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Abstract
Numerous opportunities to improve network performance present themselves when we
make communication networks aware of the characteristics of the data content they are
handling. In this thesis, we design such content-aware algorithms that span traditional
network layers and are successively structured, focusing on problems of data fusion,
buffering, and distribution. The successive structuring of these algorithms provides the
flexibility needed to deal with the distributed processing, the heterogeneous sources of
information, and the uncertain operating conditions that typify many networks.

We investigate the broad interactions between estimation and communication in
the context of data fusion in tree-structured sensor networks. We show how to decom-
pose any general tree into serial (pipeline) and parallel (hub-and-spoke) networks. We
develop successive coding strategies for these prototype sensor networks based on gener-
alized Wyner-Ziv coding. We extend Wyner-Ziv source coding with side information to
"noisy" encoder observations and develop the associated rate-distortion function. We
show how to approach the serial and parallel network configurations as cascades of noisy
Wyner-Ziv stages. This approach leads to convenient iterative (achievable) distortion-
rate expressions for quadratic-Gaussian scenarios. Under a sum-rate constraint, the
parallel network is equivalent to what is referred to as the CEO problem. We con-
nect our work to those earlier results. We further develop channel coding strategies for
certain classes of relay channels.

We also explore the interactions between source coding and queue management
in problems of buffering and distributing distortion-tolerant data. We formulate a
general queuing model relevant to numerous communication scenarios, and develop a
bound on the performance of any algorithm. We design an adaptive buffer-control
algorithm for use in dynamic environments and under finite memory limitations; its
performance closely approximates the bound. Our design uses multiresolution source
codes that exploit the data's distortion-tolerance in minimizing end-to-end distortion.
Compared to traditional approaches, the performance gains of the adaptive algorithm
are significant - improving distortion, delay, and overall system robustness.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

Layered architectures underlie the design of many communication networks. Layering
is a form of hierarchical modularity that allows the processes at each layer to view the
functionality of lower layers as a black box with a defined set of inputs and outputs.
Within this design paradigm, each layer's functional modules can be designed relatively
independently of the other layers, constrained only to standard inter-layer interfaces.
This greatly simplifies overall system design. Not surprisingly, however, such design
simplicity comes at a price.

In this thesis, we investigate network applications where substantial performance
gains can be realized by designing algorithms that work across traditional network
layers. In particular, we focus on designing algorithms for data fusion, buffering, and
content distribution in networks. We approach them as problems of joint source and
channel coding. To understand better the motivations for the designs we present, we
next consider how these problems would be approached in a layered architecture.

In a layered network architecture the source and channel coding aspects of these
problems are separated. In many cases the transmission of any information source is
decomposed into two stages. The first stage removes redundancy by source coding the
information signal into a bit stream. The second stage channel codes the resulting bit
stream to introduce structured redundancy that can correct for transmission errors.
Source coding is generally carried out in the application layer at the top of the network
protocol stack, and channel coding in the physical layer at the bottom. This functional
separation is shown in Fig. 1.1. In certain point-to-point communication problems,
and in certain limiting regimes (such as no constraints on decoding delay), employing
such a decomposition does not necessarily incur any loss in performance. However, in
many situations, such as the network situations we consider, this is not the case. For
these problems, overall system performance can be improved by designing algorithms
that work across traditional networking layers, requiring the joint design of source and
channel codes. We term these "inter-layer" algorithms.

In this thesis we design inter-layered approaches to data fusion, buffering, and dis-
tribution. Our designs share two important perspectives: they are "content-aware"
and "successively structured". While in layered architectures source coding converts
any information source into an undifferentiated stream of bits, in inter-layered designs
the network is able to exploit more detailed understanding of the characteristics of the

13
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14 CHAPTER 1. INTRODuCTION

Layer Function

............................... Source coding

- .------------------ Routing

.............................. Reliable transmission

.............................. Channel coding

Figure 1.1. An abbreviated diagram of the protocol stack in a traditional layered architecture, focusing
on the layers relevant to the work in this thesis.

data it is handling. When networks have this more detailed knowledge, we term them
"content-aware". The second perspective - successive structuring of algorithms - is
useful because of the distributed nature of networks. As the information sources in a
network are distributed, it is necessary to design algorithms that work without having
access to all the information sources in any location. Successively structured algorithms
work well in such contexts. They have the added advantage that they are flexible
enough to deal with the uncertain operating conditions and heterogeneous sources of
information that typify many networks. In the rest of this chapter, we illustrate the
utility of these perspectives by introducing the problems of study and describing the
characteristics of networks that make these problems challenging.

* 1.1 Data Fusion in Sensor Networks

Consider the sensor network depicted in Fig. 1.2. The black node represents the n-
length random source vector x = xn that is observed at a number of sensor nodes
(represented by open circles). In addition to making a measurement, each node can
communicate to one other sensor node at a finite rate. For example, node 1 measure
yl and communicates nR 1 bits (a rate of R 1 bits per observation sample) to node 3.
The goal of the network is to get a particular node the best possible approximation of
the source signal. This node is termed the "CEO" - the Chief Estimation Officer. In
keeping with CEO terminology we often refer to sensor nodes as "agents". The tools
of classical estimation theory cannot be applied directly to this problem because the
observations are not co-located. The distributed nature of the data turns this into a
joint problem of estimation and communication. By focusing on successively structured
algorithms, our results will effectively generalize classic sequential estimation problems

II--_-- _1 _ � _ __ __
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Sec. 1.1. Data Fusion in Sensor Networks 15

Source signal, x"

_ --_ n

Sensor nc
or "agent'

Finite rate
communica

CEO

Figure 1.2. A general sensor network with finite rate links and tree-structured communications.

(such at the Kalman Filter) to finite rate communication constraints.
As in Fig. 1.2, our focus will be on tree-structured communication strategies. This

means that all information flow is uni-directional, from the outermost nodes (the
"leaves" of the tree - nodes 1,2,4,7 in the figure) to the CEO (the "root" of the tree -
node 8 in the figure). We concentrate on tree-structured communications because they
are more easily analyzed than more general communications that include loops. Loops
increase the complexity of the data fusion problem because care must be taken not to
double-count information at the end of each loop. The complications introduced by
loops arise in other estimation problems. One example is in inference using graphical
models [44, 77, 85]. In these problems, probabilistic dependencies between random vari-
ables are encapsulated by the topology of a graph. If the dependencies are structured
like a tree, then iterative algorithms such as Belief Propagation [49] are guaranteed to
converge to the correct inferences. Such convergence is not guaranteed for graphs with
cycles. A second example is in some information theoretic problems of communication
with feedback, such as the multiple-access channel with feedback [48, 23]. In these prob-
lems, loop-like information dependencies are introduced by the feedback, often making
these problems difficult to analyze.

The model for data fusion in networks we have introduced resonates in a number of
research communities. Many researchers have looked into problems of detection with
distributed sensors (see, e.g., [69, 73, 76, 11] and the references therein). In terms

_I� _ _ _I_ I ___I -~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _- . - -

15Sec. 1.1. Data Fusion in Sensor Networks



16 CHAPTER 1. INTRODUCTION

of Fig. 1.2, the CEO's (or perhaps the "Chief Decision Officer's") job would be to
make a decision about the source, rather than an estimate of it. One early piece of
work that illustrates the failure of the separation principle in this network context is
by Tenney and Sandell [69]. They discuss a binary hypothesis testing problem with
two sensors. Under each hypothesis, the sensors observe independent, but identically
distributed, Gaussian random variables; the mean of the observations is determined
by the true hypothesis. Each sensor is able to send a single bit of information to the
decision maker. The authors show that even in this simple case, the decision rules at
each sensor need to be optimized jointly rather than individually, making this a joint
detection-communication problem.

Much of the work in the distributed detection literature concentrates on scalar
observations (n = 1) and finite sized codebooks. Researchers in the information theory
community have also investigated detection problems under vector observations (n > 1)
and finite rate codebooks [61, 1, 90, 39]. A related area of research in information
theory is multiterminal source coding. In these problems, the CEO's job is not to
make a decision based on x, but rather to estimate all the observations Yl, Y2,..., L.
This vein of research was initiated by Slepian and Wolf [67] for the lossless encoding of
a distributed pair of correlated source signals. Their elegant solution motivated many
extensions, both lossless [82, 40] and lossy [74, 8, 87]. To our knowledge, the full solution
to the latter remains unsolved.

The difference between multiterminal source coding and CEO data fusion problems
is that in the latter, the CEO is interested only in the source signal x. The CEO has
no specific interest in the sensor observations Y1, ... , YL other than in how they help in
the estimation of x. Therefore, CEO problems are particular instances of more general
problems of estimation under communication constraints. As we will discuss later on
in more depth, one characteristic of CEO problems is that there is no constraint on
decoding delay, so large block sizes can be exploited during encoding and decoding. In
more general problems of estimation under communication constraints there may be
constraints on decoding delay. This is the case in situations where source estimates are
being used for feedback control [68, 58]. A second characteristic of CEO problems is
that all agents observe noisy versions of the same constant source x. In more general
estimation problems the source may actually evolve as a function of 1. In such situations
the CEO's objective would be to make a sequence of estimates, i[1],... ,i[L]. Clearly,
the field of estimation under communication constraints is quite rich.

Problems similar to the CEO problems we present arise in the context of ad hoc
sensor networks [70, 43, 37, 38] as well as in more strict network coding contexts [53, 51].
The introduction of CEO data fusion problems to the information theory community
occurred relatively recently [9]. The original finite-alphabet CEO problem was extended
to continuous-alphabets in [75, 45]. In all of these papers [9, 75, 45] the network
configuration considered consisted of a set of agents that independently communicated
to the CEO in a single step (e.g., nodes 6,7, and 8 in Fig. 1.2). The scenario depicted
in Fig. 1.2 that we consider in this thesis is an extension of this model to general tree

I I
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Sec. 1.2. Buffering and Distribution of Distortion-Tolerant Data 17

configurations.
One of the main contributions of this thesis is in developing connections between (a)

the data fusion model proposed in the CEO literature [9, 75, 45], and (b) the coding ideas
proposed in the source coding with side information literature [81, 2, 84, 83]. Bringing
these two veins of work together yields some attractive successive coding structures for
the coupled problems of estimation and communications for sensor networks on trees.
In Chapter 2 we set the stage for our discussion of data fusion problems by presenting
the ideas and insights from the coding with side information literature in some depth.

To complete this introduction of the data fusion problem, we now describe in broad
terms some of the questions addressed in this thesis. Consider again the sensor network
model of Fig. 1.2. At node 3 there are three sources of information: (a) the node's
own observation y3, (b) a message ml from node 1, and (c) a message m2 from node 2.
The observation 3 may be continuous or discrete, depending on the scenario, but the
messages are always discrete indices m1 E {1,2,... , 2 nR 1 } and m2 E {1,2,... , 2 nR 2}.

One question we investigate is how to fuse these heterogeneous sources of information
together. We will see that because we allow length-n block encoders and decoders,
joint design of the source encoding, communication, and data fusion steps will yield
substantial performance gains over decoupled designs.

We also discuss the design implications our results have on choosing the configura-
tion of network communications. For instance, it may be better for node 2 to commu-
nicate to node 5, rather than to node 3. We determine some design rules to help choose
the best communications tree leading to the best estimate. On the other hand, we may
be given a fixed communications tree, but have the flexibility to assign resources (such
as rate) differentially to the various nodes of the tree. We determine some design rules
to help make such resource assignments.

* 1.2 Buffering and Distribution of Distortion-Tolerant Data

For problems of data buffering and distribution, we can again design network algorithms
that work across protocol layers. We focus on networks handling distortion-tolerant
data, i.e., data that is useful at a range of fidelity levels (such as audio, image or
video data). This characteristic contrasts with the distortion-intolerance of data that
must be communicated losslessly (such as executable programs). There is a wide range
of problems - such as data caching, routing, and congestion control - where ideas of
buffering and distributing apply. Furthermore, there is a wide range of applications
- such as data fusion in sensor networks or multimedia content distribution on the
Internet - where the data being handled is largely distortion-tolerant. Pairing these
problems and applications leads to the ideas of queuing with distortion-control that we
develop herein.

The content buffering and distribution protocols we design operate at the network
layer of Fig. 1.1 and require that multiresolution source codes [35, 36, 26, 66] are used
at the application layer. We use the ordered information structure of multiresolution

_I· IIU L I__· · l - 1~-1~ *1 1_- 11-1--_ 1-1_
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18 CHAPTER 1. INTRODUCTION

High-capacity Infrastructure Local area
infrastructure gateway managerneoinfrastructure

Unpredictable system load
(number of users, traffic patterns)

Figure 1.3. Possible applications of the buffering and distribution protocols developed in this thesis
include infrastructure gateway managers. An objective is to design algorithms that can adapt to
unpredictable system loads caused by users entering and exiting the network, as well as by unpredictable
traffic patterns.

codes to design a pair of network-layer-level priority storage and transmission protocols.
Multiresolution source codes have been proposed before as a natural approach to the
coding of multimedia content for networks [3, 54, 56]. When the link layer of Fig. 1.1 is
particularly unreliable or delay-prone, the non-order structure of multiple descriptions
source codes [78, 47, 29] has been proposed [33, 55] as an alternative to multiresolution
codes where subcodes must be decoded in a particular order.

A central contribution of this thesis is the joining of multiresolution source coding
ideas with queuing theoretic models of networks. This enables us to model situations
such as the one illustrated in Fig. 1.3. Here a finite memory infrastructure gateway
manager connects two heterogeneous networks. On the left is a high-capacity network
connecting information sources to the gateway. On the right is a shared communication
medium such as a wireless channel or a local area network. The number of users on the
shared medium may be time-varying and traffic levels may be unpredictable, making
fluctuating demands on the local area network. We use multiresolution source coding
ideas to develop protocols that are robust to unpredictable fluctuations in system load
and we quantify this robustness. A major benefit of the protocols developed is that
buffer overflows are avoided in a dynamic fashion.

Earlier researchers [27, 41, 71, 72] have looked at the related problem of controlling
the source quantization rate based on the state of the buffer to avoid overflows and
minimize average distortion. Our work differs from theirs because, by using multireso-
lution source codes, we can effectively change the source quantization rate long after the
source is quantized by deleting least-significant description as a function of the state of
the buffer. Some related ideas that have been developed in packet scheduling contexts
for wireless communications can be found in [50].

Using queuing models we derive a lower-bound on the average end-to-end distortion
that can be achieved by any buffering protocol. We develop baseline protocols that obey

I _
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Sec. 1.3. Thesis Outline 19

the separation principle, as well as adaptive protocols that work across traditional net-
work layers. We show that the adaptive protocols are much more robust to uncertainty
in queue arrival and departure statistics than are the baseline protocols. Furthermore,
their performance closely approximates the performance bound.

* 1.3 Thesis Outline

Chapter 2, Background: Using Side Information discusses how to employ side in-
formation in network communication problems. We motivate the problems, and discuss
both the source coding and channel coding versions. We focus on the finite-alphabet
and quadratic-Gaussian rate distortion and capacity results. In the quadratic-Gaussian
case we present geometric derivations of the rate-distortion and capacity expressions.
We conclude the chapter with a discussion of the dualities between source and channel
coding with side information.

In Chapter 3, Side Information Problems with Noisy Encoder Observa-
tions we quantify the effect that noisy encoder observations have on the rate-distortion
and capacity results derived in Chapter 2. We generalize Wyner-Ziv source coding and
present the rate-distortion function for finite-alphabet sources and arbitrary distortion
measures. We further evaluate the rate-distortion function for the binary-Hamming
and quadratic-Gaussian cases. Similarly, we develop the capacity expression for chan-
nel coding with side information in the context of information embedding. We present
the capacity expression for finite-alphabet sources and arbitrary distortion measures and
evaluate this expression for the quadratic-Gaussian case. For the quadratic-Gaussian
cases, we present the geometric derivations, allowing comparison with the analogous
geometric pictures of Chapter 2.

Chapter 4, Successively Structured Data Fusion Algorithms for Sensor
Networks develops successive coding strategies for sensor network problems based on
generalized Wyner-Ziv coding. We present a general model for sensor networks on
trees. We then show how to decompose any general tree into sets of two prototype
network configurations: serial (pipeline) and parallel (hub-and-spoke). We first develop
"estimate-and-quantize" strategies that are appropriate for use in layered network ar-
chitectures. The second approach is based on viewing both serial and parallel problems
as cascades of noisy Wyner-Ziv stages and results in an inter-layer algorithm.

By interpreting these sensor networks as side information problems we are able
to develop approaches to both the parallel and serial configurations that are, in a
sense, dual. We analyze these strategies in the case of a finite number of agents and
find convenient iterative (achievable) distortion-rate expressions for quadratic-Gaussian
scenarios. Under a sum-rate constraint, the parallel network is equivalent to the CEO
problem of information theory, and we connect our work to those earlier results. Using
our approach, we thoroughly analyze the two-sensor and infinite-sensor cases of the
CEO problem, proving that the rate-distortion bound is attained in both. Combining
our techniques for the serial and parallel configurations provides a good coding strategy
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for arbitrary sensor trees. Based on this work, we further develop coding strategies for
relay channel communications.

In Chapter 5, Queuing with Distortion-Control we wrap a signal process-
ing interface around a basic memory unit to produce buffering systems for distortion-
tolerant data that attempt to minimize end-user distortion. We design two interfaces:
a baseline interface that is appropriate for use in a layered network architecture, and
an adaptive interface that works across traditional network protocol layers. The adap-
tive interface uses the ordered information structure of multiresolution source codes to
alleviate network congestion adaptively. This is accomplished by reducing the fidelity
at which data is stored in a controlled manner, avoiding uncontrolled data loss due
to buffer overflows. Compared to the traditional baseline approach, the performance
gains of the adaptive algorithm are significant - impacting distortion, delay, and over-
all system robustness - and closely approximate a bound on the performance of any
algorithm.

Chapter 6, Conclusions discusses the contributions of this thesis and extensions
of the work.

20 CHAPTER . INTRODUCTION



Chapter 2

Background: Using Side Information

Much of communication theory has been developed for point-to-point communication.
In there scenarios there is only a single source of information at each processing stage:
the message at the encoder, and the received signal at the decoder. With this as the
default scenario, other sources of useful information available at either the encoder or
the decoder are called "side" information. In this chapter we describe how source and
channel coding strategies can be designed to exploit certain types of side information.

In Section 2.1 we consider the problem of Wyner-Ziv source coding with side infor-
mation. We present the basic problem and set it in the context of other distributed
source coding problems, before describing Wyner and Ziv's elegant solution and de-
veloping geometric interpretations for the quadratic-Gaussian case. In Section 2.2 we
consider Gel'fand and Pinsker's channel coding dual of Wyner-Ziv source coding. We
comment on the particular relevance of these ideas to information embedding and wa-
termarking problems, and develop geometric interpretations for Costa's solution to the
quadratic-Gaussian version of the problem. In Section 2.3 we discuss the duality rela-
tionships between the source and channel coding problems of this chapter. Finally, we
close the chapter in Section 2.4 with a summary of the results we present.

* 2.1 Source Coding and Side Information

We begin our discussion of source coding with side information by placing it in a large
class of distributed source coding problems. Consider the following model for distributed
source coding problems, depicted in Fig. 2.1: a pair of length-n random source vectors
x and y are observed at two separate encoders. The source vectors are generated in
a pairwise independently identically distributed (pairwise i.i.d.) manner, px,y(x, y)
Hn=l Px,y(xi, Yi), and the joint statistics are known throughout the system. The encoder
for y encodes y into the message my at rate Ry bits per source sample. Depending on
whether switches (a) is open, or closed, the x encoder may, or may not, know my when
x is encoded into mx. Similarly, depending on whether switches (b) is open, or closed,
the x decoder may, or may not, know my when mx is decoded. The decoder's objective
is to reproduce x and y to within (usually average) distortions d and d, where dx
and dy are the average distortions given by two (possibly different) distortion measures,
E [Dx(x, )] and E [Dy(y, y)], respectively. Depending on the positions of the (a) and
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Figure 2.1. Distributed source coding with two switches, (a) and (b).

Problem name
Lossless source coding of x
Lossy source coding of x
Slepian-Wolf source coding
Multiterminal lossy coding
Conditional rate-distortion theory
Lossless coding with side info.
Lossy coding with side info.

Rate Ry
0
0

<H(y)
< H(y)
> H(y)
< H(y)
> H(y)

(a)
0

0

0

0

0

0

(b)
0

0

0
0

0
>0
0

>0
>0
0

>0

00oo

00

0
>0

00

00
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[65, 28, 7]
[67, 10, 24]
[8, 74, 87]

[34]
[82, 2, 10, 24]

[84, 10, 24]

Table 2.1. Relationship between problems and parameters of Fig. 2.1. Column 2 indicates whether the
y-encoder can losslessly communicate y to the decoder (Ry > H(y)). This is equivalent to the decoder
observing y directly. If Ry < H(y) the y-encoder cannot losslessly communicate y to the decoder. In the
first two problems there is no y to encode. Columns 3 and 4 indicate whether the respective switches
are open (o) or closed (). Columns 5 and 6 indicate the distortion requirements on the decoded source
estimates. A non-zero value indicates a rate distortion (lossy) problem while dy = oo means that the
decoder is not concerned with estimating y in this problem.

(b) switches, the rate Ry, and the decoder's particular goal, a number of interesting
problems arise, some of which we list in Table 2.1.

The last two problems in Table 2.1, those concerning source coding with side infor-
mation, are the most relevant to this thesis. In these problems, the decoder wants to
make the best approximation of x possible, and is not concerned with estimating y; y
is therefore termed side information. We present a solution to the lossless version of
the problem in Section 2.1.2, and present Wyner and Ziv's solution to the lossy version
in Section 2.1.3. Before discussing these information theoretic solutions, we develop
intuition through a scalar example.

* 2.1.1 Scalar Quantization with Side Information

Consider the following scalar version of the source coding with side information problem.
The scalar source x is a zero-mean Gaussian random variable with variance a 2, i.e., x
N(0, ax). The decoder receives message mx and measures side information y. The side
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Sec. 2.1. Source Coding and Side Information

a. Prior px()

O 1 2 3 x
b. Standard

quantizer Pxly(xlYa)

O 1 2 3 x
c. Side-info

quantizer Pxly(XlY a ) Pxly(xIYb)

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 x

Figure 2.2. Design intuition for scalar quantizers with decoder side information. Fig. 2.2-a plots
the prior px(x) versus the quantization regions of a standard two-bit quantizer. Fig. 2.2-b plots the
posterior pxjy(xlya) for the source x given the side information is y,. Most of the posterior distribution
is supported within the single quantization region labeled 0. Fig. 2.2-c plots two possible posteriors for
x versus the quantization regions of a non-standard scalar quantizer. In this design the side information
y is used to resolve the ambiguity in quantizer region. For example, if x was quantizer to 0, and we
observed y we would guess that x is in the left-most region labeled 0. If, on the other hand yb were
measured, then we would guess that x is in the third region from the left labeled 0.

information is related to x by an additive noise channel y = x + v where v N(O, Ca2).
The decoder's goal is to produce the source approximation x that minimizes the mean-
squared distortion (or mean-squared error) dx = E [Ix - 12].

First consider the performance of a standard scalar quantizer in this situation. Fig-
ure 2.2-a plots the prior for x, versus the quantization regions of a two-bit scalar quan-
tizer that might have been designed, e.g., using the Lloyd-Max algorithm [32]. The
encoder sends the index mx E {0, 1, 2, 3} that corresponds to the region in which x is
measured. The decoder maps the received index to a source reconstruction , typically
the conditional mean of the quantization region f xp(xlm)dx. The resolution of this
type of quantizer is limited by the width of the quantization regions.

Figure 2.2-b helps demonstrate why this approach is suboptimal for quantization
systems that have decoder side information. A possible posterior distribution p(xlya) for
x given side information observations Ya is plotted. In this scenario most of the posterior
probability is located in the quantization region labeled 0. It is very likely that x is also
located in this region. We assume it was and that the decoder therefore received index
0 from the encoder. Receiving index 0 confirms that x was in this quantization region,
but we were already quite sure of that from p(xjya). Therefore, the index mx does not
tell us much that the side information did not already, and can pretty much be ignored.
This is somewhat unsatisfying, however, as the quantizer measures the source perfectly,
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while the side information y is a noisy observation of x. We want to design a system
that takes advantage of the encoder's clean observation of x.

In Fig. 2.2-c we show a set of quantization regions that can be used to exploit
the clean encoder observation. The source x is again encoded into an index in the
set 0, 1, 2, 3 depending on which quantization region x is located in. However, there
are now sixteen quantization regions, and only four indices. Because there are more
quantization regions than indices, we must reuse indices when labeling the regions.
The result at the decoder is a non-unique mapping from received index to quantization
region. This ambiguity can be resolved by using the side information.

To see how to use the side information in resolving the ambiguity, consider the two
possible posteriors p(xlya) and p(xlyb) indicated in Fig. 2.2-c. Say that the decoder
again receives index mx = 0 from the encoder. If the side information was measured
to be Ya, then the left-most region labeled 0 would be most likely. However, if the
measurement was Yb, the third region from the left labeled 0 would be most likely.
Through this algorithm we can use the side information to resolve the ambiguity in
labeling and determine which of the similarly lapelled regions is the one in which the
source was located. In effect, by using the side information we were able to double our
quantization rate from two bits (four region) to four (sixteen regions), while keeping
the communication rate fixed at two bits. There were two bits of uncertainty which
were resolved through the side information.

The scalar design shown in Fig. 2.2-c uses a periodic quantizer. Because of the
non-infinite spacing between similarly-labeled quantization regions there is always a
non-zero probability that the decoder will identify the incorrect quantization region. If
the spacing is increased this probability decreases. However, as the spacing is increased,
then the performance gains from the periodic quantizer decrease. Good designs balance
the probability of decoder error with the gains made when the decoding errors are not
made. The design and analysis of these quantization systems is carried out in [4].

However, when considering higher dimensional generalization of this scalar system,
the probability of identifying the incorrect quantization region can be driven to zero
asymptotically as the length of the source signal grows to infinity. This asymptotic
vector version of the problem is known as Wyner-Ziv source coding with side informa-
tion. And, as we will see, the solution to the Wyner-Ziv problem, the solution to which
displays the same type of periodic quantizer structure as shown in Fig. 2.2.

* 2.1.2 Lossless Vector Source Coding with Side Information

As a prelude to developing the information theoretic results for the vector generalization
of the scalar problem of Section 2.1.1, we first develop the problem of lossless source
coding with side information. In this case, the decoder's objective is to reconstruct the
source perfectly = x with probability approaching one as the source block length n
approaches infinity. This is the second-to-last problem in Table 2.1 where switch (a) is
open (o)and switch (b) is closed ().

24 CHAPTER 2. BACKGROUND: USING SIDE INFORMATION
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Theorem 1 [81, 2] Let a pair of sources x and y jointly distributed pairwise i.i.d.,
Px,y(X, y) = =l Px,y(i, Yi), be given.

If (a) x is encoded at rate Rx,
(b) y is encoded at rate Ry,

then a sequence of length-n block encoder-decoder pairs can be designed such that the
probability that x = x can be made arbitrarily small as n grows to infinity, if and only
if there exists an auxiliary random variable u such that:

(i) Rx > H(xlu), and

(ii) R I(y; ),

(iii) x,y,u forms a Markov chain, x ++ y - u.

This problem has two encoders and therefore two codebooks. We next summarize
the achievability half of the proof. For the x encoder, randomly and uniformly assign
each typical sequence x an index from {1, 2,..., 2 nRx). 1 These typical sequences are
the sequences we want to be able to identify at the decoder. For the y encoder, generate
a codebook with 2 nRy codewords u(j), j E {1, 2,... 2 nRy}, where each u is generated in
an i.i.d. manner according to p(u) = '=1 ui.

The x encoder sends to the decoder the index mx of the set in which the real-
ized source sequence x lies. This subset contains many typical x sequences (about

2 n(H(x)-Rx) 2nI(x;u) of them). The y encoder looks through all the codewords,
u(),..., u(2nRy) for one jointly typical with y. It sends the corresponding index my
to the decoder. The side information my is used to select which typical source sequence
within subset mx was the realized sequence.2 This selection is done via joint typicality
arguments, and relies on the Markov Lemma [8]

As a point of reference, consider what happens if we choose the auxiliary random
variable u = y. Then we get Rx > H(xly), Ry > I(y;y) = H(y). In this situation y
can be transmitted losslessly and only the residual randomness in x needs be sent. This
is a special case of Slepian-Wolf coding [67]. Because we do not care about decoding
y in the side information problem, we can generally save rate by not communicating y
to the decoder perfectly. The side information u is a function of y and so by the Data
Processing Inequality can have no more information about x than does y. This gives
us a lower bound on Rx, i.e. Rx H(xlu) > H(xly).

'This is often called "random binning" where the set of sequences associated with each index is
called a "bin" of sequences.

2Note that Ry > I(y; u) > I(x; u) by the Markov property and the Data Processing Inequality.
Therefore it is reasonable to believe that the side information rate is high enough to do the intra-subset
selection since Rx + Ry > H(xlu) + I(y; u) > H(xlu) + I(x; u) = H(x).
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* 2.1.3 Lossy Vector Source Coding with Side Information

In the problem of lossy source coding with side information, the design objective is
to minimize the transmission rate needed to guarantee that the source decoder can
approximate the source to within average distortion d, i.e., E[Dx(x, )] < dx with
probability approaching one as the source vector length n approaches infinity. This is
the last problem in Table 2.1. Generally, is assumed to be observed at the decoder
directly, rather than through a finite-rate encoder.

Theorem 2 [84] Let a pair of jointly distributed random source vectors (x,y) and a
distortion measure Dx(., ) be given such that

(a) x,y(x,Y) = IIinl Px,y(xi, Yi), and

(b) Dx(x, *) = 1 il Dx (i,:~i)

Then a sequence of length-n block encoder-decoder pairs can be designed such that if x
is encoded at rate Rx, the source x can be recovered to within average distortion dx with
arbitrarily small probability of failure as n grown to infinity, if and only if

Rx > RWZ(dx) = min [I(x; u) - I(y; u)], (2.1)
P.iy(uIy)EU

where the set U consists all posteriors p(uly) relating the auxiliary random variables u
to y that satisfy the following two conditions:

(i) x ++ y ++ u, and

(ii) E [Dx(x, f(y, u))] < dx for some memoryless function f ' x U -X X.

We use the notation RWZ(dx) to refer to the Wyner-Ziv rate distortion function. This
differentiates it from the conditional rate distortion function of Gray [34], denoted by
Rly(dx), which is the rate-distortion function when the side information y is measured
at both encoder and decoder.

The encoding technique in the rate distortion case is similar to the lossless case,
except that now we bin the x sequences instead of the y. This is because the side
information y is known at the decoder and we only need an approximation x to x at the
decoder. To encode the source we first generate a codebook of about 2

n I(x;u) sequences
u according to p,(u) = Iin=lp,(ui). These are the u-sequences we want to be able
to identify at the decoder using the side information y. Next, the codebook sequences
are assigned randomly and uniformly to 2 nRx < 2

n I(x;u) subsets (or bins). To encode
we first fine the u sequence that is jointly typical with x according to pu,x(u, x). The
bin index in which this u lies, say set i, is transmitted to the receiver at rate Rx.
This bin contains many u sequences (about 2 n(I(x;u)-Rx) - 2 n I(y;u) of them). The side
information is used to select which u-sequence within set i is the one that is jointly
typical with x. This selection is done via joint typicality arguments, and the Markov

_�I� _�_ �
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Figure 2.3. Each choice of p(uly) and f(, ) defines one achievable rate-distortion point (d,R). The
rate-distortion function R(d) is the lower convex envelope of all achievable points and is indicated by
the dashed curve.

