signal during the extraction

process. In the above model, m is the message to be hidden, C is the host signal, W

is the watermark signal, S is the stego signal, Z is the intrusion of the attacker, Y is

the distorted stego signal, "NV is an estimate of W, and m is the detected message.

At the embedder, message index m is mapped to a sequence of information samples

W by the mapping W which transforms message m into a better representation

for embedding. Then, the resulting watermark signal W is embedded into the host

signal C. At the detector, sent message is detected from the received signal Y or

from an extracted estimate W of W by the inverse mapping IN'. In the model, the

embedder, E, and the detector, D, may be linear or nonlinear functions that operate

on scalar or vector variables, and are not necessarily inverses of each other. Not

evident in the model is the distortion constraints imposed on hider and attacker for

keeping the host signal intact. Ideally speaking, the measure used to quantify the

hider's and attacker's distortion is expected to be in compliance with the perceptual

properties of the host signal.

Due to the duality between the communications and data hiding frameworks,

the underlying encoder-decoder design principles of Sections 2.1 and 2.2 can be

applied to embedder-detector design of data hiding methods. The corresponding

encoding-decoding schemes assume the presence of a very large number of U sequences

both at the encoder and decoder, and achieving channel capacity relies on adapting

the codeword to the channel state at a given channel noise level. The encoding

operation is simply a brute search in the bin pointed by the message index, in order

to find the U sequence that yields the codeword in the direction of the host signal C.

Accordingly, each codeword is orthogonal to C and satisfies the power constraint P.

(These constraints take the form of XTC ti 0 and *||,C||2 = P in Costa's framework

and XTn C ti 0 and 1/N||Xn||2 = P in CAE-CID framework.) At the decoder, on the

other hand, the same U sequence is searched in all bins based on joint typicality
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Figure 2.3 Encoding of message index m.

with the received Y. Figures 2.3 and 2.4 depict the optimal encoding and decoding

for message index m. In Costa's framework 0 < a < 1 and processing distortion

is zero, whereas in CAE-CID framework a = 1 and the processing distortion is

non-zero. Hence, the main difference between the two frameworks is in how the

channel dependent nature is reflected in encoding and decoding operations.

Despite their optimality, such encoding-decoding schemes cannot be applied

to the design of practical embedding-detection techniques due to complexity issues.

However, their structure has been an inspiration for the design of many

embedder detector pairs [18, 8, 20, 22, 21, 33]. Common to all these data hiding techniques

is the use of quantization to simplify codebook generation and codeword selection.

Also, they impose the power and orthogonality constraints in a less strict sense.

In quantization based methods, the optimal encoding-decoding procedure

is effectively simplified by generating U sequences as sequences of reconstruction

points where each reconstruction point is associated with a quantizer from a set of

quantizers. The number of quantizers in the set corresponds to number of messages

or message letters. Each quantizer of the set is uniquely described by a set of

reconstruction points that are non-overlapping with other sets of reconstruction
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Figure 2.4 Decoding of sent message index m.

points. Therefore, each finite state of U is a sequence with values restricted to

reconstruction values of the designated quantizers. The terms X and t are the

embedding distortion due to quantization and the processing distortion, respectively.

The codeword corresponding to a message is the distortion signal introduced to the

host signal as a result of embedding operation, S — C. Consequently, it is denoted

by XT, = X — Xt in the CAE-CID framework and by X in Costa's framework. The

embedding operation, based on the CAE-CID framework, is the quantization of C

vector with the quantizer(s) pointed by the watermark signal W to be embedded,

and then processing the resulting quantized signal by a choice of (post-processing)

function. Hence, input X in the CAE-CID framework is the distortion introduced to

C due to quantization of embedding, and the processing distortion X t is the result

of processing 2, X t = P(X). The detection of the sent message, on the other hand,

is by determining the nearest reconstruction point(s) to the received signal Y, and

generating the message by mapping the corresponding quantizer(s) to the message

letters they are associated with. The crux of practical methods is that each codeword

is directly generated from the given host signal and the watermark signal through

quantization rather than maintaining a collection of shared U sequences.
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Chou, et al., in [22] applied the solution of a problem in distributed source

coding to data hiding through the use of optimal quantizers. They proposed the use

of robust optimization for codeword selection from Costa's huge codebook. In their

work, the orthogonality of C and X is obtained by choosing U as a rate-distortion

optimized and quantized version of a scaled version of C. Although this approach

approximates the optimal encoding and decoding scheme of Costa's framework,

even the simplest implementations involve considerable complexity. Such complexity

concerns draw attention to practical approaches with simpler implementations. Chen,

et al., Ramkumar, et al., Eggers, et al., and Perez-Gonzalez, et al. in [20, 8, 21, 33],

respectively, proposed methods that handle codebook generation by uniform scalar

quantization.

2.4 Codebook Generation for Data Hiding Methods

Practical data hiding approaches can be categorized into three main types within the

frameworks studied in Sections 2.1 and 2.2 based on the design of embedder-detector

pair, namely type-I, type-II, and type-III [3, 42]. Type-I methods refer to additive

schemes where the stego signal is generated by adding the watermark signal to the

host signal [12, 13, 14, 15, 16]. This type of methods suffer severely from host signal

interference due to the non-optimal design that assumes the host signal C as a noise

and tries to cancel it. Type-I methods have preferable performance only if channel

noise is very strong or the host signal is available at the extractor.

Type-II methods are characterized by the use of quantization procedures and

by the (E, D) pair which are exact inverses [25, 26, 27, 28, 29, 30, 23, 20]. The major

drawback of this type of methods is that they perform well only if the attack is not

severe. However, they are very suitable for oblivious data hiding applications with

low noise levels.
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Type-I and type-II methods correspond to designs of U = X, a = 0, and

U = X + C, a = 1, respectively, within Costa's framework. In the CAE-CID

framework, however, corresponding designs for type-I and type-II methods take the

form of U = X + C with the statistics of al 	 + a when p = 1, and σX =

when Xt = 0, respectively. These two choices of designs for both frameworks

correspond to two extreme cases in hiding rate vs. robustness curves. Namely, type-I

methods are preferred for the case of "severe attacks" while type-II methods are

superior for the case of "low attacks."

An optimal design is the one that designer has control over the operating

characteristics of the method. In effect, this imposes some sort of dependency on

the channel noise instead of the fixed severe noise (type-I) or low noise (type-II)

assumptions. The type of methods that rely on this principle are called type-III

which is a generalization of type-I and type-II. Codebook design of type-III methods

follows U = X + C when p = 1 and Xt 0 within the CAE-CID framework, and

U = X + aC where 0 < a < 1 within Costa's framework. Therefore, information

hider has the freedom to adapt the codeword to the host signal at the presumed noise

level. These methods are ideal for oblivious data hiding.

Type-III methods are developed from type-II methods by enhancing the

functionality of type-II embedder with added processing, (i. e. thresholding, distortion

compensation, Gaussian mapping) [20, 8, 21, 33]. In type-III methods, the post-

processing is designed in a way that hiding rate is maximized for a presumed

attack level [43]. However, codeword generation for most type-III methods does

not explicitly follow Costa's framework due to the processing that takes place after

quantization of the host signal. Therefore, type-III methods are better evaluated

within the CAE-CID framework.

Table 2.4 summarizes the three types of methods. Based on the codebook

designs, it is observed that type-I embedding does not exploit any information
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on host signal or channel noise level. While type-II embedding exploits only host

signal information. Type-III embedding, on the other hand, utilizes both forms of

information.

Table 2.2 Three Types of Embedding-Detection Schemes

Characterization Codebook Design

Type-I Additive schemes U = X

Type-II Quantization based schemes U = X + C

Type-III Channel adaptive schemes U = X + C with processing

Figures 2.5, 2.6, and 2.7, respectively, display the codeword generation of type-I,

type-II and type-III methods for a set of watermark signals, denoted by W1,...,WM ,

for the given host signal C. In type-II and type-III methods, each message or

watermark sample is assigned a particular quantizer QA (.). The base quantizer

QΔ (.) may be a high dimensional vector quantizer or a Cartesian product of scalar

quantizers with A as the distance between the reconstruction points. For type-

II embedding, C is quantized with respect to the watermark signal, QΔ(C, W).

Consequently, the codeword X is the quantization error introduced to the host signal

C, X = QΔ(C,W) — C. On the other hand in type-III methods, the quantization

error (type-II codeword), undergoes the particular processing 2, which generates the

codeword An = X — P(X). The post-processing function 2, may have the following

forms

1. the distortion compensation [8, 21],

2. the thresholding [20], or

3. the Gaussian mapping [33].
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Figure 2.7 Encoding of message index m in type-III methods.
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The performance of the three types of methods can also be judged by the

structure of the corresponding detectors. Considering the very simple scenario

where a two-level watermark sample is embedded to a signal coefficient and sent

through a noisy channel, the three types of detectors take the following forms. The

detector for the type-I scheme decides on the sent sample by comparing the received

signal to a threshold. Whereas in type-II and type-III methods, detection of the

embedded watermark sample is by some form of minimum distance decoding in order

to determine the nearest reconstruction point to the received stego sample. Figure

2.8 displays the partitioning of the signal space between the two disjoint decision

regions, Rx and R0 . In the figure, x and o symbols denote the reconstruction points

associated with the quantizers corresponding to two watermark samples. Obviously,

the partitioning of the decision regions in type-I detector is far from being optimal

when the channel noise level is low. This is because with a limited embedding

distortion most (host) signal coefficients are not suitable for embedding (i.e., in

order to embed the information symbol denoted by o to a host signal coefficient that

is at the far left of the threshold, an arbitrarily large embedding distortion needs

to be introduced to translate it to the region Ro). On the contrary, the layout of

the decision regions of the type-II detector insure reliable detection from all stego

coefficients, however, only up to channel distortions of power P. Type-III detector,

on the other hand, gives control over the size of the decision regions, and as a result

successful detection can be sustained up to noise level 4 2z while embedding distortion

is still limited to P as in type-II embedding. As the channel noise level 42z increases

the type-III detector will depart from the type-II detector and take the form of type-I

detector.

Figures 2.9 and 2.10 display the hiding rate vs. robustness performances

achievable by type-I, type-II and type-III methodologies computed using Equation

(2.3) for a = 0, a = 1 and a =respectively, or equivalently, solving EquationsP+σ2z
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Figure 2.8 The partition of the signal space between decision regions R. and R.
corresponding to scalar embedding and detection of a binary signal.

when p = 1.

The hiding rate is measured in the number of bits that can be hidden into a

host signal coefficient, and the robustness measure is defined in terms of the ratio

between the embedding distortion power and the channel noise power,

However, for type-I methods, WNR by itself can not be the indicator of the robustness

as the host signal is considered to be a part of the noise. Therefore, another measure

that can be considered is the ratio of the host signal power to embedding distortion

Dower,

In type-II methods, due to the ability to reject the host signal interference

(depending on the WNR), the dependency of the performance to DWR level is weak.

Type-I methods achieve the capacity at very low WNRs, and at high WNRs, there

is almost a constant gap with the capacity. On the other hand, type-II methods
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achieve the capacity at higher WNRs, and the hiding rate drops exponentially with

the decreasing WNR. Furthermore, at low WNR range hiding is not possible. Since

type-III is a superset of type-I and type-II methods, its optimal version can achieve

the capacity at all WNRs.

A detailed analysis of type-I embedding-detection and capacity results can be

found in [3, 44, 45, 46].

Figure 2.9 Hiding rate vs. robustness performance of type-I, type-II and type-III
methods with P = 10 and DWR= 15dB.

Figure 2.10 Hiding rate vs. robustness performance of type-I, type-II and type-III
methods with P = 10 and DWR= 30dB.



CHAPTER 3

PERFORMANCE EVALUATION AND COMPARISON OF

QUANTIZATION BASED EMBEDDING-DETECTION TECHNIQUES

Quantization based data hiding methods that rely on type-II and type-III

embedding-detection principles are studied together and compared based on three

key characteristics as follows [47]:

1. the type of the distortion reduction technique (post-processing) employed in

embedding;

2. the form of demodulation used (detection function);

3. the optimization criterion utilized in determining the embedding-detection

parameters.

In the following sections, various type-II and type-III methods are examined and

evaluated considering these three issues. The performance results for these methods,

based on the above criteria, are provided in Section 3.3.

3.1 Type-II Embedding and Detection

The codebook generation for type-II methods is characterized by the design of

U = X + C which corresponds to choice of a = 1 within Costa's framework or

t = 0 (X7, = X) within the CAE-CID framework. framework. The generalized

channel model for type-II hiding methods is displayed in Figure 3.1. In the model,

W is the watermark signal corresponding to the message index m to be conveyed, C

is the host signal, X is the codeword, S is the stego signal, Z is the additive noise

(attack), and Y is the distorted stego signal at the detector defined as Y = S + Z.

1- Type-II can be considered as a special case of type -III where no post-processing is employed.

32
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Figure 3.1 Block diagram of type-II embedding and detection stages.

The embedder, E, imposes the power constraint as 1/N||X||2 = P. At the detector,

D, the sent message m is detected from Y or from an extracted estimate Ŵ of W.

Except the codebook design, type-II methods are also characterized by their E, D

designs, which are exact inverses expressed as

Chen, et al., in [23], introduced QIM method which outlined the codeword

generation for type-II methods. QIM achieves the upper bound on the hiding rate

for low-level attacks (or high WNRs). In QIM method, embedding a message into

a host signal refers to quantization of the host signal by a quantizer picked from an

ensemble of quantizers, where each quantizer is associated with a message letter

or message index. Thus, the stego signal S is a quantized form of C, and the

corresponding quantization error is the codeword X. The number of quantizers in the

ensemble determines the information embedding rate. The embedding distortion is

measured using squared error distance measure, viz., 1/N||X||2 = P, and it varies

with the size and shape of the quantization cells. The orthogonality constraint,

XTC = 0, however, is relaxed by assuming that C is uniformly distributed over all

quantization cells and the number of quantization levels is not small such that X and

C are approximately uncorrelated. This assumption also removes the dependence

of embedding and detection operations on the host signal's statistics. In practice,

this can be satisfied by the small distortions scenario where embedding and attack

distortion powers are much less than the host signal power.
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On the other hand, detection of a hidden message is achieved by the minimum

distance decoder which computes the Euclidean distances of the received signal to

surrounding reconstruction points. The message index associated with the nearest

reconstruction point of the corresponding quantizer is regarded as the sent message.

In QIM, embedding and detection are high-dimensional operations.

A practical implementation of QIM based on dithered quantizers, viz. dither

modulation (DM), is presented and detailed in [23] and [24]. Dithered quantizers

intend to decorrelate the quantization error of a quantizer from its input, [48]. In

subtractive dithering, an iid dither vector (independent of the input) is added to

the input prior to quantization, and then subtracted from the quantized output.

