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ABSTRACT

Coding for Cooperative Communications. (August 2010)

Momin Ayub Uppal, B.S., GIK Institute of Engineering Sciences and Technology;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Zixiang Xiong

The area of cooperative communications has received tremendous research in-

terest in recent years. This interest is not unwarranted, since cooperative communi-

cations promises the ever-so-sought after diversity and multiplexing gains typically

associated with multiple-input multiple-output (MIMO) communications, without

actually employing multiple antennas. In this dissertation, we consider several coop-

erative communication channels, and for each one of them, we develop information

theoretic coding schemes and derive their corresponding performance limits. We next

develop and design practical coding strategies which perform very close to the infor-

mation theoretic limits.

The cooperative communication channels we consider are: (a) The Gaussian re-

lay channel, (b) the quasi-static fading relay channel, (c) cooperative multiple-access

channel (MAC), and (d) the cognitive radio channel (CRC). For the Gaussian relay

channel, we propose a compress-forward (CF) coding strategy based on Wyner-Ziv

coding, and derive the achievable rates specifically with BPSK modulation. The CF

strategy is implemented with low-density parity-check (LDPC) and irregular repeat-

accumulate codes and is found to operate within 0.34 dB of the theoretical limit. For

the quasi-static fading relay channel, we assume that no channel state information

(CSI) is available at the transmitters and propose a rateless coded protocol which

uses rateless coded versions of the CF and the decode-forward (DF) strategy. We

implement the protocol with carefully designed Raptor codes and show that the im-
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plementation suffers a loss of less than 10% from the information theoretical limit. For

the MAC, we assume quasi-static fading, and consider cooperation in the low-power

regime with the assumption that no CSI is available at the transmitters. We de-

velop cooperation methods based on multiplexed coding in conjunction with rateless

codes and find the achievable rates and in particular the minimum energy per bit to

achieve a certain outage probability. We then develop practical coding methods using

Raptor codes, which performs within 1.1 dB of the performance limit. Finally, we

consider a CRC and develop a practical multi-level dirty-paper coding strategy using

LDPC codes for channel coding and trellis-coded quantization for source coding. The

designed scheme is found to operate within 0.78 dB of the theoretical limit.

By developing practical coding strategies for several cooperative communication

channels which exhibit performance close to the information theoretic limits, we show

that cooperative communications not only provide great benefits in theory, but can

possibly promise the same benefits when put into practice. Thus, our work can be

considered a useful and necessary step towards the commercial realization of cooper-

ative communications.
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1

CHAPTER I

INTRODUCTION

Recent years have seen a growing trend in the use of wireless devices, with an ever

increasing appetite for bandwidth intensive applications. In order to cope with the

intricate demands put forth by these applications on current wireless networks, the

concept of multiple-input multiple-output (MIMO) communications involving multi-

ple tansmit/receive antennas has become extremely popular. Whereas MIMO com-

munications promise great performance benefits, their drawback is the significant cost

overhead associated with deploying multiple transmit/receive antennas. An alterna-

tive which holds immense economic promise is the idea of cooperative communica-

tions [1], which guarantees the ever so sought after spatial diversity gains typically

associated with MIMO communications. Thus this technique is able to mimic the

performance gains of MIMO systems without actually employing multiple antennas.

As a result, the area of cooperative communications has generated tremendous re-

search interest in recent years. Some works in this area include [1, 2, 3, 4, 5] amongst

a host of others. In the following, we will first give a brief layman’s introduction to

the idea of cooperative communications. We will then describe the summary of the

dissertation and explain how it has been organized.

A. Introduction to Cooperative Communications

Loosely speaking, cooperative communications is based on grouping closely located

networks nodes in wireless networks together into clusters, inside which the nodes

cooperate when sending and/or receiving information – in this way, different clusters

 The journal model is IEEE Transactions on Automatic Control.
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User 1

Base-Station

User 2

Fig. 1. Cooperative communication channel with two users and a single base-station.

The channel from user-1 to the base-station is relatively weak.

act as large transmit and/or receive antenna arrays. A simple form of a cooperative

communication network is shown in Fig. 1 where two users wish to communicate their

individual messages to a single base-station. The figure shows a specific scenario where

the channel from the first user to the base-station is very noisy – noisy to an extent

where it cannot support the required data rate. On the other hand, the channel

from the second user to the base-station is quite strong. If the second user channel

is strong enough, User-1 can seek User-2’s cooperation in relaying its message to the

base-station. Thus, when User-1 transmits to the base-station, User-2 overhears the

transmission and then forwards User-1’s message to the base-station along with its

own. It is quite evident that this model is a cooperative version of a multiple-access

channel (MAC). The channel model in Fig. 1 can also be viewed as a cooperative

broadcast channel where the base-station intends to send different messages (or the
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same message in case of a cooperative multi-cast channel) to the two users and the

users cooperate amongst each other when receiving the information.