Lemma. After correct identification of u, the final step is is to fuse together u with the
side information y, producing i = f(ui, yi).

Knowing how the coding theorem works, we now go back to parse the statement of
Thm. 2. The theorem breaks into two steps: decoding and data fusion. The limit on
the rate Rx, given by the difference of mutual informations (2.1), makes sure our rate
is high enough to perform the selection of the correct u from the set i. The Markov
condition (i) guarantees that the selection works by the Markov lemma. Assuming that
the correct u is identified, we turn to the data fusion step. The second condition (ii)
guarantees that we can find a fusion function f that satisfies the distortion constraint.
In general, for each choice of p(uly) and f (, ) we get a rate and a distortion defining a
point on the achievable rate-distortion graph plotted in Fig. 2.3. The rate is a function
of the conditional probability p(uly) chosen, and the distortion is a function of p(uly) as
well as the data fusion function f(-, .). The rate-distortion function is the lower convex
envelope of all that points that can be so defined, indicated by the dashed curve in the
figure.

We complete this section by pointing out the connection between the rate distortion
function R(d) = min[I(x; u)-I(y; u)] of Thm. 2 and the scalar example, of Fig. 2.2-c. In
the scalar example the communication rate (analogous to R(d) in Thm. 2) was two bits
per sample, the quantization rate (analogous to I(x; u)) was four bits per sample, and
the resolution rate (analogous to I(y; u)) was two bits per sample. Setting the analogous
terms equal gives 2 = R(d) = I(x; u) - I(y; u) = 4 - 2 = 2. For work on Slepian-Wolf
and Wyner-Ziv implementations see [80] and [4, 52, 62, 86, 88], respectively.
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* 2.1.4 Quadratic-Gaussian Case

Wyner determined the rate distortion region for i.i.d. Gaussian sources under a mean-
square distortion measure [83], commonly referred to as the 'quadratic-Gaussian' case.
For a pairwise i.i.d. jointly Gaussian zero-mean source where x - N(O, oa2) and y
N(0, 2),

1 log 0< d < 2
RWZ(dx) = 2 dx X xIy (2.2)

o, 2'l < dx

where o,2 is the minimum mean-squared estimation error:

2 = E [(x (y))2] = E [(x-E [xly]) 2] = x2] E [y2 ] ]2

Interestingly, in this case RWZ(dx) = Rxy(dx), Gray's conditional rate distortion func-
tion [34] where y is known at both encoder and decoder. This equality is probably
related to the fact that the posterior variance x2Y is independent of the realization of
y. This conjecture seems related to the results of [19, 89] which show that in the channel
coding dual that we discuss in Section 2.2, it is not the host statistics, but rather the
channel statistics that matter. In the source coding context then it is not the statistical
prior p(x) that matters, but rather the posterior p(xly).

We now show how, in the low-distortion regime, the rate distortion function for this
problem (2.2) can be derived from geometric sphere-packing arguments [5]. The mini-
mum mean-squared error estimate given the side information is E [xly]; the associated
estimation error is x2ly, which can be achieved without using the encoded message.
Therefore, before using the message from the encoder, the decoder can determine that
the true vector source x lies within an uncertainty ball of radius /n(y + c1) centered
at its side information based source estimate E [xly]. This ball of uncertainty, indicated
by the dotted circle in Fig. 2.4, is centered around the tip of a vector indicating E [xly],
the side information based source estimate. Within the ball we pack spherical quan-
tization regions of radius V/n(d- e2). At the encoder we map x to the label of the
quantization region in which it falls. However, these labels are not unique: just as in
the scalar example, many quantization regions are assigned the same label. If we can
resolve the ambiguity in the labeling using the side information, then we can determine
the small /n(d- 2)-radius ball in which x is located, satisfying the distortion con-
straint. The ambiguity in the labeling can always be resolved without error as long as
within any large sphere of radius n(a21y + e1), wherever centered, no two quantization

regions share the same label. In the random coding proof outlined in Section 2.1.3, this
is the same as finding the unique codeword in set i that is jointly typical with the side
information sequence. Thus, the set of codewords in each set in the random coding
proof correspond to the set of quantization regions that share the same label in Fig. 2.4
or Fig. 2.2-c.

I _
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Figure 2.4. The rate distortion function for Wyner-Ziv source coding with side information in the
low distortion-to-noise (d/2ly) regime can be found via sphere covering arguments. The dotted circle
correspond to the source uncertainty given the side information, 2ly The solid circles correspond to

the radius-Vnd quantization regions at the encoder. The labeling of these quantization regions is not
unique, e.g., two are labeled 'a', and two 'b' in the picture.

To determine a lower bound on the rate distortion function we determine the mini-
mum number of spheres of radius x/d required to cover the large dotted sphere. This
number is lower bounded by the ratio of volumes:

c(n) (n (x + ))
M >

Kc(n) ( n(d-c 2 ))

R= 1log2 M > log > log (2.4)n - 2 d - Q 2 2 [dJ

where i'(n) is a coefficient that is a function of the dimension3, and where (2.4) equals (2.2).
The rate distortion region is also known for discrete binary-symmetric sources with

Hamming distortion, the "binary-Hamming" case. In this case RWZ(dx) is generally
strictly greater than the conditional rate-distortion function Rxly(dx). This example
tells that that generally RWZ(dx) Rxly(dx). In the quadratic-Gaussian case the rate
distortion bound can be achieved via nested lattice quantizers [4, 88, 89]. In the discrete

3For example, (1l) = 2, (2) = 7r, and K(3) = 47r/3.
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nX

Figure 2.5. Channel coding with state side information at the encoder.

binary-symmetric Hamming case, the rate distortion limit can be achieved via nested
linear codes [62].

* 2.2 Channel Coding with Side Information

Side information can also be exploited in channel coding problems. The channel coding
equivalent of the Wyner-Ziv source coding problem discussed in Section 2.1 is illustrated
in Fig. 2.5. In this case the side information is knowledge about the state of the channel,
available at the encoder, but not the decoder. The version of the channel coding with
side information problem depicted in Fig. 2.5 is particularly relevant to problems of
information embedding and watermarking.

The basic information embedding problem is to 'embed' (or hide) the message m
in the host signal x robustly, and without causing too much distortion [14]. More
exactly, the i.i.d. host signal x is known non-causally to the encoder, but not to the
decoder. As a function of m and x the encoder produces an embedding signal e that
is added to the host x producing the channel input w. The decoder measures z which
is related to w by the memoryless channel law p(zilwi). We want to be able to decode
m from the z reliably so that the probability that the decoded message fii is not equal
to the transmitted message m can be made to converge to zero as the block length n
approaches infinity. Furthermore, we do not want the embedding signal to reduce the
host fidelity too much, so we place an average distortion constraint E [D(x, w)] between
the host and the channel input.

The general problem of channel coding with side information, of which this is a
particular instance, was first investigate by Shannon [64] in the case where the host is
known causally. Gel'fand and Pinsker [31] and later Costa [20] developed the capacity
expression for the non-causal case, of which our information embedding scenario is an
example. More recently, connections have been made between channel coding with side
information and multi-antenna array communications [12].

In [5] the authors extend the results of [31, 20] to the information embedding situ-
ation and show the following theorem.

Theorem 3 Let a random source x, a distortion measure D(-, -), and a memoryless

I
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channel law p(zlw) be given such that

(a) px(x) = 1fl1 Px(i (),

(b) D(x, w) = En= D(xi, wi),

where w = x + e is the channel input and e is the embedding signal. Then, a sequence
of length-n encoder-decoder pairs can be designed such that a message of rate R can be
communicated to the decoder with an arbitrarily small probability of decoding error as
n grows to infinity while satisfying the average distortion constraint d if and only if

R < CIE(d) = max [I(z; u) - I(x; u)] (2.5)
p.lx(ulx)EU

where the set U consists of all posteriors p(ulx) relating the auxiliary random variable
u to x that satisfy the two conditions:

(i) p(ulx, e, w, z) = p(ulx),

(ii) E [D(x, w)] < d where w = x + e and e = f(u,y) for some memoryless function
f:UxX -E.

In the case where x is an i.i.d. Gaussian vector, the channel is an additive white
Gaussian noise channel with noise variance N, and the distortion constraint is mean-
squared distortion, i.e., E [x - w112] < d, the capacity of this system is [20, 14]

C = Ilog 1 + . (2.6)

This is the same capacity as if the host were known at both the encoder and receiver
and so could be subtracted out. This is analogous to the result of Section 2.1.4 where
the Wyner-Ziv rate distortion equaled the conditional rate distortion function. Costa
named this scenario 'writing on dirty paper' where the state x is the 'paper' that is
'dirty' since x f: 0.

Similar to Wyner-Ziv source coding, the channel capacity in this quadratic-Gaussian
case can be derived geometrically. In Fig. 2.6 we diagram the sphere-packing arguments
we step through next. The vector labeled x in the figure indicates the host signal known
at the encoder. The distortion constraint d means that the codeword (vectors) we trans-
mit must lie in a sphere of radius n(d - el) centered around the host signal x. The
variance-N channel noise enlarges this sphere to radius f/n(d + N - el). Furthermore,
so that the channel noise does not cause a decoding error, the codewords must lie in non-
overlapping spheres of radius at least f/n(N + e2). If M is the number of codewords
we transmit, we upper bound M as

n (n) ( n(d + N-ei))
M < 

n(n) (n(N + e 2 ))

C = log2 M < log + N -e < log 1 + 
n 2 N + [2 2 N
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Jnd

n(d +N )

Figure 2.6. Capacity for information embedding region for a Gaussian i.i.d. host of variance ax can be
found in the high distortion-to-noise d/N regime via sphere packing arguments. The inner dotted circle
correspond to the power constraint, the source cannot be moved further than this without violating
the distortion constraint. The outer circle indicates the extra distortion incurred by the host due to
channel noise. The solid circles correspond the the embedding messages, which must be spaced at least
Vrn-Y apart to be immune to the channel noise.

In [19, 89] the authors show that in the information embedding model, only the
additive noise need be Gaussian for the capacity to be 0.5log(1 + d/N). The host x
that is known at the encoder can be more general. This is similar to the discussion of
the posterior p(xly) in the Wyner-Ziv problem discussed at the end of Section 2.1.4.

* 2.3 Dualities between Source and Channel Coding Strategies

Recently a number of authors (see, e.g., [17, 5, 16, 6] and the references therein) have
commented on the duality between the coding with side information problems pre-
sented in this chapter. In [6] the authors describe a useful notion of functional duality
where by a good Wyner-Ziv encoder makes a good information embedding decoder,
and vice-versa. We can most easily understand this duality in quadratic-Gaussian case
by referring to the sphere-packing pictures of the Wyner-Ziv problem,Fig. 2.4, and of
the information embedding problem, Fig. 2.6.

In the Wyner-Ziv problem the encoder maps from the region in which the source
x is located to a bin number m. In the information embedding problem the decoder
maps from the region in which the received signal y lies to a bin number m. These turn
out to be identical tasks. Conversely, in the Wyner-Ziv problem the decoder picks out

I
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the quantization vector u(s) from the uncertainty sphere of radius roughly n/ 2G that

surrounds the source estimate E [xly] by referring to the bin index m. In the information
embedding problem the encoder picks out the codeword w from the distortion sphere
of radius roughly XVH that surrounds the host signal x by referring to the message
to be embedding m. In both the Wyner-Ziv and information embedding problems,
Fig. 2.4 and Fig. 2.6 tell the whole store in the asymptotically small distortion and
high distortion-to-noise regions, respectively. In intermediate regions a second step is
needed for both. In the Wyner-Ziv problem this is the data fusion step specified by the
function f(yo, u(s)), and in the information embedding problem this step often goes by
the name of "distortion-compensation" see, e.g., [14].

Finally, in [15] Chiang and Cover consider generalizations of coding with side in-
formation problems of this chapter. They consider the case where there are different,
jointly distributed side information vectors observed at the encoder and decoder. In
terms of Fig. 2.1, switches (a) and (b) are both closed, but connected to two different
sources of 'state' information. Because the side informations are difference, their result
also generalize the conditional rate-distortion theory of Gray [34]. For source coding
problems they derive,

R(d) = min [I(u; senc, ) - I(u; sdec)],
P(UIX,Senc),P(:1U,Sdec)

where Senc and Sdec are the i.i.d. side information vectors known at the encoder and
decoder, respectively. Chiang and Cover show that the channel coding dual is

C = max [I(u;Sdec,y) -I(U; enc)]
p(U,X,Senc)

where, in their work, Chiang and Cover do not consider a distortion constraint.

* 2.4 Chapter Summary

In this chapter we review the coding with side information literature. We particu-
larly focus on the Wyner-Ziv problem, setting the problem in the wider context of
distributed source coding, and developing the basic intuition behind Wyner and Ziv's
solution through a scalar example. We informally present the achievability proofs for
both the lossless and lossy source coding with side information problems. For the latter
case, we further discuss the solution in the quadratic-Gaussian case and show how to
derive the rate-distortion function through sphere-packing arguments. We next turn
to the channel coding dual introduced by Gel'fand and Pinsker and present that prob-
lem in the context of information embedding applications. We discuss the capacity
expression in the quadratic-Gaussian case first investigated by Costa, and show how to
re-derive his results for information embedding through sphere packing arguments. We
end the chapter by discussing the dual natures of the source and channel coding with
side information problems and present Chiang and Cover's unifying approach to these
problems.
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Chapter 3

Side Information Problems with
Noisy Encoder Observations

In this chapter we investigate the effect that noisy encoder observations have on the rate
distortion and capacity expression of source and channel coding with side information.
We first generalize Wyner-Ziv source coding approach to deal with noisy encoder ob-
servations. The resulting model can be applied to a number of practical scenarios, such
as multiple-microphone problems in acoustic applications and transcoding for hybrid
digital-analog radio. In Chapter 4 we use the results of this chapter to approach the
more complex sensor network configurations discussed in the Introduction.

We also generalize the information embedding problem of Section 2.2 to noisy en-
coder observations in the context of information embedding. After developing the ca-
pacity expression we show that a separation theorem holds in the quadratic-Gaussian
case. In the context of information embedding this theorem tells us first to estimate
the host, and then design the embedding signal as if the estimate were the actual host;
estimation uncertainty acts as extra channel noise. While this channel coding general-
ization plays less of a role in the remainder of the thesis, it is potentially applicable to,
for example, the multiple access channel with feedback [48, 23].

In Section 3.1 we develop the noisy encoder generalization of the Wyner-Ziv source
coding with side information problem. We present the rate distortion function for
finite-alphabet sources with an arbitrary distortion measure. We further evaluate the
resultant expression for the binary-Hamming and quadratic-Gaussian cases. In Sec-
tion 3.2 we develop the dual generalization for information embedding. We present the
capacity expression for finite-alphabet channels with an arbitrary distortion measure,
and evaluate it for the quadratic-Gaussian case. Finally, in Section 3.3 we develop
the sphere-packing derivations of the quadratic-Gaussian rate-distortion and capacity
expressions. We conclude the chapter in Section 3.4 with a summary of our results.

* 3.1 Noisy Source Coding with Side Information

The model for source coding with side information that we now introduce is quite
similar to the Wyner-Ziv model of Section 2.1.3. The distinguishing feature is the
addition of a memoryless channel between source and encoder. This results in the slight
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nX

Figure 3.1. Wyner-Ziv source coding with noisy encoder observations. The signals x, yo, yl and m

are, respectively, the source, side information, encoder observation, and message.

generalization we need to use this system as a building block for the sensor networks
considered in Chapter 4. Because the two models and coding approaches are quite
similar we term this problem, and the resulting solution, "noisy" Wyner-Ziv coding.

Fig. 3.1 depicts the source coding with side information scenario of interest. The
length-n i.i.d. source vector x is observed via two memoryless channel laws p(yllx)
and p(yolx) at the encoder and decoder, respectively. Based on its observation Yl,
the encoder transmits a message m over a rate-constrained channel to the decoder.
The decoder produces x, an estimate of the source x, as a function of m and its side
information yo. This scenario differs from Wyner-Ziv source coding because x is not
uniquely determinable from the encoder measurement Yl.

The rate distortion function for source-coding with side information and noisy or
"imperfect" encoder observations is denoted RWZ(d). This is a tight lower bound on
the rate needed to guarantee that 1 E [n1=l D(xi, xi)] can be made arbitrarily close to d
for a sufficiently long block length n. The derivation can be viewed as generalizing the
results in [84, 15] to accommodate the lack of direct source observations via application
of the Markov Lemma [8]. The rate distortion function for finite-alphabet sources is
derived in Appendix A.

Theorem 4 Let a triple of random source and observation vectors, (x, yo, yi) and a
distortion measure D(., ) be given such that:

(a) Px,y0,yl (x, y,y) = Hi=l Px (i)Pyolx(~ilxi)Pyl Ix(ilxi)

(b) D(x,*) = _ En 1 D(xi,:~i)

Then a sequence of length-n block encoder-decoder pairs can be designed such that if Yl
is encoded at rate R, x can be recovered to within average distortion d with arbitrarily
small probability of failure as n grows to infinity if and only if

R > RZ(d) = min [I(y; u) - I(yo; u)], (3.1)
PuIl (ulYl)EU

where the set U consists of all posteriors relating the random variable u to the encoder
observation Yl that satisfy the following conditions:

I -
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(i) x Yl ++ u,

(ii) Yo X +x U,

(iii) E [D(x, f(yo, u))]3 d for some memoryless function f : o x U - X.

In the spirit of [15] we can use (3.1) to generate a number of earlier results. Setting
Pr(yl = xlx = x) = 1 yields the perfect observation case investigated by Wyner and
Ziv [84]. Setting the side information to zero (yo = O) means that I(yo; u) = O, which
gives us the noisy quantization results developed in [25, 79]

* 3.1.1 Binary-Hamming Case

In Appendix A.2 we determine R w Z (d) for the case of discrete binary-symmetric sources
under a Hamming distortion measure. In this case x is a sequence of i.i.d. Bernoulli
random variables: Pr(xi = 1) = p and Pr(xi = 0) = 1 - p. The variables yo and Yl
are observations of x through independent binary-symmetric channels with cross-over
probabilities po and Pl, respectively. This results in posterior distributions p(yo,i 
xi) = po and p(yl,i xi) = P1 where we have used Yo,i and Yl,i to denote the ith samples
of the observations yo and Yi, respectively. To present our results we slightly abuse
notation and use H(p) to denote the entropy rate of a Bernoulli random variable x
where Pr(x = 1) = p. Using this notation H(x) = H(p) = -plog(p)- (1 -p) log(1 -p).
We also use use * to denote binary convolution, i.e., p * q = p(l - q) + q(1 - p).

The noisy Wyner-Ziv rate distortion function for this case is derived in Appendix A.2,
and depicted graphically in Fig. 3.2. It helps to keep this figure in mind while consid-
ering the following analytic expressions for that curve. The rate-distortion function for
this case is the lower convex envelope of the function

g(d) = H(po * d)-H 1- 2 ) P1 < d < po, (3.2)

and the point (O,po). The point (O,po) can be achieved at zero rate by simply using
the side information as the source estimate. The convex combination of g(d) and (O,po)
results in the rate distortion function

unachievable, ifd < min{po,pl},
g(d), if min{po, p} < d < d

R(d) = g()(-), ifd<dpo, (3.3)

0, if d > po,

where d is the solution to the equation

d g(d)
gas)| = d 0- ( ) '(3.4)

and i a dummy variable.po

and s is a dummy variable.

Sec. 3.1. Noisy Source Coding with Side Information
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CHAPTER 3. SIDE INFORMATION PROBLEMS WITH NOISY ENCODER OBSERVATIONS

Given our discussion of the Wyner-Ziv coding technique in Section 2.1.3, the results
of this section can be understood relatively simply. The encoder observation Y is
vector quantized and then binned. The bin index is sent to the decoder. The side
information y is used to pick out the correct quantization vector from the specified
bin. At this point the decoder has two pieces of information: the identified quantizer
codeword u(s) and the side information yo. Both are binary sequences. The decoder
must decide how to fuse these two sequences together. While in other scenarios, such
as the quadratic-Gaussian, the two pieces of information can be fused together softly,
in the binary-Hamming case hard decisions are optimal. The source estimate i is set
equal to either u(s) or yo, depending on which is more reliable. If i = u(s), then the
side information yo is used only in the decoding step, and not in the data fusion step.
If i = yo, then the transmitted bin index is not used in the data fusion step, and so is
best not to send in the first place.

From the preceding discussion we can determine the limits of the rate-distortion
function. When d = po, the rate should be zero since the is the channel cross-over
probability relating the side information to the source and can be achieved at zero rate
by setting i = yo. On the other hand, the rate-distortion function should go to infinity
when d = min{po,pl). This follows because even if we transmit Yl to the decoder
losslessly, the decoder's optimal strategy is simply to set x = yo or i = yl, whichever
has a lower cross-over probability and therefore better approximates the source. These
limit on the rate-distortion function are reflected in Fig. 3.2.

* 3.1.2 Quadratic-Gaussian Case

In Appendix A.3 we develop RWZ(d) for the quadratic-Gaussian case where the se-
quences yo and Yl are observations of the i.i.d. Gaussian source vector x through addi-
tive white Gaussian noise channels: yo,i = xi + Vo,i, Yl,i = xi + v1,i, where vj,i -' N(O, Nj)
and the two noise sources are independent of each other and of the source. For this
problem

r2 0-2
RWZ(d) - log /o I -X Xryo,y (3.5)

2 d- 2

where a2 < d < 2 and a2 is the minimum mean-squared estimation error inxlyo,y - - xjyo xlyo
x given yo, while ay2 is similarly defined given both yo and Yl.g Yxlyo,y1

Investigating some limiting cases to develop intuition, we have that if the encoder
noise v equals zero, then 2 = 0 and (3.5) is the regular quadratic-Gaussianax'yo,yl
Wyner-Ziv rate distortion function presented in (2.2). On the other hand, if the side
information is absent (or, equivalently the variance of vo approaches infinity) then

YO =52 0and aYOYI = aIyl Under these conditions the model is identical to that

investigate in [25, 79] for the case of quantization in noise, and (3.5) is equal to the
rate-distortion function developed therein.

In determining capacity we must make optimal choices of the p(ulyi) and f discussed
in Thm. 4. The test channel that specifies the relationship between Yl and u is developed

38



Sec. 3.2. Noisy Channel Coding with Side Information 39

H ( Yll1

a:

c

.o

0.o
o'o
IC

o min (pol P1) dtilde Po
Hamming distortion, d

Figure 3.2. The noisy Wyner-Ziv rate distortion function, RiWZ(d), for the binary Hamming case is
shown with the solid line. The function g(d) is shown by the dotted curve, and the point d is indicated
by dtilde.

in Appendix A.3. In brief, the auxiliary random variable u = ay1 + e where e 
f(O, ad*) is independent of yo and Y. Optimal choices of a and d* are a2= y-

d/(2Y± + N1 ) and d* = d 2 jYoY. In addition, the data fusion function f is( xlyo + = d- ~~xlyo,yz'

d =2N 1f(yo, u) = = YO + [1+ U.
o' -xlyo

(3.6)

Fig. 3.3 illustrates the noisy Wyner-Ziv rate distortion function for the quadratic-
Gaussian case. As in the binary-Hamming case the minimal achievable distortion is
generally bounded away from zero. The bound is given by the minimal achievable dis-
tortion a2,o, given both observations yo and Yi, which constitute a sufficient statistic
for estimating of x.

* 3.2 Noisy Channel Coding with Side Information

In this section we generalize the model of information embedding discussed in Sec-
tion 2.2 to the situation of noisy host observations, and derive the limits of reliable
communication. We term this "writing on dirty paper wearing foggy glasses" since,
in the quadratic-Gaussian case, it is a generalization of Costa's work "writing on dirty

I-_^· _I~__I _~^ -~--L~- I ~ ·
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Figure 3.3. The noisy Wyner-Ziv rate distortion function, RWZ(d), for the quadratic-Gaussian case.

paper" [20] to imperfect state information (i.e., as if the state was viewed through foggy
glasses).

Fig. 3.4 depicts the scenario of interest. The length-n random vector y is the en-
coder's observation, related to the i.i.d. host x by the memoryless channel law p(ylx).
The message to be embedded is m, and the output of the encoder is the embedding
signal e. This signal is added to the host x producing composite signal w. A average
distortion constraint E [1 Enl D(xi, wi)] is placed between the host and composite sig-
nals. Finally, the decoder observes z which is an observation of w via the memoryless
channel given by p(zlw). The information embedding capacity with noisy or "imper-
fect" host information is denoted CIE(d). The derivation can be viewed as generalizing
earlier results to accommodate imperfect observations, just as [5] generalizes [31] to
accommodate a distortion constraint.

Theorem 5 Let a random pair of sources (x,y), a distortion measure D(.,.), and a
memoryless channel law p(zlw) be given such that

(a) Px,y(X, y) = Iin1 Px,y (i, Yi),

(b) D(x,w) = n i-=l D(xi, wi),

where w = x + e is the channel input and e is the embedding signal. Then, a sequence
of length-n encoder-decoder pairs can be designed such that a message of rate R can be

__
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Figure 3.4. Information embedding with noisy host observations. The signals x, y, m, e, w and z
are, respectively, the host, host observation, message, embedding signal, composite signal, and channel
output.

communicated to the decoder with an arbitrarily small probability of decoding error as
n grows to infinity while satisfying the average distortion constraint d if and only if

R < CIE(d)= max [I(z; u)- I(u;y)] (3.7)
p.ly(uly)EU

where the set U consists of all posteriors p(uly) relating the auxiliary random variable
u to the host information y that satisfy the two conditions:

(i) p(ulx, y, e, w, z) = p(uly) .

(ii) E [D(x, w)] < d where w = x + e and e = f(u,y) for some memoryless function
f :U x -+ .

* 3.2.1 Quadratic-Gaussian Case

In Appendix B.2 we develop CIE(d) for the quadratic-Gaussian case. In this case
the vector y is the encoder's observation of the length-n i.i.d. Gaussian host vector x
through an additive white Gaussian noise channel y = x + vo where vo N X(O, NoI). As
a function of y and m, the encoder produces the embedding signal e giving the channel
input w = x + e where the distortion constraint is E [1 EnL=(xi _ W) 2 ] < d. The
communication channel is an additive white Gaussian noise channel, z = w + vl where
vl N X(O, NI). For this channel, the capacity is

CI (d) = log + ] (3.8)

The two terms in the denominator of (3.8) correspond to the two sources of uncertainty.
The first term is the mean-squared estimation error in the host estimate x = E [xly ]. The
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second term is the uncertainty caused by the channel noise. When the host estimation
error al2 is zero (3.8) reduces to the capacity of Costa's problem discussed in (2.6).

Eq. (3.8) also tells us that, unlike for noisy Wyner-Ziv source coding, in the case of
Gaussian measurements, a separation theorem applies to noisy information embedding.
Without loss in performance the encoder can be realized as the cascade of minimum
mean-squared error estimation of the host x from the observation y followed by the
generation of an embedding signal as if the estimate were the true state. Since the
minimum mean-squared estimation error acts as extra channel noise, this must be taken
into account if distortion compensation is used in the information embedder [14].

The test channel used to determine capacity is similar to the channel used by Costa
in [20]. The auxiliary random variable u = ay + e, where e is the embedding signal, e 
N(0, d), that is independent of y. The input to the channel is w = x + e. Optimization
over a yields a = d/((d + No + N1) + No(d + N)/a2) which gives the capacity (3.8). 1

* 3.3 Geometric Pictures

Just as in Chapter 2, in the quadratic-Gaussian case the rate distortion and capacity
results of Section 3.1 and 3.2 can be derived via sphere packing arguments. Such
pictures have proven useful in the design of nested lattice codes [5, 89].

* 3.3.1 Noisy Wyner-Ziv Coding

Fig. 3.5 illustrates how the noisy Wyner-Ziv rate-distortion function in the quadratic-
Gaussian case (3.5) can be derived as a sphere covering problem. Based solely on its
side information, the decoder can achieve a minimum mean-squared estimation error
equal to 2 . Therefore, before using the message from the encoder, the decoderxIyo'
can determine that the true vector source x lies within an uncertainty ball of radius
V(2Ly o + E) centered at its source estimate E [xly0 ]. This large sphere of uncertainty

is indicated by the dotted circle in Fig. 3.5.
We now determine the size of the smaller spheres to be packed within the large dot-

ted sphere of uncertainty. It is tempting to guess that the smaller sphere have radius

n(d* - E2) = \/n(d - a 1yo,yl - 2), the size of the quantization regions. This is not
correct because of the extra uncertainty at the encoder caused by the noisy measure-
ments. To take into account this extra uncertainty we must consider how much the
encoded message, once decoded, will contribute to resolving the uncertainty in x. The
reconstruction function (3.6) tells us that we must scale u by (1+Nl/a lyo) when produc-

ing . The minimum number of spheres of radius vn(1 + N1/a21ly)(d -I,yy -2)

'A variant of the embedding problem is when the encoder observes a noisy version of the host and
must also embed in some function of that noisy observation. For this case the capacity is C(d) =
2 log[1 + (d - a 1)/Nl], where d - a21y > O, which is achieved by embedding in the minimum mean-
squared error estimate.
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needed to cover the large sphere of uncertainty is lower bounded by the ratio of volumes:

M > i(n) ( n(a + l))(3.9)
6'(n) (/n(1+ N /21yo)(d-tO l -- e2))

This gives a lower-bound on the rate, as a function of d:

1 1 F2+ El
R(d) = logM log IM > 1 (3.10)

n2 2 (1g 1 [( /2 o)(d - 1,y 

1log N -2N 1 x yo
2 La2 +N 1 d- 0 ,

1 [(3. NoisyNi olog 1 - - O 2 JJ - 2

xlyo +,2yo N1 d -

, ie[(s1 - in ) d-I yo (3.11)
2 -log2 O d x-yo,yJ

0,2 N1,2
--lyo~yo 2

* 3.3.2 Noisy Information Embedding

Fig. 3.6 illustrates how the noisy information embedding function in the quadratic-

Gaussian case (3.8) can be derived as a sphere-packing problem. The host signal,

x, ies somewhere in a region of radius n( 2 +,E1) centered around the host esti-

mate = E [xly]. The distortion constraint restricts the composite signal to be con-
tained in a sphere of radius Jnd- 2) centered around the host x. Putting these
two components together implies that the composite signal lies in a sphere of radius

n(2l+ d ± 1 - 2) centered at . The channel noise adds extra uncertainty, leav-

ing the channel output in a sphere of radius n(ay + d + N1 +1-62 3) centered

at . Reliable decoding requires the codewords to lie in disjoint spheres of radius
w/n(aijy + N1 + epsilon, + 3 + 4). The first term, l;y, ensures that errors are not

introduced by the encoder's uncertainty about the host signal. The second, N1 , ensured
that the channel noise does not introduce errors.

In Fig. 3.6 the three dotted spheres illustrate the uncertainty introduced by host
estimation error, embedding distortion, and channel noise. The solid circles indicate

�__111_·1·1_^_1_�_111Yllill__�)_--ms- _.__14 -·-1 11··_^ 1 - - 1- 11·1-- -
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n(1 +N1/o

Figure 3.5. The rate distortion function for noisy Wyner-Ziv source coding can be found via sphere
covering arguments. The dotted circle correspond to the source uncertainty given the side information,
a2ly. The solid circles correspond to the quantization regions at the encoder (d - YO y ) that must

be scaled up by (1 + Nl/O,a2lyo,) because of the extra uncertainty at the encoder caused by the noisy
observations.

codeword spheres. The ratio of volumes of the largest dotted circle to that of the solid
circles gives an upper bound on the number of uniquely decodable codewords. The
maximum number of codewords M that can be transmitted reliably is upper bounded
by the ratio of volumes:

6(n) (\x(2[y - +- d + S1 - -l -+- 3 -2)? d n/2

Mh <1± /

K(n) ('x) ly + Nl +6 +l63 + 64)) Xy

where d > 0. This gives an upper-bound on the rate,

R= -log M < log + 

which is equal to the noisy information embedding capacity (3.8) derived in Sec-
tion 3.2.1.