Hence, the goal (decorrelation of the quantization error) is achieved. Within the

context of data hiding, the dither signal is merely a mapping from the message index,

the watermark signal. Therefore, the dither signal is not genuinely random and

the orthogonality between the error and the input signals is not guaranteed. In

DM, each quantizer in the ensemble is generated from a base quantizer by shifting

the quantization cells and reconstruction points. The stego signal is generated by

quantizing the host signal with the corresponding dithered quantizer as

where QA (.) is the high dimensional base quantizer with reconstruction points A

apart, and Wm is the watermark signal corresponding to message indexed by m,

1 < m < M, where each component Wmi , 1 < i < N, of Wm is a representation from

a set C2 E R. Consequently, the codeword X is defined as

The power constraint on the embedding distortion X is controlled by adjusting the

quantization step size A.
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For the sake of practicality, QM.) can be considered to be a product quantizer

generated by a Cartesian product of N uniform scalar quantizers, qΔ (.), each with

step size A such that

Therefore, embedding can be viewed as N successive scalar quantization, of the

coefficients of C = (C1 , . . . , CN), dithered with the watermark signal vector

Wm = (Wm„ . . . , WmN ). Each distinct component of the watermark (dither) signal is

associated with a quantizer that is generated by properly shifting the reconstruction

points of qΔ (.). The amount of shifting is determined by the number of possible values

a watermark sample can take (the number of quantizers). For maximum separation

of the reconstruction points of embedding quantizers, the watermark sample values

are equally spaced along an interval of length that is equal to quantization step size

A, i.e., [-0/2, 0/2). It should be noted that, since the watermark signal is the

subtractive dither signal, the sample values represented by the form Wm + iA for

i e Z, where 2 is the set of all integers, lead to the same dithered quantizer. (In

other words, shifts differing by an integer multiple of A correspond to the same

quantizer.) Considering a d-ary watermark sample, the set C2 that contains the d

possible sample values is defined as

where b is a uniform random variable in -t) and i E Z. As a result,

reconstruction points and quantization cells of each quantizer in the ensemble are

shifted by d with respect to each other. The reconstruction points of the embedding

quantizers are also known to the detector for the extraction of the sent message. At

the detector, the hidden message is extracted by the minimum distance decoder as

= arg min	 — (qΔ(Y +Wm) — Wm)||( • 	 (3.6)
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Figure 3.2 Reconstruction points of dithered quantizers corresponding to a binary
watermark (dither) signal.

Figure 3.2 displays the reconstruction points of the dithered quantizers

associated with the two watermark samples. The reconstruction points of the two

quantizers are apart. The decision regions denoted by Rx and Ro determine the

sustainable amount of noise for successful extraction of the message. The stego signal

S is generated by quantizing each host signal coefficient C with the quantizer pointed

by the binary watermark sample W of W to be embedded. (Accordingly, embedding

of the watermark sample associated with the symbol x or o refers to translation of

the host signal coefficient C in the direction of nearest x or o, respectively.) Similarly,

detection of a sent message is achieved by determining the nearest reconstruction

points, denoted by x and o symbols, to the coefficients of the received signal Y.

The main disadvantage of type-II methods is that they perform well only if

the attack is not severe (less than distortion P). In other words, its performance is

equivalent to that of optimal design only for the low attack case, Section 2.1. For all

other attack levels there's a performance gap with the upper bound, which increases

with the attack level. This is due to the non-optimal codebook design based on a = 1

or equivalently Xt = 0, which undermines the dependency of codebook generation

to the channel noise level. The poor performance of type-II methods with increasing

attack levels is improved by the modifications proposed by the class of methods called

as type-III.
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3.2 Type-III Embedding and Detection Methods

The data hiding rate (payload) vs. robustness performance of type-II methods

is substantially improved by enhancing the functionality of the embedder with

further processing capabilities (i.e., thresholding, distortion compensation, Gaussian

mapping), see [20, 8, 21, 33]. In type-III methods, embedding quantization is

followed by a processing stage (post-processing) that generates the stego signal.

The improvement in the performance of type-III methods, compared to type-II, at

the same noise level can be explained by the fact that codebook design depends on

channel noise level or by the deviation from the non-optimal design of Xt = 0 through

the added processing. Alternately, in terms of Costa's framework, the improvement

can be attributed to the effective value of a used in codebook generation which is

less than one rather than being equal to one, as the latter is optimal for the no

attack case. Data hiding methods with post-processing abilities enable the embedder

to increase the distance between the reconstruction points of quantizers at a fixed

embedding distortion. Therefore, they have improved detection capabilities for any

finite WNR level (type-II is optimal only for the case of infinite WNR). On the other

hand, since the detector is blind to the additional processing at the embedder, its

structure is not altered.

The channel model for type-III hiding methods, based on the model for type-II

methods given in Figure 3.1, is displayed in Figure 3.3. In the model, X is the

type-II codeword (embedding distortion introduced due to the quantization), X t is

the processing distortion, and the channel output is Y C + X — Xt + Z. The

processing distortion X t is derived from X by the post-processing depending on the

expected noise level. The type-III codeword that yields the stego signal, S = C +

is defined as Xn, = X — X t . Correspondingly, embedder imposes the power constraint

as 1+11X7,11 2 = P.
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Figure 3.3 Block diagram of type-III embedding and detection stages.

In type-III methods, since the detector is not aware of the processing at the

embedder, the processing distortion X t can effectively be considered to be a part of

the channel noise at the detector. Therefore, type-II codeword X, which would yield

an errorless extraction of the watermark signal W, is distorted by two sources of

noise, viz., the attack Z and the processing distortion X t . (In other words, the signal

C X refers to a signal quantized by the quantizer(s) associated with the watermark

signal W, and W can be perfectly recovered from this signal.) Therefore, the effective

noise at the detector that distorts the embedded watermark signal is represented as

Z ell = Z — Xt . In type-III methods, the invertibility condition on the E, D pair is

sacrificed as a result of the processing that follows quantization of the host signal,

D(E(C,W)) L W.

Performance of type-III hiding methods vary based on three factors: the

type of post-processing that is incorporated with type-II embedding, the choice

of demodulation function used in message extraction, and the criterion used for

optimizing the embedding and detection parameters. Therefore, the performance of

any type-III data hiding method can be evaluated further by considering these three

issues.

3.2.1 Post-Processing Types

There are three types of post-processing that are employed in type-III

embedded detector designs. These are:

• Distortion compensation
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• Thresholding

• Gaussian mapping

In [8], Chen, et al. identified the capacity achieving variant of QIM as distortion

compensated QIM (DC-QIM). In DC-QIM, the quantization index modulated signal

is perturbated by subtracting the 1- a* scaled version of the embedding distortion X.

Therefore, X t = (1 - α*)X, p = 1, and Xn, = α*X. Ramkumar, et al. [20] proposed

thresholding type of post-processing where the magnitude of distortions, that can be

introduced to host signal samples, are limited to +-β/2. Hence, the type-III codeword

Xi?, is generated by limiting the values of X, Xn, = β/2)sign(X). The processing

distortion Xt , in this case, is the thresholding noise, X t = max(0, |X| - β/2)sign(X).

Perez-Gonzalez et al. [33], considering uniform scalar quantization, proposed to

generate the processing distortion Xt from X by transforming each iid component

X into a zero-mean Gaussian distributed random variable with a variance of ay',

Xt = N.-) where Q -1 (.) is the inverse Gaussian Q-function.

In type-III methods, the parameters a, /(3, and cry , depending on the type of

post-processing, are selected such a way that the power constraint 1/N ||Xn||^2 = P

is satisfied and the performance at the presumed noise (attack) level is maximized.

Corresponding expressions for the processing distortion X t and the codeword Xii for

the three types of post-processing are as given in Table 3.1.

Table 3.1 Expressions for Xt and X7,

Processing, P Processing distortion, X t Codeword, Xn

Thresholding max(0, |X( - β/2)sign(X) min(|X|, β/2)sign(X)

Distortion Compensation (1 - a)X aX

Gaussian mapping
y,_ A- σv Q^-1 (...-,21) X - Xt
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Vectoral embedding and detection. The optimal processing, within the CAE-

CID framework, requires that the processing distortion X t be a linear function of the

processing distortion X. Accordingly, the power al of the embedding distortion X

corresponding to distortion compensation type of processing can be computed in the

limit, using N X n I I 2= P, as

where a* P+σ^2 zP 9 It should be noted that, the variance of the iid components of

the channel input X (the power of the input X) in Equation (2.14) is the same as

the power of the optimal embedding distortion X found in Equation (3.7), ax = σ* x.

Therefore, distortion compensation is the optimal processing when the embedding

distortion is Gaussian distributed. This can be satisfied by the use of high-dimensional

quantization for embedding which yields Gaussian distributed quantization error.

However, a capacity achieving embedding-detection scheme based on thresholding or

Gaussian mapping types of post-processing is not possible since the relation between

X and Xt is not linear.

Scalar embedding and detection. In the practical cases, where scalar quantization

rather than high-dimensional vector quantization is employed at the embedder, X is

an iid vector with a non-Gaussian distribution. Therefore, the optimal post-processing

is not necessarily the distortion compensation. For the scalar quantization case, the

embedding operation of all embedding-detection techniques can be represented by a

form of dithered quantization. Thus, each component X of the embedding distortion

X, defined as X = qΔ (C, Wm ) — Wm — C, is uniformly distributed. However, the

processing distortion X t and its dependency on X are different for the three types of

post-processing.
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Eggers, et al., in [21] optimized the value of a for scalar quantization, rather

than assuming a* = P+σ^2 z 	 , and provided the approximation

Expressions for the optimal values of A and the threshold 3 based on the expected

attack level were reported in [20]. Although [33] does not provide the optimal a,

values for Gaussian mapping, the optimization procedure is straightforward.

3.2.2 Forms of Demodulation

Detection of the sent message is achieved either by sample-wise hard decisions or soft

decisions based on the availability of the set of watermark signals at the extractor

side. The presence of watermark signals leads to an improved detection of the sent

message since they can be utilized in detection operation [24, 20].

There are two forms of demodulation employed in detection of the sent message.

In [24, 21, 33], demodulation of the sent message, from the received signal Y, is

realized by minimum distance decoding, and in [20], demodulation takes the form of

maximum correlation rule.

Minimum distance detector. With the use of minimum distance detector,

detection is simply the quantization of the received signal Y by all quantizers in

the ensemble. The message letter or message index associated with the quantizer

that yields the minimum Euclidean distance to received Y is deemed to be the

sent message. The general form of minimum distance decoding based on dithered

quantization can be rewritten, in terms of Ym Y Wm , as
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It should be noted that Equation (3.9) is a minimization of the quantization error over

all quantizers. For the case of scalar quantization, QΔ (.) takes the form of dithered

quantizer qΔ (.), Equation (3.6).

Figure 3.4 displays the detectors for the binary signaling case where the

embedding operation is based on scalar quantization. In the figure, the symbols

x and o denote the reconstruction points of the quantizers associated with the

watermark sample values of and (However, it should be noted that, within

the scope of DM, any two sample values with 1- difference are valid choices, see

Equation (3.5).)

When the extractor has no access to the watermark signals but only knows

the reconstruction points, each sample of the embedded watermark signal is detected

from each coefficient Y of the received signal Y by individual hard decisions as

where C2 is the set of signal representations for watermark samples. Equation (3.10)

is based on determining the minimum Euclidean distance of the received signal

coefficients to reconstruction points which can equivalently be achieved by mapping

each coefficient Y over the square wave function displayed in Figure 3.4-a. Then, the

extracted binary watermark samples, W1 , , ŴN, are combined into the sequence

W to generate the embedded watermark signal.

On the other hand, when the watermark signals are present at the detector,

detection of each sample is by soft decisions. Accordingly, each coefficient Y77, of the

signal Ym , that is obtained from the received signal Y, is mapped over the sawtooth

function displayed in Figure 3.4-b. The norm of the resulting signal values is the

distance between Y and Wm . Hence, the watermark signal that has the minimum

distance to Y is regarded as the embedded signal.
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(b)

Figure 3.4 Demodulation for DM based on (a) hard decisions and (b) soft decisions.

Maximum correlation detector. When the demodulation scheme is based on

maximum correlation detector, watermark signals are assumed to be present at the

detector. In this form of demodulation, at first, an estimate W of the embedded

watermark signal is extracted from the received signal by soft decisions. Then, the

sent message is detected by matching the estimate of the embedded watermark signal

to one of the watermark signals using a correlation based similarity measure as

Since the hard decisions are caused by the discontinuities in the extraction

function, Figure 3.4-a, Reference [20] proposed a continuous periodic triangular

extraction function. Figure 3.5 displays the corresponding function used for extracting

embedded binary watermark samples that are confined to values and -41 for

maximum separation, C2 = {-4, 4}. An estimate of the embedded watermark signal
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Figure 3.5 Periodic extraction function corresponding to soft decisions.

is obtained by mapping each coefficient of Y over the periodic triangular function,

rather than making a hard decision by the Euclidean distance decoder. As a result,

each extracted sample W is a real valued signal in the range of [—°4-, °4-]. Message

detection is achieved by combining the sample estimates into W = (W1, • • • , Ŵ N)

and then matching W to one of W 1 , , WM .

3.2.3 Optimization Criteria for Embedding and Detection Parameters

The embedding and detection operations are controlled by a pair of parameters. The

values for these parameters are optimized for the given channel noise and permitted

distortion levels, of and P.

One of the parameters which is common to all techniques is A which designates

the distance between the reconstruction points of the embedding quantizers. The

choice of A determines the embedding distortion due to quantization, and it is

known to both embedder and detector. The other parameter controls the amount

of processing distortion introduced to quantized signal (type-II embedded signal) by

the post-processing and, it limits the distortion due to embedding operation to the

permitted amount. This parameter is known only to embedder and parameterized

as /51 , a, or ay depending on the type of post-processing. The values for the two

interdependent parameters can be optimized based on various performance criteria

as discussed in the following sections.
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Optimization of parameters for vectoral embedding and detection. In [8],

researchers optimized the embedding-detection parameters by maximizing the ratio of
0.2

the embedding distortion to the sum of processing and channel distortions, ( σ̂22 +x ,2 ),

With the use of high dimensional quantization for embedding and detection,

the marginal pdf of embedding distortion X approximates Gaussian distribution and

consequently distortion compensation becomes the optimal processing. Hence, for

the given channel noise level, A and a are selected such a way that Equation (3.12)

is satisfied where Xt = (1 — α)X and Xn, = aX, i.e. alt = (1 — α)^2 σ^2 xandex=
This leads to a = P 9 which is in accord with the results of Section 2.1 due to the

duality between the two channel models.

Optimization of parameters for scalar embedding and detection. Researchers

in [20, 21, 33] modeled the effective noise that distorts the embedded watermark

signal in terms of the statistics of the channel noise Z and the processing distortion

Xt , Zell Z — Xt. The optimum values for embedding-detection parameters are

then selected such a way that the distortion in the extracted watermark signal is

minimized.