User 1

User 2
Base-Station 1

Base-Station 2

Fig. 2. Cooperative communication channel with two users that wish to communicate

with their respective base-stations. A user sees a relatively weaker channels to

its own base-station compared to that to the other user’s base-station.

An extension of the cooperative communication channel of Fig. 1 is shown in Fig.

2 where the two users intend to transmit their distinct messages to their respective

base-stations. However, for the specific condition shown in the figure, each user sees

a relatively weak channel to its own base-station. As a result, the users are unable

to communicate directly with the base-stations at the required data rates. However,

note that a user sees a sufficiently strong channel to not only the other user, but also

the other user’s base-station. Thus the cooperative communication strategy would

dictate that the users exchange their messages first and each user relay the other

user’s message to its respective base-station. Such a cooperation channel is termed as

the transmitter cooperative interference channel [3]. Note that a similar cooperation
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strategy also applies when the base-station intends to transmit some messages to

their respective users where the users cooperate amongst themselves when receiving

information. Such a cooperation channel is referred to as the receiver cooperative

interference channel [3].

B. Summary of Contributions

As mentioned before, cooperative communications promises, at least in theory, signif-

icant performance gains over a traditional non-cooperative system. However, cooper-

ation cannot be considered a viable option unless it can, when put in practice, obtain

gains comparable to those promised by theory. In this dissertation, we intend to

explore the feasibility of cooperative communications by developing practical coding

strategies and comparing simulated practical performance to the derived theoretical

limits. Thus the objectives of this dissertation are two-fold:

a) to develop information-theoretic coding schemes for several cooperative commu-

nication channels and derive the corresponding achievable rates/performance

limits, and

b) to design and implement practical coding schemes which follow the spirit of the

information-theoretic analysis and to evaluate whether such practical coopera-

tion schemes still yield the gains over non-cooperative strategies.

Keeping in mind the objectives mentioned above, we will study four types of cooper-

ative communication channels which are listed below.

1. The Gaussian relay channel

2. The quasi-static fading relay channel
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3. The cooperative multiple-access channel

4. The cognitive radio channel

In the following, we give brief overviews of our contributions in regards to each

one of these channels. These introductory remarks have been kept to a minimum.

More introductory information about each one of these channels can be found in the

subsequent chapters.

1. The Gaussian relay channel

Perhaps the simplest form a cooperative communication network is a three-node relay

channel [6]. One can view the communication model in Fig. 1 as a relay channel if

one of the users does not have any information to transmit, and the sole purpose of

which is to help the other user in its transmission. Even with this simplest setup,

relaying promises significant cooperation gains over traditional point-to-point commu-

nication. In this dissertation, we will first study compress-forward (CF) coding with

binary phase-shift keying (BPSK) for the half-duplex Gaussian relay channel [7, 8].

In CF relaying, Wyner-Ziv coding is applied at the relay to exploit the joint statistics

between signals at the relay and the destination. We propose Slepian-Wolf coded

nested scalar quantization (SWCNSQ) for practical Wyner-Ziv coding at the relay.

After providing the achievable rate of SWCNSQ based CF relaying as a performance

benchmark, we will present a practical code design using low-density parity-check

(LDPC) codes for error protection at the source, and nested scalar quantization plus

irregular repeat-accumulate (IRA) codes for CF coding at the relay. The degree

distributions of the LDPC and IRA codes are optimized using extrinsic information

transfer charts and a Gaussian approximation. Under discretized density evolution for

asymptotically large block lengths, our optimized code design operates 0.11 − 0.21 dB
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away from the SWCNSQ limit for CF relaying. Simulations with LDPC/IRA codes

of length 2× 105 bits show a performance gap of 0.27 − 0.38 dB from the achievable

rate.

2. The quasi-static fading relay channel

As opposed to the Gaussian relay channel, we also consider the case of a half-duplex

wireless relay channel where all links experience independent quasi-static Rayleigh

fading and where the instantaneous channel realizations are unavailable at the trans-

mitters [9, 10]. We assume that the network does not have a stringent delay con-

straint – thus the source and/or the relay continue transmitting until the destination

acknowledges successful decoding. We identify rateless coded relaying as the natu-

ral choice, and propose a rateless coded protocol where each transmission from the

source and/or the relay adds incremental redundancy to help the destination recover

the original message. Our proposed protocol utilizes, in conjunction with rateless

coding, a combination of the two popular relay cooperation schemes, namely decode-

forward and CF. Assuming very limited feedback from the destination, we derive the

theoretical achievable rates specifically with BPSK. We then implement the rateless

coded relaying protocol using Raptor codes. The degree profiles for the Raptor codes

are designed to maximize the average throughput − with the design formulated as a

convex optimization problem. Using discretized density evolution for asymptotically

large block lengths, the optimized codes lose approximately 5% in performance from

the theoretical limit, whereas with practical finite block lengths, the performance loss

is approximately 9%.
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3. The cooperative multiple-access channel