* 3.4 Chapter Summary

In this chapter we generalize the coding with side information problem of presented
in Chapter 2 to noisy encoder observations. We first do this for the Wyner-Ziv prob-

I
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J n (,y + d )

n (x2ly+ d +N 2 )

= E[xly]

2

Figure 3.6. The capacity for noisy information embedding can be derived from sphere packing ar-
guments. The three concentric dotted circles correspond to: 1) uncertainty in state, a2ly, 2) state
uncertainty + allowable introduced distortion, d, and 3) state uncertainty + distortion + channel
noise, N1 . We cover the largest sphere with smaller (solid) spheres that correspond to codewords. Each

small sphere is of radius [n(2y -+ N1 ) to ensure reliable decoding.

lem and develop the rate-distortion function for finite-alphabet sources with arbitrary
distortion measures. We then evaluate this function for the binary-Hamming and
quadratic-Gaussian cases and discuss the resulting expressions. We then generalize
the information embedding problem to noise host observations and develop the capac-
ity expression in the finite-alphabet and arbitrary distortion measure case. We evaluate
this function for the quadratic-Gaussian case. This analysis tells us that a separation
theorem applies in the quadratic-Gaussian case: we can first to estimate the host and
then to design our embedding signal as if the estimate were the true host, estimation
error counts as extra channel noise. Finally, we show how the rate-distortion and ca-
pacity expressions for each problem can be derived through sphere-packing arguments
in the quadratic-Gaussian case.
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Chapter 4

Successively Structured Data Fusion
Algorithms for Sensor Networks

In this chapter we develop source coding strategies for sensor networks. We base these
strategies on the generalizations of source coding with side information to noisy encoder
observations developed in Chapter 3. We consider "CEO" problems where the network
goal is to provide a particular network node - the CEO - with the best possible estimate
of the source under various rate constraints. We structure successive algorithms that
are flexible enough to deal with the distributed nature of the data in sensor networks.
We show that these algorithms can be used to achieve the rate-distortion function for
some useful network configurations. The successively structured design also gives a new
approach to relay channel communications.

In Section 4.1 we present the probabilistic model of sensor networks that we will
be using, and discuss two prototype sensor network problems that we term the parallel
and serial CEO problem. In Section 4.2 we discuss earlier information theoretic results
for these problems. In Section 4.3 we discuss approaches to these prototype network
problems that obey a layered network architecture, while in Section 4.4 we explain
how to refine these approaches through inter-layer optimization. In particular, we draw
upon insights on the use of decoder side information from Chapter 3. We then present
successively structured coding techniques for the two prototype problems that are, in a
sense, dual. In Section 4.5 we analyze the resultant performance for the serial problem,
and in Section 4.6 for the parallel problem. In Section 4.7 we apply the successive
coding approaches to certain classes of relay channels. We close the chapter with a
summary of our results in Section 4.8.

* 4.1 System Model: Sensor Network, Finite-Rate Communications

In this section we describe the probabilistic model of sensor networks with which we
work in this chapter. Fig. 4.1 illustrates anew the sensor network discussed in the
Introduction. The black node represents the source signal that we want to estimate.
The source x is modeled as a length-n independent identically distributed random vec-
tor px(x) = Hi=1px(Xi). Each open circle represents one of L sensor nodes (L = 8
in the figure). Node I measures yl which is related to the source x by the memory-
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Sensor n(
or "agent'

Finite rate
communi

Source signal, xn

- - - ~ ~~ - --- n~r

CEO

Figure 4.1. A general sensor network with finite-rate links and tree-structured communications.

less channel law pylx(ylIx) = 1l =Py l1x(l,ilxi). The channels are assumed indepen-
dent, meaning that the joint distribution can be factored as PX,yl,...yL (X, Y1, ... , YL) =

in 1 [x(Xi) -1 i pylJx(,ilxi)]. In other words, the observations Yl,... YL are condi-
tionally independent given the source x. This important assumption is needed to make
our proof techniques work. It is also a standard assumption in the distributed detection
and estimation literature (see, e.g., [76, 75]). We next discuss why the model we have
presented is not always well matched to sensor network problems.

Example: Model Matching. The model for sensor networks presented above has three

major features: conditional independence of observations, memoryless source-observation
relationships, and the same underlying source is observed by all sensors. The conditional
independence assumption is not a good model for situations where, e.g., an interferer
results in correlated noise processes across the sensor array. Such an interferer might
also produce noise that is strongly correlated temporally. These situations are not well
modeled by the memoryless assumption. Finally, the underlying source signals observed
by the sensor nodes may differ. For example, in underwater sonar arrays, each node
may observe a time-shifted version of the source signal. El

Together with an observation model we need a model for inter-node communica-
tion. We assume that each node is given a finite rate, in terms of bits (or nats) per
observation sample, at which it can communicate reliably to one other node in the net-

I I
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work. Depending on whether the communications structure is flexible, or fixed, each
node may, or may not, get to choose to which node it communicates. In Fig. 4.1, for
example, node 1 can communicate to node 3 at rate R 1. We choose this fixed-rate
communication model rather than a probabilistic channel-law model so as to focus in
on rate-distortion trade offs. This fixed-rate model simplifies out many interesting com-
munication phenomena that have been investigated by other researchers. Interference
between node-to-node communications that would be present in, e.g., a wireless sce-
nario is one such phenomenon that is investigated in [38]. A second phenomenon that
has been investigated [22, 59, 60] is to use source correlations to transmit correlated
codewords that constructively interfere in the multiple-access channel to give, e.g., in
the Gaussian multiple-access channel, a power gain.

Given the observation and communications models, we now describe the knowledge
and resource constraints under which the algorithms that we design must operate. First,
all nodes are assumed to know the full joint statistical description of the source and
observations PX,Y,,YL (X, Y1 ,. . , YL). Second, the nodes are assumed not to have any
processing constraints. Third, the CEO is assumed not to have any delay constraints,
so n can be very large. The first assumption is required so that, at a minimum, we know
how the observations related to one another and can design data fusion techniques. In
a deployed network such statistical knowledge may be gained through a training phase.
As it turns out, assuming full joint statistical knowledge is somewhat more than we will
always need, e.g., leaf nodes need to know less than nodes closer to the CEO. The latter
two assumptions allows us to concentrate on the ultimate trade offs between estimation
and communication rather than effects resulting from constraints on processing or delay.

The algorithms we develop work in a multi-step manner, sometimes referred to
as "block-Markov" in the information theory literature. The start of communications
between nodes is delayed until all sensors have observed their full vector of observations.
At that point, communication starts at the leaves (nodes 1,2,4,7 in Fig. 4.1), which
block-encode their observations and send messages through the communication tree
toward the CEO (node 8 in the figure). Each non-leaf node (nodes 3,5,6 in Fig. 4.1) in
the tree waits until it has received messages from all incoming branches (i.e., all branches
except the one leading to the CEO). Once it has received all these messages, the node
determines what message to send on toward the CEO. The CEO waits until he receives
all incoming messages before he making the final source estimate. Readers familiar with
the Belief Propagation [49] or the sum-product [44] algorithms will recognize this as a
similar scheduling algorithm.

Decomposing a Tree into Parallel and Serial CEO Problems. Instead of directly address-
ing general tree-structured sensor network, we instead concentrate on two prototype
networks. Any tree, such as the one depicted in Fig. 4.1, can be decomposed into a
collection of smaller parallel and serial prototype networks. A parallel network has
a hub-and-spoke structure such as is displayed by node groupings (1,2,3), (3,5,6) and
(6,7,8) in Fig. 4.1. A serial network has a data-pipeline or chain structure, such as
displayed by node grouping (4,5,6). These prototype parallel and serial networks are
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Y =X+Vl

Y2 = X + V2

YL = X + VL

Figure 4.2. The parallel CEO problem with additive noise observations. The signals x, yl, and vl are
the source, observation, and noise vectors, respectively. Agent I communicates to the CEO at rate R.
The CEO fuses the data to produce a source estimate i. Generally the CEO has its own observation
observation YCEO- If the CEO does not have an observation, set ycEo = 0.

the basic network configurations we consider. We term them the "parallel" and "serial"
CEO problems, respectively.

In Fig. 4.2 we diagram the parallel CEO problem for additive noise observations.
In the parallel problem the central data fusion site is the CEO. The parallel network
configuration is a good model for situation where a number of agents are reporting in
to a central estimation center or, alternately, when a single agent is reporting in at a
succession of time steps. At time step one the agent observes yl, at time step two Y2,
and so on. In the current setting x is assumed constant, but in a more general setting
the agent could observe a dynamically changing source, e.g., y = xl + vt in an additive
noise scenario.

In Fig. 4.3 we diagram the serial CEO problem for additive noise observations. In
the serial CEO problem the agents are ordered and transmit in turn - one to the next
(i.e., in series) - over rate-constrained links. The last agent in the chain is the CEO.
This is a good model for a sensor pipeline or, alternately for a single sensor making
sequential vector-measurements of x over time. If the agent has a limited memory he
can assign to storing il, we could model his memory limitations as a rate-constrained
channel. In that case instead of sending the message to the next agent, he instead
writes it to his memory, and reads it out to do data fusion at the next time step.

In Section 4.4 we will show how to decompose further each of the prototype problems
into a sequence of basic data fusion encoding and decoding blocks based on the noisy
Wyner-Ziv results. As we discuss in the next section, the parallel CEO problem has
been investigated before, while the serial problem is new.

x
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Y1 = X + V1 Y2 = X + V2 YL= X + V L YCEO = X + VCEO

Figure 4.3. The serial CEO problem with additive noise observations. The signals x, y, and vl are
the source, observations, and noise vectors, respectively. Agent I - 1 communicates to agent at rate
RI-1. The CEO has his own observation YCEO.

* 4.2 Literature Review: CEO Problems

The CEO problem introduced by Berger et. al. [9] falls into the class of sensor network
data fusion problems that we have termed parallel CEO problems. The slight special-
ization in the original CEO problem is that the CEO does not have his own source
observation. In the original CEO paper [9] finite-alphabet sources were considered. In
subsequent work [75, 45] the quadratic-Gaussian problem was considered. This is the
case where x N(0, j2I), Yl = x + V1 where v l - 3N(0, Nil), and the network goal is to
minimize the mean-squared distortion between x and x, i.e., d = E [11x - ll2].

In all three papers [9, 75, 45], the objective is to determine the minimal achievable
distortion under a sum-rate constraint, EL= RI < R, as the number L of agents grows
to infinity. The coding approach proposed in [75] is representative. It is a three step
process. First, all agents block-encode their observations into messages using identical
quantizers. They then transmit their messages to the CEO using Slepian-Wolf coding
techniques which enables them to avoid sending redundant information. Finally, the
CEO decodes all the messages jointly and makes a source estimate. This joint decoding
structure contrasts with the successive decoding structure we propose in this thesis
where agents' messages are decoded sequentially, increasing the fidelity of the estimate
at each decoding step.

In [75] the authors show that under a sum-rate constraint the CEO's estimation
error decreases at best as R - 1, even as the number of agents tends toward infinity.
This contrasts with the case where the agents are allowed to convene and pool their
data to jointly estimate the source before sending a joint message to the CEO. In this
scenario an exponential decrease in estimation error as a function of R can be achieved.
In [45] Oohama determined that the rate-distortion function for this asymptotic (in the
number of agents) version of the quadratic-Gaussian parallel CEO problem is

N [2 1 
R(d) = (log 2 e) 22 -d -1 + 2 log 2 , (bits/sample) (4.1)

where 0 < d < a 2. In our work we can reproduce this result using successively struc-
tured codes as discussed in Section 4.6.3. Furthermore, the successive coding structure
we propose allows us to analyze the finite-L region. We derive achievable distortion-
rate trade offs in this region and, for the case of two agents (L = 2), we are able to
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use Oohama's converse from [45] to show that our coding structure can be used to
achieve the distortion-rate bound for this problem. We discuss the two agent case in
Section 4.6.3.

In recent correspondence with Professor Oohama, we have learned that he has also
been investigating the finite-L region. In [46] he has extended his earlier results of [45]
to show that the rate-distortion function for L equal-SNR agents is

L [ 2 N \_1 1 [_]
RL(d) 2 log 1 J L 2 o2 -1 [ d , (bits/sample) (4.2)

where again 0 < d < a 2. Our results and Oohama's new results appear to be the only
results for the finite-L region. They match for the two agent case, and his also give the
new rate-distortion bound for 2 < L < oo.

* 4.3 Estimate-and-Quantize: A Network Layered Approach

We now develop two basic approaches, one for each type of CEO problem. Both ap-
proaches are based on a simple estimate-and-quantize idea. These coding strategies
can be used in a layered network architecture. Developing these approaches will help
highlight the extra degrees of design freedom we use in our inter-layer approaches.

* 4.3.1 Parallel Network

First, consider the parallel CEO problem in a quadratic-Gaussian context where x is
a white Gaussian source, R1 = R for all 1, and yj = x + vl where vi - N(0, NI), i.e.,
the agents have equal signal-to-noise rations (SNRs). A basic approach to this problem
is: 1) Estimate the source at each agent xl = E [xyj]. 2) Vector-quantize the result to
get xl. 3) Transmit the corresponding quantizer index ml e {1,..., 2n R'} to the CEO.
4) Reconstruct the quantized estimates xl,...xL at the CEO. 5) Determine x as a
weighted average of the quantized estimates xl,..., XL and the CEO's own observation
YCEO- The distortion achieved after the first 1 agents have reported in to the CEO is
defined as dr.

We derive a bound on the performance of this algorithm by making two assumptions.
First, we assume that the quantization errors made by each agents are independent.
Second, we assume that in high dimensions quantization effects are closely approximated
by the test channel statistics. There are I messages at the decoder. Each message
corresponds to one quantized source estimate. Since the source observations all have
equal SNRs, the messages should all be given equal weight. From estimation theory we
know that the minimum mean-squared estimation error of a Gaussian source of variance
a 2 in additive Gaussian noise is

1
d 1 1 ' (4.3)

x+ N Nmsg
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where N is the known noise variance of the CEO's observation and Nmsg is the effective
noise power on the observations. To determine Nmsg we use the rate-distortion achieving
test channel for quadratic-Gaussian source. This test channel is x = x + v where
x N(O, uo - d) and v - N(O, d) is independent of . We can reverse this test channel
to view x as the output: = (1- d/ox2)x + v where v- N(O, (1 - d/ox2)d). This doesn't
quite look like and additive Gaussian noise observation because of the factor multiplying
x. To get an additive Gaussian noise observation x, define x = x/(1 - d/a) = x + 
where v ,N(O, a2d/(a2 - d)) and let Nmsg = 2d/( 2 - d)).

The value of the d parameter in the definition of Nmsg should be set equal to
the mean-squared distortion achieved when quantizing noisy sources [25, 79]. As we
discussed in Section 3.1.2, noisy quantization is a special case of noisy Wyner-Ziv coding
when there is no side information. Using the noisy Wyner-Ziv distortion-rate function,
which can be derived from the rate-distortion function 3.5, in this special case we get
d = or2l + ( 2 - 2 )2 -2R where a 2 is the same for all agents because they have equalxly x -- xj ' ,rxy

SNRs. Substituting the value for d into the definition of Nmsg and the result into (4.3)
gives us

a2N[aTly + (a2 (21ly)2-2R]

1a2N + + ((1 -l)N)( + (a 2-2 )

a_2 (1 + SNR 2- 2R)

1(1 + SNR) + (1 + SNR- 1) (1 + SNR2-2R) '

where SNR = .

* 4.3.2 Serial Network

Using the same quadratic-Gaussian model as for the parallel problem, in this section we
introduce estimate-and-quantize approach for serial CEO problems: 1) Start with agent
1 - 's estimate l_l. 2) Vector-quantize il_l to XI_-. 3) Transmit the corresponding
quantizer index mll to agent 1. 4) Reconstruct the quantized estimate Xl_- at agent 1.
5) Estimate the source based on the quantized estimate l_-1 and agent l's observation
yl, producing the source estimate il. The distortion in il is defined to be dr. 6) At the
end of the chain the CEO receives message mL from agent L and fuses it together with
his observation YCEO to produce dL+1 the final source estimate.

The derivation of the distortion this strategy yields resembles the derivation for
the parallel problem. It is somewhat simpler, however, because at each stage we have
only two pieces of information: the quantized estimate from the last agent and the cur-
rent agents own observation. Assuming these are independent additive white Gaussian
source observations would give us

1
dl= 1 1 , (4.5)

Nmsg + R + 
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where Nmsg is the effective noise power on the (single) quantized source estimate x_l.
The derivation is similar to above with Nmsg -= xd/(u2 - d)) except that now d =
dr_1 + ( 2 - d-1)2- 2R because agent - 1 has an estimate of quality d 1_l which is
better than the basic estimate of quality al. This gives us an iterative expression in
1, namely

Nd _ N [d-1l + (2-2d 1 1)2-2 R] N I + (SNR- d&1) 2 2R]

N+d N + [d, _l+ (a2 - dl_ 1)2
- 2R ] +[d + (SNR d 1 )2-2R]'

(4.6)
where SNR = -:.

* 4.3.3 Comparison

In Fig. 4.4 and 4.5 we plot the performance of the estimate-and-quantize approaches for
the parallel and serial problems, respectively. A bound on the achievable distortion-rate
curves for these strategies is plotted with the dashed curve in each figure and is given by
the estimation error in x when the observations yl,... , yj are all available to the CEO
losslessly. This bound is a 2 yEO for the parallel problem and aI2 . for thelosslessly. .... yu X is o,
serial problem. The difference between the bounds arises from the differing definitions
of dr. In the parallel problem d1 is the distortion in the CEO's estimate of x after the
first agents have reported in. In calculating this estimate the CEO can also use his
own observation YCEO- In the serial problem di is defined as the distortion at agent I,
and so the CEO's observation YCEO is not used until he received the final message from
agent L. At that point the two bounds are equal. The difference between the bounds is
further reflected in the limits of the horizontal axes in Fig. 4.4 and 4.5. In the parallel
problem, Fig. 4.4, the axis starts at 0 since the CEO has an estimate based on its own
observation even before receiving any messages. In the serial problem, Fig. 4.5, the axis
starts with the first agent, = 1.

The performance of the estimate-and-quantize strategies as given by (4.4) and (4.4)
are plotted by the dash-dot curves for each network configuration. In the figures the
dashed bounds and the dash-dotted estimate-and-quantize performance curves sand-
wich solid curves labeled 'successive codes'. These curves indicate the performance
achieved by the inter-layer coding strategies based on noisy Wyner-Ziv source coding
that we introduce in Section 4.4. To help motivate these coding strategies we discuss
the estimate-and-quantize strategies in terms of the Kalman filter.

* 4.3.4 Kalman Filtering with Rate Constraints

One way to interpret both estimate-and-quantize strategies is through analogy with the
Kalman filter. The discrete-time Kalman filter consists of two steps: prediction and
update. Between time samples the state is driven by an unknown process noise, the
effect of which the Kalman filter attempts to predict. Then, at the next time step, the
predicted state estimate is updated using the new observation. Let us first consider
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Figure 4.4. The parallel CEO problem, quadratic-Gaussian case. Estimate-and-quantize per-
formance is plotted with the dash-dotted curve. A (generally loose) lower bound given by

2jlyccE0o yr , is plotted with the dashed curve. The performance of the successively structured
codes proposed in Section 4.4 is plotted with the solid curve.

the serial estimate-and-quantize strategy in this light. Let us think of each agent in
the chain as representing a single time step. Then, the quantization error introduced
at each communication step in the serial CEO algorithm is akin to the prediction error
caused by the process noise in the Kalman filter. The distortion reduction in the data
fusion step of the serial CEO algorithm is akin to estimation error reduction in the
Kalman filter update step.

Turning to the parallel CEO algorithm, the interpretation has a slightly different
flavor. For the parallel algorithm, because the source estimates are never requantized
(they are all collocated at the CEO), the process noise is zero. The observations are
quantized independently, introducing quantization error on top of the estimation error
which means that the quality of data for the data fusion (update) step is reduced. Since
there is nothing akin to process noise, the parallel CEO problem is like using a Kalman
filter to estimate a constant state value, rather than a time-dependent process.

While useful, the analogy between the Kalman filter and the sensor network prob-
lems that we consider is not quite right. The place where the analogy runs into trouble is
in drawing an equivalence between quantization error and process noise (in the parallel
case) or estimation error (in the serial case). Unlike process or estimation error, quan-
tizer error is a function of the encoder design that we decide to use. In the next section
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Figure 4.5. The serial CEO problem, quadratic-Gaussian case. Estimate-and-quantize perfor-
mance is plotted with the dash-dotted curve. A (generally loose) lower bound given by 2
is plotted with the dashed curve. The performance of the successively structured codes proposed
in Section 4.4 is plotted with the solid curve.

we discuss how to use our control over encoder design to shape the quantization error
in such a way that we can better exploit decoder side information to increase system
performance over that achieved by the estimate-and-quantize approaches. In contrast
to the estimate-and-quantize coding schemes that obey network layering principals, the
approaches of the next section work across layers through coupled source and channel
coding.

* 4.4 Inter-Layer Approaches that use Decoder Side Information

When considering the inter-layer approaches, it is somewhat more natural to begin
with the serial problem. Each agent in the chain must combine the data sent by the
previous agent with his own observation. He must also decide what information to send
on to the next agent. To most help agent 1 + 1, agent I should send the message that
most reduces what he thinks that agent's estimation error is. This is akin to the noisy
Wyner-Ziv problem: agent (the encoder) must bases its transmission on its source
estimate xl an imperfect representation of the source, while agent + 1 (the decoder)
has side information given by its observation yl+l. This visualization of the problem is
diagrammed in the block diagram of Fig. 4.6.
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x

Agent 1 Agent 2 Agent 3

Figure 4.6. The serial CEO problem can visualized as a succession of L noisy Wyner-Ziv stages. At
stage 1, x(1-l is the encoder observation, and y is the side information.

This approach to the problem allows us to increase each agent's quantization rate,
while keeping his communication rate fixed. The effective increase in quantization rate
that is enabled by the use of decoder side information is equal to the second, negative,
term in the noisy Wyner-Ziv rate-distortion function RWZ(d) = min [I(yl; u) - I(yo; u)]
presented in (3.1). In terms of the Kalman filter interpretation presented in Section 4.3,
the new algorithms reduce the increase in uncertainty during each prediction step be-
cause by using the side information we can use higher-rate quantizers.

Now, consider the parallel CEO problem. Say the CEO decodes each agent's message
sequentially. After each decoding step the CEO can use the new message to improve his
source estimate. Given the CEO has decoded messages from agents 1,..., 1, agent I + 1
should take into account the quality of this estimate when deciding what information
to send. This is akin to the Wyner-Ziv problem: agent I + 1 (the encoder) must base its
transmission on its noisy source observation Yl+, while the CEO (the decoder) has side
information given by its estimate xl. This visualization of the problem is diagrammed
in the block diagram of Fig. 4.7.

While in the serial CEO problem the estimate il plays the role of encoder mea-
surement, in the parallel CEO problem it plays the role of decoder side information.
Conversely, in the serial CEO problem the observation yl plays the role of decoder side
information, while it plays the role of encoder information in the parallel CEO problem.
In this sense the approaches are dual.

* 4.5 Serial CEO Problem: Quadratic-Gaussian Case

In this section we present results for the serial CEO problem in the quadratic-Gaussian
case. We present iterative distortion-rate expressions as well as discussing the design
implications of these results. The formal derivations appear in Appendix D.1. We
concentrate on the Gaussian case with a mean-squared distortion measure because
this is a case of common interest and the results have a particularly simple expression.
Before proceeding with the discussion we pause to momentarily consider how the binary-
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Figure 4.7. The encoding and successive decoding algorithms for the parallel CEO problem can be
visualized as a succession of L noisy Wyner-Ziv stages. At stage 1, yl is the encoder observation, and
xt-_ is the side information. In this diagram we have not indicated the CEO's direct observation ycEo.

Hamming case would differ.

Example: Binary-Hamming case. In Section 3.1.1 we discussed the noisy Wyner-Ziv
rate-distortion function for the binary-Hamming case. A prominent point of that dis-
cussion was that the data fusion function f : o x U -+ X is particularly simple in the
binary-Hamming case. In particular it selects either the quantized encoder observation
u(s) or the side information yo as the source estimate. If we extend this thinking to a
chain of noisy Wyner-Ziv steps, as we propose for the serial CEO problem, this means
that at each step each agent picks either a noisy version of the last agent's estimate or
his own side information as the best source estimate. This means that no data fusion
occurs at each step. In effect, the binary-Hamming case reduces to a voting problem
and, since there are only two, we trust the more reliable voter. Hence, if successive
codes are used, for the binary-Hamming case the problem is not particularly interest-
ing. In the parallel problem discussed in Section 4.6 because we have more than two
source of information, the problem becomes more interesting. Io

* 4.5.1 Iterative Distortion-Rate Expression

In this section we apply noisy Wyner-Ziv ideas to the quadratic-Gaussian serial CEO
problem. In this problem the L agents and the CEO are linked together via rate-
constrained channels of rates R1, R 2,..., RL. Agent 1 receives message ml- 1 from agent
1 - 1 at rate RI_1, and observes yj = x + v1 where x N(O, I) and vl N(O, NI)

are independent. The CEO receives message mL from agent L at rate RL and observes

x

I _
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YCEO = X + VCEO where VCEO N(O, NCEOI) is independent of x and the other noise
sources. Each agent acts in turn, sending on the information that will most help the next
agent in his estimation of x. An achievable rate-distortion region for this problem can
be derived using the results on noisy Wyner-Ziv coding from Chap. 3. The derivation
is given in Appendix D.1 and yields a distortion expression that is iterative in 1,

1 d_l

dl = NL d-1 + (Y ( 1 _ 2 -2R1I-1 (4.7)

The distortion achieved at stage I is a function of four factors: 1) The source variance ax.

2) The distortion dl achieved at stage 1- 1. 3) The quality of the current observation
in terms of the observation noise variance N 1. And 4) the rate of communication Rl_
between agent - 1 and agent 1.

To help understand (4.7) consider the limiting case of very large rate Rl_1 - oo. In
this case the second term approaches zero. The first term can be used to generate the
lower bound a2ly ,.,Y1 on dl in an iterative manner. This can be understood as follows.
If the agents are given infinite rate, they can simply forward their observations to the
CEO at full resolution. Each agent in the chain could then use all the observations up
to that point to make the minimum mean-squared estimate E [xlyl,..., yl], resulting in
estimation error %y, 2. Generally, however, R < oo, resulting in a non-zero second
term which acts as a drag on the decay profile of d1, slowing the decrease of d1 with 1.

Example: Constant rate links with equal-variance observation noises. To better illustrate
and analyze the effect of the pipeline of agents, consider the following scenario: R =
R 1 = R2 = ... = RL, and vl V2 V3 ... VCEO N X(0, NI). In this case the data
pipeline never decreases in capacity, but it does saturate. Under these conditions (4.7)
simplifies to

d N d 1 + ( ) 2-2R (4.8)
N + d, xly d-1,

The distortion described by (4.8) decreases monotonically with 1. If the number L of
agents is unbounded we can find d = liml,,o di by setting d = dl = do in (4.8).
This yields doo E(2-R); specifically,

_d = N [ ( + 2-2R _ 2-R 2-R. (4.9)
2 (1+) 2 1 -2 9

The distortion described by (4.8) decreases monotonically with 1. In Fig. (4.8) we
plot the decrease in mean-squared estimation error versus agent number for a 2 = 4,
N = 1. Agent 1 has only its own observation, so its error is a 2 Agent 2 has its ownxly.
observation plus whatever information it gets at rate R from agent 1, etc. We plot the
results for R = 1, 2, 3, oo. The data points that correspond to each agent's estimation
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Figure 4.8. Serial CEO estimation error d improves with agent number. In this example a2 = 4,
N = 1, and R = 1, 2, 3, oo. Solid curves plot the evolution of the estimation error di for the different finite
rates. Dotted lines plot the lower bound on performance for each finite rate, approached asymptotically
as the number of agents I tends toward infinity. The dashed curve is al , the minimum mean-
squared error in x given yl,.. .,yl which can be approached as the per-agent rate R grows toward
infinity.

error are connected by solid lines for convenience. The limit for each R, given by (4.9),
is plotted as a dashed line. D

* 4.5.2 Design Implications

Consider what happens if the first agent in the chain has a noise-free observation
(Yl = x) while all the other agents measure the source in noise. Assuming equal rates
per agent, the best strategy is for each agent to forward the first agents message, as
no agent in the chain has a better estimate than the first. In the end only the CEO
will need to fuse the message with his own observation. If other agents further up the
chain go through the data fusion steps proposed in the inter-layer approaches described
in Section 4.4, they will introduce additional quantization error, degrading system per-
formance. In general, when deciding what to do agent I must take into consideration a
number of factors that encapsulate the measurement quality and resource constraints
elsewhere in the system: dll, R 1_1, N1, R1, and Nl+l. Fortunately, this is all rather
local information, enabled with only a modicum of two-way communication between
agents.

I^

.,o
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The design implication of this discussion is that agent order matters. In particular,
it is better to have low SNR, low rate agents earlier in the chain so that, at a minimum,
an agent in the middle of the chain can forward on the message he receives unmodified.
In addition, having the higher SNR agents come later means that they have better side
information to use in message decoding. If at some point in the chain the communi-
cation rate drops, information may need to be erased. The successive coding approach
encapsulated by the iterative distortion expression (4.7) easily deals with this possibility
through the compound transcoding operation consisting of: decoding, data fusion, and
noisy Wyner-Ziv coding.

In Section 4.5 we presented a constant rate link, equal-variance measurement noise
example. Given this scenario, system designers can use doo the asymptotically achieved
distortion (4.9) in two ways. First, it provides a means for determining the bit pipe size
required to achieve a target steady state distortion. Second, for a given constant bit pipe
size, comparing dc~ from (4.9) with the iterative expression (4.8) tells us when fusing
in new data results in only a marginal decrease in distortion. For instance, in Fig. 4.8
for R = 2, after about 10 or 11 agents, the distortion decrease at each step becomes
negligible. Stopping the data fusion process at that stage and simply forwarding on the
message thereafter could save a lot of processing power.

* 4.5.3 Growing the Bit Pipe Logarithmically

If the designer has some flexibility in allocating rate resources between agents, a constant
rate bit pipe design is not the best choice. We would like to determine some design rules
to determine how we should increase the bit pipe size to accommodate this increasing
river of information. In this section we determine the rate of bit pipe growth needed to
stay within a constant multiple n > 1 of the lower-bound 2 -

2N - SNR
sxlYa,.., --y l+N - 1+SNR

where SNR = is an individual agent's signal-to-noise ratio.
An upper bound on the transmission rate needed at each stage (i.e., R1 < R2 <

- ) can be found by setting d = a2lyl,...,yl and using the iterative distortion-rate

expression (4.7) to solve for the rate RI such that d+l = nol2 . This gives us

RI < 1 log [[(I + 1)SNR + 1][SNR - + 1]] (4.10)
2 < log SNR(1 + SNR)(n - 1)

- 2 1 + SNR] + log + 0(1). (4.11)2 1+ SNR [K- 1

We can repeat this analysis for the estimate-and-quantize approach of Section 4.3.2,
giving

REQ,I <1 log[[(I + 1)SNR + 1- KSNR][lSNR - + 1] (4.12)
REQ,2 log SNRK(K- 1). (4.12)

Subtracting (4.10) from (4.12) tells us how much rate the inter-layer approach saves:

REQ,I - R = log ( + 1)SNR + 1) (1+ SNR)] (4.13)

_-1. 1 11- Dll ·- ~-1 1 11 
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The rate savings (4.13) decreases with increasing tE. This is intuitively correct since a
larger n means that the target distortion is larger, so more easily met, and using a more
efficient scheme such as the successive approaches, is less important. Independent of
t, however, as the estimate progresses down the chain of agents (I increases), the rate
savings converges to a constant 1 log[1 + SNR] which is intriguingly familiar.