When the host signal is uniformly distributed over all quantization intervals,

the embedding distortion X introduced to each host signal coefficient C is uniformly

distributed in [—I., For thresholding type of post-processing the parameters are

the step size A and the threshold O. The corresponding pdf and statistics of processing

distortion Xt and the codeword Xn  are expressed as



where rect(x) is the rectangular function in x with a value of one in the interval (-1/ 1/2)

and zero elsewhere. Similarly for distortion compensation type of post-processing,

corresponding pdfs and statistics are found in terms of A and a as

When the post-processing takes the form of Gaussian mapping, Xt is a zero mean

Gaussian random variable with variance 4 and the parameters are A and ay .

However, as the dependency between X and Xt is through a Gaussian transformation,

the pdf of Xn is not a straightforward one but its statistics can be calculated as

Figures 3.6 and 3.7 display fx (x), fx (xt ) and  ƒxn(xn) for thresholding and distortion

compensation types of post-processing, respectively.

Given the host signal is iid, X and Xt are iid random vectors with the marginal

distributions given above, since embedding operation is memoryless. It should also



Figure 3.6 Probability density functions (left)  ƒx(x), (center)  ƒxt(xt), (right)
ƒ xn(xn) corresponding to thresholding type of processing for 0 < 3 <

Figure 3.7 Probability density functions (left)  ƒx(x), (center) f xt (x t ), (right)
ƒxn(xn) corresponding to distortion compensation type of processing for a < 1.

be noted that, for large N, the distortion P introduced to host signal C, due to

Assuming z and At are independent, the resulting par of Zell ,  ƒz eff(z eff) can

be computed by the convolution of the individual pdfs fz (z) and  ƒxt(xt) as

Thus, for 	ƒzeff (z eff ) corresponding to thresholding type of processing

is derived as

where erf(.) is the Gaussian error function, erf(z)=2/π∫^z 	 0 exp^(-x^2)dx. Similarly, for
7r o

distortion compensation and Gaussian mapping cases ƒ z eff (z ef is expressed as



respectively.

The embedding-detection parameters are optimized by proper selection of the

step size A and the amount of processing distortion σ^ 2 xt. Such a selection can be

based on one of the three criterion for the given statistics of Z ell .

Maximizing correlation. With this criterion, the selection of parameters is based

on maximizing the normalized correlation between the embedded and extracted

watermark signals [20]. Since Z ell is the noise that distorts the type-II codeword

X corresponding to watermark signal W, the signal W extracted from Y can be

expressed in terms of Zell and W using the extraction function shown in Figure 3.5.

(Note that if Zeff = 0, then W=W.) Hence, a binary distributed watermark signal

sample W with values in embedded in a host signal coefficient is extracted

as

Due to memoryless embedding-detection and attack schemes, the vectors W

and W are iid with sample values W and W. Hence the normalized correlation p

between W and W can be analytically computed for large N as
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where E[WŴ] is the first joint moment of the random variables W and Ŵ  and

Therefore, the optimal parameter values for the utilized post-processing technique is

computed by maximizing Equation (3.31) over A and using the pdfs given in

Equations (3.27-3.29) for the given channel noise level and permitted distortion as

and X = qΔ (C + W)—W — C.

Minimizing probability of error. The embedding-detection parameters are

selected to minimize the probability of error in detecting an embedded watermark

sample [33]. Since Zell indicates the deviation of the received signal coefficient

Y from the reconstruction points, the probability of detection error, P e , can be

calculated by integrating ƒz eff(z eff) over all decision regions but excluding the one

associated with the sent sample as

where Rw denotes the decision region associated with the sample W. For the binary

signaling case depicted in Figure 3.8, the symbols x and o denote the reconstruction

points of two quantizers associated with sample values and —44 , respectively. The

decision regions R. and Ro are used to map the received signal coefficient Y to

or — A by hard decisions. Assuming A and 4 are equally likely to be embedded,4	 4



Figure 3.8 Embedding and detection of a binary watermark sample.

corresponding P e is calculated as

Then, the parameters can be selected to minimize Pe for the given P, 0-2,, and the

type of post-processing as

where Xt is given in Equation (3.34).

Maximizing mutual information. The parameters are selected to maximize the

mutual information between the embedded watermark sample W and the received

signal coefficient Y [21]. The mutual information between W and Y is expressed as

where H(.) is the differential entropy of a random variable in bits that is defined

as H(X) = — f f x (x) loge [ x (x)]dx . As the erroneous detection of W from Y

is due to the noise Zeff, H(Y|W) in Equation (3.38) can be computed in terms of

the effective noise pdf conditioned on W, ƒZeff|w(Z eff|W). The pdf ƒZe ff|W (Zeff  |W)

50
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can be calculated over any quantization interval A, since the signal constellation is

periodic with A (reconstruction points corresponding to quantizer associated with

W are A apart). However, one should take into account that when Zell is heavy

tailed (the range of ƒZef f (z ef f ) is larger than A), its pdf will be wrapped around A

due to the periodicity. Consequently, H(Y) is computed from H(Y|W) by averaging

it over W. (Assuming all samples W E S2 are equally likely, H(Y) is obtained

as *F H(Y|W).) With this criterion, optimization of parameter values is by

maximizing Equation (3.38) for the given constraints over A and σ^2 xt  as

The use of Equation (3.38) also enables computation of the maximum hiding

rate in bits per host signal coefficient achievable with a particular embedding-

detection technique. Therefore, it is a useful performance evaluation tool.

3.3 Performance Comparisons

Figure 3.9 displays the achievable data hiding rates of various embedding-detection

techniques for the binary signaling case, obtained using Equations (2.3) and (3.38),

compared to hiding rates of type-I (additive scheme) and optimal type-III (capacity).

The embedding-detection parameters for type-II and type-III methods are selected

so that the hiding rate is maximized, Equation (3.39). The additive scheme (type-

I) and DM (type-II) have preferable performances, respectively, at very low and

very high WNRs. For DM, the gap with the upper bound at higher WNRs is

due to binary signaling. Thus the performance can be improved for multi-level

signal representations. The poor performance of both methods in mid-WNR range

is due to non-optimal codebook designs, as discussed in Section 2.4. In the former,

the codebook design does not utilize the host signal, and in the latter, the design

disregards the channel noise level.
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The type-III versions of DM, implemented by incorporating the embedding

of DM with thresholding, distortion compensation, and Gaussian mapping types

of post-processing, have better performances than DM due to the deviation from

the optimistic "low-noise" assumption in the codebook design. These methods have

significantly improved performances in the mid-WNR range, however, in order to

achieve higher rates, embedding through scalar quantization has to be substituted by

high-dimensional vector quantization.

Type-III methods employing thresholding and distortion compensation types

of post-processing perform closely in the whole WNR range. On the other hand,

Gaussian mapping processing has a comparable performance only for WNRs higher

than —7.8 dB. Below that range the rate drops rapidly. At WNRs lower than

—8.7 dB thresholding performs marginally better, while from —8.7 dB to —7 dB,

distortion compensation performs best. Above —7 dB, both distortion compensation

and Gaussian mapping are the preferred post-processing types. Figures 3.10-3.13

show the hiding rates for the corresponding methods with multi-level signaling. With

the decreasing noise level and higher signal representation levels, all methods yield

similar data hiding rates as the need for post-processing reduces. Ultimately when

there's no noise, the DM is the optimal embedding-detection technique.

The normalized correlation, p, and probability of error, P e , performances

for the considered methods are respectively given in Figures 3.14 and 3.15. The

corresponding embedding-detection parameters for the hiding methods are selected

as described in Section 3.2, Equations (3.33) and (3.37). The correlation between

an embedded binary watermark signal W and extracted watermark signal W is

calculated by using Equation (3.31), and the probability of the error in detecting an

embedded binary watermark sample is computed by using Equation (3.36).

The relative performances of the three types of post-processing obtained

for the three criteria, Figures 3.9, 3.14 and 3.15, are in accord with each other.
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Figure 3.9 Comparison of the hiding rates corresponding to various hiding methods
considering binary signaling obtained for P = 10.
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Figure 3.11 Data hiding rates for DM followed by thresholding type of post-
processing with binary, 5-ary, 10-ary, and 100-ary signaling.

Figure 3.12 Data hiding rates for DM followed by distortion compensation type of
post-processing with binary, 5-ary, 10-ary, and 100-ary signaling.
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Figure 3.13 Data hiding rates for DM followed by Gaussian mapping type of post-
processing with binary, 5-ary, 10-ary, and 100-ary signaling.

Thus, thresholding type of post-processing performs better when WNR is below

approximately —9 dB, and at higher WNRs distortion compensation has better

performance. Above —7 dB, Gaussian mapping and distortion compensation have

comparable performances, and DM performs well only at higher WNR range, as

expected. Figures 3.16 and 3.17 display the actual simulation results obtained by

embedding and detecting binary watermark signals. In Figure 3.16, the normalized

correlation p between the embedded vector W and its extracted version NV is

measured, and in Figure 3.17, the error probability in detecting an embedded

watermark sample W is measured. Both simulation results are in accord with

theoretical values computed in Figures 3.14 and 3.15.

One intuitive way to evaluate the performance characteristics of type-I, type-II,

and type-III methods at varying noise levels is by considering the size of decision

cells at the detector, as discussed in Section 2.4. For type-II methods in the absence

of noise, the extracted watermark signals correspond to reconstruction points of the

embedding quantizers. Thus, decision cells can collapse to points and the data hider

can afford to use higher level signaling without any performance penalty. However,

with the increasing noise level, the successful extraction of the embedded watermark
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Figure 3.14 The normalized correlation between W and W for the considered
hiding methods when P = 10.

Figure 3.15 The probability of error in detecting W for the considered hiding
methods when P = 10.
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Figure 3.16 The actual measured normalized correlation between embedded W
and extracted W for the considered hiding methods when P = 10.

Figure 3.17 The actual measured error probability in detecting W for the
considered hiding methods when P = 10.
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signal requires decision cells to be enlarged accordingly. In type-III methods A is

increased in accordance with the channel noise level σ^2 Z and the corresponding increase

in embedding distortion due to increased A is compensated by the post-processing.

Hence, the data hider has the freedom to change the size of the decision cell depending

on the noise level. Ultimately when the noise level is very high, the optimal strategy

becomes making the decision regions arbitrarily large as in type-I methods where

even for very high noise levels the detector is able to extract some of the embedded

watermark signals.

3.4 Perceptual Constraints

As the resource of the communication between the hider and the attacker is the total

imperceptible distortion that can be introduced to a given host signal, achieving

the optimal rate vs. robustness performance requires a higher level understanding

of the host signal in the perceptual sense. Data hiding methods, most generally,

approach the problem by incorporating simplified perceptual models or the findings

of perceptual compression with the embedding process.

Most elaborate formulations of the data hiding (as discussed in this chapter)

rely on a fixed distortion measure, e.g. mean squared error distortion, for analytical

tractability. Hence, the corresponding analyses and results oversimplify this aspect

of the problem. Evaluated from imperceptibility perspective, type-I methods can

exploit the host signal information better than type-II and type-III methods.

Within the additive schemes, embedding is by adding a scaled version of the

watermark signal to the host signal or to a transformed form of it. The proper

weighting for each watermark signal sample can be locally determined according to

just noticeable difference (JND) thresholds and masking principles, thereby complying

with perceptual constraints. In quantization based techniques, however, the distortion

introduced to each host signal coefficient can only be controlled in an indirect manner
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by adjusting either the quantization step size or the amount of processing distortion.

Since optimization procedure for the embedding and detection parameters assume

power limited distortion, which disregards the perceptual properties of the host

signal, the corresponding embedding operation is a non-optimal one in terms of

perceptual criteria. In this respect, scalar quantization based embedding-detection

schemes provide a better control, since each coefficient is embedded individually

and A or the post-processing parameter can be selected to comply with perceptual

constraints. Whereas in schemes that employ high dimensional quantization, the

introduced distortion due to embedding is minimized over the quantized vector which

would not necessarily limit the distortion introduced to each coefficient.

In order to achieve imperceptibility, type-II and type-III methods select

the power constraint conservatively. This leads to an under-utilization of the

communication resource. Compared to type-II methods, the post-processing involved

in type-III methods give hider another degree of freedom in controlling the distortion

introduced to each host signal sample. Hence, the embedding parameter that

designates the amount of processing distortion introduced to the quantized host signal

(i. e. ,13 in thresholding, a in distortion compensation, σ v  in Gaussian mapping) can be

fine-tuned in accordance with the perceptual features of the host signal. Thresholding

and distortion compensation types of post-processing can be readily adapted to

applications with more strict imperceptibility requirements through adjusting /3 and

a. Whereas with Gaussian mapping, modulating the processing distortion is a more

complex task due to the non-linear transformation. However, the optimal approach is

to revise the optimization procedures given in Section 3.2 (Equations (3.33), (3.37),

and (3.39)) by taking into account the perceptual properties of the host signal as

constraints (rather than limiting the distortion power to P) during the optimization

of embedding-detection parameter values.



CHAPTER 4

PERFORMANCE AND COMPLEXITY TRADEOFFS

In order to further improve the performance of embedding-detection techniques,

performance and complexity tradeoffs are to be made depending on the host signal

size N. The two extreme cases are when the embedding signal size N is very large

and very small.

For the case where the host signal size is large, spread transforming can be

employed. Inspired by the spread-spectrum communications, the authors in Reference

[18] used spread transforming in order to increase the WNR at the extractor by

sacrificing in signal size N. However, they did not consider the problem of choosing the

optimal "spreading factor." The concept of optimal spreading factor was addressed

by Ramkumar et al. in [20] and by Eggers et al. in [49], independently.

On the contrary, when the signal size is small, multiple codebook hiding method

can be used. The authors in References [50, 51, 52] introduced multiple codebook

hiding to enable the embedding of watermark signal at lower embedding distortion

levels. The use of multiple codebooks provides embedder with the choice of the

codeword that better adapts to the host signal at the expense of increased complexity.

4.1 Spread Transforming

The underlying idea of spread transforming is to embed the watermark signal into

a projection of the host signal and generate the stego signal by spreading the

corresponding lower dimensional embedding distortion over the high dimensional

host signal. In spread transforming, a pseudo-random vector u of size L with unit

norm, 1 = u^(T)* u, is designated as the spreading vector and made known to both

60
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Figure 4.1 Embedding and detection with spread transforming.

embedder and detector. The embedding and detection operations are performed as

follows.

At the embedder, the host signal vector C E RN , is split into blocks of length L

such that CT = [CT:,	 , C7,,,] where Cί Є R^(L). Each block of data is projected onto

Then, the watermark signal W E	 corresponding to a message index, is embedded

into ä, S = E(Ĉ, W). The stego signal ST = [Sr, 	 STN ] is generated from ST =

Similarly, at the detector, the received signal is partitioned into blocks, Y T =

[Y1',	 , Y^(T) N/L], and each block of data is projected onto u, Y = [Ý1,..., ÝN/L] where
T,

= Y^(T) i u. This is followed by the detection of the hidden signal, D(Ý). Figure 4.1

depicts the embedding and detection operations with spread transforming.