A natural extension to the relay channel is the case of a cooperative multiple-access

channel (MAC), shown in Fig. 1, where the role of relaying is played by other users

who also have their own information to transmit. In this dissertation, we will consider

cooperation in the low power (low SNR) regime of the MAC with the assumption that

the transmitters have no channel state information [11, 12, 13]. A relevant perfor-

mance to consider is therefore the outage capacity. We develop cooperation methods

based on multiplexed coding in conjunction with rateless codes and find the achiev-

able rates and in particular the minimum energy per bit required to achieve a certain

outage probability. We consider two modes of cooperation: full duplex (code divi-

sion multiple access or CDMA), where nodes can transmit and receive simultaneously

on the same frequency band, and half duplex (frequency division multiple access or

FDMA), where the nodes transmit and listen on different frequency bands. We show

that, perhaps surprisingly, there is little loss in performance when using FDMA. Fur-

thermore, our results show that multiplexed rateless codes come within 0.1 dB of

the outer bound on capacity. We also develop practical rateless coding methods for

FDMA using multiplexed Raptor codes which operate within 0.52 and 1.1 dB of the

theoretical limit for the two- and four-user case, respectively.

4. The cognitive radio channel

We implement a dirty-paper coded framework for the cognitive radio channel (CRC)

[14]. We assume that the cognitive user has non-causal knowledge about the primary

user’s transmissions. Thus the secondary receiver can employ dirty-paper coding

to counter the effect of any interference from the primary user. In addition, we

consider a situation where the introduction of the cognitive user should not affect
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the performance of the primary system – nor should the primary system have to

change its encoding/decoding process. For the primary user we use an LDPC code

and a 4-ary pulse amplitude modulation format. For the cognitive user, we propose

a multi-level dirty-paper coding scheme which employs trellis-coded quantization for

source coding and LDPC codes for channel coding. At a transmission rate of 1.0

bits/sample, the designed dirty-paper coding scheme operates within 0.78 dB of the

theoretical limit, which we believe is the best performance reported in the literature

for this rate.

C. Notation

Notation-wise, all logarithms are of base two unless otherwise stated; vectors and

matrices are represented by boldface letters, with their dimensions indicated by the

context in which they are used. | · | denotes magnitude of a complex number and || · ||

represents norm of a vector.

D. Dissertation Organization

The dissertation is organized as follows. In Chapter II, we discuss some introductory

concepts related to source coding with side-information as well as channel coding with

side-information, which will be used in the code designs in the chapters to follow. The

next four chapters form the main body of the dissertation, with each chapter devoted

to one of the four cooperative communication channels mentioned above. Specifically,

we discuss the Gaussian relay channel in Chapter III, the quasi-static relay channel

in Chapter IV, the cooperative MAC in Chapter V, and the CRC in Chapter VI.

Finally, we provide the concluding remarks in Chapter VII.
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CHAPTER II

CODING WITH SIDE-INFORMATION

In this chapter, we provide brief introductions to the concept of coding with side-

information, which plays a major role in the code designs for several cooperative

communication channels, as will be shown in the ensuing chapters. In general, coding

with side-information can be divided into two categories. The first category is termed

source coding with side-information (SCSI), where one needs to compress a source

while accounting for correlated side-information available at the decoder but not

at the encoder. The second category is the dual of SCSI, called channel coding with

side-information (CCSI), where the encoding accounts for the presence of interference

which is available as side-information at the encoder but not at the decoder. In the

following, we will briefly discuss basic concepts related to these two categories.

A. Source Coding with Side-information

In Chapters III and IV, we will use the concept of SCSI to develop coding strategies

for the Gaussian relay channel, and the quasi-static fading relay channel, respectively.

The basic system setup for SCSI is shown in Fig. 3. The source wishes to compress the

sequence X which is to be communicated to the destination over a noiseless channel.

However, the destination has available with it the sequenceY which is correlated with

the information sequence X. The source-coding or compression can be lossless, where

the recovered sequence X̂ has to be equal to the information sequence with arbitrarily

small probability of error. It can also be lossy, where the recovered sequence X̂ is

allowed to be a distorted version of X, while satisfying a certain fidelity criteria.