* 4.6 Parallel CEO Problem: Quadratic-Gaussian Case

In this section we present results for the parallel CEO problem in the quadratic-Gaussian
case. As for the serial problem, we present iterative distortion-rate expressions and
discuss the design implications of these results. In addition, we connect our results
to earlier results on CEO problems. The formal derivations appear in Appendix D.2.
Before proceeding with the discussion we build on the discussion of the binary-Hamming
case for the serial problem to understand how the problem differs in the parallel case.

Example: Binary-Hamming case. In Section 4.5 we discussed how the binary-Hamming
case is not particularly interesting for the serial problem because we must make hard
decision at each step. The same discussion would hold for the parallel problem if we
used unmodified the refined approach of Section 4.4 that forces a data fusion step to
be performed after each message is decoded. Because in the parallel problem once a
message is decoded we don't have to re encode it to send on the relevant information
to the CEO - all information is decoded at the CEO - we can use a slightly different
strategy. The selection from the transmitted bin of the correct codeword is done as
before, using the noisy Wyner-Ziv results. We slightly modify the data fusion step.
In Wyner-Ziv problem , as discussed in Section 3.1.1, all the decoder can do is to
pick the most reliable piece of information (side information or vector-quantized source
observation). In the parallel CEO problem after I agents have reported in there are
I + 1 pieces of information (one from each agent and one from the CEO's observation).
Since the CEO generally has more than three pieces of information, a more complicated
voting process can be carried out to improve the estimate as increasing number of agents
report in. o

* 4.6.1 Iterative Distortion-Rate Expression

The derivation of the achievable rate-distortion region for the parallel CEO problem
using successive codes is similar to that for the serial CEO problem, see Appendix D.2.
In the quadratic-Gaussian problem the source x is a n-length i.i.d. zero-mean Gaussian
sequence of variance a 2, the noises v l - N(0, NI) are independent of each other and of
the source, and agent I communicates to the CEO at rate R1. We define d to be the
CEO's observation after the first I agents have reported in. Let do = 2IYCEO Then, in
general,

dl = l + 2 -2R1 I (4.14)
N + d_, NI + dl

I - -
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Figure 4.9. Parallel CEO estimation performance, d, improves with agent number. In this example
a2 = 4, N = 1, and R = 0.25, 0.75, 1.5, oo. Solid curves plot the evolution of the estimation error d for
the different finite rates. The dashed curve plots a2xlycEo .. , approached as R grows to infinity.

The distortion d1 achieved at stage 1 is a function of three variables: d 1, Nl and RI.
Comparing (4.14) to the iterative expression for the serial problem (4.7), we see that
the first terms are identical, so the same discussion about optimality as R get very large
holds, as well as thinking of the second (positive) term as a drag on distortion decay.

Example: Constant rate links with equal-variance observation noises. In order to compare
our results to the serial results of Section 4.5 consider again the case where the agents
have equal SNR = a2/N, i.e., v - v2 - ... - vL VCEO - N(O, NI). In Fig. 4.9 we
plot the decrease in mean-squared estimation error versus agent number for c 2 = 4,
N = 1. We plot the results for R = 0.25, 0.75, 1.5, oo. The data points that correspond
to each agent's estimation error are connected by solid lines for convenience. The lower
bound, 2 YCEY is plotted as a dashed curve. In contrast to the same example
developed for the serial problem in Fig. 4.8, now there is no saturation effect. Saturation
does not occur because, unlike in the serial problem, all agents communicate directly to
the CEO at a fixed rate. Therefore, no agent acts as a communication bottleneck and
CEO accumulates infinite data as the number of agents reporting in grows to infinity.

Example: Increasing R1 so that d < .a 2 Just as in the serial problem, we
can again ask at what rate must each agent transmit so that the CEO's distortion dl

�(_ �·��ll��L� ·̂_� _I�_·L__PYI__IILY·U�*-·1.. -- _IlUll---·1__ 1--CI C--
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stays within a factor nc of the lower bound C12
y . By setting dL = n 2lyCEOYl,, l

XyCE,y1 ,..,Yi XyCEQy1.

and dt+l = CxIY2 yEO,y,.Yl+ we can use the iterative distortion-rate expression (4.14) to

solve for RI in the equal-SNR situation where N = NCEO = N 1 = ... = Ni+l. We find
that an upper bound on R1 which is achieved using the successive coding techniques of
this chapter is

Rl < 1 log[( + 1)SNR + 1 ] (4.15)

Similar to the serial result (4.10), as n approaches zero R1 approaches infinity. There
are two major differences between (4.15) and (4.10), however. First, Rl decreases in 1.
Since the message from each agent does not have to encapsulate all previous agents'
data it should certainly be far smaller than that for the serial problem. Furthermore, as
the CEO accumulates increasing amounts of data, he has better side information to use
in the decoding process. Therefore, to contribute equally to the CEO's estimate, later
agents can send at lower rates. Second, the rate at which later agents send converges

to lim,,o Rl = log [ -l]. O

* 4.6.2 Design Implications

Rewriting (4.14) as (4.16) helps us to understand how d evolves in 1.

d N 2 -2R +(1 2 - 2(1 - 2 2R (1 - 2-2R) (4.16)
VNI NI 1 + d'N

In particular, the normalized mapping from dl to -L is hyperbolic, increases mono-
tonically from the origin where it has unit-slope, and stays below the 45-degree line
dt = d-1_ for all R1. This mapping is plotted in Fig. 4.10 for various R. Moreover, for
either dN_ large or Rl small, the dynamics are effectively linear, since the third term
in (4.16) is small. From the hyperbolic dynamics (4.16) we can verify that if the noise
variance Nl is bounded for all 1, then for any fixed per-agent rate RI = R, in the limit
as the number of agents reporting in grows to infinity, d1 converges to zero. However, di
approaches zero asymptotically slowly because the mapping from d-1_ to d approaches
an equality as d-l_ nears zero.

Say we are given a set of agents with noise levels N 1,..., NL and communication
rates R1,..., RL. One problem we are interested in is how to find the best ordering of

agent transmissions. To determine the best ordering rewrite (4.16) as (4.17).

1 + d112-RI

e tI n dl- - f(dllNa Ri) d l, (4.17)

Given two agents with different noise levels - N and Nb - and two different commu-
nication rates - R and Rb - we can calculate the distortion both orderings achieve
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Figure 4.10. Normalized distortion dynamics as a function of Rl.

starting from some a priori distortion d:

dab = f[f(d, Na, Ra) d, Nb, Rb] f(d, Na, Ra) d, (4.18)

dba = f[f(d, Nb, Rb) d, Na, Ra] f(d, Nb, Rb) d. (4.19)

If dab < dba then it is best for agent a to transmit first and b second. This logic
extends to higher numbers of agents because the best ordering is independent of starting
distortion d. Therefore, we can use a type of sort algorithm where each pair-wise sorting
decision is made based on (4.18) and (4.19). The sort algorithm is order L log(L). This
comparison can be used to show that if Ra = Rb it is best for the low SNR agent to
transmit first. As will be shown in the next section, if Na = Nb it is best for the
high-rate agent to transmit first.

* 4.6.3 Special Cases and Connections to Earlier CEO Results

In this section we discuss some special case of the parallel CEO problem. We focus on
the quadratic-Gaussian case with equal agent SNRs, no observation at the CEO, and a
sum-rate constraint. This is the case discussed most extensively in [75, 45] and allows
us to connect some of our results to the results of these earlier papers.
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Two Agents, Fixed Sum-Rate

We first consider the situation where there are only two agents L = 2, each has equal-
SNR observations, and the CEO has no observation YcEo = 0. We optimize the parallel
CEO iterative distortion expression (4.14) over a sum-rate constraint iR to minimize
the achievable distortion using our successive coding strategy. We then use Oohama's
converse [451 to show that this approach achieves the distortion-rate bound for this
scenario.

Given the total communication rate R = R 1 + R 2 we optimize over the fraction of
total rate allocated to each agent: R 1 = AR and R 2 = (1 - A)R = AR. Somewhat
surprisingly we will find that in general R1 L R 2. To simplify the calculus, in this
section all rates are expressed in nats.

(1 + xe-2AR2 Ndl = a (4.20)

d2 = dl ( I+ dEi

(1 + ) L (1 + ) + (1 +axe -2 )
E N . (4.21)

Equation (4.20) follows from the iterative distortion expression (4.14) where do = ax

since we set YCE = 0 and hence a2 cE M a2 . Defining the derivative

of (4.21) with respect to A, and setting the result equal to 0 gives

= d = [e-2(1 + 2 SNR)] e4XR+ [2 SNR2e - 2 R ] e2M ~ [SNR2e- 2 + (1 + SNR)2].

(4.22)

Using the quadratic equation, we can solve for e2XR, and invert the exponent to find A.

1 -SNR2 + (1 + SNR) SNR2 + (1 + 2SNR)e2R]
A = - ge N) (4.23)

2R (1 + 2 SNR)

Finally, substituting (4.23) into (4.21) to solve for the distortion results in

d = (+SNR) [ 2SNR + SNR ( + SNR)e-2R 

d2 = +SNR+X -(1 + 2 SNR)2y (4.24)

where 7 = V/SNR2 + (1 + 2 SNR)e 2R. To simplify (4.24) note that 72 - SNR 2 = (1 +
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2SNR)e 2R. To use this identity multiply (4.24) by (y - SNR)2 /(y - SNR)2 to get

d2 = a (y2 - SNR2) [(1 + 2 SNR) ( - SNR) + SNR(y2 - SNR2)22R] 

~d2 (ANR 2 ) [~ +(y - SNR)2(1 + 2 SNR)27 

2 (1 + 2SNR)e2 R [(1 + 2SNR)(y - SNR) + SNR(1 + 2SNR)e2Re2R] l

X= xl (y - SNR)2 (1 + 2 SNR)2
7

= 2 e2R(7- SNR + SNR) }
( - SNR)27

a2 e2R
= X er (4.25)

(-y- SNR) 2'

We now show that the distortion achieved (4.25) meets a lower bound on the rate-
distortion region for this problem derived by Oohama in [45]. This will demonstrate
that the (4.25) is the distortion-rate function for this problem. In order to state the
results of [45] define

D*(s, L) ax (4.26)
L SNR (1 - e-2S/L) + 1'

where L is the number of agents, and s > 0 is a helper parameter. The achievable rate-
distortion region for equal-SNR agents, a sum-rate constraint, and no CEO observation
is shown to be a subset of the following region R*:

R*={(R,d)R > s+ og [d*(s,L) ' (4.27)

d > D*(s,L)}. (4.28)

For the case L = 2 we substitute (4.26) into (4.27) with L = 2 to get

R > s + log [1 + 2SNR - 2SNRe-S]

2 (R-s) > log [ + 2SNR-2SNRe-S ]

0 < (e2) e- 2s + (2SNR)e -(1 + 2SNR), (4.29)

where (4.29) follows from exponentiating both sides and rearranging terms. Using the
quadratic equation we can solve for e-S ,

- - SNRe = A-NR (4.30)

where as before 7- SNR2 + (1 + 2SNR)e2R. Substituting (4.30) into (4.26) with
L = 2 and using the result in (4.28) yields

2 2R
d > (-SNR) 2 ' (4.31)

-(y-SNR)21
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0 5 10 15 20 25
Total rate, R1 + R2

Figure 4.11. The fraction of the total rate Rtot = R assigned to each agent is a function of both Rtot
and SNR.

which equals d2, the achievable distortion given by (4.25). Hence, for the L = 2 case
successively structured codes can achieve the rate-distortion bound for the problem. In
Fig. 4.11 we plot A as a function of R, parameterized by SNR.

The asymmetric rate allocations indicated by Fig. 4.11 mean that the rate-distortion
region has a flat frontier in at least one section. This is because in the two-agent case we
minimize the distortion subject to a sum rate constraint. If (RI, R 2) = (AR, [1 - AR)
is on the boundary, then so is (R 1, R 2) = ([1 - A]/R, AR), by symmetry since the agents
have identical SNRs. The line that connects these two points can be achieved by time-
sharing, and must also lie on the rate-distortion bound since it has the same sum-rate
as its two end points.

Another point to notice about the fractional rate allocation of (4.23), which is easier
to see in Fig. 4.11, is that A is roughly 1/2 if the sum-rate R = R1 + R 2 is either very
large or very small. The latter suggests that perhaps even if L > 2, as the average rate
per agent gets small (or if L is very large for fixed sum-rate R), constraining agents
to equal rates may not incur a large distortion penalty as compared to the minimum
achievable distortion. We discuss this idea further in the next two section. Finally, note
that we can generalize the optimization problem of this section to agents with differing
SNRs, but the resultant expressions are far more complex, and in certain cases one of
the agents will receive the full rate allocation, i.e., R1 = R or R 2 = R.

- I--� --̀  - -- -
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Intermediate Numbers of Agents, Fixed Sum-Rate

In the last section we saw that in the two agent case successively structured codes
can reach the rate-distortion bound. When there are more than two agents it is more
difficult to optimize the agent rate allocations subject to a sum-rate constraint. In this
subsection we instead divide the total rate equally between agents and discuss how
much large the resultant distortion is than is the lower bound on the rate-distortion
function presented in (4.27) and (4.28) that were derived by Oohama [45]. In more
recent work [46], Oohama has shown that this bound is in fact the rate-distortion
function. In Fig. 4.12 we plot the percentage of extra distortion incurred by using the
successive coding approach to the parallel CEO problem under the equal-rate allocations
R = R1 = R ... = RI. /L. If we term the distortion achieved by the successive coding
method dsucc and the distortion bound from (4.27) and (4.28) dbnd, the the percentage
penalty is calculated as

dsucc - dbnd
Percent Penalty = 100 d bnd

dbnd

For the examples shown R = 10. We consider three cases, SNR = 2.5, 5, 10. In each
case all agents had the same observation SNR. For all SNRs the distortion penalty
incurred is only a few percent and decreases with decreasing SNR. In all cases the
penalty approaches zero as the number of agents L grows to infinity. We next discuss
this asymptotic regime, which is the one considered in [75, 45].

Large Numbers of Agents, Fixed Sum-Rate

In [45, 75] the authors investigated CEO estimation performance given a total rate
constraint R as the number of agents L grows to infinity. In other words, as the average
per-agent rate R = R/L approaches 0. In Fig. 4.11 we observed that in the L = 2
case, as R/L approaches zero, equal rate allocation per agent yields the rate-distortion
optimal solution. In Fig. 4.12 we observe the same type of behavior in the intermediate
L case as R/L approaches zero.

We now consider the asymptotic version of these scenarios as L grows to infinity.
In this situation the average rate per agent is also going to zero. Motivated by the
observations of the last paragraph we analyze the per-agent equal rate solution, and
show that as the number of agents grows toward infinity under a sum-rate constraint
R, a sequence of successively structured coding design with agent communication rates
constrained to be identical (R 1 = R2 = ... = RL = R/L) converges to a rate-distortion
optimal solution. The derivation we present here gives the basic ideas of the proof with
a more formal derivation given in Appendix D.3. For this discussion all rates will be in
nats.

Under the equal rate simplification RI = R _ R, and assuming equal agent SNRs,

69Sec. 4.6. Parallel CEO Problem: Quadratic-Gaussian Case
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Figure 4.12. The percentage of extra distortion incurred by constraining the agents to equal rates.
For the three examples presented R = 10, and the SNRs of the L agents were identical within each
example.

we rewrite the iterative distortion expression for the parallel CEO problem (4.14) as

di d1_ 1 + d-2-2R
NN- N k (4.33)N N + N)

Defining xl = d/IN and subtracting xl from both sides of (4.33) gives

(1 + xile 2R)
X - Xl-1 = Xl-1 1 +X- i

2 -(1 -e-2R)

1 + xil-

AX-1- 1 1 Z-1 (4.34)
1 - e-2/L 1 + xl-1

Since L is large, we substitute the first two terms of the Taylor series expansion of
1 - e - 2R/L _~ 2R/L into (4.34) to get

Xl - X- 1 +- (4235)
R/L l+ (Xl'
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Since limL_~ RIL = 0, (4.35) is a discrete approximation to a differential equation. For
the moment we treat this approximation as exact in the limit L - oo. In Appendix D.3
we justify this approximation.

dx -2x;2
dR 1+x

dR = f (-2 2-2) dx (4.36)

N a2 1 2N I X _R = -1 + log (4.37)
2o,2L d J+2 g-.

In (4.36) we separate variables and integrate. The distortion d is the (unknown) final
distortion achieved after the (known) total rate R is received by the CEO. Finally,
(4.37) is the rate-distortion bound for this problem as derived in [45] where d < a 2.

* 4.7 Application to the Relay Channel

The general relay channel [21] can be split into two halves: a broadcast side and a
multiple-access side. Following work in [13] we point out that viewing the agents as
relays, and the CEO as a decoder, means we can use our work on the CEO problem
to derive an achievable rate region for the Gaussian relay channel [21] with L relays
and a particular form of multiple-access channel. The multiple-access side consists of L
fixed-rate non-interfering channels so, e.g., ideas of distributed coordination [60] cannot
be implemented. For L = 1 we simply apply noisy Wyner-Ziv source coding with side
information, and the scheme reduces to one discussed in [21]. Assume the transmitter
and relay have powers Ptrans and Prelay, respectively, and that the additive white Gaus-
sian noises are of powers Nrelay and Ndec at the relay and decoder, respectively. Then,
a combination of stripping and noisy source coding with side information allows the
following rate to be achieved:

Rr 1 elay log Ptrans + Prelay + Ndec (438)

As Ptherelay Nrelay pac 
-Ndec 1 -Jr-PtransNrelay + PtransNdec + Nrelay Ndec

As the relay power grows (P,,rlay -+ oo) this strategy achieves capacity. But, as the chan-
nel to the relay becomes perfect, (Nrelay -* 0) this approach suffers because cooperation
is not exploited.

For higher numbers of relays we can apply the parallel CEO solution (with or without
the CEO having a direct observation of the source). In Fig. 4.13 we show schematically
how the solution to the CEO problem can be applied to relay channel communications.
The idea parallels one developed in [13] for achieving capacity on Gaussian broadcast
channels via information embedding (instead of superposition coding). The basic idea
is to think of the codeword x as any old i.i.d. Gaussian source sequence, use the parallel

Sec. 4.7. Application to the Relay Channel
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Figure 4.13. Certain classes of relay channel communication problems can be approached via the
parallel CEO solution by wrapping a channel encoder and decoder around the distributed source esti-
mator.

CEO solution to fuse the messages into a central estimate, i, and then treat x as a
source observation to decode. Since x and x are jointly typical, standard typicality
decoding will work.

Related work in this area includes that of Schein [59, 60] and Gastpar and his
colleagues [30]. In both works the assumption is made, as in [21], that the relays
are fully synchronized and and are all received in the same band. If this is the case,
then an optimal transmission scheme would take advantage of the correlation in the
observations to make the codewords interfere constructively at the receiver, thereby
getting an effective power boost. Unfortunately, figuring out how to get this constructive
interference seems very difficult. Furthermore, in the frequent cases where the multiple
access half of the relay channel consists of orthogonal links, the possibilities for coherent
combination of channel codewords are eliminated. In such cases the CEO approach to
the problem should do better in relation to capacity.

An interesting aspect of this approach to the relay channel is the central role that
minimum mean-square error estimation plays; if estimation is left out of a noisy Wyner-
Ziv stage, the effective channel noise will remain too high for the decoder to be able
to determine the message reliably. This suggests that the CEO solution to the relay
channel is particularly well suited to multilayered codes. If only a few agents are initially
available to the CEO, the effective SNR at his receiver will be low. However, if more
agents become available, they can be brought on-line without altering the functioning

II

II
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of the first set of agents. Implementationally, this Markov-like structure of the coding
strategy can be quite useful.

It would be quite satisfying if we could show that some approach to the parallel
CEO problem can be used as a capacity-achieving approach to a class of relay channels.
This class would be relay channels where the multiple-access side consists of a set of
rate-constrained, but orthogonal channels. This constraint on the multiple-access side
means that constructive interference techniques cannot be used to boost the receiver
power. Although the approach we present in this section gives an achievable rate region,
we cannot apply the converse from the CEO problem to this relay channel problem.
This is because the CEO problem converse hinges on the fact that x is an i.i.d. Gaussian
sequences. If x is a codeword it need not be i.i.d. Gaussian. Of course, as we propose
in this section, we can always use a randomly generated i.i.d. Gaussian codebook which
looks marginally i.i.d., and the scheme discussed will work. However, to show this
scheme achieves capacity, we must also show that the constraining of the codebook
to be i.i.d. Gaussian does not reduce capacity. Hence, the approach proposed is an
achievability result only, and converses from CEO problems are not necessarily the
right tools for relay problem.

Fundamentally, the problem of channel coding over a relay channel is a distributed
detection problem. The system goal is to take into account all the relay's data in
order to determine the most likely codeword sent. On the other hand, in estimation
problems the objective is to optimize a fidelity criterion. Generally, such fidelity criteria
are very different from the probability-of-error criterion common to channel coding
and detection problems. For this reason, while we can apply the coding strategies
designed for the parallel CEO problem to the relay channel, it would be surprising
if the optimal solution to a distributed detection problem could be separated into an
optimal distributed estimation step followed by a centralized decision step.

* 4.8 Chapter Summary

In this chapter we introduce a general model for a particular class of sensor network.
These networks are characterized by: 1) the goal of getting a single node the best
source estimate possible, 2) finite-rate inter-sensor communications, 3) tree-structured
inter-node communications, 4) full statistical knowledge of the source and observations
where the observations are conditionally independent given the source, 5) no delay
constraints, and 6) no processing constraints. Using this model we can break a general
sensor network into a set of prototype serial and parallel networks. We connect each
of these prototype networks to the noisy Wyner-Ziv results of Chapter 3 and derive an
achievable distortion-rate region for these basic networks and, by extension, any general
tree network. We discuss a number of special cases and the design implication of our
results. We connect our work to earlier information-theoretic work on the CEO problem
and show how to use our results to generate earlier results. Finally, we show how the
coding strategies proposed herein can be applied to certain classes of relay channels.
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Chapter 5

Queuing with Distortion-Control

A primary task of communication networks is to move data around. In many networks
data arrives at, and is transmissions from, each node in the network intermittently and
unpredictable. This makes the buffers at each node susceptible to overflows, resulting in
lost data, and decreased system performance. However, when the data being handled
is distortion-tolerant, network protocols can be designed that exploit the distortion-
tolerance of the data to reduce the probability of overflows.

In particular, we designed successively structured algorithms for content-aware net-
works, showing how to use data distortion-tolerance to produce robust, high-performance
buffering protocols. These algorithms encode data using multiresolution source codes.
The ordered information structure of this type of code is used to alleviate congestion in
a controlled manner, trading off fidelity for additional memory resources to avoid uncon-
trolled buffer overflows. The result is an adaptive algorithm that minimizes end-to-end
distortion robustly to uncertainty in arrival and departure statistics. Furthermore, the
performance of the algorithm closely approximates a bound on the performance of any
algorithm.

In Section 5.1 we introduce the problem of distortion-controlled queuing through a
pair of illustrative applications. In Section 5.2 we discuss our approach to the problem
at a high level, motivating a basic ad hoc approach that, as we show later, is nearly
optimal. In Section 5.3 we describe the queuing theoretic model used for the problem
and discuss multiresolution source codes. In Section 5.4 we present the design of the
algorithms under consideration, and analyze their performances in Section 5.5. In
Section 5.6 we contrast the performances of the algorithms, and compare the analysis
with experimental results. Once we understand the performance of the algorithms we
make some comments on the design implications of these ideas in Section 5.7, and
conclude in Section 5.8.

* 5.1 Introduction

As an example of an application of distortion-controlled queuing, consider a wired-to-
wireless gateway manager routing multimedia content. If the wired half of the infras-
tructure is high capacity, any bottleneck in communications will likely occur at the
gateway. The channel from gateway to receivers is often a shared medium, as in cellu-
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lar systems. In some instances there may be only a single user requesting downloads
of content, while at other times there may be multiple users requesting downloads.
Because the number of users on the system is unpredictable, and the statistics of this
process may be time-varying (e.g., typically heavier loads during the day than in the
night), it is difficult to develop static protocols that deal equally well with all situations.
Instead, a set of protocols that could adapt to the changing system load in real-time,
without forward planning, would be ideal. To design such a set of protocols we can
exploit more detailed knowledge of multimedia content characteristics. In particular,
multimedia content is distortion-tolerant - it is useful at a range of levels of fidelity.
This contrasts with, e.g., executables that are distortion-intolerant and must be com-
municated losslessly. By exploiting this distortion-tolerance at the network protocol
level we can enable the gateway to adapt to unpredictable system loads in real-time.

As a second application of these ideas, consider an autonomous sensor vehicle such
as a submarine or interplanetary probe. The goal of this system is to provide data for
human use. As in the wired-to-wireless gateway example, the system load is unpre-
dictable. In this case unpredictability exists both in the input process, caused by the
unknown rate at which the vehicle observes phenomena of interest, and in the output
process, caused by variations in channel capacity resulting from changing environmen-
tal conditions. Because the system has finite memory resources, buffer overflows are
an issue. Since sensor data is similar to multimedia content in the sense that it is
distortion-tolerant, a set of protocols similar to those developed for gateway manager
applications can be used here.

* 5.2 Fundamentals

Consider a finite-memory queue buffering distortion-tolerant data. If the rate of arrivals
exceeds the queue's communication rate over a span of time, the queue will overflow
because of memory limitations. The ensuing uncontrolled data loss can result in large
increases in overall distortion. In this chapter we design buffering protocols that use
the distortion-tolerance of the queued signals to lower the fidelity at which signals
are stored in a controlled manner, freeing memory resources to avoid overflows. This
approach yields performance gains in terms of distortion and delay, as compared to
baseline algorithms that treat all content as distortion-intolerant, and so are unable to
adjust the fidelity of the stored signals dynamically.

The basic tool we use are multiresolution source codes, e.g., [26, 66]. Such codes
have a very special ordered data structure, starting with a most significant layer of
description to which can progressively be added refinements that increase the fidelity
of the signal reconstruction. Such a layered structure allows the source to be recon-
structed progressively as each refinement becomes available, rather than having to wait
until the whole code is available. From the opposite perspective, if we start with all
the descriptions then least-significant refinements can be deleted first in order to free
memory resources, leaving the more significant descriptions unperturbed. This latter

-· I
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Multiresolution Random access Successive layer
F r quantizer a lmemory (RAM) I transmitter

Figure 5.1. Internal structure of memory interface.

point of view is central to our work.
Once the data is encoded in a layered manner, a natural pair of storage and transmis-

sion algorithms emerge. On the one hand, if the buffer is about to overflow, description
layers can be deleted to free up memory space. A natural way to do this is to start by
deleting the least-significant layers, freeing up memory while incurring the least distor-
tion. On the other hand, most-significant descriptions should be transmitted first in
order to minimize distortion and delay. This algorithmic structure is shown in Fig. 5.1.
We formalizes these intuitive ideas in the following sections and show that they form
the basis for a near-optimal adaptive memory interface.

* 5.3 System Model: Finite-Memory Buffers, Multiresolution Source Codes

We model the buffers as M/M/1 queues - Poisson arrivals and exponential service times
- with finite memory, Mtot. The input data stream is a sequence of full-resolution signals
where the ith signal to arrive is denoted si. The Poisson arrival stream has rate A which
means that in an interval of r seconds AT signals are expected. At the output of the
queue, packets of Mpac bits are emitted according to Poisson process with rate Ppac,
giving an average transmission rate of Mpaclpac bits/sec. Our goal is to design a signal
processing interface that manages the size-Mtot random access memory (RAM) buffer
to minimize end-to-end distortion. This model is depicted in Fig. 5.2.

The output data stream is well described by two parameters. The first is the number
of packet transmissions needed to empty the memory. This "time-to-empty" constant
is defined as

Temp Mtot' (5.1)

The second is the "packet-normalized" utilization rate which measures the ratio of input
to output rates:

Ppac (5.2)
Apac

To quantify the performance of our algorithm we introduce a distortion measure
that we want to minimize. The distortion measure quantifies the fidelity d of a given
signal approximation that the network is handling as a function of rate. In Section 5.7
we discuss extending the distortion measure to a more general performance measure
that captures, for example, issues of delay and processing demands. Without loss of
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O

°0 o-3 _ Signal processing interface Packets
To be designed

_~ | RAM

Queue
Figure 5.2. We designed the memory interface of a basic RAM of size Mtot to manage the buffering

and distribution of distortion-tolerant data. Each signal arrival is quantized by the interface and stored

in the RAM. Each departure is a packet of size Mpac. The arrival and departure statistics are modeled

as a M/M/1 queuing process with arrival rate A and departure rate ppac.

generality we assume that the source code used achieves a distortion-rate trade off
according to

d = exp(-f(R)), (5.3)

where R is the rate assigned to the source, bits/signal. Traditionally, rate is measured
in bits/sample, but we use this form to simplify the discussion. The change from
bits/signal to bits/sample can be effected by suitable redefinition of f(.). Since the
function f(.) can be arbitrary, the form of (5.3) doesn't put any restriction on the
distortion-rate trade off. In our work we assume that the function f(-) is a monotonically
increasing concave function of its argument, giving a distortion-rate trade off (5.3) that
decreases monotonically in R, and is convex. The maximum distortion, incurred when
no information about a received signal is communicated onwards by the buffer, is found
by setting R = 0, i.e.

dmax = exp(-f(0)). (5.4)

Multiresolution source codes are composed of K ordered subcodes, C1,..., CK, of
rates R1, ... , RK, respectively. Using subcodes C1, ... , Ck (where k < K), the source
can be reconstructed to distortion exp(-f (kl 1 Ri)). If a multiresolution source code

is optimal at each step, i.e., if R[exp(-f(i=l Ri))] = ZL Ri, where R[.] is the rate-
distortion function for the source distortion pair, it is called a successively refinable
source code [26, 57].

Example: Uniform Random Variables, Absolute Distortion, Scalar Quantization. In this
case each signal si is a random variable distributed uniformly over [0, 1]. The dis-
tortion measure is d = [si - si. Using nested uniform scalar quantizers of rates

R1,..., RK, we can achieve an average distortion-rate trade-off E [d] = 2- =l =
exp[- logi(2) =1 Ri] for all k such that 0 < k < K. 0
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Example: I.i.d. Gaussian Random Vectors, Mean-Squared Distortion, Vector Quantizers.
This source-distortion pairing is successively refinable [26]. Therefore given sl - N(O, 21I)

and K codes l,..., eK, we can achieve average distortion E [d] = 2- 2 lt= Rk for
any k such that 0 < k < K.O

Rather than focusing on any particular multiresolution source coding scheme, we
instead develop fundamental limits on the performance of any buffering algorithm,
in terms of f(.). This results in a benchmark against which specific algorithms can
be compared. Furthermore, for simplicity, we assume all sources have the same f(.)
function, and our objective is to minimize average distortion.