With spreading, the bandwidth is reduced by a factor of L, from N to -1": , as

coefficients are information embedded. However, the embedding distortion is spread

over all of the N coefficients. On the other hand, the distortion introduced to the host

signal is L P = ||§— C which would be NP without the spreading. Therefore, the

hider can afford to increase the embedding power by a factor of L. At the embedder,

this reflects as an increase in the distance between the reconstruction points of the
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embedding quantizers (when scalar quantization is considered, spreading with a factor

of L leads to an increase in A by a factor of √L , i. e. LP = (f -(√LΔ)^2
 where P = Δ^(2)/12is

the embedding distortion per coefficient). Therefore, the system operates at a higher

WNR level. An alternate interpretation of the gain due to spreading is that the stego

signal can only be distorted by the component of the noise that is in the direction of

the vector u, which improves the robustness against noise.

Spread transforming method can be generalized to include non-integer spreading

factors by adopting a transform domain embedding-detection approach where each

basis vector of the transform basis is treated as a spreading vector. Let U E R id" be

a unitary transformation matrix, I= U^ (T)U where II is anLxLidentity matrix, and

the host signal vector C E RN be mapped to the matrix C Є R^(L)*N/L by arranging its

coefficients into L rows and L columns, C [C 1; ; CL] where C ί E Let (a

represent the unitary transformation of C as

where t = [C 1 ; ; CL] and Ĉ ί E Ri x 1. In other words, the coefficients of the host

signal vector are broken down into L channels, each consisting of 1'1'i coefficients. The

watermark signal W E RI is embedded into the coefficients of designated channel(s),

i.e. Ĉ1,...,ĈL

For the general case, let's assume W is embedded into ith channel coefficients.

This yields the embedded signal S ί = E(Ĉί,W) at the ith channel while the transform

coefficients in the rest of the channels are not changed. Then the transformed and

embedded signal S = ; ; ad is inverse transformed as

and mapped to the stego signal vector S. At the detector, the embedded signal is

extracted from the stego channel(s) obtained by segmenting and transforming the



Figure 4.2 Embedding and detection of WT = [WT, , W^(T) m] into C with the
spreading gain L = :71 .

received signal Y. Although only particular transform coefficients are used for data

hiding, the resulting embedding distortion, in the transform domain, is spread over all

samples in the signal domain. This enables hider to exploit the bandwidth vs. WNR

tradeoff at the detector by selecting the spreading factor by choosing U. Spreading

factor, in this case, is the ratio of the total number of channels to the number of

channels used for data hiding. In order to obtain a spreading factor of L ,

where L may also be a rational number, m channels of an n x n unitary transform

of the host signal (C E 42" 174) are information embedded. Figure 4.2 illustrates this

scenario where the first m channels of are used for hiding the watermark signal

WT [WT, , W^(T) m] where W ί Є  R^(N/n)

The affect of spread transforming on the data hiding rate of a method can be

determined in terms of N and WNR. The capacity of any communication scheme,

in general, can be expressed in terms of its bandwidth and signal-to-noise ratio.

Therefore, the data hiding capacity can be formulated as C = N f (W N R) . Due to
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the tradeoff between N and WNR, the capacity with spread transforming takes the

form of Cs = N/Lƒ(L x WNR). Thus, the optimal spreading factor L for a given

method can be found from the measured C through maximizing Cs. It should be

noted that if the capacity formulation of a scheme is such that the linear increase in

the WNR can compensate for the linear reduction in N, then spread transforming

offers an improvement in performance. As the performance drop in type-II and

type-III methods are exponential in WNR, spreading becomes an efficient tool by

enabling them to operate at higher WNR levels where they perform reasonably well.

However, for type-I schemes and the upper bound (optimal type-III scheme), where

all variables are assumed to be Gaussian, the fall in the hiding rate is logarithmic,

log2(	 WNR 
W NRxDW R+1) and 21 2- log (1 WNR), respectively. Consequently, the optimal

RxDW R+1\spreading factor L that maximizes 1/2Llog2(LxW N 	) or 1/(2L)*log2 (1 +LxWNR)

is computed as one.

The hiding rate vs. robustness curves of DM and type-III methods with

spread transforming, computed using the results of Figure 3.9, are displayed in

Figure 4.3. When compared to the hiding capacity, the hiding rates corresponding

to DM and the type-III implementations of DM with Gaussian mapping type of

processing improved remarkably in the low WNR range. With spread transforming,

distortion compensation and Gaussian mapping types of processing deliver slightly

better performances than thresholding type of processing. This is not surprising

since the improvement with spreading depends on the performance of the scheme

at higher WNRs where distortion compensation and Gaussian mapping types of

post-processing were seen to perform better than thresholding type of proccessing,

Section 3.3. Measured spreading factors for the methods are shown in Figure

4.4. However, one should be careful since very large spreading factors enable large

embedding distortions, i. e. increased A values, and this may violate the assumption

that host signal is uniformly distributed over all quantization cells. Therefore, large
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Figure 4.3 The improvement in the hiding rate of type-II and type-III methods
when P = 10.

spreading factors may not be practically feasible as the embedding operation becomes

dependent on the statistics of the host signal.

4.2 Multiple Codebook Data Hiding

When the embedding signal size N is small, multiple codebook data hiding can be used

to embed the watermark signal at lower embedding distortion levels. The distortion

P introduced to host signal C due to embedding operation is computed over all stego

signal coefficients as P = 1/N||Xn||^ 2 . Assuming that the pdf of the host signal is smooth

enough, such that it can be considered as uniformly distributed over all quantization

intervals, the distortion introduced to each host signal sample C has the statistics of

Xn , Equations (3.16), (3.22), and (3.25). In other words, the distortion P is a random

a2variable and its distribution approximates N(σ^(2)xn, σ^(2)p/N) where

Accordingly, when N is large, the distortion P introduced to the host signal becomes

σ^2xn. However, when N is small, P varies around the mean σ̂ 2xn depending on the

distribution of Xn and the signal size N. The variation in the embedding distortion



Figure 4.4 Corresponding spreading factors.

becomes more significant with the decreasing value of N. Therefore, embedding in

a host signal with limited signal size requires a more careful selection of embedding

and detection parameters. In general embedding-detection parameters are optimized

to maximize the performance at the given noise level 4 and the permitted distortion

σ^2 xn as described in Section 3.2.3. Therefore, implicitly, a very large embedding signal

size N is assumed. Embedding and detection with the parameters obtained through

an optimization procedure that disregards this aspect of the problem may cause the

data hiding method to operate on a lower hiding rate vs. robustness curve due to the

variation in the embedding distortion with respect to N.

Figures 4.5 and 4.6 display the hiding rates corresponding to binary DM

with thresholding and distortion compensation types of post-processing for various

N values when the embedding distortion deviates from the mean ex. by five

times the standard deviation, P = σ^2 xn — 5 -k. As displayed in figures, with

decreasing N, the hiding rate drops in both cases. However, since XT, corresponding

to distortion compensation type of post-processing has higher variance around

the mean, the reduction in rate is more drastic. These results indicate that,

given two host signals with similar statistics, if the same watermark signal is
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embedded in both signals using the same parameters, the resulting distortion due

to embedding may differ significantly for the two signals depending on size N.

Therefore, more sophisticated optimization techniques are needed for determining

the embedding-detection parameters for limited N. An obvious approach is to

fine-tune the parameters obtained with the assumption of large N, so that the

resulting distortion is neither above nor below the permitted distortion level. The

question now is, can better be done? Can the fact that the embedding distortion

has a large variance be utilized to improve the performance of data hiding? It will

be soon seen that this is indeed possible. Multiple codebook hiding method exploits

this phenomenon by choosing a transformation of C which yields the minimum

embedding distortion when W is embedded. The ability to embed a watermark

signal at a lower embedding distortion, rather than at the permitted distortion level,

is translated into more robust embedding of the watermark signal.

The essence of the method is depicted in Figures 4.7 and 4.8 where the

embedding signal size is two. In both cases, one of the binary symbols is embedded

into a signal vector c composed of two signal samples, c = (c 1 , c2 ), using either a
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Figure 4.6 Hiding rates corresponding to Binary DM with distortion compensation

for various N when P = σ^2 xn — 5 4.

two-dimensional lattice or two unidimensional lattices. The lattice points or the

reconstruction points associated with each binary sample is marked by x and

symbols. Embedding operation is the translation of the vector c to the nearest

centroid associated with the symbol to be embedded. The decision regions in Figures

4.7 and 4.8 determine the sustainable amount of noise that does not impair the

detection performance.

In the considered cases, the binary symbol corresponding to x is embedded

into c and into two of its transformed (rotated) versions c2 and c3 . The embedding

distortions between the signal pairs (c, (c2 , ë2), and (c3 , c3 ) are measured, in

terms of Euclidean distance, as d 1 , d2 , and d3 , respectively, as displayed in Figure

4.7. Similarly, in Figure 4.8 the resulting embedding distortions are measured as

√(d^(2)11+d^(2)12) , V d21 + 42 , and \Mi l + 42 . When E2 and c3 are inverse transformed,

one can observe that the distortions introduced to c due to three embedding

operations are not the same. For both of the cases depicted in Figures 4.7 and

4.8, e2 (inverse transformed c 2 ) yields the smallest embedding distortion, d 2 . It is

important to note that the amount of embedding distortion, due to embedding into



69

Figure 4.7 Depiction of embedding a binary symbol into the host signal c = 	 c2 )
and into its two transformations using a 2-D lattice.

transformations of c, c2 , and c3 , remains the same in magnitude after the inverse

transformation since the transformation is assumed to be unitary or energy preserving.

One can now easily see that, with the added complexity of transformations, a binary

symbol can be embedded into c at a smaller embedding distortion level. Multiple

codebook hiding incorporates these savings in embedding distortion with type-III

hiding methodology.

Type-III methods, as described earlier, are derived from type-II methods

by increasing the distance between the reconstruction points, and introducing a

processing distortion that is also a function of the expected noise level. In type-III

methods, the resulting increase in the embedding distortion, due to the increased

separation of the reconstruction points, is reduced to the permitted amount by the

post-processing while performance is maximized at the expected noise level [43].

In other words, the distortion due to embedding operation is limited to permitted

amount P by proper selection of the separation between the reconstruction points
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Figure 4.8 Depiction of embedding two binary symbols into the host signal vector
c = (ci, c2) and into its two transformations using uniform scalar quantizers.

(A) and the amount of processing distortion (σ^2 x,). The A and al, values that yield

the distortion P are not unique, and in order to maintain a fixed distortion level of

P, an increase or decrease in either of A or σ^2 xt  values should be followed by the other

in the same manner. Since the employment of transformations enables embedding

at lower distortion levels, the difference between the permitted and actual embedding

distortions can be utilized by the type-III embedder to either reduce the σ^l, value at

the given A or to further increase the A value at the fixed σ^l, . Both actions lead to

an improvement in the detection performance.

Employing multiple codebooks resembles the optimal binning technique in the

manner that the size of each bin is increased from one to the number of codebooks.

Therefore, for a message to be transmitted, the embedder generates a set of codewords

and chooses the best among them. Correspondingly, the detector has to search over

all codebooks for a successful extraction of the message. Modifying the multiple

codebook hiding method by assigning one of the codebooks for embedding and
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detection while discarding the others reduces it to a type-III method. Due to this

freedom in selecting one of the many codebooks being utilized, the method is referred

to as multiple codebook hiding.

In multiple codebook hiding, each codeword is generated from a unitary

transformation of the host signal. From this point of view, the design of the ideal

codebook requires the derivation of the optimal transform basis for embedding and

detection (both at the embedder and detector). This is an impractical task considering

the dependency on the host signal. (In Figure 4.7 and Figure 4.8, where N = 2,

this refers to the transformation that translates c to a point that coincides with

one of the x points.) Therefore rather than computing the optimal transformation

basis, a set of transformation bases is selected with the intention that, for a given

host signal some of the bases will yield codewords similar to that of the optimal

transformation. Thus, the use of multiple codebooks provide the embedder with a

freedom in choosing the best among a number of sub-optimal codewords. However,

when N→ ∞ , for any C, the embedding distortion converges to the expected value,

P σ^2xn, and multiple codebook hiding does not provide any advantage over single

codebook hiding. (In other words, with the increasing N all transformations of C

become equally preferable for embedding as they all yield the same distortion.) On

the other hand, detector should be able to differentiate the correct transformation

from among all transformations of the received signal, in order to successfully detect

the embedded message. Apparently, such a detection of the message is more prone

to errors. Ultimately, the question to be answered is whether at a fixed N and

permitted embedding distortion, the improvement in the detection performance due

to the ability to increase the A (or to reduce the at), can compensate for the

additional detection errors due to the uncertainty in the transform basis used for

embedding. It is shown that for AWGN channel, Gaussian distributed host signal

and squared error distortion measure, the increase in probability of error due to use of
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multiple codebooks is compensated by a reduction (in probability of error) due to the

embedder's ability to adapt the codeword to the host signal. Type-III schemes like

binary DM with thresholding and distortion compensation types of post-processing

employing soft decision rule based detectors are incorporated with multiple codebook

hiding technique. However, the concept is applicable to all type-III hiding methods.

4.2.1 Channel Model for Multiple Codebook Data Hiding

In the multiple codebook data hiding scenario, information hider and extractor share

two sets of information. One is the set of sequences W 1 , . , Wm E RN that are

associated with M distinct messages the other is the set of L, NxN, unitary transform

bases, i.e.

where If is the N x N identity matrix and T denotes the matrix transpose operation.

The overall data hiding system is outlined in Equations (4.7) through (4.12) in an

•a

In the model, C is the iid Gaussian distributed host signal with the marginal C

N.(0, 4), Xii = X„, is the distortion introduced by the type-III embedder (type-

III codeword, Section 3.2) and Z is the AWGN vector where Z N N(0, σ^2 Zi). One

selection criterion for	 i = 1, . , L, is to require the transformations of a random
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signal vector r be maximally separated from each other in 3/ N with respect to a

predesignated distance measure. For squared error distortion measure, selection of

T1 , Tr, is based on the maximization of the following criterion

where the expectation is performed over all r e R N . Among the L unitary

transformations C ί = Tί C, i = 1, . . . , L, embedder picks the one that is expected to

yield highest detection statistics at the permitted embedding distortion. Assuming k

is the index of the selected transform basis, the sequence Wm , corresponding to the

message indexed by m, 1 < m < M , is embedded into Tk transformation of the host

signal, Ck. Then, the stego signal in the transform domain,  Ŝk, is inverse transformed

to signal domain, k. Uninformed of the particular transform Tk used for embedding,

detector generates L transformations of the received signal Y and detects the hidden

message m in a blind manner. With the use of multiple codebooks, the choice

of Tk determines the codeword Xnk among codewords -PC,„ Therefore,

embedding operation can be viewed as a vectorial operation where embedder chooses

one of the L codewords based on the given host signal C and the message m to be

conveyed.