When the sequence is drawn from a discrete alphabet, the lossless compression under

the SCSI setting is referred to as Slepian-Wolf (SW) coding [15]. On the other hand,
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lossy compression in the SCSI setup is typically referred to as Wyner-Ziv (WZ) coding

[16]. In the following, we discuss the two separately by first providing the information

theoretic bounds, followed by some short discussions on ways of implementation.

Lossy/Lossless 
Compression

Noiseless 
Channel

Decoder
X

Y

X̂

Correlated Side-Information

Fig. 3. Source coding with side-information. The side-information sequence is corre-

lated with the information sequence and is available at the decoder but not at

the encoder.

1. Slepian-Wolf coding

Consider two infinite length sequences X, Y which are drawn i.i.d. from a pair of

correlated, discreet random variables X and Y . If the two sequences are to be jointly

compressed, a compression rate of RX + RY = H(X, Y ) is sufficient to guarantee

that the recovered sequences when decoded jointly are the same as the original se-

quences with arbitrarily low probability of error [17]. What if the two sequences are

encoded separately, with the encoder for one sequence having no knowledge of the

other sequence? Slepian and Wolf [15] proved the surprising result that with sepa-

rate encoding but joint decoding, a rate of RX + RY = H(X, Y ) is still sufficient to

correctly recover the two sequences. The model shown in Fig. 3 is a specific case of

this setup (corresponding to a corner point on the Slepian-Wolf rate region), where

Y is already known at the decoder. Under the setting of Fig. 3, the Slepian-Wolf

result translates into the fact that the rate required for lossless compression of Y is

RY = H(Y ), and therefore the required rate for lossless compression of X with Y
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available as the decoder side-information is given as

RX = H(X,Y )−RY = H(X|Y ).

This result is quite surprising since it states that the non-availability of Y at the

encoder does not affect the compression rate – one can guarantee lossless compression

using the same rate as if the side-information was also available at the encoder.

a. Practical Slepian-Wolf coding

Syndrome 
former for 

Noiseless 
Channel

Decoder for 

Coset code 
specified by sX

Y

X̂

k n

Virtual Correlation 
Channel

s

Virtual a-priori 
Channel

0

(side-information)

Fig. 4. Slepian-Wolf coding with parity-check (channel) codes.

The information theoretic proof of the Slepian-Wolf theorem [15] is based on

random binning arguments, which is not possible to put into practice. In reality,

one has to follow a structured binning approach with algebraic operations [18]. An

approach to structured binning is through the use of parity-check codes as first sug-

gested by Wyner in his 1974 paper [19]. The basic idea behind the use of parity-check

codes to approach the corner points in the Slepian-Wolf rate region (when sequence

Y is known as side-information at the decoder) is shown in Fig. 4. Compression

of a length k sequence X involves mapping the sequence to its corresponding n-bit

syndrome. Thus the compression rate is given as RSW = n
k
and is related to the rate
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R of the parity-check code as

R =
k − n

k
= 1−RSW .

The syndrome sequence, which identifies the coset of the parity-check code to be used

for decoding, is transmitted to the destination over the noiseless channel. In addition,

since the side-information Y is correlated with the information sequence X, it can

be thought of as being transmitted over a virtual correlation channel with X as the

input, andY as the output. The capacity over this virtual correlation channel is given

as Ccorr = I(X;Y ). In addition, if the sequence X is not equally likely, one can think

of X being transmitted over a virtual a-priori channel which provides information

Cap = 1 − H(X), where all logarithms are assumed to be to the base equal to the

alphabet size of X and Y – hence the term 1 in Cap = 1−H(X). Using an informal

argument, one can show that if the parity-check code is capacity-achieving over the

joint virtual correlation and a-priori channels, one can achieve the Slepian-Wolf limit

using the setup in Fig. 4. The argument goes as follows. If the parity-check code is

capacity achieving, then X can be recovered error free if the rate R of the code is less

than the overall capacity on the two virtual channels, i.e.,

R ≤ Ccorr + Cap = I(X;Y ) + 1−H(X)

= 1−H(X|Y ) (2.1)

Now substituting R = 1−RSW in (2.1), we obtain the condition for error free recovery

of X as

RSW ≥ H(X|Y ), (2.2)

which is the same as the SW compression limit.
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Over the past few years, several works have appeared in the literature related to

practical designs for Slepian-Wolf compression. Xiong et. al [20, 21] were probably the

first to follow the binning scheme mentioned above in designing SW coding schemes

based on turbo/low-density parity-check (LDPC) codes – the design with two binary

symmetric sources performs only 0.0389 bits away from the SW coding limit. Some

other related works include, but are not limited to [22, 23] and [24].