* 5.3.1 Lower Bound on Distortion - All Algorithms

In this section we derive a bound on the average distortion-rate performance of any
buffering algorithm. This result will give us a bound with which we can compare the
performances of the algorithms developed later in the chapter. We derive this bound by
letting the size of the memory Mtot grow arbitrarily large. In this case we are no longer
limited by memory since we can store losslessly for all time, all observations. This
implies that we will be able to perform at least as well as any finite-memory system.
This means that system performance is thus limited by the communication rate. We
derive the lower bound on average distortion as follows

E[d] = E[exp[-f(R)]] > exp[-f(E[R])] (5.5)

= exp[-f(Mpacplpac/A)] = exp[-f (Mtot/empPpac)]. (5.6)

Eq. (5.5) follows from Jensen's inequality since the distortion is a convex function of the
rate, and (5.6) follows from the average communication rate, the derivation of which we
discuss next. The source and transmission models from Section 5.3 imply that in one sec-
ond there are A observations on average, and Mpac/upac bits are transmitted. This gives
an average signal description rate E [R] = Mpacpacl/A = Mpaclppac = Mtot/rempPpac.
A good interface design for finite-sized memories tries to manage the fidelities of the sig-
nals in memory to get as close to this average as possible. To illustrate the bound (5.6)
we specialize to a distortion measure that decays exponentially in rate, d = exp(-O.1R).
In Fig. 5.3 we plot the performance bound for this distortion measure.

* 5.4 Algorithm Design

In this section we design two memory algorithms. The first, discussed in Section 5.4.1,
is the baseline algorithm that treats all data as distortion-intolerant. The second, dis-
cussed in Section 5.4.2, is an adaptive algorithm that uses multiresolution source codes
to take advantage of the distortion-tolerance of the signals being routed. This second
design is robust to uncertainty in the queue operating conditions, as parameterized by
Ppac, the packet-normalized utilization rate (5.2).
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Figure 5.3. Bound on achievable average distortion for d = exp(-0.1R) as a function of system
utilization.

* 5.4.1 Baseline Algorithm: A Network Layered Approach

The baseline algorithm does not use multiresolution source coding. When any part of
a non-multiresolution source code is lost, the code becomes completely corrupted, and
therefore useless. For this reason the rates at which the signals are described cannot be
varied dynamically. This type of algorithm is static; the designer must decide a priori
at what rate to quantize each full-resolution signal received. Since source fidelity is not
adjusted dynamically based on the state of the buffer, this algorithm is appropriate
for use in a network with a layered architecture where source coding is separated from
network management.

Define Kmem to be the maximum number of signals that can be stored in memory at
any one time. Let Ri, i = 1,...,/ mem be the effective rates of description (bits/signal)
of each stored signal. The average distortion of the signal descriptions in memory is

1 mem

E [dmem;/Kmem] = E e exp(-f(Ra)) (5.7)
/Kmem i=l

where dmem is the distortion of the stored signals. The expected distortion is param-
eterized by /Kmem. When designing the baseline system, the designed has two choices:
1) the choice of Kmem, and 2) given mem, the choice of the Ri. Given any choice of

__ __I_ �_ I _ __
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nmem, we now show that choosing the the Ri equal minimizes the average distortion:

E [dmem; mem] > exp -f mem ER ) (5.8)

> exp[-f (Mtot/rimem)], (5.9)

where (5.8) follows from applying Jensen's inequality to (5.7), and (5.9) follows from
ZRi < Mtot.

Equality can be achieved in (5.8) and (5.9) by letting R/ = Mtot/Fmem for all i.
Thus, the optimal choice is to use equal-rate quantizers for each signal, resulting in
an average quantization distortion equal to exp[-f(Mtot/mem)]. Because before any
signal can be decoded the entire non-layered source code must be received, the baseline
algorithm should transmit its queued signals one at a time (e.g., FIFO).

Algorithm for Baseline Algorithm

* Initialization:
Divide the memory into rmem blocks of size Mtot/lmem.

* Transmission:
Send bits from only a single source code until the whole code has been sent, then
switch to the next signal.

* Storage: Of newly received signal s,.

(a) If the queue is not full then assign the signal to one of the available memory
blocks. The signal is encoded at distortion d = exp[-f(Mtot/imem)]

(b) If the queue is full the new signal cannot be stored, is lost, and incurs dis-
tortion dmax = exp[-f(0)].

A pictorial representation of the baseline algorithm is depicted in Fig. 5.4 with
t;mem = 3. If a new signal arrives when the queue is full, an overflow occurs, the signal
cannot be stored and is lost. This is depicted in Fig. 5.4-a. On the other hand, when a
departure (packet transmission) occurs as is depicted in Fig. 5.4-b, all packet bits should
be dedicated to sending a single signal's code until the whole code is transmitted. This
is because decoding cannot begin until the code is completely received.

Let's now consider how this algorithm can be modified using multiresolution source
codes. If a new signal arrives when the buffer is full, instead of loosing that signal com-
pletely, we can make room for it in the queue's memory by deleting the least significant
information. In Fig. 5.5-a we indicate the mechanics of this "squeeze" algorithm by
crossing off the least significant information to be deleted. On the other hand, when
a new packet is to be transmitted, we can pick out the most significant information
as shown in Fig. 5.5-b. This transmission protocol maximizes the probability that the
most significant information makes it to the destination, and has the added benefit that

... ._I ·· *IC 11- _- 
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a. New signal arrives, but queue full

Signal 4 Signal 3

~)-\

Signal 2 Signal 1

Queue
Overflow results in lost signal

b. Departure

Transmit one at a time, FIFO
Signal 3 Signal 2 Signal 1

Queue

Figure 5.4. Basic idea of baseline protocol. Information is stored at constant fidelity. If new signals
arrive when the queue is full they are lost. Transmissions should focus on sending the stored signals
one at a time.

it also minimizes the delay on the transmission of this information. As the number of
arrivals and departures grows into the tens, hundreds, and thousands, the decisions
on what to keep in memory and what to transmit become more complex. In the next
section we show how to turn these decisions into tractable optimization problems.

* 5.4.2 Inter-Layer Adaptive Algorithms with Distortion-Control

The adaptive algorithm consists of two sub-algorithms with parallel structure. The first
is an extraction algorithm that prioritizes descriptive layers for inclusion in the next
packet. This is the half of the algorithm depicted by Fig. 5.5-b. In effect, this algo-
rithm concatenates layers into a super-packet. The second is a storage algorithm that
determines how to shuffle memory resources in order to store a newly received signal.
This is the half of the algorithm depicted by Fig. 5.5-a.

Extraction and Transmission Algorithm

Suppose signals sl,... ,sm-_1 have been received and stored. Define Rdec,i and Rqu,i,

i = 1,..., m - 1, respectively as the number of bits describing si already at the decoder
(i.e., already transmitted by the buffer), and still retained in the queue's memory. The
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a. Arrival, but queue full
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Figure 5.5. Basic idea of adaptive protocol. Signals are stored at variable fidelities. If a new signal
arrives when the queue is full, all signals are "squeezed" to fit at lower fidelities. Transmissions should
send first the most important information stored in memory, determined across all stored signals.

average distortion at the decoder is E [d] = ml1 A-l exp(-f(Ri)). Define 6pac,i to
be the number of bits from the encoding of signal si, to be included in the next packet.

We use Lagrange multipliers to determine the optimal choice for the pac,i. The
problem is constrained so that the total sum of transmitted bits does not exceed the
size of the packet, i.e. Ei=1l pac,i < Mpac, and so that 0 < pac,i < Rqu,i for all i. The
cost functional is

1 -1 1

m-l 1 x exp[-f(Rdec,i + pac,i + A 6 pac,i)] pac (5.10)
i=1 i=1

If pac,i is in this range for all i we can differentiate (5.10) with respect to pac,j to get

dE 
~dd = -f(Rdc,j + pac,j) exp[-f (Rdec,j + pac,j)] + = 0, (5.11)

de, +pa,)exp-(ec, +pac,),j

f'(Rdecj + pac,j) exp[-f(Rdec,j + pac,j)] = A, (5.12)

where we have subsumed
deciding what to transmit
at the decoder.

the ml 1 into the definition of A. Eq. (5.12) tells us when
next, an optimal policy is to even out the description rates
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We now specialize f(.) to affine function, i.e., f(R) = aR+,-/.' Substitute this form
of f(.) into (5.12) results in

Rdec,j ± 6pac,j = [log ( ) - ] . (5.13)

Again (5.13) tells us that the objective of each packet transmission is to even out the
a posteriori description rates at the receiver. Sometimes, however, this is not possible
because of, e.g., packet-size constraints or because pac,i > 0. To find the optimal
choices for the bpac,i while taking into account these active constraints we must use the
the Kuhn-Tucker conditions. This results in the following theorem.

Theorem 6 Given f(R) = arR + /, and the a priori rate allocations Rqu,i and Rdec,i.
Then, the optimal choices for the pac,i, are:

pac,i = min {max {o, [log ( )- 1]-Rdec,i} Rqu,i} (5.14)

where A is chosen so that >m=1 pac,i Mpac. The a posteriori bit allocations are

Rdec,ilnew = Rdec,i + 6pac,i and Rqu,ilnew = Rqu,i - 6 pac,io

This method for determining which bits are most important to transmit is akin to
"water-filling" for colored Gaussian channels in channel-coding theory, and is illustrated
in Fig. 5.6.

Storage Algorithm

Now, suppose a new signal sm is received and must be stored. The a priori buffer rate
allocations, Rqu,i, i = 1,..., m - 1 upper-bound the a posteriori rate allocations after
Sm has been received. Since, at most, all memory resources can be assigned to store s,,
its a posteriori rate allocation is upper-bounded by Mtot; therefore set Rqu,m = Mtot.
Define {(qu,i), i = 1, 2,..., m, to be the changes made in order to store s,.

We again use Lagrange multipliers to determine the optimal choices for the qu,i.
The total sum of a posteriori bit allocations is constrained not to exceed the total
amount of memory resources, i.e. im=l(Rqu,i - qu,i) < Mtot, and 0 < 5 qu,i < Rqu,i for
all i. We want to make this constraint an equality so as to maximize the use of memory
resources, thereby minimizing distortion. The cost functional is:

L = I-E exp[-f(Rdeci + Rqui - qu,i)]+ (Rqui- 6qu,i) - Mtot) (5.15)
i=l i=

1 Affine f(-) cover, e.g., the case of successive refinement codes for white Gaussian sources un-
der a mean-squared distortion measure where a = 2 log(2) and l = -log,(a2), resulting in
d = exp(-f(R)) = -2R
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Figure 5.6. Determine packet contents by "water-filling" to the dashed line, which satisfies
E=ll 6pac,i = Mpac. Shaded rectangles indicate Rdec,i and white rectangles Rqu,i.

where 0 < qu,i < Rqu,i. If 0 < bqu,i < Rqu,i for all i we can differentiate (5.15) with
respect to 3 qu,j to get

d I
ddquj = f(Rdecj + Rqu,j - qu,j) exp[-f(Rdec,j + Rqu,j - bqu,j)] - A = 0

A = f(Rdec,j + Rqu,j -qu,j) exp[-f (Rdec,j + Rqu,j - qu,j)]- (5.16)

where we have subsumed the 1 into the A. Eq. (5.16) tells us that after the storage
of the new signal, the optimal a posteriori overall description rates (in the queue and
at the decoder) are uniform across the signals. Specializing (5.16) to f(R) = aR + 3
results in

Rdec,j + Rqu,j- qu,j =- log [] - .

In general, however, some of the 6qu,i will equal 0 or Rqu,i. To find the optimal choice for
5qu,i while taking into account these active constraints we must use the the Kuhn-Tucker
conditions. We state the result for affine f(R) = aR + 3.

Theorem 7 Given f(R) = aR + 3, and the a priori rate allocations, Rdec,i and Rqu,i.
Then, the optimal choices for the qu,i, are:

Jqu,i = min max 0, Rdec,i + Rqui + log ( Rqu,i (5.18)
OL a a

where A is chosen so that jEi=l(Rqu,i - qu,i) = Mtot. The a posteriori bit allocations
are Rdec,ilnew = Rdec,i and Rqu,ilnew = Rqu,i - qu,i-
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Before Storage of s6 After Storage of s 6

Rdec, 1
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Figure 5.7. Determine memory re-allocations by "water-filling" to the dashed line, which satisfies
Et=l (Rqu,i - qu,i) = Mtot. Shaded rectangles indicate Rec,i and white rectangles Rq,i .

This method for determining bit allocations is again akin to "water-filling" for colored
Gaussian sources in channel coding theory, and is illustrated in Fig. 5.7.

Algorithms for Adaptive Algorithm

* Extraction and Transmission:

(a) Calculate {Spac,i} according to Thm. 6.

(b) Concatenate the most significant pac,i bits of each si into a packet.

(c) Transmit the packet.

(d) Increase Rdec,i by pac,i, and decrease Rqu,i by pac,i.

* Storage: Of newly received signal sm.

(a) Calculate {Rqu,i - qu,i} according to Thm. 7.

(b) Reduce the queue memory allocated si from Rqu,i to Rqu,i - 6 qu,i-

(c) Store Sm with a multiresolution encoding at rate Rqu,m-6 qu,m = Mtot-qu,m.

For many applications it will be necessary to introduce granularity in Jpac,i and Jqu,i,

e.g., we can only send an integer number of bits each time. We have not taken such
effects into account explicitly, but they can be accommodated through the choice of the
function f ().

6 qu

I I
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* 5.5 Algorithm Analysis

In this section we derive bounds on the distortion performance of the baseline and
adaptive algorithms. There are two sources of distortion to consider. The first is
quantization noise incurred during source coding which is increased by fidelity reduction.
The second is overflow distortion, incurred when the buffer memory is full, a new signal
arrives the buffer overflows resulting in a lost signal, thereby increasing distortion. Note
that the increase in quantization noise via fidelity reduction is only experienced by the
adaptive algorithm, while losses due to buffer overflows are only experienced by the
baseline algorithm.

Putting the two sources together we get an expression for average distortion

E [d] = E [dmemm > 1] Pr[not lost] + dmax Pr[lost], (5.19)

where d is the overall distortion, dmem is the distortion of files in memory (we condition
on the event that the memory is not empty, since if the memory is empty there are no
signals to calculate the distortion of) and dmax is the distortion incurred when a signal
is lost (5.4).

* 5.5.1 Steady State Performance of Baseline Algorithm

In this section we derive bounds for the baseline algorithm described in Section 5.4.1.
These bounds will provide the benchmark with which we compare the performance of
the adaptive algorithm. The performance of the baseline algorithm is parameterized by
rtmem, the total number of signal descriptions that can be stored in the buffer at any
given time. Using Markov chain analysis we derive the steady-state probabilities that
there are m items, m = 0, 1,..., nmem, in the buffer.

Recall that the expected time to download one packet of Mpac bits is 1//pac seconds.
There can only be rmem items in memory at any given time, and each item is assigned
Mtot/mem bits. We cab convert the download rate from packets per second to signals
per second as follows

packets bits
/pac - -= /pac Mpac

sec sec

Mmem signals
= Ipac Mpac

Mtot sec

lpac Nmem signals

Temp sec

signals
-- sig

sec

The rate of observation A is also expressed in terms of signals observed per second. Since
nothing happens to the signals stored in memory between events, we can concentrate
solely on those times when observations are made or packet transmissions occur, which
is a discrete-time process.
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P P+ P+ P+ P+

P P P P

Figure 5.8. The Markov chain denoting the number of items in memory.

The number of signals in the buffer can be modeled as a Markov chain as shown in
Fig. 5.8. The state at time t, mt, indicates the number of signals in the buffer. Time
is indexed on events (observations/transmissions), i.e. t = 1, 2,... Given m signals in
memory at time t, we calculate transition probabilities from the Poisson arrival rate A,
and the exponentially distributed waiting times, parameterized by the signal-normalized
inter-transmission rate ig = PNcKmem. Except at the ends of the chain when m = 0 or

Temp

m = rememi

(A _ Psig
Pmt+ilmt(m + im) = A Psig p+(5.20)

-//sig -- ig 1+

/sig _ 1
Pmt+lm,(M-llm) = (5.21)

A + -sig Psig + 1 =P

where Psig is the signal-normalized utilization rate defined as

Psig A- A emp (5.22)

P Asig KmemPpac

The reciprocal of the signal-normalized transmission rate 1/Psig is the average time it
takes the baseline algorithm to transmit one of its stored signals. At the ends of the
chain, when mt = 0, p- = Pmt+ mt (010) and when mt = mem, P+ = Pmt+ mt (mem Imemmem)

To derive the steady-state probabilities of the Markov chain depicted in Fig. 5.8,
note the following relationships,

Po = (P-)po + (P-)P1

P1 = (P+)Po + (P-)P2

P2 = (P+)Pl + (P-)P3

which can be rewritten as

(P+)Po = (P-)P1

(P+)Pl = (P-)P2

(P+)P2 = (p-)p3
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This tells us that for 1 < k < mem, Pk+l = (P+/P-)Pk. Using this exponential
relationship together with the fact that Ek=1m Pk = 1, we can derive the steady-state
probabilities that there are m items in the length-mem queue:

Sig 0 < < mem5
pm(m; mem) lPgme (5.23)

0 otherwise.

A signal is "lost" when it arrives to find the queue full, so it cannot be stored. The
steady-state probability that signal sk is lost is

Pr[sk lost] = Pr[sk arrives, m = Kmem]

- Pr[sk arrives] Pr[m = emem] (5.24)

(1 - psig)pemg (5.25)

1 - mem+l

where (5.24) follows from the independence of the events, and (5.25) follows because
Pr[sk arrives] = 1 and by substituting in the steady state probabilities of being in each
state from (5.23).2

To calculate the expected distortion of the baseline algorithm we recall the general
expression for expected distortion from (5.19):

E [d; mem] = E [dmemm > 1] Pr[not lost] + dmax Pr[lost]

> exp[-f(Mtot/mem)](1 - Pr[lost]) + dmax Pr[lost] (5.26)

D mem g(1s gmem
[ (exp -f M _em /__-_- dmax _ (5.27)

(Kmem)J 1- sem+i) d 1 - ptimem+l (

where (5.26) follows from the distortion expression for the signals stored in the buffer (5.9),
and (5.27) follows from the probability that any signal is lost (5.25). Equality is ob-
tained in (5.26) by allocating equal description rates to all signals stored in the buffer.

To get a normalized distortion expression, divide (5.27) by dmax = exp(-f(0)) to
get

/ 1t 1_e - PKr/em 1 memsig em
Ce -ig d-S- (5.28)E [d; 'smem]norm = exp [-f (t 0 - P I) + 1- mem (528)
--g - -Psig

The expected distortion given by (5.28) is a function of Kmem, which is under the
designer's control, but also of psig which is itself a function of mem, emp7, and Ppac-
The last two of these parameters are not under the designer's control and Ppac may not
be known by the designer.

2 Note that Pr[xk lost] :A Pr[m = cmem, next signal arrival]
= Pr[m = Kmem] Pr[next signal arrival]

because we are calculating the probability that a particular signal, sk is lost, not that a signal is lost
at a particular time, which is what this calculation would yield.
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If the designer knows the system operating condition as parameterized by Psig, he
can optimize the baseline algorithm to this particular utilization rate. The performance
of this "optimized" baseline algorithm is found by taking the minimum across all choices
of fmem:

I' Mt0 ( 1- psiem
min E [d; rmem]norm = min exp -f (to + f(° ( i- Pemg+1 
remem Kmem Kmem 1 ]s 

( - Psig)P em

+ 1 p-mem +1 (5.29)
Psig

Unfortunately, in many situations Psig is unknown, and so the optimization in (5.29)
cannot be performed. In these cases the adaptive algorithm becomes particularly at-
tractive. We refer to the performance characteristic (5.29) as that of the 'optimized'
baseline design, and define Kmem,opt to be the r-mem that meets this bound, i.e.

Kmem, opt = argmin { exp [-f (tt f(0)] (11em 
gmem Kmem -Psig

(1 - ps;g)peig+ (1S- emig (5.30)

* 5.5.2 Steady State Performance of Adaptive Algorithm

We conjecture that the performance of the adaptive algorithm (Section 5.4.2) lies be-
tween the lower bound on performance given by (5.6), and the performance of the
optimized baseline algorithm given by (5.29). Simulation results bear out this conjec-
ture, examples of which are presented in the next section.

* 5.6 Comparison of Algorithms

To compare the performances of the adaptive and baseline to each other and to the
bound on all algorithms, we restrict ourselves to linear f(R), f(R) = aR. This gives
a distortion-rate trade off of d = exp(-caR). In Fig. 5.9 we plot typical steady state
performance curves versus pac for Mtot = 1200, Mpa, = 30, and a = 0.1. The dotted
and dash-dotted curves show the performance of the baseline algorithm as predicted
by the analysis of Section 5.5.1, for Kmem = 200 (low quantization rate) and ~mem =

80 (high quantization rate, respectively, where quantization rate equals Mtot/lmem

Experimental results for these cases are shown by the +s and xs, and closely match
the analysis. The dashed curve is the performance of the optimized baseline algorithm
given by (5.29). The solid curve is the performance bound on all algorithms given
by (5.6). The experimental performance of the adaptive algorithm, indicated by o's,
closely approximates the bound on all algorithms
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Figure 5.9. Expected distortion versus ppac, Mtot = 1200, Mpac = 30, and a = 0.1. The expected
distortion for the low-rate (Mtot/Kmem = 1200/200 = 6) and high-rate (Mtot/lmem = 1200/80 = 15)
quantization cases are plotted as dotted and dash-dotted curves. Experimental confirmation of the
analysis is plotted as +'s and x's, respectively. The choices of mlem = 80, 200 are optimal for ppac - 5
and ppac - 2, respectively. The performance of the optimized baseline and the lower bound on all
algorithms are plotted as dashed and solid curves, respectively. The experimental performance of the
adaptive algorithm, indicated by o's, closely approximates the lower bound.

From Fig. 5.9 we observe that the performance of the optimized baseline algorithms
is quite close to the lower bound. This means that if Ppac is known, the baseline algo-
rithm can be optimized (i.e., Kmem can be chosen) to this particular ppac, allowing us to
capitalize on the computational simplicity of the baseline algorithm. The disadvantage
of doing this is that the baseline performance is quite fragile and depends markedly
on exact knowledge of pac. In situations where Ppac is uncertain or unknown, the
baseline algorithm cannot be guaranteed to give good results, and the uniformly good
performance of the adaptive algorithm becomes very attractive.

Figure 5.9 also illustrates the differences between the two baseline algorithms. Both
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algorithms have two distinct regions of operation: Kimem < mem,opt and mem >

Kmem,opt where Kmem,opt is the break point where the baseline algorithm comes closest to
the bound on all algorithms. These are the memory-constrained and communication-
constrained regions of operation, respectively. In the memory-constrained region the
distortion is dominated by the first term in (5.19) - quantization noise - which is in-
variant to changes in Ppac. To meet the lower bound we must increase the rate at which
each signal is quantized. The beneficial effect of increasing the quantization rate in
the memory-constrained region can be seen by comparing the performances of the two
algorithm when both are in the memory-constrained region (O < Ppac < 2 in Fig. 5.9).

In the communication-constrained region the distortion is dominated by the second
term in (5.19) - memory overflow - which is an increasing function of Ppac To
meet the lower bound we must reduce the probability-of-overflow. This can be done by
increasing Imem the number of signals that can be stored in memory at a given time.
The beneficial effect of increasing inem in the communication-constrained region can
be seen by comparing the performances of the two algorithms when both are in the
communication-constrained region (5 < Ppac < 7 in Fig. 5.9).

To quantify the superiority of the adaptive algorithm, we approximate the extra
resources (memory or communication rate) necessary for the performance of the base-
line algorithm (mem fixed) to match the performance bound on all algorithms (5.6).
Matching this bound guarantees that the performance of the adaptive algorithm is also
matched. Since the performance of the adaptive algorithm is quite close to the all-
algorithm bound, this gives a good sense of the superiority of the adaptive algorithm.

We show that the baseline performance transitions from the memory-constrained to
communication-constrained regions of operation occurs at Psig - 1. We do the analysis
in the large-nmem region because the memory densities of RAM chips today is so high
that in any deployed system Kmem is likely to be big. Hence, Psig < 1 means we are in
the memory-constrained region while Psig > 1 implies that we are in the communication-
constrained region.

m 5.6.1 Memory-Constrained Region

We start with the steady state average distortion of the baseline algorithm from (5.28)
using d = exp(-f(R)) = exp(-cR),

( 1 - pl~mem 
r-mem

E [d; mem]norm -exp[-aMtot/nmem] ( > psi.pig (5.31)
- Psig I-Psig

exp[-a Mtot/nmem] (5.32)

= exp[-taMtotpsig/Tempppac] (5.33)

> exp[-aMtot/Tempppac], (5.34)

where (5.32) follows from cmem > 1 and Psig < 1, (5.33) from Psig = TempPpac/Kmem,
and (5.34) follows from Psig < 1.
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Equation (5.32) confirms that the overall distortion in the memory-constrained re-
gion is dominated by the first term of (5.31), i.e. the quantization noise. In addi-
tion (5.34) is equal to the bound on all algorithms that we developed in (5.6). This tells
us that the expected distortion of the baseline algorithm is strictly greater than this
bound, as it should be. We now quantify how much better the adaptive system does
than the baseline. The measure of improvement we use is how much memory is save by
using the adaptive algorithm. In other words, how much must we increase Mtot by so
that the inequality of (5.34) is met with equality? We call the new total memory size
f//tot Defining Mtot = 'YmemMtot, then

Mtot = 'YmemMtot, (5.35)

Temp = 'memTemp, (5.36)

Psig = PpacTemp - 'memPpacremp = memPsig- (5.37)
/mem Kmem

Eq. (5.36) tells us that for a fixed communication rate, as we increase the size of
the memory Mtot, it takes longer on average to download the entire memory. Sim-
ilarly (5.37) tells us that as we increase Mtot, the signal-normalized utilization rate
increases proportionally. In other words, the system gets busier since it takes longer to
transmit a signal while the arrival rate stays fixed.

For equality in (5.34) we need

exp(-aMtot/empppac) = exp(-laMtot/mem) (5.38)

= exp(-CatymemMtot /lmem) (5.39)

where (5.38) comes from setting (5.32) to (5.34). Solving (5.39) for 'Ymem we find

Kmem 1
'Ymem = (5.40)

TempPpac Psig

But, for this choice of -ymem we get

PpacTemp _ PpacTempYmem _ 1. (5.41)
/mem Kmem

This means that we are no longer in the region where fiSig << 1, so the approximate
equality of (5.32) is not necessarily valid. We need to calculate (5.31) in the region
as psig approaches unity from below, and confirm that the expected distortion is still
roughly exp(-Mtot/imem).

-CYftot - Kmempmem-1
lim E [d; meml]norm -lim exp -mMtot )mem

+ 1Smemsi g g memsig

-~ -mem + 1)Psig } | 1 (5.42)
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= exp[-aQMtot/I's I /mem + 1

1+ exp[-Mtt/+ Kmem

- exp[- aMtot/mem] (5.43)

= exp[- -eMtot /empPpac], (5.44)

where (5.42) follows from using L'Hopital's Rule to evaluate (5.31) at Psig = 1, (5.28)
and l'Hoptial's Rule evaluated at Ps = 1, (5.43) follows from Kmem >> 1, and (5.44)
follows from Mtot = ymemMtot and (5.40). Since (5.44) is equal to the bound of (5.34),
this is the correct choice for 'Ymem. Thus, if Psig < 1 we must increase our memory size
by a factor ,,mem = 1/Psig in order for the baseline algorithm to do as well as the bound
given by (5.34).

* 5.6.2 Communication-Constrained Region

Now we investigate the communication-constrained region where Psig > 1 and tmem, 
1. Starting from (5.31) we have

E exp(tim 1 - p em 1 g mem

E [d; Kmemnorm - exp(-1Mtot/m ) nem) - -+l p--+l (5.45)
, - Pig 1t~mem+l

,_S1 ( Sigsig

_ exp(-aMtot/lmem)p + 1 - (5.46)
Psig Psig

where (5.46) follows from Psig > 1 and ';mem > 1. Equation (5.46) tells us that in the
communication-constrained region, as Psig gets increasingly larger than 1, the overall
distortion is dominated by the second term of (5.45), the probability of overflow. Note
that as Psig gets significantly bigger than 1, the first and last terms of (5.46) converge
to zero, leaving distortion dmax = exp(O) = 1. If we do not know Psig, and we guess
poorly, we could end up with terrible performance.

In the memory-constrained region we were interested in how much we had to in-
crease the total memory size Mtot to match the performance bound. Now, in the
communication-constrained region, we want to know how much we need increase the
communication rate by to meet the performance bounds. The transmission rate is
parameterized by pac/Temp, in terms of fraction of the memory downloaded per sec-

ond. We increase this rate to YcomLpac/Temp = Ppac/Temp and ask, for what com do we
match (5.34), the bound on possible performance of all algorithms? If emp = 'emp/Ycom,
then

Itot = Mtet, (5.47)

Psig = PpacTemp/flmem Psig/7com. (5.48)

Equation (5.47) tells us the memory resources are unaffected by a change in communica-
tion resources, but (5.48) says that the signal-normalized utilization rate Psig increases.

____ ___ _ I �_ __ I_
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To solve for ycom, we set the lower bound on all algorithms (5.34) equal to the
expected distortion (5.46):

exp(-aMtot/Tempppac) = exp(-oMtot/Ksmem)--- + - _ (5.49)

exp(-aMtot/TempPpac -1 = (exp(-aMtot/nmem) - 1) 7com (5.50)
Psig

com -- Psig [1 - exp(-oCMtot/empPpac) ] (5.51)I - exp(-oMtot/Kmem)

* 5.6.3 Section Summary

In Fig. 5.10 we graphically summarize the results of this section. In the memory-
constrained region, the total memory size Mtot must be increase to ym,,,emMtot (solid
curve) for the baseline performance to match the bound. In the communication-con-
strained region, the communication rate ppac must be increase to Ycombpac (dotted and
dash-dotted curves) for the baseline performance to match the bound. To recap, the
factors 7mem and ycom are:

1
'Ymem -

Psig

OM Psig [1 - exp(-aMtot/Imempsig) 
Psg 1 - exp(-Mtot/nmem) ]

If Pmem is chosen poorly for a given Psig (or Psig changes or is unknown), the perfor-
mance relative to the adaptive algorithm declines quickly, and significantly. This means
that the baseline algorithm is quite fragile, compared with the adaptive one. In the
communication-constrained region this fragility is more marked for small mem (e.g.,
the high-rate quantization curve of Fig. 5.10). If mem is small, the quantization rate is
large, but since communication resources are limited, buffer overflows are more likely.
In Fig. 5.10 this effect is indicated by the increased need for communication resources
of the high-rate baseline algorithm versus the low rate baseline algorithm when trying
to match the adaptive algorithm's performance.

One very useful characteristics of the adaptive algorithm is that it needs not be
tuned to the specific utilization factor, Ppac. The algorithm is independent of ppac and
so works well for any particular Ppac, or across a range of Ppac This is particularly useful
when the conditions in which the system operates are unpredictable or time-varying.
The preceding analysis quantifies the gain of this added robustness.

One intermediate algorithm between the adaptive and baseline algorithms would
be one that does not use hierarchical source coding, but can vary the fidelity at which
new signals are stored. Then, if the algorithm determines that it is loosing too many
signals to buffer overflows, it can reduce the quantization rate, increasing Kmem. On
the other hand, if it has too many resources free much of the time it can increase
the quantization rate, decrease mem. The question is, what probability of overflow
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Figure 5.10. The percentage by which system resources must increase so that baseline algorithm
performance is guaranteed to match adaptive algorithm performance for fixed Mtot = 1200, Temp = 40,
a = 0.1, and mem = 200 (low quantization rate) and mem = 80 (high quantization rate). The
transition from memory-constrained to communication-constrained operation occurs at psig - 1.

should the algorithm try to achieve? One possible answer is given by the analysis of the
probability of buffer overflow (5.25). Since the break point of the baseline algorithm
is at Psig 1, this would be a good region to operate in. Equation (5.25) together
with l'Hopital's Rule tells us that when psig is approximately one, the probability of
buffer overflow is approximately 1/(1 + Kmem). An algorithm could adjust its storage
fidelity to try to match this probability of overflow would likely display performance
traits between those of the adaptive and baseline algorithms.
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* 5.7 Design Implications

In this chapter we have developed and analyzed a pair of buffering algorithms. In this
section we discuss some extensions of the work to other scenarios.