Figure 4.9 displays codeword generation for multiple codebook hiding. Compared

to Figure 2.7, the main difference is that for a message index m, L number

of codewords are generated by embedding Wm into T1 , , TL transformations

of C. Consequently, the embedder chooses the best one among the codewords

, XL ,m .

Table 4.2.1 lists all the notations used in the analysis in addition to the previous

notation, i.e. the vectors are denoted by boldfaced characters, the random variables

and their realizations are respectively symbolized by the capital letters and the

corresponding lower case letters. For the general case all signals are assumed to
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Figure 4.9 Encoding of message index m using multiple codebooks.
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be random vectors of size N, however, in some of the derivations individual random

variables are used for the sake of simplicity. In such cases vector extensions are

straightforward due to iid assumption.

Table 4.1 Notation Used in the Chapter

The most crucial step of multiple codebook hiding is the selection of the

transformation basis Tk, 1 < k < L, which yields the codeword that adapts to C

best at the permitted embedding distortion. For this, the watermark signal Wm

is embedded into L transformations of the host signal, C i = Ti C, i = 1, , L,

consecutively. Noting that in a type-III method embedding and detection functions

are not inverses of each other, the signal Wm embedded into C i will differ from the
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corresponding extraction Ŵ^i m due to the processing distortion X t , D (E (C, Wm ))

Wm . Therefore, embedder can decide on the transformation basis by measuring the

similarity (or the dissimilarity) between W m embedded into all transformations of C

and the corresponding extractions Wm through computing and comparing normalized

correlations, P^~i m,m.„ or mean squared distances, d^~i m,m. If the decision on the transform

basis is made using correlation, maximum correlation criterion, the value of i index

that yields the highest correlation rim,„„ is chosen as the index of the transformation

W^T m Ŵ^i m
basis Tk, k = arg maxί (P^~i m,m) for P^(~i)m,m =||Wm||	 Alternately, if squared error

.

distance is used as the decision metric, or minimum distance criterion, the embedder

picks the transform basis Tk that yields the smallest mean squared distance between

Wm and  , k = arg min ί { dί }, i 1, . . . , L where dί = * || Wm — Ŵ^i m || 2 .

Such a selection of the transformation basis can be justified as follows. In

order to embed a signal into a host signal, embedder has to determine the optimal

embedding parameters depending on the employed post-processing (i. e. (A, 0) for

thresholding, (A, a) for distortion compensation). These parameters are computed

in advance for the permitted embedding distortion (PE) and the given channel

noise (42z) levels assuming N is very large and host signal is uniformly distributed

in each quantization interval. It should be noted that the embedding parameters

computed using the optimization criteria described in Section 3.2 are valid when N is

relatively large. However, due to limitation on the size N, the embedding distortion

P introduced to C by using the optimal embedding parameter values differs from PE.

Therefore, embedder has to fine-tune those parameters for the given host signal in

order to comply with PE. Since A is also revealed to the extractor, it should remain

same for all embedding operations while processing distortion due to the choice of 0 or

a may vary for each embedding. As discussed earlier, 3 and a designates the amount

of processing distortion applied on the type-II codeword due to the post-processing.

Ultimately, when 0 = 0 or a = 1 no post-processing is performed and therefore
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embedded and extracted watermark signals are the same. On the other hand, when

embedding of Wm with )3 < A and a < 1 is considered, the extracted signal, W m ,

will be distorted at various levels depending on the amount of processing distortion.

Thus, correlation (respectively distance) between the embedded and extracted signals

reduces (respectively increases) with decreasing /3 or a.

The sent message is detected from the received signal Y without knowing which

of the L transformation bases is used for embedding. Hence, the extractor tries all

transformations of Y and extracts signals Wm = D(Ti Y). Then, the set of extracted

signals {Wm, , }, of which only Ŵ^k m is a valid extraction, is compared with the

set of watermark signals {W 1 , , Wm } by computing the normalized correlations

or mean squared distances where i = 1, , L and j = 1 . . , M, depending

on the decision metric used at the embedder. Among all (i, j) index pairs, the j index

of the pair that maximizes pin, ,j or minimizes is the index of the detected message

fit, rrt = argj maxί (p^i m, j) or fit = argj min ί ,

Figure 4.10 displays an L codebook embedding and detection scheme. In the

block diagram, W is the watermark signal corresponding to message index m. The

decision block bE , at the embedder side, decides on the transform basis T i , 1 < i < L,

to be used for embedding using one of the decision metrics. Then, it transmits the

stego signal corresponding to W and C. At the detector side, bp detects the message

with index fit by computing the correlations or distances between the extracted signals

and the set of watermark signals. A detection error occurs whenever m and fit are

not the same.

With multiple codebook hiding, as mentioned earlier, the embedder is able to

better adapt the codeword to the host signal. However, this improvement at the

embedder is accompanied by an increase in the probability of detection error. This

error is due to two sources of noise: the channel noise and the interference from the

other transformations. When extraction is made from the correct transformation of



Figure 4.10 Multiple codebook embedding and detection.

the received signal, the sent message may be falsely detected because of the channel's

distortion of the stego signal. This is the same as the detection error in single

codebook hiding. However, for the multiple codebook case, the error may also be

due to the interference from the other L — 1 transformations. This occurs when

detection of a message is from a transformation of the received signal other than the

transformation used for embedding. This error is independent of the channel noise

and can be minimized by the proper selection of the transformation bases.

In Sections 4.2.2-4.2.5, single and multiple codebook hiding methods using

maximum correlation and minimum distance criteria are studied and analyzed with

respect to their probability of error performances.

4.2.2 Single Codebook Hiding Based on Maximum Correlation Criterion

Let W^T m = [Wm1  ,	 be a length N iid zero mean binary random vector

corresponding to message m and Ŵ^T m = [Ŵm1,...,ŴmN] be the extracted real valued

signal at the detector. Since the embedding and detection processes are memoryless

and both host signal and channel noise are white, * 77, is an iid zero mean random

vector. For the single codebook case, the embedder employs an M x N sized codebook

composed of M length-N codewords. A detection error is due to Wm having the

highest correlation with any of {W 1 , , Wm} other than Wm . Then, an event Ej



that the detector will pick m as the detected message instead of m is denoted as

The event E that detector makes a detection error is expressed as,

Hence, the probability of error for single codebook hiding, Pre, is expressed as
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In Equation (4.17), Pm,j and Pm,m are random variables that are respectively

equivalent to random variables P ind and Pdep in their statistics. The relationship of

Pm,j, 1 < m, j < M, to Pind and P&p is explained in the following subsections. Based

on those results, the pdf of r.v. Pm ,j can be generalized as

Assuming m is the index of the transmitted message for all the cases, the first

subscript, m, of Pm ,j can be dropped for the sake of simplicity. Thus, Equation (4.17)

can be rewritten using Equation (4.18) as
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The inner integral in Equation (4.20) can be expressed in terms of Gaussian Q-
f 2

function, i.e. Q(x) = 	 Since statistics of Pj are independent of the

index j when j m, the sum operator in Equation (4.20) can be replaced with the

factor M — 1 and the inequality in pone simplifies to

Distribution of Pind. If Wm and Wm have a zero covariance matrix, Wm carries

no information about Wm due to the channel noise, the normalized correlation Pind

between Wm and Ŵm m1 is defined as
T

The r.v. Wino 1 < 1 < N, has the variance ||Wm||^2/N due to the ίίd assumption,

where ||Wm||^2  is the power of Wm . Similarly, the variance of 	 is ||Ŵm||^2/N 

irrespective of its pdf. Hence, the normalized random variables*In TW andare||Ŵm

both zero mean with variance *. The normalized correlation Pind is a r.v. with the

mean mPind and the variance σ^(2)Pind calculated as

The r.v. Pind has approximately Gaussian distribution, due to central limit theorem,

Find 	 (07 ) •

Similarly, if Wm and Wj are independent iid random vectors, then Wm is also

independent with Wj . Consequently, the normalized correlation Pm,j  Pind•
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Distribution of Pdep . When Wm, and Wm are dependent, a similar analysis can

be performed. However, in this case, the samples Wm, and 1717m, , 1 < 1 < N are

somewhat correlated. The normalized correlation Pdep , defined between Wm and

W„„ is the normalized inner product of the two iid correlated random vectors, as

given in Equation (4.22).

For relatively small N, the embedding distortion P introduced to C with the

use of optimal embedding parameters (that are computed for large N) becomes a r.v.
0.2

distributed around PE = σ^2Xn with the variance * as discussed in Section 4.2. Based

on the measured distortion P, embedder has to adjust the processing distortion X t by

changing /3 or a in order to ensure an embedding distortion of PE. Consequently, the

effective noise level, Z ell = Z — Xt , at the detector changes and the embedded

signal Wm, is distorted accordingly. The relation between the embedded binary

watermark signal samples and the extracted samples is expressed in terms of Zeff

as in Equation (3.30). The pdf of Zell for thresholding and distortion compensation

types of processing are given in Equations (3.27) and (3.28) as a function of embedding

parameters. Ultimately, the correlation coefficient Pdep between the dependent Wm

and Wm can be calculated in terms of embedding parameters, N, and statistics of

Zell and W.

It should be noted that a change in the embedding parameter or a will induce

a similar change on the value of correlation coefficient as they designate the amount of

processing distortion applied. When N is not large enough, the embedding distortion

P deviates from PE = Or . This is reflected as a deviation of embedding parameters

from their optimal values so that adjusted or a value yields P = PE. Hence, the

correlation of Wm and Wm is actually a r.v. conditioned on P, Pdep |P with the mean

mg. and the variance gyp.. The mean mp* is calculated as,



The details of the derivations for the equations (4.25) and (4.27) are given in Appendix

B.

The covariance matrix of the iid signal vector Wm and the extracted signal

vector Wm is diagonal (i.e. E[Wmi Ŵms] = 0, if 1 s, 1 < 1, s < N). Therefore, the

p ldistribution of r.v. Pdep|P approximates Gaussian distribution , 0 1 P, , dep 1 -~ Ai (m p . , σ^p.)

with mean and variance as given in Equations (4.25) and (4.27), respectively. The

pdf of the r.v. Pdep is therefore

4.2.3 Multiple Codebook Hiding Using Maximum Correlation Criterion

In multiple codebook hiding method, the transmitted codeword, corresponding to

a message, is expected to yield highest detection statistics at the presumed noise

level σ^(2)Z.The embedder achieves this by searching for the transformation basis

that yields less processing distortion than the others. This is done by choosing

the maximum of the correlations Pm. ,m , i = 1, . . . , L, that are measured between
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Wm embedded into L transformations of C and the corresponding extractions W in' .

However, due to channel noise Z, the dependency between the embedded watermark

signal and the extracted signal at the detector reduces. Therefore the correlation

between Wm and its extracted version from Y, would be less than

measured at the embedder. The correlation values p^ (~i)m,m and	 can be calculated

from Equation (3.30) for Zell = —Xt and Zen. = Z — Xt , respectively. Ultimately,

the transformation basis that yields the highest correlation at the embedder will also

yield the highest correlation at the detector, arg i max (P^(~i)m,m) = argi max (P^(i)m,m).

Let the maximum of 	 be denoted by Pmax with the pdf given as

where P^i m,m are independent random variables with P^im,m 	 Pdep, Section 4.2.2. With

multiple codebook hiding, then, detection errors are due to any of the normalized

correlation values P^i m,jjm, being greater than the correlation valueAmax.

Compared to the single codebook case, probability of error for multiple codebook

hiding, P^m ul e'1, is expected to increase with the number of codebooks as there areL

times more number of normalized correlation values that can exceed Pima,. On the

other hand, since Amax is expected to have higher mean than Pm , m , the probability of

error for each comparison of the normalized correlations is reduced.

Assuming Tk is the transformation basis used for embedding in all cases, an

event E ^i j that the detector will pick Tit instead of m is denoted as
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Hence, the probability of detecting a wrong message for multiple codebook hiding,

P^(mul) e, is obtained as

The union bound on the probability of error can be rewritten using Equation (4.30)

Comparing Equation (4.17) with Equation (4.33), one sees that the advantage of

multiple codebook embedding over single codebook embedding is reflected in the

statistics of Pm,m and Pmax .

The distribution of	 1 < j < /V/ and 1 < i < L, can be generalized as

The probability of error for multiple codebook hiding, Equation (4.33), can be

further rewritten using the above results as

where the first subscript referring to the transmitted message m is dropped. Since

the inner integral in Equation (4.36) is the Gaussian Q function and does not depend

on the index j, Equation (4.36) can be simplified to
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Note that for L = 1, Pr' given in Equation (4.37) reduces to Pre in Equation (4.21).

Distribution of Pin,	 The distribution of the random variables P^i m,j can be found

based on the choice of i and j. When detector assumes i = k, the transformations

used for embedding and detection are the same. Then, the extracted signal W ink   is

expressed as

Since Z is assumed to be a white noise vector (iid Gaussian), a unitary transformation

of it, Z' = Tk Z, is also iid Gaussian with the same mean and variance. Therefore, the

results of the analysis given in Sections 4.2.2 and 4.2.2 also apply to multiple codebook

hiding. Consequently, the normalized correlation Pink  1 < j < M, is equivalent to

random variables Pdep and Pind in its statistics respectively for j = m and j m.

If there is a mismatch between the embedding and detection transformations,

i k, then Ŵ^i m is obtained as

where Z' = Ti Z. In Equation (4.41), Ŵ^i m is related to Wm through the transformation

Ti followed by a non-linear detection, Section 3.2. For properly selected transform

bases, i. e. E[||TiC — Tk C||] is maximized. An extraction from Ti transformation of

the received signal does not provide any meaningful information about Wm since

embedding transformation was Tk. Consequently, the binary distributed Wm with

values in Pt} is extracted, * raj , as a uniformly distributed sample sequence

in the range [-Δ/4, Δ/4] which is independent from Wm. Therefore, the normalized

correlation P^i m,j, i k and Vj, has the same statistics as the r.v. P ind, ~ N(0, 1/N ).
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Distribution of Amax. The r.v. Ana, is the maximum of L random variables,

Equation (4.29), that are all distributed according to pdf of r.v. Pdep . The distribution

of Amax, for any finite L, can be expressed in terms of the distribution function of P dep

as

where Fx (x) = fx. fx (x)dx and the superscript L refers to the L th order power of

the distribution function FPdep(Pmax). Correspondingly, the pdf of Amax is found as

LF^(L-1)Pdep (Amax) Pd"(Prnax) •ƒ Pmax (Amax)

4.2.4 Single Codebook Hiding Using Minimum Distance Criterion

Considering the minimum distance criterion for the single codebook hiding case,

a detection error is the result of Wm having the smallest distance with any of

{W 1 , . , Wm} other than Wm . Hence, the upper bound on the probability of

detection error, Pre, can be expressed similar to Section 4.2.2, Equations ( 4.14)-

(4.17), as

As will be shown in the following sections, the statistics of the random variables

dm,j and dm ,m , in Equation (4.43), are respectively the same as those of died and ddep•

Consequently, the pdf of r.v. dm•; , 1 < m, j < M, can be expressed as

Assuming m is the index of the transmitted message for the generic case,

Equation (4.43) can be rewritten using Equation (4.44) as



where Fdp (dj ) is the probability distribution function of the r.v. dj .