2. Wyner-Ziv coding

As mentioned before, WZ coding refers to the lossy compression of X in Fig. 3 with a

certain fidelity criteria, under the condition that the side-informationY is available at

the decoder but not at the encoder. The problem, also referred to as rate-distortion

with side-information was investigated in [16]. The objective is to determine how

many bits RWZ(D) are necessary to encode X such that the decoder is able to obtain

a reconstruction X̂ which has a distortion of at most D from the original sequence,

i.e. E
[
d(X, X̂)

]
≤ D, where d(·, ·) is an arbitrary distortion metric. According to

[16], the rate-distortion function RWZ(D) is given as

RWZ(D) = inf
f(W |X)

inf
F

[I(X;W )− I(Y ;W )] , (2.3)

where W is an auxiliary random variable such that Y → X → W forms a Markov

chain. As a result of the Markov chain, we have I(X;W ) − I(Y ;W ) = I(X;W |Y ).

The infimum in (2.3) is taken over all random variables W and over all reconstruction

functions X̂ = F (Y,W ), which satisfy the distortion constraint given by

E
[
d (X,F (Y,W ))

]
≤ D, (2.4)

where the expectation is with respect to the joint pdf of X, Y , and W . It was also

shown in [16] that under the setup described above, one can do not better than the
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limit in (2.3).

In general, the rate-distortion function with side-information in (2.3) suffers a

rate loss compared to the case where the encoder also has information about the side-

information Y. However, when X and Y are jointly Gaussian with zero mean, and

with mean square error (MSE) as the distortion metric, the rate-distortion function

RWZ(D) is the same as that for the case where Y is also available at the encoder.

Indeed, if one chooses W = X + Z, where Z is a zero-mean Gaussian random vari-

able whose variance is chosen to satisfy the MSE distortion constraint, and with the

reconstruction function F (·, ·) equal to the conditional expectation of X given W and

Y , one can show that [25]

RWZ(D) =
1

2
log+ (1− ρ2)σ2

x

D
, (2.5)

where ρ is the correlation coefficient between X and Y , σ2
x is the variance of X and

log+ (x) = log (max(x, 1)). It can be verified that this rate-distortion function is the

same as that with joint encoding at the source [25]. In practice, many image and

video sources can be modeled as jointly Gaussian. Therefore, the result stated above

is important since it promises no loss in coding efficiency when the side-information

is available at the decoder only, and not at the encoder.

a. Practical Wyner-Ziv coding

The Gaussian example presented in the previous subsection gives us an insight into

practical WZ coding. Basically, the auxiliary random variableW can be thought of as

the output of a quantizer with X as the input. At the decoder, one needs to estimate

the sequence X given the quantized output W and the side-information sequence

Y. From an information theoretic perspective, there are granular gain and boundary

gain in source coding, while shaping gain and packing gain in channel coding [26].
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Since WZ coding is originally a source coding problem, one needs to consider the

granular and boundary gains. However, as opposed to traditional source coding, the

side-information necessitates compression with binning, which can be accomplished

by channel coding, as pointed out in Section A. This channel coding however is not

conventional in the sense that there is only packing gain, but no shaping gain. One

can easily draw equivalence between the boundary gain in source coding and the

packing gain in channel coding. Hence in WZ coding, the granular gain is achieved

through source coding or quantization, and the boundary gain via syndrome based

compression through channel coding. In short, even though WZ coding is inherently a

source coding problem, its practical implementation involves both source and channel

coding components.

Decoder

Encoder

Quantizer
SW 

Compression
X

X̂

(side-information )

W Noiseless 
Channel

SW 
Decoding

Estimation
Ŵ

Y

Fig. 5. Practical WZ coding with quantization and SW coding.

A source-channel coding strategy for WZ coding using nested lattices was pro-

posed in [18] and was shown to achieve the WZ limit asymptotically as the dimen-

sionality of the lattice codes approaches infinity. However, the implementation of
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such high dimensional lattice codes is not practical. A somewhat related, but prac-

tical approach to WZ coding is shown in Fig. 5, where the input sequence is first

quantized to obtain the WZ auxiliary random variable. In general, the quantized

output is discrete which is still correlated with Y. Thus, in practice, one can exploit

this correlation to compress the quantized output further using SW coding, which is

implemented through channel codes as mentioned in Section A. In order to reach the

theoretical WZ coding limit in practice, one needs to employ a good source code, e.g.

trellis coded quantization (TCQ) [27], which can achieve as high a granular gain as

possible. At the same time, one needs to employ capacity approaching channel codes,

e.g. turbo and LDPC codes that can achieve the Slepian-Wolf limit.