Delay Constraints. In the adaptive algorithm developed in this chapter the objective
was to minimize the average distortion of each signal. Because of the particular struc-
tures of the priority storage and extraction protocols (most-significant-bits through first)
we minimized the delay of the most-significant-bits as a by-product. If we more directly
address delay constraints we can explore some interesting implications and extensions
of our results.

Consider delay-constrained applications such as voice over the Internet (VoIP). For
these applications there is a maximum delay that can be associated with each resolu-
tion layer. If the resolution layer does not reach the destination before the maximum
delay limit is exceeded, the network should simply drop that packet. This necessitates
modification of the priority storage and extraction protocols of Section 5.4.2 to delete
such now-useless information packets.

At a more subtle level, delay measures can be incorporated into the general distortion
measure d, changing d = exp(-f(R)) to d = exp(-f(R, )) where r is now a measure
of delay. Now the distortion does not solely measure reconstruction fidelity, but also
the delay until that reconstruction is made.

Different Distortion Measures. Following on the idea of modifying the distortion mea-
sure to take into account reconstruction delay, we can also change the distortion measure
on a per-signal basis. This would be important if we had signals of different sizes (e.g.,
small versus large images), but even more so for different classes of data (e.g., audio
versus image or video). Furthermore, the distortion measure could also be changed to
give different quality-of-services (QoS) to the different data classes. In each case, we
can resolve for the optimal greedy storage and extraction protocols as in Section 5.4.2,
but the complexity of the optimization will be greater because there are now multiple
distortion measures.

We can also assign different distortion measures to the baseline and adaptive algo-
rithms. We could do this if there is a distortion penalty for using multiresolution source
codes. As discussed in [26], not all source codes are successively refinable. This means
that the distortion-rate trade offs attainable in a single step using a block code, as
the baseline algorithm does, can be better than those attainable for using a multi-step
progressive code, as the adaptive algorithm does. In other words, there may a price
for the extra flexibility that such a source code yields. Furthermore, the adaptive algo-
rithm will need more header information than the baseline to route each of the layers of
description. And finally, as discussed earlier, the adaptive algorithms is always going to
be more computationally expensive than will the baseline. By penalizing the adaptive
algorithm through a distortion measure that decreases more slowly as a function of rate
we can model all these effects and better determine when the adaptive algorithm should
be used.
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Paralleling the discussion in Section 5.6, we define two distortion measure dbase =

exp(-abaseR) and dadapt = exp(-aadaptR) and calculate ymem and com, generalizing
to two distortion measures the derivations in Section 5.6.1 and 5.6.2, respectively.

'Yme = adap 1 (5.52)
abase Psig

orn = Psig 1 - exp(-aadaptMtot/,nemPSig) 1 (5.53)
1 - exp,(-abaseMtot/lmem )

For example, in Fig. 5.11, we plot the performance of a baseline algorithm with abase =

0.1 as before, and O/adapt = 0.09. This means that the adaptive algorithm is ten percent
less efficient in terms of rate. In contrast to Fig. 5.10, the baseline can now outperform
the adaptive algorithm near to the normalized system load point Psig = 1. Outside of
the dashed lines, the adaptive algorithm outperforms both baseline algorithms, but the
performance gain is reduced, particularly in the communication-constrained region of
operation. In general, the relations (5.52) and (5.53) can be used to give the designer
a more accurate assessment of the attractiveness of the adaptive protocol design.

Memory Fragmentation. The baseline protocol is attractive in that it writes to and
reads from the RAM in well defined blocks. Unless special measures are taken, use
of the adaptive algorithm is likely to result in a fragmented memory where the data
stored for each signal is stored in a number of different memory locations. This problem
becomes increasingly acute the more fine is each layer of quantization. While the lower
bound in this chapter were derived assuming that the memory is infinitely divisible, this
is not a good model for real RAMs. We must choose a smallest block size of memory
to work with. For instance, in the simulations of Section 5.6 we did this and the results
remained close to the bounds, see Fig. 5.9. As the size of the basic block of memory
is increased, the general approach remains valid (though the optimization are in fact
integer programs so integer techniques or rounding must be used), but the performance
curves will become less smooth because of the increasing granularity. One advantage of
working with larger basic memory blocks is that memory fragmentation becomes less
of a problem.

Non-Poisson Queuing Statistics. A final problem of interest is in non-M/M/1 queues
that have more realistic traffic patterns. We conjecture that the protocols developed
herein will do well for such queue because they perform robustly regardless of the true
M/M/1 queue statistics. To show this we would have to show that on a per-sample-
path basis, this algorithms performs about as well as any algorithm could. We leave
this idea for future analysis.

* 5.8 Chapter Summary

In this chapter we present a model of queues routing distortion-tolerant data. We design
a pair of buffering protocols for this problem. We design the first, baseline algorithm,
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Figure 5.11. The percentage by which system resources must increase so that baseline algorithm

performance is guaranteed to match adaptive algorithm performance for fixed Mtot = 1200, remp = 40,

Cabase = 0.1, aadapt = 0.09 and Kmem = 200 (low quantization rate) and Kmem = 80 (high quantization

rate).

to work in a network with a layered protocol stack. This algorithm does not exploit any
particular knowledge of signal characteristics. We then design an adaptive algorithm
that works across protocol layers and exploits the distortion-tolerant character of the
signal content being handled. We quantify the performances of both algorithms and
show that the adaptive algorithm is robust to uncertainty in queue statistics and closely
approximates a performance bound on all algorithms. Finally, we discuss some issues
of design that must be considered when applying these ideas.

- Memory constrained: both rates
Comm. constrained: high rate quantization
Comm. constrained: low rate quantization
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Chapter 6

Conclusions

In this thesis we have developed source coding algorithms that work across traditional
network layers, and make use of detailed knowledge of data characteristics. These algo-
rithms realize substantial performance gains when compared to traditional approaches
that operate within the paradigm of layered network architectures.

We found that ideas of coding with side information are particularly useful in net-
working contexts, because they provide insightful ways to process distributed sources of
information. We built on these ideas to extend Wyner-Ziv source coding and channel
coding with side information to noisy encoder observations. We developed the rate-
distortion and capacity expressions for general finite-alphabet sources, and evaluated
the results for the binary-Hamming and quadratic-Gaussian cases.

Using these tools and insights, we then investigated some fundamental problems of
estimation under communication constraints. The coding strategies we proposed blur
the boundaries between communication and estimation aspects of the problem. We
investigated these problems in the context of data fusion for sensor networks. We showed
how any general sensor tree can be decomposed into basic serial and parallel networks.
We then took two design approaches to these prototype networks. We first developed a
sense of what is possible in a layered network architecture - where the communication
and estimation functions are kept separate - by designing and analyzing estimate-and-
quantizer strategies. Then, designing inter-layer algorithms, we refined these basic
approaches to take advantage of decoder side information. These refined designs were
based on noisy Wyner-Ziv source coding. This approach led to substantial performance
gains and convenient iterative distortion-rate expressions for the achievable region in
quadratic-Gaussian scenarios. Using these expressions we connected our work to earlier
work in the field and demonstrated that successive coding techniques can be used to
achieve the rate-distortion bound in certain situations. We also discussed how the
design insights provided by our results can be used when structuring communications
in a sensor network, or when determining how best to allocate resources among sensor
nodes.

We also showed how to design inter-layer protocols for content buffering and dis-
tribution. When combined with multiresolution source codes, knowledge of content
characteristics enabled the design of memory interfaces that can adaptively trade off
content fidelity for storage resources. This trade off significantly enhances end-to-end
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system performance, as it makes the probability that data is lost in an uncontrolled
manner due to buffer overflows negligible. For purposes of comparison, we designed
baseline schemes that are appropriate for use in a layered network architecture. As
compared to these baseline schemes, we showed that the adaptive system performs very
well in terms of distortion, delay, and system robustness - closely approximating a
bound on the performance of any memory interface.

* 6.1 Future Work

Kalman Filtering with Rate Constraints. The data fusion techniques presented in this
thesis jointly address estimation and communication. The sensor network problems
we considered are special cases of more general problems of sequential estimation un-
der communication constraints. In Chapter 4 we used a Kalman Filtering analogy to
discuss the structuring of coding strategies for the serial and parallel CEO problems.
This discussion points to the general research topic of Kalman Filtering under rate
constraints. If, in the serial CEO problem, we consider the index of each sensor node
as a time index, then each vector-measurement is a time-indexed source observation.
In the serial CEO problem the source x is constant from time sample to time sample.
A more general problem would allow the source to evolve. Kalman Filtering with rate
constraints is related to an emerging area of research in the control community study-
ing feedback over rate constrained channels [68, 58]. The side information perspective
might offer new insight into these problems and, as with the scalar example presented in
Section 2.1.1, some ideas for implementations as well. Starting from these connections
we hope to explore further this general research area.

Converse for the Serial CEO Problem. A complete theory of sensor networks on commu-
nication trees needs a performance bound: a converse. Oohama constructed a converse
in [45] for the parallel network configuration in quadratic-Gaussian scenarios. Much
work remains to be done in developing a converse for the serial network configuration.
In the serial problem, no message from any agent except the last agent arrives at the
CEO without being further degraded (because of transcoding and saturation effects).
A converse for the serial problem is thus complicated by the fact that the degradation
each message undergoes is a function of the coding scheme chosen.

Communication Graphs with Cycles. Understanding data fusion algorithms in sensor
networks with tree-structured communication graphs is a precursor to communication
graphs with loops. An example would be when two agents are able to converse (over
finite rate channels) before sending jointly determined messages to the CEO. A first
step in this direction would be to understand how the strategies presented herein must
be modified for use in such situations. Such results might parallel those developed for
iterative estimation on graphs. Many iterative algorithms, such as Belief Propagation,
are exact on trees, but can often be usefully applied to graphs with cycles. The un-
derstanding of the behavior of these algorithms in such settings is a current area of
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research. A parallel development of iterated achievability results in information theory
might be able to build on some of the emerging results in this area.

Implementations using Iterative Techniques. Iterative estimation ideas might also have
a role to play in implementing the coding ideas presented herein. In the discussion of
data fusion for sensor networks, all information flow was unidirectional from the agents
to the CEO. In some situations, such as for the two-agents and infinite-agent parallel
CEO problems, we were able to show that unidirectional information flow is enough
- smoothing is not needed. It may be that when finite block-lengths are imposed,
and perfectly reliable decoding can no longer be assumed, iterative decoding techniques
would be more robust. For example, such techniques might be able to detect and correct
for mistakes made in the middle of the decoding process.

Queuing with Distortion-Control. Exciting opportunities lie in applying ideas of queuing
with distortion-control to real-world networks. The design rules we determined can be
used immediately to determine the optimal packet size for baseline algorithms used in
networks with steady system loads. Microchips or circuit-switched networks would be
good examples. To integrate these ideas into existing or newly-defined standards, we
must determine the overhead associated with protocol definition, i.e., how much extra
header information is required. Following that, we would like to extend these ideas to
sources with memory (e.g., video), and to test the algorithms on sequences of queues.
We expect that the performances robustness of the adaptive algorithms will continue
to hold in these more general situations.
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Appendix A

Derivations: Noisy Wyner-Ziv
Coding

* A.1 Finite-Alphabet Rate-Distortion Function

In this appendix we prove a single-letter expression for the rate-distortion function
RZ(d) of source coding with side information and noisy source observations at the
encoder. The rate-distortion function RWZ(d) is a tight lower bound on the rate needed
to guarantee that nE [i=1 D(xi, xi)] can be made arbitrarily close to d for a sufficiently
long block length n. Formally, repeating the statement of Thm. 4 from Chapter 3, we
show the following.

Theorem 8 Let a triple of random source and observation vectors, (x, yo, Yl) and a
distortion measure D(.,.) be given such that:

(a) Px,yo,yl(x, Y, :) = ln px(Xi)pyolx(jilXi)Pyl1x(ilzXi)

(b) D(x, i) = 1 = D(xi, Xi)-

Then a sequence of length-n block encoder-decoder pairs can be designed such that if Yl
is encoded at rate R, x can be recovered to within average distortion d with arbitrarily
small probability of failure as n grows to infinity if and only if

R > RW(d) = min [I(yl; u) - I(yo; u)], (A.1)I )PU 1 )] (Plyl)y
[(y l)EU

where the set U consists of all posteriors relating the random variable u to the encoder
observation Yl that satisfy the following conditions:

(i) e yl U,

(ii) yo *4 X U,

(iii) E [D(x, f(yo, u))] < d for some memoryless function f: o x U - X.

In the rest of this appendix we prove this theorem and evaluate the rate-distortion
function for two special cases. In Section A.1.1 we show convexity of RW (d). In
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Section A.1.2 we show a converse, i.e., a lower-bound on RWZ(d), for finite-alphabet
sources and arbitrary distortion measures. In Section A.1.3 we demonstrate an achiev-
able region for RWZ(d) that matches the converse of Section A.1.2 and so defines the
rate-distortion function for this problem. In Section A.2 we evaluate RWZ(d) for the
binary-Hamming case and in Section A.3 for the quadratic-Gaussian case.

* A.1.1 Convexity
The noisy Wyner-Ziv rate-distortion function (A.1) is a non-increasing convex function
of d. Monotonicity follows because as d increases the domain of minimization increases
as well. In the rest of this section we show that RWZ(d) is convex in d.

let da and db be two distortion values, and let Ua, fa(-, ) and Ub, fb(-',) be the cor-
responding auxiliary random variables and data fusion functions that achieve RWZ(da)
and RWZ(db), respectively. Let q be an independent time-sharing random variable
such that Pr(q = a) = A and Pr(q = b) = 1 - A. Define u = (q, uq) and let
f(u, yo) = fq(uq, YO). Then the distortion becomes

d = E[D(x,k)] = AE[D(x, fa(Ua,yo))] + (1 - A)E[D(x, fb(ub, yo)) = Ada + (1 - A)db,

and (A.1) becomes

I(yl; u) - I(yo; u)

=H(yl) - H(yIluq, q) - H(yo) + H(yoluq, q)
=H(y) - AH(yllua) - (1 - A)H(yllub) - H(yo) + AH(yolua) + (1 - A)H(yolub)

=A[I(yi; Ua) - I(yo; ua)] + (1 - A)[I(yi; ub) - I(yo; ub)]. (A.3)

If we define w to be the auxiliary random variable that achieves the rate-distortion
bound for distortion d we have

RIWZ(d) = I(y; w) - I(yo; w)

< I(yi; u)-I(yo; u) (A.4)

= A[I(yl; Ua) - I(yO; Ua)] + (1 - A)[I(yI; Ub) - I(yo; Ub)] (A.5)

= ARWZ(da) + (1 - A)RWZ(db). (A.6)

where (A.4) follows because u achieves the correct distortion but does not necessarily
minimize the rate, (A.5) from substituting in from (A.3), and (A.6) since ua andub were
defined to be rate-distortion achieving auxiliary random variables for distortions da and
db, respectively.

I
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* A.1.2 Converse

In this section we show that RWZ(d) is a lower bound on the achievable rate-distortion
region for the noisy Wyner-Ziv problem.

n

nR > H(m) > H(mlyo) > I(m; Yllyo) = ZI(m;,ilYo, Y- 1 ) (A.7)
i=l

n

= j [UH(yl,ijyo, y - 1 ) - H(yl,ilYo, Yi-1, m)]
i=l
n

= j [H(y,i lo,i) - H(yl,iIyo, yi-1, m)] (A.8)
i=l

n n

> H(y,2Iyo,) - H(yi, yo, m)] [H(y,iiyo,i) - H(yli,ilyo,i, ui)] (A.9)
i=l i=l

n n

= -'I(y,i; uilyo,i) = j [H(uilyo,i) - H(uilyo,i, y,i)]
i=l i=1

n n

> [H(uilyo,) - H(uiyl,)] = [I(ui; Yl,i) - I(ui; Yo,i)] (A.10)
iil i=l
n

> E RI Z (E [D(Xi, fni(Yo,i, ui))]) (A.11)
i=l

> nRz(d).

Line Justification
(A.7) Range of m; conditioning reduces entropy; entropy positive; chain rule.
(A.8) The observations yo and Yl are pairwise i.i.d.

(A.9)-(A.10) Conditioning reduces entropy and ui = (m, yo,, ., Yo,i-1, Yo,i+l,YO,n).

(A.11) Definition of (information) noisy Wyner-Ziv rate-distortion function
where fni is the data fusion function for ith sample of the estimate
in the length-n case.

(A.12) Jensen's inequality.

* A.1.3 Achievability

We now show that we can find a source code that can achieve E [D(x, f(yo, u))] d
while operating at a rate R arbitrarily close to RIWZ(d). We use Txn(e) to denote the
set of c-strongly typical sequence of length n according to the distribution px(x).

Definition 1 The set of length-n vectors x that are -strongly typical according to a
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finite-alphabet probability measure px(x) is defined as Tn,(e) where

Tn2()= {x} flN(xo;x) - npx(xo)l < nlX- 1 for all xo E X s.t. px(xo) > 0

N(xo;x) = 0 if Px(XO) = 0,

where N(xo; x) indicates the (integer) number of samples in the vector x equal to xo.

Consider a fixed Puly, (uIyl) and function f(u, yo). The marginal for u is pu(u). We
construct a rate-distortion achieving code as follows.

* Codebook Generation: Let R 1 = I(yl; u) + e. Generate a random codebook C
consisting of 2 nR1 codewords u(s) where s E S 1 = {1,..., 2 nR) . Generate each
codeword in an in an i.i.d. manner according to Pu(U(s)) = i=L Pu (ui (s)) -

Let R 2 = I(yl; u) - I(yo; u) + 3e. Subdivide C into 2 nR2 subsets or "bins" Accom-
plish this subdivision of C by drawing a uniform random variable in {1,..., 2n R2}

for each codeword u(s) E C. This is the bin to which we assign u(s). Let B(m)
denote the codewords assigned to bin m. There are approximately 2 n(I(Yo; u)-2E )

codewords in each bin.

* Encoding: Given the encoder observation Yi find the codeword u(s) E C that
satisfies (u(s),yl) E TunY (e). If no such codeword exists an error has occurred.
If more than one such codeword exists the encoder selects one at random. Given
the selected codeword, u(s), the encoder transmits the index m of the bin such
that u(s) E B(m).

* Decoding: The decoder looks for a u(s) e B(m) such that (u(s), yo) · Tny(e).
If there is a unique such u(s) the decoder calculates x where xi = f(ui(s), yo,i). If
there is no such u(s), or more than one, than an error has occurred.

* Probability of error: Without loss of generality, in calculating the probability
of error, we assume the message m = 1 is being communicated. We consider four
possible errors, and show that each contributes negligibly to the probability of
error:

1. The sequences (x, yo, Yi) Txn, ,, (e). Since yo and yl are the outputs of a
pair of independent discrete memoryless channels with x as the inputs, this
event has negligible probability of error by the weak law of large numbers.

2. The observations yl typical, but there is no u(s) e C such that (yi, u(s)) E
Tyl,,(e). The probability of this is negligible if R 1 > I(yo; u), which is true
by construction.

3. The sequences u(s) and yo are not jointly typical. The probability of this
event goes to zero as n grows to infinity by the Markov Lemma [24] since
u -yl -+ yo.
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4. There exists another s E B(m) such that (u(s), yo) E T,,yo(e), but (u(s), x) 4
Tn, (e). This probability is upper bounded by the size of the bin [B(m)I times
the probability that u(s), an independent sequence generated according to
pu(U(s)) = -n_=lpu(ui()) is jointly typical with yo:

Pr < 2 n(I(Yo;u)-2) 2 -n(I(yo;u)-e) = 2- ne

which can be made smaller than any target probability of error if n is chosen
large enough.

5. Given that u(s) is recovered correctly, by the Markov Lemma (x, u(s), yo) E
Tx uyO (e) and therefore the empirical joint distribution can be made as close
as we want to the chosen distribution px,u,yo(X, u, yo). This implies that
E [D(x, i)] = E [D(x, f(yo, u(s)))] < d.

* A.2 Binary-Hamming Case

In this section we derive RWZ(d) for a discrete symmetric binary source subject to the
Hamming distortion measure. The approach is based on that of [84], but modified to
take into account the noisy encoder observations. In Section 3.1.1 we gave an informal
discussion of these results and plotted the rate-distortion function in Fig. 3.2. It will
help to keep both in mind during the following formal exposition. Finally, in that earlier
discussion we found that the rate-distortion function R w Z (d) was a convex combination
of a function g(d) and the point (O, Po). In the ensuing discussion we define the function
g(d) which is basically puts g(.) and the point (O,po) together into one function. We
will term the lower convex envelope of this new function 9(.) the function g* (d) which
we will show is equal to the rate-distortion function RWZ(d).

In the binary-Hamming case x is a sequence of i.i.d. Bernoulli random variables:
Pr(xi = 1) = p and Pr(xi = 0) = 1 - p. The variables yo and Yl are observations of
x through independent binary-symmetric channels with cross-over probabilities po and
P1, respectively. This results in posterior distributions p(yo,i xi) = po and P(yl,i 
xi) = pi where we have used Yo,i and yl,i to denote the ith samples of the observations
yo and yl, respectively. To present the derivation we slightly abuse notation and use
H(p) to denote the entropy rate of a Bernoulli random variable x where Pr(x = 1) = p.
Using this notation H(x) = H(p) = -p log(p) - (1 -p) log(1 -p). We also use use * to
denote binary convolution, i.e., p * q = p(l - q) + q(1 - p).

Define the function

H(po *pl * ) - H(), 0 < < PO--(A.15)
g(P) O. P _ o-P1-p1-2pi (A.15)

0. /3= o-p

The significance of the quantity (po - pl)/(1 - 2 pl) is that Pl * P2 P= PO, which is a
Hamming distortion achievable with zero rate by using the side information yo as the
source estimate. Also define

g* (d) = inf [(/3a) + (1 - 0)(b)],
0,1a ,

3
b

(A.16)

-�--_1__1111_--�__------ - I II_.�
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where the infimum is taken with respect to all 0 E [0, 1] and fa, fib E [0, (P0o - pl)/(1 -
2pl)] such that d = 0[pl * la] + (1 - 0)[p * b]. The function (fB) is shown to be convex
for 0 < f < O < pp in Lemma A of [84]. Because of the convexity of g(.) in this range, by1-2po
Jensen's inequality we know that the infimum in (A.16) cannot be attained by a convex
combination of g(fP) and g(fb) for 0 < fa,fib < (po -pl)/(1 - 2pl). If, however, we set
fb = (po - pl)/(1 - 2pl), then g(flb) = 0, is outside the convex region of 9(.), and so
may help achieve the infimum of (A.16). Substitute b = (po - pl)/(1 - 2pl), f = fa,
and (A.15) into (A.16) to simplify the minimization problem,

g*(d) = inf{O[H(po * p * fP) - H(fl)]}. (A.17)
0,

The infimum is taken with respect to all 0 E [0, 1] and P E [0, (po - pl)/(1 - 2pl)] such
that d = Op * a + (1 - O)po. We now show that RWZ(d) = g*(d) by showing that
RIWZ(d) is upper and lower bounded by g*(d).

Upper Bound: RWZ(d) < g*(d)

First, let u be the output of a binary symmetric channel with cross-over probability
,3, (0 < 0.5) when the input is y. u and x are related by a cascade of
2 binary symmetric channels with cross-over probabilities and Pl, which is
probabilistically equivalent to a single binary symmetric channel of cross-over
probability pi * . Similarly, yo and u are related via a cascade of three binary
symmetric channels with cross-over probabilities po, P1, f, yielding an effective
cross-over probability po * p * 8. Finally, if we let x = f(yo, u) = u, we get
E [D(k, x)] = pi * . These observations give us

I(yo; u)-I(y,; u) = [1-H(po *p *)]-[1-H(f)] = (P) - H(po*p *). (A.18)

and so
RWZ(p * A) < H(f) - H(po *l * )-. (A.19)

Second, let u be degenerate, e.g. u = 1 and H(u) = 0. Then set = yo which
achieves E [D(, x)] = po at zero rate.

Finally, consider a convex combination of these two scenarios. Let d, 0 < d < po,
be given and d = [p * ] + (1 - )pO. Then, since RWZ(d) is convex,

RWZ(d) = RWZ(d)([pl * B]+ (1 - )po)

< SRIWZ(p * ) + (1 - )RIWZ(po)

< O[H(fl) - H(po * P * )], (A.20)

where (A.20) holds by substituting in (A.19) and RIWZ(po) = 0. Since these
inequalities hold for any 0 E [0, 1] and E [0, (po -pi)/(l - 2pl)], we have shown
RWZ(d) < g*(d).
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* Lower Bound: RIZ(d) > g*(d)

The minimizing distribution of (3.1) must satisfy the following conditions: yo ++
x ++ +y+ u and E [D(k, x)] < d. We will show that RIZ (d) > g*(d) by showing
that I(yl; u) - I(yo; u) > g*(d) for any satisfactory distribution.

Define the sets

A = {u: f(O,u)= f (1,u), A = {u: f (O,u) 0 f(1, u)}. (A.21)

Then we have

d > E [D(k, x)] = Pr(u E A)E [D(, x)ju E A] + Pr(u e AC)E [D(i, x)lu E AC].
(A.22)

(a) We first show that
E[D(, x)Iu E AC] > Po. (A.23)

Rewrite the left-hand side of (A.23) as

E [Du E AC] = E Pr(u =E A) E [Du = u, u E A] . (A.24)Pr(U E Ac)
uEA

We now lower-bound the last factor of (A.24). In Ac, if f(O, u) = 0 then
f(1,u) = 1. Therefore,

E[Dlu=u,uEAC] = Pr(x =l,y = Ou = u) +Pr(x = O,yo = lu = u)

= Pr(yo = OIx = 1) Pr(x = 11u = u)

+ Pr(yo = 1Ix = 0) Pr(x = Olu = u) (A.25)

= po[Pr(x = lu = u) + Pr(x = Olu = u)] = po(A.26)

where (A.25) follows from the Markov relationship yo + x +4 u, and we have
dropped the explicit conditioning on u E A c in the right-hand expressions.
Substituting (A.26) into (A.24) and summing shows that (A.23) holds. If,
on the other hand, we had chosen f(O, u) = 1 for u E Ac then we would have
derived E [Dlu = u, u E AC] = 1 - po > po, and so (A.23) would again hold.

(b) Now, we focus on E [Dlu E A]. First write

E [Dlu EA] = pr(u = ) E [Du = u, u E A]. (A.27)
uEA

Substituting (A.27) and (A.23) into (A.22) gives us

d > Pr(u E A) Pr(u = A)E [D lu = u, u E A] + Pr(u E A.c)/A.28)
uEA (U EA)

= 0 udu + (1 - )po d', (A.29)
uEA

_ ill I _ · _ ·I~- 1III
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where 0 = Pr(u e A), Au = Pr(u = u)/ Pr(u e A), and du = E [Dlu = u, u E A].
Now,

I(yl; u)-I(yo;u) = H(yoIu)-H(yllu)

> E[H(yolu = u) - H(ylu = u)] Pr(u = u)
uEA

= 0 j Au[H(yolu = u) - H(ylu = u)]. (A.30)
uEA

Since, for u A, f(O, u) = f(1, u), call this f(u). Then

du = E[Dlu = u, u E ] = Pr(x f(u)Iu = u, u E A). (A.31)

Since f(u) is a deterministic function of u, this tells us that

H(xlu = u) = H(x f(u)lu = u) = H(du), (A.32)

and, since x and yo are related via a binary symmetric channel with cross-over
probability po, we have

H(yolu = u) = H(po * du). (A.33)

We now use (A.31) to derive an expression for H(yl(u = u).

d, = E[dlu=u, u E A]= Pr(x : f(u)lu=u)

= Pr(x 4y,yl = f(u)lu = u) + Pr(x = Yl,yl f(u)lu = u)
= Pr(x Y1lY1 = f(u), u = u) Pr(yi = f(u)Iu = u)

+Pr(x = YllYl f(u), u = u)Pr(yl f(u)lu = u)

= Pr(x yl)(1 - Pr(y f (u)u = ))+(-Pr(x y))Pr(yl () = )) + (1Pr(x )) Pr(yl f(u)lu = u)

= po * Pr(yl f(u)lu = u),

= Po * u, (A.34)

where flu = Pr(yl f(u)Iu = u). Using the definition of * we can solve for
Pu,

fl = Pr(yl f (u) = u ) = u) = u Po
1 - 2po'

And, from similar arguments as led to (A.33) we get

H(yllu = u) = H(3u). (A.36)

Substituting (A.33), (A.34) and (A.36) into (A.30) gives us

I(yl;u) -I(yo; u) > 0 Au[H(p,*pl * u)-H(u)]
uEA

> O[H( A,[po *p * ,i) - H(Z AXuu)XA.37)
EA uA* * , (A.38)

O[H(po * Pi * /3) - H(3)], (A.38)

____ I I_ _ __ I __
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where (A.37) follows from the convexity of (), and (A.38) from P = UEA AI3u
and the linearity of convolution.

So, we have shown that for any distribution on x, yo, Y, u, x = f(yo, u) satisfying
E [D(k, x)] < d and yo ++ x ++ Yl ++ u, there exists 0 E [0,1] and 0 < 3 < (po -pl)/( -
2p1) such that

1. [po * i] + (1 - )po = d' < d. (A.39)
2. I(y; u) - I(yo; u) > g*(d') > g*(d), (A.40)

where the final inequality holds from (A.29) and because g*(d) is non increasing in d.
This means that the minimization problem in (A.1) is lower-bounded by g*(d), and so
RWZ (d) > g*(d).

* A.3 Quadratic-Gaussian Case

To extend the results of Theorem 4 to continuous alphabets, we must partition Mj x
Xn x MO so as to preserve the Markov relationship y ++ x ++ yo for each block length
n. See [83, 45] for more details. Given this extension of Theorem 4 to continuous
alphabets, we now derive the test channel that achieves the rate-distortion function for
the quadratic-Gaussian case. In (3.5) we stated that the rate-distortion function for
this source-distortion pair is

RWZ(d) = 1 log cxlyo - xlyo,yl
2 d - a2xyoY

* Upper Bound: RWZ(d) < R*(d)

The sequences yo and Yl are observations of x through i.i.d. additive Gaussian
noise channels: Yo,i = xi + v0,i, Yl,i = xi + vl,i, where vj,i N(O, Nj) and the
two noise sources are independent of each other and of the source. Because the
Markov condition p(x, yo, Yl, u) = p(x)p(yolx)p(yl Ix)p(uyl) implies p(yo, yi, u) =

p(yolyl)p(yl)p(ulyl), the rate-distortion function (A.1) can be rewritten as

RWZ(d) = min minI(yl; ulyo). (A.42)
p(ulyl) f

We first find an upper-bound R*(d) on RWZI (d) and later show that R*(d) is also
a lower bound and therefore equal to RWZ(d).