Distribution of dίed• When Wm and Ŵm have a zero covariance matrix, the

distance dίed between the iid Wm  and Ŵm can be defined as

Introducing the random variable A = W 2 +	 — 2W W, such that dίnd=1/N∑^(l=N)l=1*λmi

the statistics of random variable dίed can be computed in terms of the statistics of A.

The mean and variance of A are respectively derived in Appendix B as



88

As both Wm and Wm are iid, the distribution of died approximates Gaussian, died ~

M( Liz Δ^4/N180)• Similarly, the distance di ,j measured between the extracted signal Ŵi

and the watermark signal Wj, is equivalent to died in its statistics when W i and Wj

are mutually independent iid random vectors.

Distribution of ddep. When Wm and Wm have a diagonal covariance matrix, an

analysis similar to the one given in Section 4.2.2 is performed. The distance d dep

is the mean squared difference of the iid correlated random vectors Wm and Wm ,

as defined in Equation (4.48). Given that optimal embedding parameters yield an

embedding distortion of P, the distance between Wm and Wm can be expressed as a

r.v. conditioned on P. The mean md* and the variance 4. of ddep |P can be calculated

in terms of the statistics of Am, as

where R(p) is as given in Equation (4.26). Derivation details for Equations (4.53) and

(4.54) are given in Appendix B, Equations (B.12)-(B.13). The distribution of d dep |P

also converges to a Gaussian distribution, ddep | P , N(md. , 4). The pdf of r.v. ddep
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4.2.5 Multiple Codebook Hiding Using Minimum Distance Criterion

In this version of the method, embedder selects the transformation basis by choosing

the minimum of the distances 	 i = 1, , L computed between Wm and 

for each transformations of C. At the detector, on the other hand, the distance

between the embedded and extracted signals is measured as (Pm. fin , 1 < i < L. The

degradation in the measured distance from d^(~i)m,m to d^(i)m,m is due to the channel noise

Z as discussed in Section 4.2.3. However, the transformation basis that yields the

minimum distance at the embedder will yield the minimum distance at the detector,

argi min(d^(~i)m,m) = argi min (dim. on ). Defining the minimum of d^(i)m,m as drain, its pdf is

given as

where d^(i)m,m are independent random variables with d^(i)m,m ti ddep, Section 4.2.4.

Consequently, a detection error occurs if any of the distance values d^ (i)m,j, 1 < j < M,

j m, and 1 < i < L, is smaller than drain• Compared to the single codebook

case, similar to Section 4.2.3, probability of error is expected to increase with respect

to the number of codebooks since there are L times more distance values that may

be smaller than dmin . Whereas dmin, has lower mean than dm ,m which will reduce

the probability of error. The union bound on the probability of error for multiple

codebook hiding, Pe u1, is found similar to Equations 4.30-4.33 as
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The advantage of multiple codebook hiding stems from the difference in the

distributions of the random variables dm ,m and drain in Equations (4.43) and (4.57),

respectively. The distribution of dim. . 1 , 1 < j < M and 1 < i < L, can be generalized

The bound on the probability of error given in Equation (4.57) can be rewritten

using the above results (by dropping the first subscript referring to the transmitted

message m) as

Distribution of dim, . The distribution of the random variables 	 can be found

based on the choice of i and j, as in Section 4.2.3. When detector assumes i = k,

the transformations used for embedding and detection are the same. The detected

watermark signal Ŵ^(k) m,j ,jcan be expressed as in Equation (4.39). Thus, the analysis

given for single codebook case also applies to multiple codebook case. The distance

between the Wm and *
771
k 13 Ind

• d̂k m,j• for 1 <j<Mandjm, has the same statistics

with the r.v. dind , d̂k m,j N( Δ^ 2/12, Δ^4/N180). In the same manner, d ^(k)m,m, 	j = m, has the

same statistics with the r.v. ddep , d ^(k)m,m 	ddep.
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If there is a mismatch between the embedding and detection transformations

such that i k, then Wink is obtained as in Equation (4.41). Due to the

transformation Ti , i k, and the non-linear detection that follows it, *.,,k becomes

independent of Wm. Therefore, the mean squared distance, d^(i) m,j for i k, is

equivalent to the r.v. dind in its statistics, d im j N('6‘122, Δ^4/N180).

Distribution of dmin. Since, dmin, is the minimum of L independent random

variables, Equation (4.56), distributed according to Fddep (ddep), the probability

distribution function of dmin is found as

4.2.6 Comparisons

The robustness measure used to compare multiple codebook hiding with single

codebook hiding is defined in terms of the ratio between the embedding distortion

power and the channel noise power, WNR= 14. Figures 4.11-4.13 and 4.14-4.16

display the union bound on the probability of error for thresholding type of

post-processing using both criteria. The curves are obtained by numerically solving

Equations (4.37) and (4.61) at different WNRs and for various numbers of codebooks

and codebook sizes M x N. Corresponding results for distortion compensation type

of post-processing are similarly displayed in Figures 4.17-4.19 and 4.20-4.22. In

all cases, as the number of codebooks increases, the bound on the probability of

error decreases exponentially. On the other hand, the probability of error for single

codebook hiding also decreases with the increasing signal size N. Consequently, a

lesser number of codebooks is required to further improve the performance. Results

show that for WNR> 1 and WNR> 0.2 (equivalently in logarithmic scale WNR> 0

dB and WNR> —7 dB) the use of multiple codebooks is not necessary if N ~- 100



Figure 4.11 Probability of error performance for multiple codebook hiding based
on maximum correlation criterion and thresholding type of processing for M=100 and
N=50.

and N 500, respectively. Intuitively, this is due to the increasing confidence in the

detection with the increasing N. With reference to the analyses in Sections 4.2.3

and 4.2.5, as mPdep, increases and σ^ P2 d el, decreases, the maximum of the ensemble of

random variables P^(-1)m,m, , P^(~L)m,m is less likely to differ from the rest. Respectively, as

mddep decreases the minimum of d^(~1)m,m on, , d^(~L)m,mwill not differ significantly from any

of the other measured distances. Consequently, all codebooks become almost equally

favorable.

In multiple codebook hiding method, since detector forces the extracted signal

to match one of the watermark signals, one concern is the probability of false-positive

(false-alarm). This is the probability of detecting a message when no message is

embedded, and it can be derived based on the results of analysis given in Section 4.2.2

and Section 4.2.3. Under the assumption that host signal is distributed uniformly in

each quantization interval (al, >> A), the extracted signal *null is iid uniformly

distributed in [-4, I] and uncorrelated with any of the watermark signals. As a

result, the normalized correlation Pnull,j or the squared error distance dnu ll,j between
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Figure 4.12 Probability of error performance for multiple codebook hiding based
on maximum correlation criterion and thresholding type of processing for M=200 and
N=100.

Figure 4.13 Probability of error performance for multiple codebook hiding based
on maximum correlation criterion and thresholding type of processing for M=1000
and N=500.
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Figure 4.14 Probability of error performance for multiple codebook hiding based
on minimum distance criterion and thresholding type of processing for M=100 and
N=50.

Figure 4.15 Probability of error performance for multiple codebook hiding based
on minimum distance criterion and thresholding type of processing for M=200 and
N=100.



For single codebook hiding, a false-positive occurs when Pnull,j is greater or dr,nu

is smaller than a preset threshold. Using maximum correlation criterion, the threshold

is set based on the statistics of p dep , which is the normalized correlation between an

embedded watermark signal and its extracted version, so that the embedded message

can be distinguished from the rest at a constant false-alarm rate. Respectively using

minimum distance criterion, the threshold is determined based on the statistics of

ddep •

With multiple codebook hiding, where extractions are made from unitary

transformations of the received signal, the extracted signals \Vni ull, 1 < i < L,

have the same statistics from **null• Consequently, the correlation D,inull,j and the

distance dinull,i , computed between Wni nu and Wi , have same statistics with Pnull,j,

and dnull,j, respectively. Correspondingly, the probability of false-positive is due to

being greater or dinuu being smaller than the preset threshold. Considering aPinull,j

fixed threshold for message detection, the false-alarm rate within multiple codebook
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hiding increases with a factor of L compared to single codebook hiding (as there

are so many comparisons that may yield a false positive). However, noting that

the use of multiple codebooks enables embedding a watermark signal with less

processing distortion, the correlation and distance properties of the extracted signal

are improved. Therefore, using maximum correlation criterion, one can afford

to increase the threshold in accordance with the statistics of Pmax . Alternately,

using minimum distance criterion, the threshold can be decreased depending on the

statistics of dmin•

The numerical solutions of Equation (4.37) indicates that the increase in the

 by the factor of L, compared to Pre, is compensated by embedder's ability to

better adapt the codeword to the host signal as a result of which detection statistics

are improved from those of no to ndep - - max • Similarly, the linear increase in false-alarm

rate with the number of codebooks can be compensated by an exponential decrease

trough proper selection of the threshold which relies on the statistics of A max rather

than of Pdep . A similar reasoning based on solution of Equation (4.61) is valid for

minimum distance criterion due to the improvement in distance properties from ddep

to dmin •

A complete comparison of multiple codebook hiding and single codebook hiding

schemes would involve calculating the actual probability of errors (not the union

bound), which would be extremely difficult. However, the analytical results indicate

that, Equations (4.37) and (4.61), the upper bound on the probability of error

decreases exponentially for multiple codebook hiding scheme. Therefore, schemes

employing multiple codebooks, rather than a single codebook, will perform better

when N is limited.
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Figure 4.17 Probability of error performance for multiple codebook hiding based
on maximum correlation criterion and distortion compensation type of processing for
M=100 and N=50.

Figure 4.18 Probability of error performance for multiple codebook hiding based
on maximum correlation criterion and distortion compensation type of processing for
M=200 and N=100.
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Figure 4.19 Probability of error performance for multiple codebook hiding based
on maximum correlation criterion and distortion compensation type of processing for
M=1000 and N=500.

Figure 4.20 Probability of error performance for multiple codebook hiding based
on minimum distance criterion and distortion compensation type of processing for
M=100 and N=50.
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Figure 4.21 Probability of error performance for multiple codebook hiding based
on minimum distance criterion and distortion compensation type of processing for
M=200 and N=100.

Figure 4.22 Probability of error performance for multiple codebook hiding based
on minimum distance criterion and distortion compensation type of processing for
M=1000 and N=500.
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4.2.7 Implementation and Simulation Results

Optimum codeword selection in multiple codebook hiding depends on designing the

set of transform bases T1 , , Ti, properly, (i. e. they should be able to generate

maximally separated transformations of the host signal) Equation (4.13). One

intuitive way of picking such a set of transform bases is by choosing them among

rotation matrices so that each transformation of the host signal is a rotated version

of the others. Multiple codebook hiding method is implemented by designing the

transformation bases using Givens rotations [53]. Givens rotations provide orthogonal

transformations in RN that can be employed to rotate a given vector with a chosen

angle.

A particular transform basis Tk is obtained by the consecutive multiplication

of N (N2 -1) number of orthogonal matrices all with determinant one so that the

resulting Tk is unitary. Each orthogonal matrix is derived from the identity matrix

by introducing cos θk  terms at (i, i) and (j, j) locations along with sin 0k and — sin θk

terms at (i, j) and (j, i) locations in order to rotate (i, j) coordinate plane with the

designated angle . The rotation angles 0k , k =1,...,L are chosen by uniformly

sampling 27r, 0k = (k — 1) 2±7.

By setting the signal size to N and number of messages to M, the size of the

codebooks utilized by the embedder is fixed to M x N. The watermark signals that are

embedded into the host signal are generated using Hadamard transform matrix due to

its simplicity. The Hadamard transform matrix of size N x N and its negated version

are combined into a 2N x N binary valued matrix. Every row of the combined matrix

is indexed from 1 to M = 2N, scaled by for maximum separation, and assigned to

the watermark signal W3, 1 < j < M, such that E[W^Ti Wj ] = 0, i j and i L j + N.

The host signal and channel noise are iid zero mean Gaussian vectors with σ^ » PE,

σ̂2z. Prior to embedding, the permitted embedding distortion PE is fixed, and the

optimal values for the embedding parameter A are derived for the considered WNRs.
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The A values are also revealed to the detector. The parameters ,(3 and a, however, are

properly adjusted for each embedding in order to ensure an embedding distortion of

PE and is not known to the detector. The simulations are done for different number

of transformations L and signal sizes N by embedding and detecting randomly chosen

message indices.

Multiple codebook hiding is implemented on the type-III scheme based on

thresholding and distortion compensation types of post-processing using both

maximum correlation and minimum distance criteria. Message embedding and

detection with up to 25 codebooks is performed considering codebook sizes of

64 x 32, 128 x 64, 256 x 128 and the WNR range of 0.1 to 1. Figures 4.23 and

4.24 display the probability of success results obtained respectively for L = 1, 3

and L 1, 4 with varying N values where the post-processing is thresholding. The

increase in the embedding signal size N, at a fixed number of codebooks, improves

the detection statistics since normalized correlation and mean squared distance give

more reliable results with the larger signal sizes. On the other hand, Figures 4.25

and 4.26 display the performances for thresholding type of processing when N = 128

and L = 1, 3, 5, 9, 14, 25 using the two criteria. Corresponding results for distortion

compensation type of processing are displayed in Figures 4.27 and 4.28 for both

criteria. It is observed from these performance simulations that multiple codebook

hiding method has superior performance than the corresponding single codebook

method at the same N.

The computational complexity of the proposed method depends on the

number of codebooks employed. Multiple codebook embedding when compared

with single codebook embedding requires the embedding of the watermark signal

into transformations of the host signal and a comparison based on the resulting

signals, in order to select the transformation basis. On the other hand, at the

detector, extraction should be repeated for each transformation basis. Therefore, the
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Figure 4.23 Probability of success performance for 3-codebook hiding based on
thresholding processing and maximum correlation criterion for various watermark
signal sizes of N = 32, N = 64 and N = 128.

Figure 4.24 Probability of success performance for 4-codebook hiding based on
thresholding processing and minimum distance criterion for various watermark signal
sizes of N = 32, N = 64 and N = 128.
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computational complexity increases almost linearly with the number of codebooks,

Figure 4.10.

Figure 4.25 Probability of success performance for multiple codebook hiding
based on thresholding type of processing and maximum correlation criterion for
L = 1, 3, 5, 9, 14, 25 and N = 128.

Figure 4.26 Probability of success performance for multiple codebook hiding
based on thresholding type of processing and minimum distance criterion for L =
1, 3, 5, 9, 14, 25 and N = 128.
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Figure 4.27 Probability of success performance for multiple codebook hiding based
on distortion compensation type of processing and maximum correlation criterion for
L = 1, 3, 5, 9, 14, 25 and N . 128.