Finally, one can easily draw parallels between classical entropy constrained source

coding (quantization) and the practical WZ coding approach in Fig. 5. The only dif-

ference between the two is that the latter needs to account for the side-information

which is available at the decoder. No wonder, if one replaces the SW coding (condi-

tional entropy coding) in Fig. 5 with classical entropy coding, one obtains the classical

entropy constrained quantization problem. For this reason, the scheme in Fig. 5 can

be referred to as Slepian-Wolf coded quantization (SWCQ). For the quadratic Gaus-

sian Wyner-Ziv problem, where X and Y are jointly Gaussian, it was shown in [28]

that at high rates, the performance gap of SWCQ scheme to the WZ distortion-rate

function DWZ(R) is exactly the same as the performance gap between classical en-

tropy constrained quantization and the classical distortion-rate function D(R). In

a practical design example [29] of SWCQ with 2-D TCQ for quantization, irregular

LDPC codes for SW coding, MSE as the distortion measure, and optimal conditional

mean estimation at the decoder, the performance gap to WZ distortion-rate function

was reported to be only 0.66 dB at 1.0 bits/sample (b/s) and 0.47 dB at 3.3 b/s.
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B. Channel Coding with Side-information

CCSI, as mentioned before, refers to the problem of communicating over a noisy

channel with some knowledge of the channel state available as side information at

the encoder, but not at the decoder. Gelfand and Pinsker [30] obtained the capacity

for the problem involving a discrete memoryless channel in 1980. Three years later

Costa [31] used Gelfand’s and Pinsker’s result to formulate the theory for the special

case of Gaussian channel. Costa’s work, also referred to as “writing on dirty paper”,

did not address the relevance of its results to communication networks and hence

did not draw much attention at first. However, we now know that several situations

in communication networks can be modelled as a CCSI problem e.g. ISI channels,

cross talk interference pre-subtraction in vectored digital subscriber line, broadcast

channels, cognitive user channels, and transmitter cooperative networks to name a

few. Moreover, CCSI also finds widely celebrated applications in covert operations

such as data hiding and watermarking.

In Chapter VI, we will discuss code designs for a Gaussian cognitive radio chan-

nel, an enabling component of which is CCSI. Since dirty-paper coding (DPC) is a

specific to Gaussian channels, we will mostly discuss DPC as a special case of CCSI in

this section. The objective of this section is to first review some theoretical aspects of

DPC. This will be followed by discussion of some guidelines for developing practical

DPC strategies, which we will use when we develop a practical DPC scheme for the

cognitive radio channel. The organization of this section is as follows. In Section 1

we will introduce the Gelfand-Pinsker coding problem and discuss how it applies to

the special case of Costa coding. Section 2 discusses guidelines to developing prac-

tical approaches for solving the DPC problem, which will highlight the importance

of source coding in the apparent channel coding problem of DPC. Finally, Section 3
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will present an information theoretic perspective to the requirement of a source code

in DPC.

1. Gelfand-Pinkser coding and Costa coding

Gelfand and Pinsker [30] considered the case of CCSI in a discrete memorlyless chan-

nel. The channel model is shown in Fig. 6. The input to the channel is denoted by

S  

Encoder  Channel
p(y|x,s)

 
 

Decoder  
X  Y   

^

ww

Fig. 6. Gelfand-Pinsker Channel

X, the output by Y , and the side information by S which is known non-causally at

the encoder but not at the decoder. The encoder is to transmit message w over a

discrete memoryless channel characterized by the transition probability p(y|x, s). It

was shown in [30] that the capacity of this channel is given by

C = max
p(v,x|s)

(
I(V ;Y )− I(V ;S)

)
, (2.6)

where V is an auxiliary random variable. The proof of Gelfand-Pinsker capacity is

based on random coding and binning. For the general CCSI, Gelfand-Pinsker coding

suffers a loss compared to the situation when the side information is available at both

the encoder and the decoder.

Costa [31] used the general formula in (2.6) to prove the capacity of a Gaussian

channel, where the signal is corrupted by an additive Gaussian noise as well as Gaus-

sian interference – Costa’s channel model is shown in Fig. 7. Costa drew an analogy

of this channel to the problem of writing on a sheet of paper covered with dirt, where
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the writer knows the location and intensity of the dirt particles but the reader does

not. Thus the whimsical title of “dirty-paper coding”.

 

 

Channel
 

 

Encoder

 

 
 

+  +

 

 
^
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Z
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S
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Fig. 7. Costa channel

The transmitter wishes to send the message such that a power constraint E[|X|2] ≤

Pt is satisfied. The output of the channel is given by Y = X + S + Z, where the

interference S ∼ N (0, PQ) is known non-causally at the transmitter but not at the

receiver, and Z ∼ N (0, PZ) is the additive noise. If the auxiliary random variable is

chosen as V = X + αS, with α = Pt

Pt+N
, Costa proved the surprising result that the

capacity of the channel in Fig. 7 is the same as if the interfering signal S were not

present at all. In other words, the Gelfand-Pinsker capacity in (2.6) is the same as

that of the typical AWGN channel, and is given as

C =
1

2
log

(
1 +

Pt

PZ

)
. (2.7)

Costa’s proof is once again based on random coding and binning arguments. Although

Costa proved this result for a Gaussian interference, it was later generalized for any

arbitrary distribution on S in [32].