Define the auxiliary random variable u = y, + e where e N(0, ad*) is inde-
pendent of yl, yo. For this choice of u, define R*(d) as

R*(d) = I(yi; ulyo)= 2 log 1 + d(Iyo + N1) (A.43)
2 -- O L- ' d* I I a (~lvu+N1)], (A.43)
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where a 2 is the minimum mean-squared estimation error of x given yo. The
minimum mean-squared estimation error for x given yo and u is

2
2 - xlyo

Crx lyou ao2 (A.44)
1+ a Iyo1 aN +d*

Set (A.44) equal to d, the target distortion and solve for a/d*:

a02 -d o2 -d
___ xyo _ xlyo

d* d(0lyo + N - Niyon (d - 2tyOYl)( 2 + Nl)(A.45)

where we have used the relation a2 = oN1/(ay o + N1 ). Substitute (A.45)
into (A.43) to get

2 21 0I°'lY - xlyl 'Y 
R*(d) = 2 log [dY- ox 2 Yl'y (A.46)

where aflyl ,y is the minimum mean-squared estimation error of x given yl and yo,

and a 2 < d < 2 . The span of d is lower bounded by the estimation error
Xlyl,yo - 0 )Iyo'

in x given both observations (yl and yo), and is upper bounded by the estimation
error in x given yo, and ignoring Yl altogether.

If we set d*- d - axl 2 and a = 2 Yo- d)/(a2lyo + Nl), we can show that the
minimum mean-squared estimation estimator of x given yo and u is

d Yo+N1] (A.47)

= f(yo, u) = E [xlyo, u] = ooY+ + , u. (A.47)

From (A.44) we know that E [(x - f(yo, u))2] = d, so this function satisfies the
target distortion.

If we explore the statistical relationship between x and x, it looks like a standard
rate-distortion achieving test channel for a Gaussian source. In other words,
x N (O, a - d) and x = + where e N(O, d) is independent of x.

Lower Bound: RZ(d) > R*(d)

We now show that R*(d) < RWZ(d). We do this by deriving the rate-distortion
function for the less general case when yo is observed both at the encoder and
at the decoder. Call the rate-distortion function for this problem R(d). Clearly
R(d) < RjWZ(d) because of the extra information at the encoder. We show that
R*(d) = R(d).

Define k = x - E [xlyo] and yl = yl - E [xlyo] = + vl. Because x is the minimum
mean-squared estimation error of x from yo then by the orthogonality principal x
and Yo are independent. Furthermore, v is independent of yo by definition. By
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these independence relationships, and because x, Yl and yo are jointly Gaussian,
p(X, llyo) = p(x, y1). Therefore p(Yl,, yo) = p(xyl) and we can ignore yo when
estimating x. The problem is thereby reduced to source coding a source in additive
white Gaussian noise for which the rate-distortion region is known from [79] to
be

- a 12 _ 1 a 2 o2

R(d) = log [ = log 22 d kIai 2 d a-a2

Thus, we have R*(d) = R(d) < RwZ(d) < R*(d) which implies that R*(d) =
RZ (d).
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Appendix B

Derivations: Noisy Information
Embedding

* B.1 Finite-Alphabet Capacity Expression

In this appendix we prove a single-letter expression for the information embedding
capacity function CIIE(d) when the encoder has noisy source observations. The rate-
distortion function CIE(d) is a tight upper bound on the rate that we can reliable
communicate at while guaranteeing that E [Zn=l D(xi, wi)] can be made arbitrarily
close to d for a sufficiently long block length n. Formally, repeating the statement of
Thm. 5 from Chapter 3, we show the following.

Theorem 9 Let a random pair of sources (x, y), a distortion measure D(., .), and a
memoryless channel law p(zlw) be given such that

(a) pxY(xy ) - 1 PX,Y(Xi, Yi),

(b) D(x, w) = Z=1 D(xi, i)

where w = x + e is the channel input and e is the embedding signal. Then, a sequence
of length-n encoder-decoder pairs can be designed such that a message of rate R can be
communicated to the decoder with an arbitrarily small probability of decoding error as
n grows to infinity while satisfying the average distortion constraint d if and only if

R < CIE(d) = max [I(z;u)- I(u;y)] (B.1)
P,(y(uY)6 ~

where the set U consists of all posteriors p(uly) relating the auxiliary random variable
u to the host information y that satisfy the two conditions:

(i) p(ulx, y, e, w, z) = p(uly).

(ii) E [D(x, w)] < d where w = x + e and e = f(u,y) for some memoryless function
f :U x -+.

Just as in [31], because CE is convex in the distribution Pel,x, then the distribution
is deterministic, simplifying (B.1). This is the reason why the maximum can be taken
over all distributions ply(uly) and functions f :U x y -+ , where e = f(u,y).
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* B.1.1 Converse

In this section we show that CIE(d) is an upper bound on the achievable communication
rate for the noisy information embedding problem.

nR = H(m) = I(m; zn) + H(mlzn) (B.2)
= I(m; zn) - I(m; yn) + H(mIz n) (B.3)

n

< ZI (u(i); zi)- I(u(i); yi)] + H(mIzn) (B.4)
i=l

< nmax[I(u(i); zi) - I(u(i); yi)] + H(mlzn) (B.5)

= n[I(u; z) - I(u; y)] + H(mlzn) (B.6)

< nCIE(d) + P(n)nR + 1. (B.7)

Line Justification
(B.2) m distributed uniformly in {1, ... , 2nR }.
(B.3) I(m;y n ) = 0 by independence of m and yn.
(B.4) By [31] Lemma 4, where ui (m,zi-l,yin+l).
(B.6) u = u(i) such that i corresponds to the maximum term of (B.5).
(B.7) Fano inequality and definition of CIE(d).

Rearranging terms in (B.7) we have

p(n) > 1- CIE(d) 1 (B.8)
- R nR

which shows for R > CIE(d), the probability of error is bounded away from 0.

* B.1.2 Achievability

We now show that we can find a channel code that can achieve E [D(x, f(u(s), y))] <
d while operating at a rate C arbitrarily close to CIE(d). We construct a capacity
achieving code as follows:

* Codebook Generation: Let R 1 = I(u; z) - 2 . Generate a random codebook
C consisting of 2 nR1 u(s) where s E S1 = {1,..., 2 nR }. Generate each codeword
in an i.i.d. manner according to p.(u(s)) = nl (ui(s)).

Let R 2 = I(u;y) + 3. Subdivide C into 2 nR2 subcodes Cj, indexed by j E
{1,...,2n R2}. Accomplish this subdivision of C by drawing a uniform random
variable in {1,...,2nR2} for each codeword u(s) E C, where s S1. This is the
subcode to which we assign u(s). Each subcode has approximately 2 n(R - R2) =

2 n(I(u;z)-I(u;y)-e) = 2 n(ClE(d)- e) codewords in its codebook.

�1 �_ _ _ __ _ _ I L __
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* Encoding: The message m = m specifies the subcode Cm that we use. For a
given observation sequence yn, the encoder looks for a codeword u(s) Cm that
satisfies (u(s),y) E Tn,y(e). If no such codeword exists an error has occurred
and the encoder chooses a codeword from Cm at random. If more than one
such codeword exists, the encoder can pick any one of them. Given the selected
codeword, the embedding signal e is calculated in a sample-by-sample manner
according to ei = f(u(s)i,Yi).

* Decoding: The decoder looks for a u(s) E C such that (u(s),z) E Tnz(e). If
there is a unique u(s) then the estimated information sequence is fi = j where
j E S2 is the index of the codebook that contains u(s). If there is no u(s) that
satisfies joint typicality, or there is more than one, an error has occurred and the
decoder assigns the index n = 0.

* Probability of error: Without loss of generality, in calculating the probability
of error, we assume the message m = 1 is being communicated. We consider four
possible errors, and show that each contributes negligible to the probability of
error:

1. The pair (x,y) Tn,y(e). Since x and y are respectively the inputs and
outputs of a discrete memoryless channel this event has negligible probability
of error by the weak law of large numbers.

2. The observation y typical, but there is no u(s) E C1 such that (y, u(s)) E
Tyn,(e). The probability of this is negligible if R2 > I(u;y), which is true by
construction, R 2 = I(u; y) + 2e.

3. The pairs (x, y) and (u(s),y) are jointly typical, but (u(s), z) is not. First,
we observe that (x,y,u(s)) E Tn,y,U(e) by the Markov Lemma [24] since
xi - Yi +- ui. Second, since ei = f(ui(s), yi), and (x,y, u(s)) E Txn,y,u() then
(x,y, u(s), e) ) . Third, since z is generated i.i.d. according to
pzx,e(zilxi, ei), (x, y, u(s), w, z) Txy,u,w,z(e). This implies that (u(s), z) E
TnZ(E) by the definition of joint typicality.

4. There exists a u(s E C, u(s) $: u(s) such that (u(s), z) E Tn,(e). This prob-
ability is upper bounded by the size of the codebook Iec times the probabil-
ity that u(s), an independent codeword generated according to pu(u(§)) =
I= 1 pu(ui(s)), is jointly typical with z:

Pr < 2n(I(u;z)-2E)2- n(I(u;z)- e) = 2- ne

* B.2 Quadratic-Gaussian Case

In this section we first develop the test channel that achieves the rate of (3.8) and then
show that we can do no better.
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Lower Bound: CIE(d) > C*(d)

The host x is an i.i.d. zero-mean Gaussian source with variance oa. The observa-
tion y is the host corrupted by i.i.d. additive white Gaussian noise yi = xi + vo,i
where v0 - N(0, No). The communication channel is an additive white Gaussian
noise channel zi = xi + ei + vl,i where vl - N(0, N 1 ). We define u = e + ay where
E [e2] = d, and y = x + vo. The two terms in the capacity expression simplify as
follows

I(u;z) = h(z)-h(zlju)

= h(e + x + vi) + h(e + a(x + vo)) - h(e + x + v, e + a(x + vo))
= 0.5 log[(2irE)d + 2 N 1] + 0.5 log[(27re)d + a2(a 2 + No)]

-0.5 log[(2e7r) 2 (d + a2 + N)(d + a2(ax + No)) - (d + aa2)2 ]

1log [ (d+a2+N)(d + a 2 ( + No)) (B.10)
=2 (d + 2 + Nl)(d + ta2(,X + No)) - (d + at)2 ()

I(u;y) = h(u)-h(uly)

= h(e + ac(x + V1)) - h(e + o(x + vo)lx + vo)

- 1 log [d + 2 (c + No)] (B.11)2 d

Subtract (B.11) from (B.10) to get

I1U Z) - I(U;d(d + a=ld x (B.12)
I(u;z)-I(u;y) = (dlog + [ + N1 )(d + -o2(02 + No)) - (d + ao)2 (B12)

Differentiate (B.12) with respect to a, and set equal to zero to get

a =( N d (B.13)
(d + No + N1) + ,4'(d + N1)

Substitute (B.13) into (B.12) to get

C*(d) = I(u;z) - I(u;y) = log 1 + t (B.14)

The above derivation, leading to (B.14) is analogous to the approach taken in [20].
To see that the resultant achievable rate is the channel capacity we could use
Theorem 2b of [42] which tells us the channel capacity when y is known at both
encoder and decoder. An alternate method allows us to leverage the work in [20]
where a converse is already proven.
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Figure B.1. Channel coding with noisy side information, Gaussian case. The signal y is viewed as
the perfectly known channel state. The random quantities m, e, w, and z are respectively the message,
embedding signal, composite signal, and channel output. The two unknown sources of noise are o and
vi which are the estimation error and channel noise, respectively.

*Upper Bound: CIE(d) < C*(d)

So far in this section we have viewed x as the host and y = x + v0 as the obser-
vations. Now we reverse that point of view and consider y as the host and x as
generated from y according to

xi = yi + vo,i. (B.15)

If we let / = 2x in (B.15) and let vO,i N (0, A2), the joint distribution

px,y(x, y) is the same as before, but our point of view is reversed, with xi described
as a function of yi rather than the other way round. Other than 'the known
multiplier B, our problem is now identical to the one considered in [20]. We can
use those results to determine the channel capacity.

With these changes the channel output is

zi = Wi+fYi +o,i+vl,i, (B.16)

= Wi + (e Yi iv + V1,i. (B.17)

This scenario is illustrated in Fig. B.1.

Since y is known perfectly at the encoder and the triple of random variables
(yi, o,i, vl,i) are independent for all i, we use results of [20] to state the channel
capacity as

C*(d)log 1C* (d) = 1 +-log xI (B 1
VO Vi 1 + (B.18)

. I-.- _ilC 4-·~ I· I1I~---·-·~ - ----I-�-^ �-IIIII--LII--�·�-·L1I"P--··�-l �Llyl-Il�-Il

121Sec. B.2. Quadratic-Gaussian Case



122 APPENDIX B. DERIVATIONS: NOISY INFORMATION EMBEDDING

which is identical to (B.14).
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Appendix C

The Serial Markov Lemma

In this appendix we discuss the Markov Lemma and extensions. This lemma, introduced
by Berger [8], is instrumental in a number of network information theory problems. We
have already used when extending Wyner-Ziv coding and information embedding to
noisy encoder observations, as discussed in appendices A and B. The basic idea of the
Markov Lemma is that under certain conditions joint typicality is transitive. That is, if
(x, y) are jointly typical and (y, z) are jointly typical then, under the special conditions
we discuss in Section C.1, (x, z) will also be jointly typical. In this appendix we gener-
alize Berger's result to a serial form of the lemma that we need to show achievability
in the serial CEO problem as discussed in Appendix D. We will also use a form of
the Markov Lemma in proving the parallel CEO results, but this requires a different
extension of the lemma that has already been accomplished in [40, 45].

In Section C.1 we introduce Berger's Markov lemma and discuss our extension. In
Section C.2 we introduce a form of strong typicality that we will later need which we
term (n)-strong typicality. Then in Sections C.3 and C.4 we prove the Serial Markov
Lemma in two different ways.

* C.1 Introduction

Generally joint typicality is non-transitive. This means that the joint typicality of
(x, y) and of (y, z) does not imply that (x, z) are jointly typical. This is the case even
if joint typicality is defined by the Markov relationship p(x, y, z) = p(x)p(ylx)p(zly).
We demonstrate this through Berger's canonical example [8].

Example: Joint Typicality is Non-Transitive. Consider the joint distribution p(x, y, z) =
p(x)p(y)p(z) where x, y, and z are i.i.d. equi-probable binary random variables. Let 0
and 1 denote m-length strings of all zeros and all ones, respectively. Define x = 0 0 1 1,
y = 1 0 1, and z = x. Then, (x,y) E Tnx,(e) = Tnxpy(e ) and (y,z) E Tpn (e) =
TpnYZ(e), but (x,z) 4 Tpnx(e) = Tn(e) since they fail to disagree in roughly half the
places which would be necessary for them to be jointly strongly typical. l

The Markov Lemma [8] tells us that if (x, y) are jointly typical, and if z is generated
from y in a conditionally pairwise i.i.d. manner, p(zly) = Hlnl 1 p(zilyi), then (x, z) will
be jointly typical. The difference with the example of the preceding paragraph is that
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for the Markov Lemma (y, z) are not only jointly typical, but they are generated in a
pairwise i.i.d. manner. This guarantees a particularly simple (memoryless) relationship
between y and z. The Markov Lemma can be used to prove a number of network
information theory results such as, e.g., Wyner-Ziv source coding with side information.
For that problem, in the current notation, x would be the codeword, y the source, and
z the side information which is generated in a pairwise i.i.d. manner with the source.

In this appendix we show that if (x, y) E Ty(e) and if y looks marginally i.i.d.
then if we use a suitably designed code to transcode y into z, we can guarantee that the
probability that (x, z) Tn, z(e) goes to zero as n grows to infinity. This is an extension
of the Markov Lemma to a sucession of coding steps: if (x, y) are jointly typical and
(y, z) are jointly typical, and z is an encoding of y using a particular class of codes,
then x and z are jointly typical. We term this extension the Serial Markov Lemma.

We consider two classes of codes. The first, proposed in [18], use a dithered encoding
rule that results in (y, z) that cannot be differentiated from a pair (y, z) generated in a
pairwise i.i.d. manner. The second class of codes were introduced by Viswanathan and
Berger [75], and have useful stationary properties. This class of codes is less powerful
than those produced by the dithered encoding rule, but seems to give us the minimal
needed structure to show the Serial Markov Lemma.

* C.2 (n)-Strong Typicality

In Section A.1.3 we defined -strongly typical sequence. In this section we slightly
broaden this set to (n)-strong typicality. The set of length-n vectors x that are (n)-
strongly typical according to a finite-alphabet probability measure px(x) is defined as
Txn(e(n)) where

Tn(e()) - } :{x} N(xo;x) - np(xo)l < n(n)lX[- for all x0 E X s.t. px(zo) > 0
{} N(xo; x) = O if px(xo) = O.

In our earlier definition of typicality e(n) equalled the constant . In this section we
show that we can make the c(n) a monotonically decreasing function of n such that, as
long as the decrease is not too fast, the resultant set will retain all the classic properties
of the strongly typical set where e(n) is a constant. We will need this variation on the
regular definition to show the Serial Markov Lemma.

Lemma 1 For all e(n) such that 1/e(n)2 o(n)1 , if x is an i.i.d. random vector such
that p(x) = r 1=l p(xi), then Pr[Tx,(e(n))] -+ 1 as n -+ oo.

Proof:
We express the random variable N(xo; x) as the sum of the i.i.d. binary indicator random

'The order notation "little" o(n) means that if f(n) E o(n) then lim-oo f = O.
n
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variables Ik, 1 < k < n where

fIk if xk A xo
1 if xk = O

Convergence in the mean is shown as follows:

E [N(xo;x)] = E E Ik =E [Ik] =
k=1 k=l

n

Ep(xo) = np(xo).
k=1

The variance grows as:

var(N(xo; x)) [ n
=E 1 Ik 

- k=1

2P(Xo)) ] = E [(•)21 -n 2p(xo)

n n

=- E [Ik2] + E [Ikll] - n 2p(xo) = E E[Ik] + E [Ik] E [I] - n2p(xo)
k=1 kol k=1 kl1

=np(xo) + n(n - 1)p(xo)2 - n2 p(xo) = np(xo)[1 - p(xo)] < n.

Putting these together with Chebychev's inequality we get

lim Pr [IN(xo;x) - np(xo)l > nE(n)X-l] < lim var(N(xo;x))
n-+oo -- n-<oo (n(n)I{X-1D2

<r l=m n 1
< lim = lim

n- oo (nEn)XI-1)2 n+oo nc(n)21X-2'

The limit in (C.4) is zero as long as lim, , = . This condition is
i o(n, 

long as e o(n), e.g., (n) = - where 0 < < 1.

Since there are only finitely many values of xo X, it follows that

lim Pr
n-)oo U {x: IN(xo;x) - np(xo)l > ne(n)lX-}

xoEX ]
< limE Pr [{x: IN(xo;x) - np(xo)l > ne(n)l - l 1 }]

XO

<lim 1 = lim 1 =0,E ne(n)21X-l_ 1 =lim nE(n) -)=
xo

(C.4)

satisfied as

(C.5)

(C.6)

where the final equality holds as long as /l(n) 2 G o(n). 
To understand the properties of the set Tn(e(n)) lets also define the a standard

strongly typical set Tn(eo) where cO = (0). First, Tn(E(n)) C Tn(eo) since the definition
of the former is more restrictive. However, Tn(e(n)) can only be slightly smaller than

Sec. C.2. c(7n)-trong Typicality
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Tn(e) since lim, Pr[Txn((n))J = limn-o Pr[Tn(Eo)] = 1, i.e., both sets contain most
of the probability mass. Because both sets contain the same set of sequences that
make up most of the probability mass, all the properties of Tn(eo) can be re-derived
for Txn(e(n)). Therefore, in the following we treat Tn(e(n)) in the same way we would
regular typical sets.

Example: How the sets Tn(e(n)) and Txn(co) differ. To see how Tn(e(n)) and Txn(eo)
differ, consider the definition of e(n). If 1/e(n)2 o(n), the set size decreases too quickly
in n to contain most of the probability mass. In this case limn,,o Pr[Txn(e(n))] < 1. In
such cases the two sets clearly have very different properties. This follows because for
such (n) while Tn(co) contains most of the probability mass, Txn(e(n)) contains almost
none. O

* C.3 Approach 1: The Dithered Encoding Rule

In [18] a dithered encoding rule that maps an i.i.d. source y to a codeword z is proposed
for rate-distortion coding. The code used is a standard rate-distortion code C consisting
of independent i.i.d. codewords generated according to pz(z) = nl 1 Ppz(zi). We use a
test channel pzly(zly) to relate the random source y to the codewords z such that
pzly(zly) satisfies E [D(y, z)] < d.

Instead of joint typicality encoding, we use the following dithered encoding rule:

1. To encode the source y generate an intermediate random vector w according to

n

PWiy(wIy) = HPzly(wi ly i ),
i=l

where Pzly is the test channel discussed above.

2. We use the notation T(x) to denote the empirical distribution (the type) of the
sequence x. If D(T(y, w) py,z ) > 6 an encoding error has occurred, choose index
m = 0.

3. If IH(T(y, w)) -H(y, z)l > an encoding error has occurred, choose index m = 0.

4. Assuming the above two errors do not occur, list all codewords z E C such that
T(y, z) = T(y, w). If this list is of size zero, an encoding error has occurred,
choose index m = 0.

5. Assuming the list is of non-zero size, randomly and uniformly over the list choose
a codeword index m and encoder y to z(m).

It can be shown that as n gets very large the probability that this encoding rule
is successful (i.e., finds a z E C that satisfies the distortion constraint) can be made
arbitrarily close to one. In addition, the following theorem can be proven,

_ I I _I
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Theorem 10 Consider any binary valued test, M[.], operating on the pair of sequences
(y, i) where z is selected according to the conditional distribution pzly(zIy) = Hn 1 Pzly(piYi).
For any e > 0, there exists a 6 > 0 and an no > 0 such that for all n > no,

Pr{M[y, z(m)] M[y, zi]} < ,

where z(m) is an encoding of y according to the dither encoding rule.

In effect what this theorem says is that the relationship between y and z(m) cannot
be distinguished from the relationship between the pair y and generated in a pair-
wise i.i.d. fashion. This relationship guaranteed by this coding structure will allow us
to prove the Serial Markov Lemma.

* C.3.1 Proof Set-up

Say x, y are jointly typical sample vectors (x, y) E Tn, y(6xy). Because this implies that
y is marginally typical, we can transcode it into a random vector z using another code.
We will show that using the dithered encoding rule to do the transcoding guarantees
that (x, z) will be jointly typical according to p(x, z). We base our development on that
of the Markov Lemma in [8]. The probability that the trancoding does not work is

Perr = Pr [(x,z) 4 Tz(E)] (C.9)

= Pr [U (IN(xo, zo;x,z)- np(xo, zo)) > nXzlV-1 (C.10)

< E Pr [(N(xo, zo;x, z) - np(xo, zo)l) > n6xlXZI- 1] . (C.11)
XOZO

We will show that for each (xo, zo) E X x Z,

lim Pr ([IN(xo, zo; x, z) - np(xo, zo)l] > nS6xzXZI-) = 0 (C.12)
n-+oo

We will find it useful to rewrite N(xo, zo; x, z) in terms of the dependence on the
intermediate vector y:

N(xo,zo;x,z) = N(xo, Y, o;x,y,z)

= E Ik(Y, ZO)] (C.13)
yE kES(xo,y)

where S(xo, y) = {i: 1 i < n, (xi, yi) = (xo, y)} is a subset of {1,... ,n}, and the
Ik(y, zo) are indicator random variables where Ik(y, zo) = 1 if Yk = y and k = zo, and
zero otherwise. In the classic Markov Lemma [8] the Ik(y, zo ) are binary i.i.d. random
variables with parameter P1 = p(zo ly), where pi = Pr[Ik(y, zo) = 1] = 1- Pr[Ik(y, zo) =

__�___lq__l(l^l_^·l_�-·C-�X^-L---- ·II ^��^_··�CI___C-_IIII. II _ _.I_..I-_ ·-I�---�I _ ·-- 1--__ I I
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0]. This follows because in that situation z is generated conditionally from y in a
memoryless manner. In the current setting, z is not generated from y in a memoryless
manner, but we will show that the dithering at the encoder is enough to guarantee the
joint typicality of x and z.

· C.3.2 Convergence of the Mean E [N(xo, zo; x, z)]

EEz[ E Ik(YZO)]
EyE kES(xo,y)

= s Es EIls Ik(Y, Zo)] 

Y Esy kES(o,y)-

< E (np(xo, y) + nIy -1) (p(zo ly) + 2C6yz)
yEYI

-E n[p(xo, , o) + p(zoly)SxylXI- + 2yzp
YEY

(C.14)

(C.15)

(C.16)

(C.17)

,(xo, y) + 2CGSxysyzl-1]

< n[p(xo, zo) + 65lZ1-1 + 6yz(2Cll + 2cJ,,lZl-)
< np(xo, zo) + n&y(IZl- + 2C1l1 + 2CIZI- 1)

= n[x(xo, zo) + 'rxyr1]

(C.18)

(C.19)

Line Justification
(C.14) Substituting in (C.13) and the linearity of expectation.
(C.15) Iterated expectations.
(C.16) The pair (y, z) cannot be differentiated from a pair-wise i.i.d. pair, Thm. 10.

Hence their first-order statistics must be stationary and will approximate
the test channel, p(zoly).

(C.17) IS(xo, y)l < (np(xo, y) + nSxylCIX-L) since (x,y) E Tn y( x,).
(C.18) Choose &y = yz.
(C.19) Define K1 = IZ1-1 + 2Clyl + 2ClZ1-1 .

We can similarly develop the parallel lower-bound,

E [N(xo, zo; x, z)] > n[p(xo, zo) - JxytKl].

From (C.18) and (C.20) we see that the mean of N(xo, zo; x, z) converges to p(xo, zo).
We next show that the growth in n of N(xo, zo; x, z).

* C.3.3 Bounding the Growth of var(N(xo, zo; x, z))

We begin with a useful lemma

E [N(xo, zo; x, z)]

4 1
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Lemma 2 If (x, y) E T,ny(Jxy), then

Ik(XO, )I(xo, ) < n2{p(xo, )p(xo, y) + 36,xylXJl-1}

Proof:
Because (x, y)E Txny(6xy),

[N(xo, ) - np(xo, )][N(xo, ) - np(xo,9)] < n 262ylX1-2

(C.21)

(C.22)

since the conditions for the joint typicality of (x, y) imply that IN(xo, y) - np(xo, y) <
nyIX .- 1 . Rearranging terms gives

N(xo, )N(xo, ) < n2 [p(xo,Y)p(xo, ) +- 2yIlXY- 2 + 26yIX% - 1]

E E Ik(XO, y)lI(Xo, 9) < n2(p(xo, )p(xo, y) + 36xyIXi-'},
kES(P) IES(Y)

(C.23)

(C.24)

where (C.23) follows from N(xo, ) < p(xo, )+n&ylX'l -l, and (C.24) is (C.23) rewrit-
ten in terms of indicator functions where S(y) = {i: 1 I< i < n, yi = y}. E

We now use Lemma 2 to show how to bound the variance of N(xo, zo; x, z) as a
function of n.

var(N(xo, zo; x, z)) = Ezly{[N(xo, zo)] 2} - E{N(xo, zo)}2

[y kES()

{Ezy E
e S() IES()

kES(y) IES(9)

-2(p(Xo, zo)- &rC. l)2

(C.25)

I
- n2p(xo, y, zo)p(xo, Y, zo) + n2 2Jxyl Y -2 }

(C.26)

- n2p(xo, y, zo)p(xo, y, zo) + n226xynI 1-2}

=E

=EZ

(C.27)

II IIll------·III-L CI- -- __ �------ - ---- --II__�� .. 1 ~ 1~~~· . . 111
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y [Es() IES( () 

- n2 p(xo, y, zo)p(xo, y, zo) + n22%,Ky [ 1- }
(C.28)

< >E { [n2p(xo, y)p(xo, y) + n236y IXl- 2][p(zol))p (zol) + 6dith]

-n 2p(xo, , zo)p(xo, y, zo) + n 226ylJ] - 2} (C.29)

< : {n2[p(xo, , zo)p(xo, y, zo) + 3dith + 3xy XI- 1 + 36xy6dithlX'-l 1

- p(xo, , zo)p(xo, , zo) + 2xylY1 2} (C.30)

<n2 l1constl (C.31)

Line Justification
(C.25) Writing out N(xo, zo; x, z) as in (C.13) and expanding S and S similarly.
(C.26) p(xo, zo) = Eyp(xo,y, zo).
(C.27) The sets S(y) and S(y) and the indicator functions Ik(xO, y) and I(xo, y)

are independent of z.
(C.28) Because if we use the dither encoding rule of Section C.3 we cannot tell the

resultant z apart from one generated in a memoryless manner conditionally
on y. Hence the pairwise statistics factor into a product of test channel
statistics.

(C.29) Lemma 2.
(C.30) p(x, y, z) = p(x, y)p(zly).
(C.31) 6 = max{6,xy, dith }

* C.3.4 Mean-Square Convergence

From Chebychev's inequality we now have

lim Pr [(N(xo, zo; x, z) - np(xo, zo)) > nl[XZ[-1 ]
n--)00

var(N(xo, zo; x, z)) n 2$lconstl
< lim 2 < limXZI (C.32)

n-oo (n6lXZl- ) n-4oo n25ZlXZ1-

= lim $ constllXZI (C.33)

We can make the limit (C.33) converge to 0 by picking and ,xz to be functions of n,
per Section C.2, such that lim ,,, 0 = 0. This mean-squared convergence holds for

any pair of sample values (xo, z 0 ). Therefore, for any e we can find a no such that for
all n > no the Pr [(x, z) V Txnz(e)] < e.

I
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* C.4 Approach 2: Viswanathan-Berger (VB) Codes

In [75] Viswanathan and Berger introduce a class of codes (which we term VB codes)
that have some useful stationary properties. In this section we show that if x is encoded
into y using a VB code, and then y is transcoded into z using a VB code, the pair (x, z)
will be jointly typical. This is a slightly more restrictive serial relationship than the
proof of Section C.3 that used the dithered encoding rule. This is because when using
VB codes we require both encoding steps to use VB codes, with the dither encoding rule
all we required was that (x, y) were jointly typical. We present this proof in addition
because, although it is more involved, it seems that VB codes may have just enough
structure to guarantee the joint typicality of (x, z), while the dither encoding rule may
be more powerful than we need.

* C.4.1 Introduction to VB Codes

Let y be an i.i.d. sequence of finite-alphabet random variables where p(y) > 0 for all
y E M. Let z be a random variable talking values in Z with the conditional probability
of z given y being p(zly). Let fn be a n-length block code from n to Z n. The map
fn induces a joint distribution on y and z given by

(y, z) = p(y)I(fn(y) = z), (C.34)

where I(.) is an indicator function, and the corresponding marginals are given by

P(Yi = y, zi = z) = Ep(y)(yi = y, zi = z) (C.35)

(zi = zlYi = y) (yi = Y, zi = z) (C.36)
P(yi = y)

In Lemma A.1 of [75] the authors show

Theorem 11 [75] For every 6 > 0, and n sufficiently large, there exists a block code
fn yn __ Zn such that

1. fn(ak(y)) = akfn(y) where a(yl ,Y2 ,..., Yn) = (Yn, Y1,2,..., Yn-1)

2. The range M of fn is bounded by M < 2n (I(Y;z)+ 6 ).

3. I5zjly (zly) - ply (zly)l < 2Ce for all i, where C = 1/minypy(y) and PI(zly) is
the conditional distribution between encoder input and codeword induced by the
codebook.

In essence, what Thm. 11 tells us is that the relationship between Yi and zi is first-order
stationary since Pz ly, (ylx) is the same for all i. We now show that Thm. 11 can easily
be extended to show that source and codeword pairs are strict-sense cyclo-stationarity.

Lemma 3 The source-symbol codeword-symbol relationship for VB Codes is strict-
sense cyclo-stationarity.