Figure 4.28 Probability of success performance for multiple codebook hiding based
on distortion compensation type of processing using minimum distance criterion for
L = 1, 3, 5, 9, 14, 25 and N = 128.



CHAPTER 5

WATERMARKING AGAINST NON-INVTERTIBLE ATTACKS

Two watermarking methods, that are based on type-III hiding methodology and are

intended to resist non-invertible attacks are described. These attacks are the cropping

resizing, Section 5.1, and the lossy compression, Section 5.2.

5.1 Synchronization

In some data hiding applications like image, video and audio watermarking, preserving

the synchronization between the embedding and detection operations becomes crucial.

In such contexts, synchronization refers to accuracy of detector's information on

spatial and temporal coordinates of the watermark signal in the stego signal. When

the actual coordinates of the embedded watermark signal are different from the

ones supposed by the extractor, detection performance may degrade significantly

even though the traces of the watermark signal may be present in the stego signal.

Therefore, removing the synchronization between embedder and detector becomes a

more effective attack than say attempting to "erase" the watermark signal from the

stego signal. Geometrical transformations like rotation, scaling, translation, warping

and signal cropping are most common forms of desynchronization attacks [54, 55, 56].

For successful extraction of the watermark signal, data hiding methods require tools

and techniques for restoring the synchronization efficiently, e.g. [57, 58, 59].

In the following sections, a hiding technique based on type-III methodology with

thresholding type of post-processing is proposed for watermark recovery from stego

signals consecutively subjected to cropping and resizing operations. These attacks

pose a threat of poor watermark detection due to signal transformation and signal
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loss. Hence, the detector has to be synchronized with the distorted stego signal prior

to watermark extraction.

In general, if a particular desynchronizing attack can be modeled as a

transformation, watermark detection could either depend on embedding in a domain

which is invariant to that transform, or on the ability to estimate the applied

transformation by the attacker, and invert it before detection. One particular

technique which enables estimation of such transformation in the face of many

different types of desynchronization attacks is by periodic embedding, and estimation

of the transformation through cyclic autocorrelation.

It is shown that cyclic autocorrelation peak pattern (periodicity features of the

signal) can specifically be used for calculating the resampling factor and estimating

the amount of cropped data (i. e. number of deleted samples in a vector, number of

pixels of line in an image). Therefore, the resampled signal can be restored to its

original size.

The information loss due to cropping is countervailed by multiple embedding

and redundancy coding of the watermark signal. Although, multiple embedding is

not an ultimate remedy to cropping, the motivation is that all replicas can not be

completely distorted simultaneously due to the perceptual constraints. Figure 5.1

is a representation of signal cropping and resampling. Erasures in the stego signal

require reinstatement of synchronization. Synchronization is achieved by designing

watermark signals in form of all-pass filters which are orthogonal to all their cyclic

shifts, Section 5.1.2. The phase of the all-pass filter is modulated by the message

to be conveyed. Reed-Solomon error correcting codes are used for both introducing

redundancy and achieving synchronization.



5.1.1 Autocorrelation for Restoring the Cropped Signal

Let a periodic signal V be obtained by combining n replicas of the signal W of length

T1 , Figure 5.1. V is arbitrarily cropped out, Vc, and the resulting signal is resampled

by the factor V CR. Then, T2 is the size of the resampled W. Let n be a large

integer number, Te be the amount of signal (number of coefficients) cropped from V

where Te < T1 , and L = nT2 be the length of V CR. The resampling factor can

also be defined as = 	  The autocorrelation R V CR(m) of V CR is computed

In order to recover W, the cropped resampled signal V CR of size nT2 — Le- has to

be restored to cropped signal Vc with size nT1 — Te by resampling with the factor T.

The autocorrelation function of V CR is used to estimate 7 depending on information

about V available to extractor (i.e. size of V, size of W). It will also be seen that

autocorrelation peak pattern provides insights into the nature of the croppings even

when croppings occurs at multiple positions (note that if two or more consecutive

samples in V are cropped, it will be considered a single cropping). The total amount

of cropped signal is assumed to be much smaller than the size of V, Te << nT1 . The

justification for this assumption is that in a typical attack scenario, due to perceptual
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constraints, the attacker can not make radical changes on signal size V. Therefore,

all copies of W can not be cropped fatally at the same time. Consequently, in the

corresponding autocorrelation function of VC R the peaks observed at T2 shifts of the

origin, R V CR V CR(±iT2) where i E Z, will be relatively greater in strength compared

to other peaks irrespective of the number of croppings. Given T1 is known at the

extractor, resampling factor can be found by measuring T2 through distances between

the dominant peaks in the autocorrelation function and calculating .12'- Alternately,

if the size of V prior to cropping, nT1 , is known rather than the size of W, T can be

calculated using the relative peak locations of the autocorrelation function.

Considering the single cropping case of amount Te 1/τ,the autocorrelation function

of the signal VCR  will indicate the presence of two periodic components with the same

period, T2 = First component is identified by peaks at T2 shifts of the origin.

The second, on the other hand, generates peaks at the shift of T2 — Te 1/τ with respect

to zero-shift and at T2 shifts thereafter. In other words, the first component is due

to resampled copies of signal W in VCR  and second one is due to the cropping. In

the autocorrelation, at every T2 — Te 1/τTshift following aT2shift the incomplete signal

period coincides with a 'copy of itself and generates a peak. The peaks corresponding

to latter component are weaker in signal strength compared to the former due to

the incomplete W. Therefore, other than the peak at the zero shift, every peak at

T2 shifts (with respect to zero shift) is accompanied by a peak due to cropped W

(assuming n is large enough). The distance d between the peak at kT2 , k < n, and

(k — 1)T2 + T2 — Te 1/τ is calculated as

Being able to measure Te/τ and T2, the resampling factor T is calculated as T = n T2 n

or T = T based on availability of nT1 or T1 . Then the total cropping amount T e 1/τ  is
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calculated using Equation (5.2). It should also be noted that given either of nT1 or

T1 , one can determine either using T and T2.

This approach can be expanded to double cropping case where T el and Tee are

the amounts of the non-overlapping cropped samples (Tel and Te 2 refer to croppings

of W at different locations) from V with Tel + Te 2 < T1. Autocorrelation function of

VCR, for two-cropping case, may have up to four peaks in every T2 interval that are

(k — 1)T2 , k < n, away from zero shift. These peaks may appear at kT2 Tel +7. Te2 

kT2 — -, kT2 —Te2/τ and kT2 . The last one is due to resampled copies of W and has

highest correlation value. Others are due to cropped-resampled copies of W and have

smaller strengths. If no croppings are present in the first and last periods of W, for

relatively large n and T1 , the distance, d, between the first and last peak in any T2

interval is measured as Te 1/τ2+Tel. Similar to the single cropping case, nT2and1 = _47177
nT1

are consequently computed.

For more number of croppings followed by resampling, similar analogy is

applicable. If Tel , ..., Ten, are the amounts of the non-overlapping cropped signals

and Tel + • .. + Tern < T1 , there may at most be 2m peaks at every shift based on

how the signal V is cropped (i.e. the number of croppings in each period of W, the

location of a cropping in the period W, neighborhood of the cropped periods). These

croppings may yield correlation peaks at 2m locations in a T2 shift (assuming each

cropping is non-overlapping with the others and considering first and last periods

are not cropped). Corresponding peak locations in the autocorrelation function are

at kT2 — Eir_rinLL , kT2 — E33: Ini joi 	for Vi, kT2 — Eirmi joo -iLT for Vi, 1 such that

i 1,	 , kT2 — L for Vj, and at kT2 . Then, the distance d between the first and

last peaks in a T2 shift can be used to estimate the total erasure amount.

When the first and last periods of the signal V are cropped, autocorrelation

-function may not generate a peak at kT2	 Te + ,71-Tern, Therefore, the distance d,

measured between the first and last peak at a T2 shift of the autocorrelation function,



110

does not indicate It' . However, as will be explained in Section 5.1.3, d may still be

measured using cyclic autocorrelation features for such croppings. Further, if both

T1 and nT1 are known at the extractor, the amount of cropping, Te 1/τ,can also be

determined by measuring d and T using Equation (5.2).

5.1.2 Practical Concerns

Calculating the resampling factor T correctly depends on identifying correlation peaks

and determining their relative locations in the autocorrelation function. However,

some peaks may be buried in the correlation noise which makes peak detection

unreliable. Designing white noise like W signals and using cyclic autocorrelation

are two remedies available for measuring d reliably.

Watermark Signal Design. The design of the signal W is critical as autocorrelation

properties of W characterize those of V. Designing W as an all-pass filter which

is orthogonal to all its cyclic shifts, [60], gives one freedom to hide information by

modulating the phase of the W as well as the improved autocorrelation properties,

Section 5.1.2. An all-pass filter W of size T1 gives -721f-- degrees of freedom in

modulating its phase, if T1 is odd (Y degrees of freedom, if T1 is even).

Cyclic autocorrelation. Cyclic autocorrelation enhances the correlation peaks

due to signal wrapping in the autocorrelation function. Assuming VCR has

undergone multiple croppings of Tei ,... , Tem , the corresponding cyclic autocorrelation

can be obtained from the autocorrelation function by flipping the signal range

(722a — gy =m Te 1/τ • j=1 Tej/2τ, nT2 — E .13.7 	 and adding it onto signal range (0,	 — 7.1= m e •
'2T 1

After signal wrapping, the new coordinates for autocorrelation peaks in the range

(r2,1221
	 El=m , nT2 — E33:7 ] are found by subtracting their coordinates from

nT2 —E33.7	 which always coincide with one of the 2m peak locations. For instance,

if VCR has been cropped once by removing Te samples, autocorrelation peaks at kT2
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and kT2 — Tfor k > 2 translate to (n — k)T2 — Is-; and (n — k)T2 in the cyclic

autocorrelation function. For the general case, the peaks at kT2 — E3j7	 kT2-

for i < m and kT2 respectively translate to, (n — k)T2 , (n — k)T2 —	 joi LeLT .

and (n — k)T2 — E33.7	 making peak detection easier. Correspondingly, the

autocorrelation peaks with highest strength (due to cropped and resampled W) will

be translated to (n — k)T2 and (n — k)T2 — E jm_ i Li irrespective of the cropping

pattern. Then, the resampling factor 'r = P2- (or 741,27, ) is reliably calculated by

measuring the distance d between the two peaks,-; = Tet+Tem

Figures 5.2 a-b display the cyclic autocorrelation functions, R V C V C (m), for single

and double cropping cases. Signal W has a size of 90 and V is generated from 11

replicas of W. In Figure 5.2-a, Vc is generated by cropping V once by removing first

30 samples of sixth period. On the other hand in Figure 5.2-b V, is cropped twice by

removing middle 40 samples of third period and last 20 samples of fifth period. In

both figures, the peaks at multiple shifts of 90 (the size of W) are easily identified,

T = 1. Every shift of size 90, corresponding to size of W, contains two peaks in 5.2-a

and four peaks in 5.2-b. The distance d = Te , the number of erased samples, between

the peaks in the former is 30 and between the first and fourth in the latter is 60.

5.1.3 Synchronization

Restored cropped signal must be repartitioned to recover W. Since it is not certain

which partitions are affected from cropping, extractor needs some markers for

re-establishing the synchronization. Most of the partitions contain signal W or a

translated version of it. While some other partitions have cropped and translated

versions of W. Reed-Solomon error correcting codes for generating W and handling

synchronization. Since, it is highly likely that most partitions will carry a cyclic

shifted version of W, errorless decoding will be possible when the partition is

reordered. Thus, given enough redundancy, both robustness against signal loss and
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synchronization are achieved and errorless decoding of most of the partitions is

possible at some cyclic shift of the partition.

5.1.4 Results

The methodology is implemented on 512 x 512 graylevel Lena image, Figure 5.3-a.

Message m is assumed to be a sequence of 32 bits. The signal W takes the form of the

watermark signal corresponding to m with a constraint on the correlation properties.

Hadamard transform matrix is designated as the codebook and its orthogonal rows

are mapped to codewords that are employed in watermark signal generation.
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The message bit sequence is translated into words. Then, the message words are

redundancy coded using Reed-Solomon error correcting codes. Using the codebook,

encoded message words are BPSK modulated and ordered in a way that fulfills the

frequency domain symmetry requirements for the phase of the all-pass filter in order

to generate the watermark signal W. Watermark signal is chosen to be 32 x 32 all-pass

filter which provides the hider with 32x232-4 = 510 phase samples to modulate by the

coded message m. Then, 16 copies of the watermark signal is embedded throughout

the whole image.

The watermarked image is cropped, and in order to compensate the reduction

in size, it is resampled back to its original size. At the extractor a copy of the

watermarked, cropped, and resampled image is divided into partitions of size W.

Watermark detection for each partition is followed by the two dimensional cyclic

autocorrelation of the detected set of signals. Using correlation peak pattern

resampling factor 'r is estimated. Extractor, knowing an estimate of the total

cropped amount but not their locations, resamples the image back to its size after

cropping. Hence, the disturbing effects of the resampling can be reversed or at

least minimized. This image is then re-partitioned and watermark extracted. Since

extracted watermark signals may have been cropped and translated, an immediate

detection of message m is not possible. Reed-Solomon codes are used to detect

message m from the extracted watermark signal since they are capable of correcting

burst error. Two-dimensional signal is shifted in rows and columns until an errorless

decoding is possible. High redundancy coding helps detecting message m even under

severe signal loss.

Figure 5.3 a-d display the results for the described method applied on Lena

image, Figure 5.3-a. Watermarked Lena image is displayed in Figure 5.3-b where

mean squared error per coefficient due to embedding is 6.9 (40 dB in PSNR). Figure

5.3-c is the watermarked image cropped twice in both dimensions to a size of 488x 488.
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Each cropping is the erasure of 12 lines of pixels in either horizontal or vertical

dimension. Cropped image is resampled back to its original size of 512 x 512 in

5.3-d. Figures 5.3 e-f are the projections of the cyclic autocorrelation function onto

horizontal and vertical dimensions. Distance between the first and last peaks in each

period, corresponding to the size of the watermark signal enlarged by the resampling

factor, of the cyclic autocorrelation function is d = 25 which has an estimation error

of 1 line of pixels in both dimensions. T2 is also measured using the Figures 5.3 e-f

as 33 at some shifts and as 34 at most of the others, s4 < g. Image in Figure

5.3-d is resampled to a size shorter by 24 (Te = round(25 x a)), lines of pixels in each

dimension, partitioned in 32 x 32 blocks and watermark detected. Extracted signals

from each block are averaged. Then, the averaged signal block is decoded in cyclic

shifts of rows and columns until an errorless decoding is possible. For the presented

implementation the redundancy rate is around 1/15 (32/510). Reed-Solomon codes were

successful in detecting the 32 bit message m with no errors.

5.2 Type-III Hiding for Lossy Compression

Data compression is the most common application that any multimedia content

will undergo. Therefore, optimal design of a watermarking method for the given

compression is a very practical requirement. Given the quantization tables utilized by

the compression scheme, one will know the exact compression noise that a stego signal

will undergo. Hence, compression may be considered as an attack where embedder

has the ability to reduce its distorting effects on the stego signal.