20

2. Approaches to practical DPC

Since Costa’s proof is based on random coding and binning, its practical implemen-

tation is not possible. However, it does provide a very visible clue of “binning”.

Not surprisingly, many recent works on practical schemes for DPC e.g. [33, 34, 35]

have utilized the concept of structured binning and obtained performance close to the

Costa’s limit. For example, [33] focused on the high rate regime and designed a DPC

scheme based on nested turbo codes which was able to perform within 1.42 dB of the

capacity at a rate of 1.0 b/s. On the other hand, [34, 35] developed DPC schemes

based on TCQ and LDPC/IRA codes for the low rate regime. At a transmission rate

of 0.25 b/s, the scheme in [35] performs 1.3 dB away from capacity. On the other

hand, the authors in [34] were able to devise a scheme which performs only 0.63 dB

away from the theoretical limit at a transmission rate of 0.25 b/s.

In this section we will introduce Tomlinson-Harashima precoding (THP) which

can be seen as a one dimensional implementation of DPC. We will then draw parallels

between THP and scalar quantizers, and thus show the need of a source code in solving

the DPC problem. Finally, we will introduce a structured binning strategy based on

nested lattices [18].

a. Tomlinson-Harashima precoding

THP [36, 37] shown in Fig. 8 was originally designed to counter the interference

in ISI channels. Consider a message codeword U to be transmitter over a channel

characterized by an additive interference S and an additive noise Z, with powers PQ

and PZ , respectively. The interference S is available non-causally to the encoder but

not to the decoder. One can immediately see the equivalence of this problem to DPC

if the noise Z were Gaussian. At first glance one would consider pre-subtracting the
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side information from the transmitted signal in order to cancel the interference, i.e.,

transmitting Xs = U−S. Indeed, the received signal will now be Y s = Xs+S+Z =

U + Z, and hence interference free. A closer look at this approach however reveals

that this pre-subtraction would have to pay a severe power penalty. Assuming that

U and S are independent, the transmitter power will be E[|Xs|2] = E[|U |2] +E[|S|2].

Since the side information can have an arbitrarily high power, E[|Xs|2] can be much

higher than E[|U |2], which will result in a severely reduced transmission rate than

(2.7). In order to avoid this power penalty, THP uses modulo arithmetic in order to

constrain the transmitted signal to a finite interval.

Channel

mod ∆ + +

^

U

Z

YX

S

+

Encoder

mod ∆
U

Decoder

Fig. 8. Tomlinson-Harashima precoding

Let the codeword to be transmitted U be constrained to a finite interval of length

∆, i.e., U ∈ [0,∆]. The signal transmitted to the channel is X = (U − S) mod ∆.

Because of the mod operation, X is now limited to the same finite interval as U and

hence it does not suffer the power penalty which a simple pre-subtraction would. At

the decoder, a same mod operation is performed to get an estimate of U . In the

absence of noise, THP guarantees that U is recovered without error at the decoder.
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This can be shown as follows. The recovered codeword Û is given by

Û = Y mod ∆

=
(
X + S

)
mod ∆

=
(
(U − S) mod ∆+ S

)
mod ∆

=
(
U − S + S

)
mod ∆

= U mod ∆

(a)
= U,

where (a) follows from the fact that U ∈ [0,∆].

b. THP with scalar quantizers

The encoding process in THP reduces the signal U ′ = U −S to one of the equivalent

representatives of the symbol given as n∆, where n = ⌊U ′

∆
⌋. The difference X =

U ′ − n∆ is then transmitted to the channel. One can draw parallels between the

output of the mod operation in THP and the quantization error in a scalar quantizer.