131

- - �1_1___,_1^-�--_-·--�--I��IPII)-·X-�L�I1 - ~ ~ ~ ~ ~ 1- ~ 1--- 1 

Sec. C.4. Approach 2: Viswanathan-Berger (VB) Codes



132 APPENDIX C. THE SERIAL MARKOV LEMMA

Proof:

,3(zt = iyt Z = ,t = Z s = = )

=Ey[I(zt = Z, Yt = , zs = Z, y,s = 9)] (C.37)

=Ey[I(ft(y) = , ,yt = Y, fs(y) = , ys = )] (C.38)

=Ey[I(fi(a-t+ly) = , Yt = Y, fs-t+l(f-t+l1y) z, = 9)] (C.39)

=E-t+ly [I(fl(Y) = z, Yi = Y, fs-t+l (Y) = z, Ys-t+l = 9)] (C.40)

=Ey[I(fl(y) = Z, y = Y, fs-t+l (Y) = Z, Ys-t+l = 9)] (C.41)

=j(Z1 = z,Yl = Y, Zs-t+l = Z,Ys-t+l = P), (C.42)

where (s - t + 1) should be taken mod n to remain in the range 1,... n.2 Eq. (C.37)
follows from the definition of P(.), (C.38) since z = f(y) where the subscript ft(Y) shows
particular sample t explicitly, (C.39) from the definition of a, (C.40) from cycling the
y vector, and (C.41) since y is i.i.d. OI

* C.4.2 Proof Set-up

Let x be encoded into y using a VB code. We show that if we transcode y into z using a
second VB code then (x, z) will be jointly typical according to p(x, z) with probability
approaching one as n grows to infinity. As in the proof for the dithered encoding rule,
the probability that the trancoding does not work is

Perr = Pr [(x,z) T,()] (C.43)

= Pr [U (N(xo,zo;x,z)- np(xo, zo)) > n6XZIXZ - ] (C.44)

< Pr [(IN(xo, zo;x,z) - np(xo, zo)I) > nSlXZ3-I ]. (C.45)
O ,ZO

We will show that for each (xo, zo) E X x Z,

lim Pr ([IN(xo, zo; x, z) - np(xo, zo)I] > nS,,XZlI-l) = 0 (C.46)
n-+oo

Again, as in Section C.3, we will find it useful to rewrite N(xo, zo; x, z) in terms of
the dependence on the intermediate vector y:

N(xo,zo;x,z) = 5N(xo,y, Zo;x,y,z)

- E [ E Ik(Y, ZO)] (C.47)
yew keS(xo,y)

2 Note, for these purposes n mod n = n (instead of zero) since the numbering of source symbols
traditionally starts with 1 (not 0).
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where S(xo, y) = i : 1 < i < n, (xi,yi) = (xo, y)} is a random subset of {1,..., n}, and
the Ik(y, zo) are indicator random variables where Ik(y, zo) = 1 if Yk = y and zk = zo,
and zero otherwise. In the current setting, the relationship between y and z is not
necessarily i.i.d. but is stationary. We show that this is all that is necessary for joint
typicality of x and z.

* C.4.3 Convergence of Mean E [N(xo, zo; x, z)]

E [N(xo, zo; x, z)] (C.48)=E Exy,z [z Ik (Y, ZO)
yEy -kES(xo,y)

EX,y,zlsI[k(Y, o)] I

Eyls [Ik(Y, zo)]

< > Es [ ] (p(zoly) + 2CSyz)
yE kES(xo,y)-

< (np(xo, y) + n6xylx-1')(p(zoly) + 2CSyz)
yE+

= E n[p(x0o, y, yzo) + p(zo|Y)Jxy %t- + 2ayzp
YEO

(C.49)

(C.50)

(C.51)

(C.52)

(xo, y) + 2C6,xyyz6Z-- 1 ] ]

< n[p(xo, zo) + 3xyZl1-1 + yz(2C91I + 2C6xyIZl- ')

< np(xo, zo) + n,6y(IZl- + 2Cfl- + 2CIZI- 1)

= n[x(xo, ZO) + 3xy/ll

(C.53)

(C.54)

Line Justification
(C.48) Substituting in (C.47) and the linearity of expectation.
(C.49) Iterated expectations.
(C.50) Once condition on S(xo, y), Ik(y, zo) is independent of x and

z = fn (y) deterministically.
(C.51) First-order stationarity of VB codes and because the code statistics

approximate the test channel, p(zoly).
(C.52) IS(xo,y)l < (np(xo, y) +n6sxyl- 1 -) since (x,y) E Tny(Jxy).
(C.53) Choose &5 y = yz.
(C.54) Define ,l = IZI-1 + 2Ci1I + 2CIZ-1.

We can similarly develop the parallel lower-bound,

E [N(xo, zo; x, z)] > n[p(xo, zo) - xyKi]j

YEs- kES(xo,y)

yES -kES(xo,y)

I I-III~_1 I.- IC-lll- 11 _ ·__ __- -1 _-111-1 --·I�III-�·�I -·L·-�l^-·--l__l_-�_
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From (C.53) and (C.55) we see that the mean of N(xo, zo; x, z) converges to p(xo, zo).
We next bound the variance of N(xo, zo; x, z).

* C.4.4 Bounding the Growth of var(N(xo, zo; x, z))

In order to bound the variance of N(xo, zo; x, z), we would like to have a lemma similar
to the following conjecture:

Conjecture 1 Given that y is an i.i.d. source sequence, and C is a rate-distortion code
generated in an i.i.d. manner according to p(z), such that p(y,z) = p(y)p(zly), and
satisfying a distortion constraint. Then, if y is mapped to a codeword z E C using joint
typicality decoding, inducing a joint distribution P(y, z) = Ey[I(fn(y) = z)], then the
following relationship holds for any pair of indices i, j:

lim (zi, Zjlyi, yj) = (zilYi)p(zjlyj).
n-+oo

This proposition says that even though on a block level the relationship between y and
c is deterministic, as the block length grows, the pair-wise statistics look increasingly
independent. If we could prove this proposition, then calculation of the variance would
be easy as cross terms such as E[Ik(., .)I(., .)] could be factored in the limit. The
dithered encoding rule gives us this property, but the encoding rule for VB Codes does
not. We are optimistic, however, that entropy-bounding arguments will be enough
to prove the above lemma, but in the meantime, the bounding of var(N(xo, zo; x, z))
remains more involved for VB Codes.

We first present the following lemma.

Lemma 4 If (x, y) Tn,y(6xy) and we define S = S(xo, y) = {i, 1 < i < n, (xi,yi) =

(xo,y)} and S = S(xo, ) = {i, 1 < i < n, (xi,yi) = (xo, y)}, then if we encode y into z
using a VB code, we get

n = n
T-=1 T=1

• pz y( )pl,(zoly) + 6xy/s2

for some positive constant t2.

I _ I I _ _� I
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Proof:

= EYEy{ II[zt= X, t = , zs= , Y'Ys=]
t=1 s=l

= E N(z, lz, y)N(z, 9z, )py (y)
yE'

n

-< E n [p(, ) + 6yjlZl-]'[p(, ) + ,ylZjl-|]p(60)o)

< n 2[p(, )p(Z, ) + 36Sxy9Zl - ' ]

Line Justification
(C.57) Definition of induced probability distribution.
(C.58) Linearity of expectation.
(C.59) Definition of N(z, y; z, y) and since z = fn(y) deterministically.
(C.60) Upper bounds on N(i, y; z, y) since encoding assumed to be successful.

As shown in Lemma 3, p is only a function of (t - s). Since the block code is of
length n, there are n possible differences r = (t - s), and n shifts of each difference.
Therefore, we can simplify the above to

n

n=1
(C.61)

n

7'-r=1
I n

n SPZ1,zl+r IY1,yI+r (,, 4, )P,yl+r (, )
7=1

(C.62)

pzjly(ZIj)Pzly(Zjy)py(Y)py(y) + 36xylZI--1 >

p(;iy)p(lIY) + 3x,1yz1-Zjc 2 >

n1 

I EZ1,Z l+rIYl1,Yl+.r (P' Z1 , Y)Py(Y)Py(k)
r=1

(C.63)

n
f=1

p(Iy)p(iy9) + SxyK-2 = Ey[I(zk = Zo, Zk+ = ZOlYk = , Yk+, = )]
T-=1

(C.65)

n n

t=1 s=1
(C.57)

(C.58)

(C.59)

___1_1_·1___·1·�Lll1·�-�_1__1�--�·XIIYII ·-_ ·XILI�Y(II�ULII __ _- _ --
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Line Justification
(C.61) In the double sum each of the n shifts appears n times.

(C.62) f1y(y) =py(y).
(C.63) y is i.i.d.

(C.64) C = 1/minypy(y).
(C.65) Definition of p and 2 = 3C21 |Zj- 1 .

This theorem says that the shift-average of the empirical probability density is

roughly equal to the factored density. O
We now use Lemma 4to bound the variance of N(xo, zo; x, z) when using VB codes.

var(N(xo, zo; x, z)) = Ex,z[N(xo, zo; x, Z)12} -_ Ex,z{N(xo, Z; X, Z)}

{Exy5 Ik(y, zo) [ZI z -
y kES(xo,9) Y IES(so,)

{E,§ [k
Es,3 [

E E Ik(y,ZO)I (, ZO)
kES(xo,9) 1ES(xo,g)

o, ZO) -xy/.l)
2

(C.66)

]
(C.67)

(C.68)

{ Es,3

{Ess

kES(o,5) IES(xo,V)

- n2p(xo,, zo)p(xo, zo) + n226xynlIY 12}

E s 0 PZk,Zl Yk,Y (zoY)Y)
kES(xo,Y) ES(xo,9) I

- n2p(xo, , zo)p(xo, , zo) + n226xynil II-2}

(C.69)

(C.70)

{(np(xo, y) + n6xyXIl -X)(np(xo, ) + n6,ylXIl-X)(p(zol)p(zolO) + 6xyr-2)

- n2p(xo, y, zo)p(xo, y, zo) + n 226xy }l 11-2 }

=EE

=EE9 

- n2p(xo, , zo)p(xo, , zo) + n226xynl 1I-2}

ES(xo,) IES(xo,)

- n2p(xo, y, zo)p(xo, y, zo) + n22xyni li - 2}

=E:

=5EE

I
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E yj,�,S[IkW, ZO)II(g, ZO)]

Ey [I , zo) II (, ZO)I

(C.71)
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< E E ({n2[p(xo, )p(xo, y) + n236xylXW-l](p(zo[Y)p(zo1.) + JxyK2)

- n2p(xo, , zo)p(xo, y, zo) + n2 26,XKyi 11 - 2 }

< E E n2 [p(xo, y, zo)p(Xo, , 0) + 3xy1xV1-l + xyK2 + 3 xyK21X

- p(xo, y, zo)p(xo , zo) + 2xyl IYI2]) (C.72)

<n 2diconst 1. (C.73)

Line Justification
(C.66) Writing out N(xo, zo; x, z) as in (C.47), and E [N(xo, zo; x, z)] - p(xo, zo).
(C.67) p(xo, zo) = Eyp(xo, y, zo); and the expectation is over y, ,S since

the only dependence on x is through the sets S, S and z = fn(y)
deterministically.

(C.68) Iterated expectations.
(C.69) The conditioning on S, S can be dropped because the joint statistics

of (y, z) are fully determined by y, the sets S and S are relevant only
for knowing which indices to sum over.

(C.69) Definition of P.
(C.70) The expectation over the sets S, S turns the sum over Pj into a

shift average. Hence we get the shift average given by (C.21) times
the sizes of the sets, e.g., IS(xo, ) < (np(xo, y) + n1JXl-).

(C.71) p(x, y, z) = p(x, y)p(zly).
(C.72) d = max{6y, K2}.

* C.4.5 Mean-Square Convergence

From Chebychev's inequality we now have

lim Pr [(IN(xo, zo; x, z) - np(xo, zo)l) > n6lXZ-]
n--oo

N(xo, zo; x, z) n2Slconstl
< limvar < lim (C.74)

-(nslXz-1)2 n2 65IXZ-1

- lim IconstllXZ (C.75)

We can make the limit (C.75) converge to 0 by picking and x6,z to be functions of n,
per Section C.2, such that limn,O ()2 = 0. This mean-squared convergence holds for

any pair of sample values (0o, zo). Therefore, for any we can find a no such that for
all n > no the Pr [(x, z) V Tz(e)] < .

_ .· _ ~ _ _ _ _I--- - --�____ _ IIIIL__-_�� -----�-�-
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Appendix D

Derivations: CEO Problems

* D.1 Serial CEO Problem

In this section we derive the results for the serial CEO problem presented in Chapter 4.
We first derive a general achievability region, and then specialize to the quadratic-
Gaussian case.

* D.1.1 Achievability

In this section we demonstrate our successive coding approach to the serial CEO prob-
lem. Agent has a source estimate xl such that (iil,x) E Tn,z (E). Since x is marginally
typical we can treat it as a new source vector, and transcode it into a new random code-
book, and communicate the appropriate index m to Agent + 1. Agent I + 1 receives
m and in addition has side information y generated from x through the memoryless
channel law p(ylx).

* Codebooks: Associate p(ulltl) with agent 1. Let R1 = I(jl; ul) + and R1 =

I(xl; ul) - I(ul; Yl+l) + 2e. Construct a random codebook Ct with 2nR' codewords
u(st) each generated in an i.i.d. manner pu,,(ul(s)) = I= Pu, (ul,i(sl)). Label
these codewords ul(sl) where sl E SI = {1,2,..., 2 Ri. Subdivide C1 into 2nR'

subcodes or "bins". Assign the first 2 n(I(ui;y'+1)- e) codewords to bin 1, the next
2n(I( ul;yl+l)+ c) to bin 2, and so on up to bin 2 nR . Let Bt(i) denote the codewords
assigned to agent 's ith bin.

* Encoding: Use the dither encoding rule of Sec. C.3 to map xl to a codeword
ul(sz) E Ce. Send the message m such that ul(sj) E B(m). If there is no such
codeword set m = 0. If there is more than one, pick any one.

* Decoding: Agent I + 1 searches the bin B(m) for a sl such that (ul(sl), yl+) E
Tu,Y1+l (e). If there is a unique satisfactory st, the CEO calculates Xl+l = gl+l (ul (s), Y l+1)).
If there is not a satisfactory sl, the CEO declares an error.

* Probability of Error:

1. The sequences (x, tl) Tn, (e). The probability of this is small by assump-
tion.
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2. The sequence (x, ul(st)) Tn,,, (). The probability of this event is small by
the Serial Markov Lemma.

3. The sequence (ul(sl),yl+l) t TL,y+l(e). If u x yl, the probability of
this event is small by the regular Markov Lemma since (x, ul(sl)) E Txn u(e)
by step 2 and (x, yl+l) are pairwise i.i.d.

4. There exists a s1 such that ul() E B(m) but such that (yl+I, u(s)) 4
TYn+l,u (), yet (ul (Sl), Y1 +) E T,Y+l( )

Pr < 2n(tZ-R)2 - n( I( ul ;y+1) ) = 2- ne

5. Given that u(sl) is decoded correctly, the empirical distribution can be made
as close as we want to the chosen distribution p(x, u1, Y+l)-. This implies that
we achieve a distortion di+l = E [D(x, gl+l (ut+l, yl+l))]

the distortion constraint is met.

* D.1.2 Quadratic-Gaussian Case

At agent I- 's encoder, Xl1_l and x are jointly typical by assumption that at all decoding
and data fusion steps were all accomplised without error earlier in the chain of agents.
In addition, whether we use the dither encoding rule or VB Codes, the marginals
approximate the test channel. Therefore, we can use an innovations form to rewrite

the relationship between Xl_l and x as x = ax + v1_l, where a = - d- ) and

vl_l N(O, adll1 ). For the purpose of encoding, define agent - 1's source observation
to be

Zll = Xl-l x + V-. (D.2)

Think of agent I - I's observation z1_l as the source in additive white Gaussian noise,
1 v_1 of variance ad Then consider of agent l's observation Yi as decoder side

information. This is the noisy Wyner-Ziv problem. Now, rewrite the noisy Wyner-Ziv
rate distortion function (3.5) in the distortion-rate form

d 2 - u2 )2 2R (D.3)d = 'xlyo,yI + ( xlyo xyoyl)2 (D.3)

In the current context the encoder observation Yl = zl-1, the decoder side information,
Yo = l, the rate R = R_-1, and the distortion d = d. Substituting these values
into (D.3) results in

d = or 2 + (2Iy - 12y \)2-2R,_4q_ Z (C1x2]y, __CxlYt,z-_1 ]

I
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To simplify the result, we make the following calculations:

2 1 I Nidt-1
Y',zl-1 2-d1_1 + - N d + d(D)

di---Nd
1a2 2 _ Njd Nad__l _ Ncr~ rl- 

xl-ylzr-1 N 1+c Ni+ d.l N/o+ o 1+ dl]

2 [Y Td] (D.6)

Substituting (D.5) and (D.6) into (D.4) gives

N/ d, 1 + a21 ( OF) 2-2Ri_-,Nld-1 +o2 3- -~ 2
d = N + d1 xly 1 + dl_}d1= N 2 '

which is the iterative distortion-rate function for the serial CEO problem presented
in (4.7).

* D.2 Parallel CEO Problem

In this section we derive the results for the parallel CEO problem presented in Chapter 4.
We first derive a general achievability region, and then specialize to the quadratic-
Gaussian case.

* D.2.1 Achievability

We now justify our sequential approach to the regular CEO problem. Let the source x be
i.i.d., Px(x) = H=1l px(xi) let dl = E [D(x, lt)] be the average distortion measure that we
want to minimize. Let agents 1,..., L have observations Y,..., YL jointly distributed
with the source as Px,Yl,.,YL(X,Y1 ... ,YL) = I-[i Px(xi) l Pyljx(Yl,iXi) 1

* Codebooks: Associate codebook e and test channel p(ullyl) with agent 1. Let
R = I(yi; ul) + EIL be the rate of (l and define RI = I(Yi; ul) - I(u; u - 1) + E.
In [40, 45] the authors show the Generalized Markov Lemma which states that
conditionally independent source observations Yl,..., YL, of the sort we have here,
can be independently encoded into codewords ul,..., UL that are jointly typical
with each other and the source according to p(x, ul,... , uL). In [40] Han and
Kobayashi show this for finite-alphabet sources and in [45] Oohama extends their
result to Gaussian sources. We assume that codebooks Cl, ... eL are generated in
an appropriate manner so that the Generalized Markov Lemma holds.

1If the CEO has its own source observation ycEO, this can be accounted for through an L + 1st agent
who has no rate constraint, i.e., RL+ = oo, and so can communicate YCEO to the CEO losslessly.

_ _ _I_ (n____^_ Iql__ II1_ II I___··III1I_^- LI-~~~~~~~~~L - l--P--- 1I--^- ~ 1^-1 -- ~--·-^-
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Next, bin the codewords of each codebook. For example, consider the codewords
ul(sl) E e at agent I where sl E Si = {1,2,... ,2n'1}. Assign the first 2nI(ul;ul- 1)

codewords to bin 1, the next 2nI(ui;ul 1) to bin 2, and so on up to bin 2nR . Let
Bi(m) denote the set of codewords assigned to Agent l's mth bin.

* Encoding: Given an observation Yi, agent I encodes it into the appropriate
sequence ul(sl) E el. If there is no such codeword set st = 0. If there is more
than one, pick any one. The encoder transmits to the CEO the bin index m such
that ul(sl) E Bl(m).

* Decoding: The decoding is done by the CEO in L steps starting with agent 1.
Note that for agent 1 there is only one codeword per bin (since I(ul; u°) = 0),
so the CEO simply maps the received index back into a codeword sequence, as
in a regular source code. At step 1 > 1 the CEO looks for a ul(sl) such that
s E Bl(m) and (ul(sl),.. . ,ul_l(sl_l),, ,(sl)) E T,,u2,ul(E(). If there is a
unique satisfactory sl, the CEO calculates xl = gj(ul(sl),..., ul(sl)). If there is
not a satisfactory St, the CEO declares an error.

* Probability of Error:

1. The set of sequences (x, yl,... YL) Tny ,...,yL(e). The probability of this
event is small by the weak law of large numbers.

2. The sequence yl is typical, but there does not exist a sl such that (yl, ul(sl)) E
TyJ,u (e). The probability of this event is small if R1 > I(yl; ul).

3. The sequences (x, u1 (s1 ), u 2(s 2),. ., u(sl)) Txnu,,.,u,(cE). The probability of
this event is small for all by the Generalized Markov Lemma.

4. There exists another u(sl) with the same bin index as the correct u(sl), but

such that (yl,u(§/)) Ty,ul(e), yet (x,u(s),u(s2),... u(.q)) E A() .

Pr < 2 n(Rji-R)2 -n(I(ul;u-l)+c) = 2-ne/l

5. Given indices Sl, S2,... st are decoded correctly, the empirical distribution is
close to the original distribution p(x) tl=. p(uilx), and hence (x, il) will have
a joint distribution close to the distribution that achieves distortion di.

* Iterated Statistics: We now show that in the quadratic-Gaussian case I(ul; ul -1) =
I(ul; _). This fact is important because it allows us to derive the achievable
distortion-rate region in the quadratic-Gaussian case in an iterative manner. This
means that the generation of single-letter statistics can be done sequentially. This
helps make the analysis of the finite-L region more tractable.

First, assume that the estimate of x can be defined recursively recursively,
i.e., l_1 = g1-1(ul-,g1l2(ul-2,...)), but overall is a deterministic function of
ul,... ul-1. For the moment, assume that 14_l is the minimum mean-squared

142 APPENDIX D. DERIVATIONS: CEO PROBLEMS
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error estimate of x given {ul, U2,..., ul_ 1}. This assumption will be justified
below. We have the following Markov chain relationships,

u l X- u - e- xll, (D.9)

xX - x'l_1 X u~- 1 (D.10)

Uj + X + X _ X u -1 , (D.11)

Eq. (D.9) holds because i 1_l is a deterministic function of {ul,..., u_l}. Equa-
tion (D.10) holds by the orthogonality properties of the minimum mean-squared
error estimator, i.e. the error is independent of the data sop(xlu' - ') = p(xlxil, u~-1 ) =
p(x- :ull]ll,u~ -1 ) = p(x-x/_l[Xl) -= p(x:_l-). Since ul is only de-
pendent on Yl which, conditioned on x, is independent of y-1 and therefore
of (u-l,l_l), we put this fact together with (D.10) to get (D.11). We can
marginalizing out x in (D.11) to get (D.12) because xp(x,._l, l,u...U) =

xp(x,l,-1,ul)p(ul, ... ,u/-l 1 -1) = p(ulxl-1)p(:rl-1)p(ul,. . . ,u-1 1 :1 ). Fi-
nally, putting together (D.9) and (D.12) with the data processing inequality tells
us that

I(ul; u~-1 ) = I(ul; 1_l). (D.13)

We now confirm that _-1 is the minimum mean-squared error estimate of x given
{u1, U2,... , l1 1 }. What we need to show is that the minimum mean-squared error
estimate Sq can be constructed iteratively as = gl(u1, 1_l). The proof is induc-
tive. We know that kl is the minimum mean-squared error estimate since there is
only 1 bin and l = ul. Assume that x1_l = gll(UIl,gl-2(UI-2,gl-3(UI-3,...)))
is the minimum mean-squared error estimate of x given ul,... ull 1. Then we have

p(xlu -l,ui) = p(xul7-l,ul,xll) (D.14)

_ p(X U, Ull-, ul, X1)

p(Ul , ll)

P(Ul1X, :rt-1)p(xI:~-1)P(UIIX7 ii-~Xl XPI) ~(D.15)

P(UII
x

, Xl-)P(Xl-, X)

P(Ul, Xl-1)

p(XIl-1, Ul).

Eq. (D.14) follows because J1_l is a function of u-l, and (D.15) follows from the
Markov relationships (D.10), (D.11), and (D.12).

-~~~~~~~~~ ------ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~- .-L~" ... U- II-- -- ,.^ I--*_ LLI· . 0I-- I-* _ � I -
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* D.2.2 Quadratic-Gaussian Case

When the decoder decodes the message from agent I he has the side information . We
use innovations form to rewrite the relationship between Xl_l and x as x1_ = ax+ v_-1,
where a = (1 - dl_l/ox2) and l_1 N(O, ad-1_l). For the purpose of decoding, define
the CEO's side information as

Xl--1 Vl-1z-l == x+ (D.16)
a a

where a! l_ has variance o. Agent is the encoder and measures x + vl where

vl " (0, Nl). The CEO is the decoder and has side information given by zl-1. This
is a version of the noisy Wyner-Ziv problem. We again evaluate the distortion-rate
form of the Wyner-Ziv function (D.3), but make different substitutions: the encoder
observation yl = yl, decoder side information yo = z- 1, rate R = Rt, and distortion
d = dll 1. These substitutions result in

d = a2
1 ,Y1 + (a2zl1 l - ozy-Y)2 2R* (D.17)

We have already calculated aZ2 _ Nid 11 in (D.5), and 2 = dl_1 because
Zl-1 encapsulates the information the CEO knows before agent I reports in. Substituting
these values into (D.17) gives

Nl dll d -d = + _1 2-2R
N + d 1_l N + d-_

which is the iterative distortion-rate function for the parallel CEO problem presented
in (4.14).

* D.3 Parallel CEO Problem with Large Numbers of Agents

* Lower bounding (4.36)
To lower bound (4.36) we assume that Rl+l > 0 so that Xl+l - xl < 0, i.e., the
distortion decreases at each step. Rearranging (4.34) we get

2 -+ (X+- x) = 1- e- 2 R ' + ' (D.19)
Xx

1 + I = 1- [1 -2R+l (2R 1+1)2 (2R1+1)
3 D2z2 l~ <2! 3!

I + xjAx < R+i, (D.21)
I

where we expand e- 2 R in a power series in (D.20), and define x - xl_1 = Ax
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1 2 > 0.2 For R small (e.g., R < 1), the higher order terms in the power series
sum to a positive constant, yielding an upper bound (D.21). Summing (D.21) over
I gives us

L-1 L-1

RI+l > 2x2 Ax, (D.22)
1=0 1!0 

where x0 = and x= x o-lAx = o-I [ D]. This is a Riemann sum that
lower-bounds the integral in (4.36). 3

Upper bounding (4.36)
To upper bound (4.36) iterate (4.33) backwards through the same set of {x0, x1,..., XL),
starting now with XL = DIN. All we are doing is upper bounding (4.36) by a
second Riemann sum, but we can think of the backwards iteration as using a 'neg-
ative rate' Rl+l < 0 at each step. At each step we start with xl+l = xo - ( + 1)Ax
and use (D.19) to determine the 'negative rate' it takes to get to xl > xl+l.

1 + +l (x - xil+l) = 1- e- 2R+l1 (D.23)
X21+1

- Ax = I a~: - 1 - 2Rl+l + (2R/+1)2 (2R/1)3
-- 1 -1 -2! 3!

2! 3!1 [1 [ 2li+l± (2R 1) 2! + (2ii)3 + (424)
< -2Ri+1 1 (D.25)

2 2+ lAx > IR1+ 11, (D.26)
2+1

where (D.24) follows because Rl+l < 0, and (D.25) by dropping the higher-order
negative terms. Summing (D.26) over I we get

L- 1 L-

=0 + 2< E 2 Ax, (D.27)
1=0 1=0 2x+ 1l

Both (D.22) and (D.27) are Riemann sums approximating the integral of (4.36).
The difference is that the height of the steps in the former are evaluated at the
beginning of each interval, while those in the latter are evaluated at the end of

2 Note that while in (4.35) we held RI = R/L constant, we have now re-written (4.33) in terms of
constant Ax. This will allow us to approximate (4.36) in terms of Riemann sums. Expressing (4.33)
in this form is okay, as long as Ax is small. Clearly, for example, Ax must be less than a2/N. Since
limL,,+ Ax = 0, and we are investigating the large L regime, we are in the small Ax region.

3 The difference between the signs of the integrand in (4.36) and the summand in (D.22) occurs
because dx < 0 in (4.36), but we chose Ax > 0 in (D.22).

�



146 APPENDIX D. DERIVATIONS: CEO PROBLEMS

each interval. Together these two approximations sandwich the integral in (4.36).
We next relate RI+l to Rl+l.

Showing Rl+l < [i+1 + O(Ax)
To show that Rl+ < IRt+l + O(Ax) think about decreasing the distortion from
xl to xi+, requiring rate R+l, and then increasing the distortion back from xl+l
to xi, requiring 'negative rate' Rl+1 .

Solving (D.19) for RI+, and (D.23) for Rl+l gives us

R1+ = -- log[1 - Ax] (D.28)~2 2 (D.28)

RI+1 = -- log 1 + 2 x <0. (D.29)2 2+
Subtract (D.28) from the absolute value of (D.29) to find the difference between
the magnitude of these rates:

1 1 + i
Rt+I- R1 + = log2 [(1+ 2 lAx) (1 XAx

3+1 I:/2

= 2 [ l lg [1 (D.30)
/1 1+1 

1 log [1- (Ax) 2 (D.31)

(D/N)4 - ARI+ < [/~/+11 2 log (D/N)4(,X)2]

2 (D/N)4 - x 2 ) (D.32)

where in (D.30) we use xl - x+l = Ax, in (D.31) we use xl > DIN, and in (D.32)
we use log(s) < s - 1. So, summing (D.32) over I gives us

Z£-1 i L-1 (AX)2

R+I < Z IR/+I + 2 (D/N)4 - Ax2)

L-l +(/N)4-2 (D.33)
/=0

L-1

< E 2 +2 A + IconstlAx. (D.34)

In (D.33) we express L in terms of Ax, L = 2D , and in (D.34) we substitute
in (D.27) and explicitly showed that the second term is Ax times some positive
constant.

I _
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* Upper and Lower bounding R = E Rl+l
Putting together (D.22) and (D.34) we can now upper and lower bound R =
E RI+l:

L- + L-1 L-1

+ < E RI+, =< 1 + o2x Ax + IconstAx. (D.35)
1=0 I 1=0 1=0 1

Taking into account the IconstlAx in (D.34), the two Riemann sums lower and

upper bound f (1 + ) dx, and converge as L - oo. Since they also lower
N _

and upper bound R, in the limit R and the integral must be equal. This justi-
fies (4.36), so the rate distortion bound (4.37) is achieved in the limit.

Thus, the sequential codes derived herein achieve the lower-bound on the rate dis-
tortion function of [45]. Note that the limits in (4.36) can be set arbitrarily, which
means that the bound on the rate distortion function of [45] is not achievable only in
the limit as L - oo, but at each data fusion step, as long as the extra data to be
integrated at each step is asymptotically small.

_I__ Illb _
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packing arguments. The three concentric dotted circles correspond to:
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Notation

Symbol Definition

x random variable (sans-serif)
x sample value (serifed)
x random vector (bold sans-serif)
x sample vector (bold serifed)
xi ith component of x
xJ subvector consisting of ith through jth components of x
x. subvector consisting of 1st through jth components of x
xi ith random vector in an indexed set, e.g., {xl,x 2,... ,XL}
X domain of random variable x
px(x) probability distribution of x
p(x) probability distribution of x (distribution supressed)
H(x) entropy of x
H(xly) conditional entropy of x given y
h(x) differential entropy of x
h(xly) conditional differential entropy of x given y
I(x; y) mutual information between x and y
I(x; ylz) conditional mutual information between x and y given z
N(xo; x) cardinality of number of indices {i, 1 i < n} such that xi = xo
Tp x) () strongly typical set:

Tn(e) = {x: IN(xo; x) - npx(xo)l < ne} for all xo E X s.t. px(xo) > 0
and N(xo; x) = 0 if px(xo) = 0

TXn(e) strongly typical set (distribution of x supressed)
T(x) empirical distribution (type) of x
log base-2 or base-e, as indicated in the text
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