As discussed in Chapter 3, the major advantage of quantization based methods

over additive schemes is that the former enables hider to optimize the hiding rate at

the given attack level unlike the latter. Due to this property of type-III methods,

the embedding and detection parameters can be optimized in a way that takes into

account compression distortion.
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In this section, a type-III data hiding scheme that makes use of the compression

scheme's quantization characteristics is presented, [61]. The method incorporates the

embedding quantization with the quantization of compression. Results show that

joint embedding and compression has better payload and lower compression bit rates

when compared to independent compression and quantization. Hiding performance

is evaluated under JPEG compression for thresholding type of processing, however,

the proposed methodology is trivially applicable to any lossy compression scheme for

all types of post-processing.

5.2.1 Joint Embedding and Compression

The motivation for modifying the embedder with respect to compression characteristics

relies on the fact that content creator, as the distributor, has the control over both

watermarking and compression. Under this circumstance, an optimal system is the

one that handles watermarking and compression jointly rather than considering them

independent.

Considering watermarking and compression apart from each other may reduce

data hiding rate to remarkably low values or to zero. Among all possible cases, worst

one occurs when the quantization step size specified by the compression scheme is

much more greater than A, the distance between the reconstruction points of the

embedding quantizers. This may remove all the watermark and lead to zero hiding

rates. Moreover, low hiding rates may not be avoided even in moderate or high bit

rate compression levels in such cases.

Embedding can be interpreted as introducing two forms of noise to the host

signal, namely the distortion due to embedding quantization and the processing

distortion. Quantization involved in compression will round embedded watermark

signal values to discrete quanta values. Therefore, the compression distortion,

the difference between the watermarked signal and the quantized watermarked
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signal, is another source of noise that reduces the hiding rate. However, knowing

the quantization characteristics in advance, embedder can adjust its embedding

distortion and processing distortion to lessen the effects of compression distortion.

This requires embedder to be modified in order to make comparisons between

watermarked signal and its quantized version to decide on the proper embedding

and detection parameters. Using the a priori information on the compression,

embedder chooses among the (A, /3) parameter pairs that maximizes the data hiding

rate. (Note that, as discussed in Chapter 5, for a permitted amount of embedding

distortion information hider has infinitely many choices of embedding-detection

parameter pairs.)

The information hiding system is outlined below

where W is the watermark signal corresponding to message index m, C is the

transformed cover signal coefficients, Xn, is the type-III codeword, Q is the quantization

noise due to compression and Z is the channel noise. Since quantization for lossy

compression is generally performed in transform domain, embedder EQ and the

detector D operate on transform domain coefficients. The distortion introduced

to C due to embedding, compression and channel noise are measured using mean

square error distortion measure and are respectively denoted by PE, PQ and Pz .

Figure of merit used for evaluating the performance of the modified embedder is

the normalized correlation between embedded watermark signal and the extracted

signal at varying ratios of distortion introduced by embedding and compression to
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channel noise distortion, (PE+PQ)/Pz. Corresponding hiding rates are overestimated at a

fixed ( PE+PQ)/Pzthrough calculating the statistics of the Gaussian noise additive to the

watermark signal vector so that the watermark signal vector and the extracted noised

signal vector have the same correlation.

Comparing the joint and independent embedding-compression at the same

distortion level of PQ + Pz , the hiding rate in the former will be higher as the mutual

information between the W and W is higher due to interrelated Xn , and Q. What

is not so readily obvious is that better compression of the watermarked signal is

possible when embedding is coordinated by the compression. As embedder tries to

minimize quantization noise by changing the embedded signal value with respect

to its reconstruction value at the output of the quantizer, entropy of the quantized

watermark signal decreases.

Figure 5.4-a displays the hiding rate vs. robustness performance obtained

for synthetically generated data using both joint and independent embedding-

compression. The host signal, C, is assumed to be an iid Gaussian vector. For

compression, a quantization step size of 6A is assumed for all coefficients. Figure

5.4-b displays the entropies for the watermarked signal after quantization for the

same set of data. Joint embedding and compression has higher payload and provides

a better compression of the watermarked signal when compared with independent

embedding and compression.

5.2.2 Results for JPEG Compression

The method is implemented on 256 x 256 sized test image where embedding is followed

by JPEG compression scheme [62]. Quality factor concept introduced to compression

standard enables provider to compress at various bit rate values by scaling the built

in quantization tables. Transformed block coefficients are combined coherently into

channels where the first channel (00-channel) corresponds to DC coefficients and the
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rest of the 63 channels are for AC coefficients. The watermark signal is embedded

into first 9 low frequency channels since the rest of the channels go through a coarser

quantization which makes embedding extremely difficult.

Watermark signal embedded into transformed image coefficients is an iid

uniformly distributed vector of length 1024. This vector is embedded into the

preselected low frequency channels by the modified embedder making use of the

quantization table for a particular quality factor. The attacker's intrusion is also

modeled by iid Gaussian noise vector of length 1024. Performance results are obtained

for a range of 0.2 < PE+  <0.8.

Figures 5.5 a-b display the improvement in 00-channel's hiding rate with joint

embedding and compression where embedding powers for JPEG-10 and JPEG-50

compression are restricted to be same. Similarly, Figures 5.6 a-b display the correctly

detected number of bits among the embedded 1024 bits. Entropies of the watermarked

images after quantization are displayed in figures 5.7 a-b. Modified embedder

contributes less bits per pixel increase to the compression bit rate of the sample

image.

Although the modification on the embedder for joint embedding and compression

is a simple one, the resulting benefits are twofold. Based on the a priori information

on the compression, it becomes possible to achieve higher embedding rates by

embedding with appropriate A and /3 values. Additionally, as embedder aims to

minimize quantization noise, resultant embedded signal is more friendly to the

quantization.



Figure 5.3 (a) Lena image. (b) Watermarked image. (c) Cropped image after
watermarking. (d) Resampled image after cropping. (e) Estimation of cropped
amounts from the resampled image (e) in horizontal dimension, (f) in vertical
dimension.
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Figure 5.4 (a) Hiding rates for joint and independent embedding-compression. (b)
Entropy of the quantized embedded signals.

Figure 5.5 Hiding rates for 00-Channel with compression at quality factors (40 <
PE < 170) (a) JPEG-10 and (b) JPEG-50.



(a) 	 (b)

Figure 5.6 Number of correctly detected bits out of 1024 hidden bits for (40 <
PE < 170) (a) JPEG-10 and (b) JPEG-50.

Figure 5.7 Entropy rates after quantization corresponding to (a) JPEG-10 and
(b) JPEG-50.



CHAPTER 6

CONCLUSIONS

6.1 Contributions

This thesis studies oblivious data hiding with the emphasis on quantization based

embedding-detection techniques. Contributions of the work can be summarized as

follows.

• A communications framework based on channel adaptive encoding and channel

independent decoding has been devised with a data hiding perspective.

• The performance evaluation criteria for quantization based embedding-detection

techniques are laid out, and a formal treatment of post-processing, employed in

practical data hiding methods, is provided.

• Practical embedding-detection techniques are compared in terms of rate,

correlation, and probability of error performance merits.

• Multiple codebook data hiding method is introduced as a means of improving

rate vs. robustness performance when the embedding signal size is relatively

small.

• An oblivious embedding-detection scheme is proposed to cope with cropping

and resampling attacks.

• A modification in embedder operation of quantization based methods is

proposed to insure robustness against lossy compression by tuning the quantization

of embedding with respect to quantization of the compression.
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6.2 Remarks

CAE-CID framework: The proposed CAE-CID framework is equivalent to the

communications framework introduced by Costa in [17]. However, the encoding

of CAE-CID framework assumes the design of U = X + C and imposes the power

constraint on the channel input as *||X-Xt||^2 < P rather than U = X + aC and

1/N||X||^2
< P of [17], where X, Xt , and a are channel dependent. As a consequence

of such codeword generation, decoding does not require channel noise information.

When interpreted within the context of data hiding, the CAE-CID framework

establishes better analytical model for embedding-detection schemes utilizing a form

of post-processing like thresholding, distortion compensation, and Gaussian mapping,

as the distortions introduced to host signal due to quantization of embedding and

post-processing can be denoted by X and Xt in the formulation. Therefore, a better

evaluation of the scheme depending on the employed processing is possible.

Performance evaluation: For AWGN attack and mean squared error distortion

measure, results indicate that distortion compensation is the optimal embedding

processing when X, Xt and C are Gaussian distributed. However, for uniform

distribution of X the optimal processing depends on the channel noise level.

Performance evaluation of the hiding methods based on probability of error,

correlation, and mutual information metrics lead to the same conclusion. At the

two extremes, "severe noise" and "no noise" cases, respectively additive schemes and

dither modulation (no post-processing) achieve the optimal performance. However,

for all other noise levels, the two scheme do not have preferable performances. At

relatively high noise levels, techniques with thresholding processing performs best.

While distortion compensation performs closely to thresholding, Gaussian mapping

is not suited for high noise level applications. For low noise levels, on the other

hand, both distortion compensation and Gaussian mapping types of processing yield

comparable performances.
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Performance Evaluation: Three major design issues for quantization based

embedding-detection schemes are laid out and examined. These are the type of

post-processing employed at the embedder, the form of detector, and the optimization

criteria for embedding-detection parameters.

Multiple Codebook Hiding: It is shown how a practical oblivious information

hiding scheme based on type-III embedding methodology with a fixed and limited

embedding signal size can utilize multiple codebooks to improve its performance. The

use of multiple codebooks provide the embedder with a codeword that better adapts

to the host signal. The concept is applicable to all type-III data hiding schemes.

The proposed method does not require any changes in the embedding and detection

processes of a particular data hiding scheme. It merely requires the embedding to be

performed multiple times in order to choose the codeword corresponding to a message

index. Similarly, multiple extractions of the watermark signal are performed before

making a decision on received message. Analytical results indicate that the upper

bound on the probability of detection error decreases with the number of codebooks.

Simulation results show that the use of multiple codebook hiding is indeed superior

to single codebook hiding.

Embedding-detection schemes against some non-invertible attacks: Watermarking

methods should have means of reducing the disturbing effects of non-invertible

attacks by considering their nature. An oblivious data hiding scheme is proposed to

enable watermark recovery from stego images subjected to cropping and resampling

consecutively. At the embedder, multiple copies of the redundancy coded watermark

signal is embedded in order to cope with the signal loss. Redundancy coding is also

utilized to restore the synchronization between embedder and detector. It is shown

that cyclic autocorrelation features of the cropped-resampled signal can be used to

estimate the nature of the croppings and the cropped amount (in lines of pixels) in

both dimensions up to the size of watermark signal.
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A modification to the embedder operation is suggested to incorporate the

quantization of embedding with the quantization of lossy compression. The

embedding-detection parameters are selected to minimize the total distortion due

to quantization of both embedding and compression. It is shown that

embedder-detector sets making use of compression scheme's quantization characteristics have

better payload and lower compression bit rates than independent embedding and

compression.



APPENDIX A

CAE-CID FRAMEWORK UNDER VARYING CHANNEL NOISE

The optimal encoding and decoding described in Chapter 2 is achieved by the use of

a shared collection of U sequences at the given channel noise level 4 2z . Consequently,

when the channel noise level changes, successful operation can not be maintained due

to the dependency on 4 2z . However in CAE-CID framework, if encoder is aware of this

change, reliable transmission can be restored by adjusting the input power without

updating the shared collection of U sequences.

Each U sequence is an iid vector with the Gaussian marginal distribution, U

N.(0, +4). Since both encoder and decoder are bound to use the same sequences

(i. e. 4 and	 are both fixed) and ax and σ z are related to each other due to

Equation (2.15) as

encoder can adjust the input power in accordance with the new noise level 4. Using

Equation (A.1), the new input power P is found as

where A and P2 are both valid choices only if ex — 45-2z > 0 is satisfied. This requires

σ x > 26-z as stated in Section 2.2.1, Equation (2.19).

Consider 42z = k4 Z,z , where 0 < k < ∞ , such that 0 < k < 1 indicates a decrease

in the channel noise and 1 < k < ∞  indicates an increase compared to earlier state

σ̂2z. Since maximum communication rate is computed as 2 log2 (1 + , Equation

(2.14), the new rate will change as a function of 4, or equivalently \-	 Usingz	 v ko-z
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Depending on the choice of P1 or P2 and k, the expression given in Equation (A.3)

will either be greater or smaller than 1. Therefore, when the channel noise changes

from 42z to k4, embedder and detector will be able to resume communication with

the same set of U sequences at a, lower or higher, rate of 2log 2 (1 + r 2 4) depending σ^2 z

on the choice of input power, as given in Equation (A.2), and k.



APPENDIX B

STATISTICS OF n |P AND D ρDEP|P

The mean mp* of the random variable ρdep|P can be computed by deriving the joint

and marginal moments of W and W. The random variable W is expressed in terms

of Zeff and W in Equation (3.30), where W is a binary random variable with the

density function fw (w) = (w ∞ ) + (5(w + °). The pq-th joint moment of W and

W is defined as

The joint pdf in the above integral can be expressed in terms of marginal and

conditional pdfs, ƒ W,Ŵ(w,w) = ƒŴ(w|wm) f w(w) , thus, Equation (B.1) can be written

as

Since the expectation of a function of a random variable can be expressed in terms

of the pdf of the random variable itself rather than of the function [63], E[W] =

roo w(Zeff)fZeff  (Zeff )dZeff , and since all pdfs are assumed to be symmetric, Equation

(B.2) may be rewritten as
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Finally, E [WP] can be summarized as

Based on Equations (B.1)-(B.7), m p* is derived as

130

The variance σ^2p* is the variation of the correlation coefficient p* around its mean
*

mg when mρ * is estimated from N iid samples of Wm, and Wm . For the case when

W and W are from a bivariate Gaussian distribution, the variance is as given in [64].

However, when the samples are from non-Gaussian distributions, derivation of ap* is

not straightforward. Therefore, Monte-Carlo simulations are performed to obtain the

σ^2 ρ* values for the considered N by computing the correlations between the embedded

Wm  and extracted Wm at the assumed WNR and then measuring the deviation from

mp*. However, for minimum distance criterion the corresponding variance values can

be calculated in a straightforward manner.

For the minimum distance criterion the statistics of ddep|P are computed in

terms of the statistics of the random variable A = W 2 + W2 - 2WW.

When the noise level is very high so that it can be considered uniformly

distributed over all quantization intervals W and W become independent of each

other, and W is extracted as a uniformly distributed signal in 1.1. The mean

mA = E[ λ] and the variance o = E[ λ ^2] — m2), of A is calculated in terms of the
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When W and W are dependent on each other, the statistics of d dep P can

be similarly computed in terms of the individual and joint moments of W and

W, Equations (B.4)-(B.7). Consequently the mean md* and the variance 4* are

computed as
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