Consider a scalar uniform quanitzer whose quantization points are given by n∆ with

n ∈ Z. If U is distributed on the interval [0,∆), then the mod operation in THP is

related to the quantizer by

U ′ mod ∆ = U ′ −Q
(
U ′ − ∆

2

)
,

where Q
(
·
)
represents uniform quantization over a constellation with points n∆. It

can be shown that the mod operations in THP can be replaced by the scalar quantizer

by making sure that the input signal is distributed on the interval [−∆
2
, ∆

2
) instead of

on [0,∆). Fig. 9 shows equivalent THP with scalar quantizers. When the interference

power PQ is large, the quantization error X is approximately uniformly distributed

on the interval [−∆
2
, ∆

2
) and hence the power of the transmitted signal is independent
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of PQ and is approximately given by ∆2

12
.
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Fig. 9. Tomlinson-Harashima precoding with scalar quantizers

c. Generalization of THP to vector quantizers

As pointed out in [32, 38] THP suffers a signigicant loss from Shannon’s capacity

limit, especially at low signal to noise ratios (SNRs). The main drawback of THP is

that it only uses the current value of the side information S and does not consider

the future values. The mod operation is performed on a symbol by symbol basis re-

sulting in an output which is uniformly distributed on [−∆
2
, ∆

2
). This is equivalent to

performing a mod operation over a high dimensional cuboid, which suffers a shaping

loss. An optimal quantizer however should be equivalent to performing a mod opera-

tion over a high dimensional sphere, resulting in Gaussian quantization error in each

dimension. Thus instead of using the side information on a symbol by symbol basis,

one needs to consider an entire sequence. The solution to recovering the shaping

loss therefore lies in performing a high dimensional mod operation, or equivalently in

vector quantization.
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d. Binning based on nested lattices

So far, we have only discussed the source coding (quantization) portion of the DPC

problem, which is essential to satisfy the power constraint. We found that one can

accurately retrieve the coded message in the absence of noise. However, in practice

one needs to add error protection to the transmission in order to combat the chan-

nel’s additive Gaussian noise. This therefore introduces an additional channel coding

aspect to the problem. The question here is: How do we view the joint source and

channel code design under a similar framework? Zamir et al [18] proposed a practical

binning scheme based on nested codes. Hence the solution to the Gelfand-Pinsker

problem lies in nested parity check codes, and in nested lattice codes for the Costa

coding problem.

A nested lattice code comprises of a coarse lattice code nested inside a fine channel

code, i.e., every codeword of the coarse lattice code is also a codeword of the fine

lattice code but every codeword of the fine lattice is not a codeword of the coarse

lattice. According to [18], for a good dirty-paper code design, the fine code should be

a good channel code whereas the coarse code should be a good source code. Hence

the source code is nested within the channel code. The concept of binning can be

derived from this nesting approach. The group of channel codewords nested within a

single source codeword are said to belong to the same bin, where the bin is indexed

by that particular source codeword.

Let us illustrate how binning based on nesting works by considering a one dimen-

sional nested lattice as an example. Note that we select a one dimensional lattice for

illustrative purposes only – in practice a high dimensional lattice should be used in

order to achieve good performance. Fig. 10 demonstrates a binning strategy based on

a 1-D nested integer lattice. The points on the lattice indexed by a 0 correspond to
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∆

αY

X = U -αS

(a)
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(c)

Fig. 10. Binning scheme using a 1-D nested lattice (a) Nested lattice (b) Encoding (c)

Decoding

the channel codewords in the basic coset. Similarly the points indexed by the other

numbers correspond to the other cosets. The message to be transmitted (which in

this case will be a two bit message) selects one of these cosets. In this example, coset

2 is indexed by the message. The message is first scaled by a factor α (the necessity

of this scaling comes from Costa’s original proof in [31]). This scaled side information

is then quantized to the nearest codeword in the coset 2 and the quantization error

is sent to the channel. At the decoder the nearest codeword to the scaled received

signal is found to get an estimate of the transmitted signal. The decoded message

therefore is the index of this estimate. THP with scalar quantizers can be viewed as

a binning scheme based on nested lattices. The input U in Fig. 9 can be thought of
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as a channel codeword selected by the message. Quantizing the difference U − αS

to an infinite integer lattice n∆ is the same as quantizing αS to a lattice where the

channel codeword U has been infinitely replicated. In practice, this nested code strat-

egy can be implemented by employing the likes of TCQ as the source coding, and

LDPC/Turbo codes as the channel coding component.

3. Information theoretic perspective of lattice strategies

An information theoretic framework for studying the Costa coding problem was pre-

sented in [32]. Costa coding is inherently a channel coding problem. According to

[26], there are packing and shaping gain in channel coding. The shaping gain has to

do with the shape of the Voronoi region of the lattice, which ideally has to be a sphere.

The packing gain has to do with the way the code regions are packed against each

other. Costa coding problem as explained earlier can be split into a source coding

and channel coding component. The source coding becomes necessary to satisfy the

power constraint and is hence required to reduce the scaled side information modulo

the Voronoi region. The constellation therefore needs to be replicated infinitely so

that one can quantize the side information to satisfy the power constraint. This source

coding therefore is not conventional in the sense that it only has the granular gain

and no boundary gain. One can easily draw equivalence between the granular gain in

source coding and the shaping gain in channel coding. Hence in channel coding with

side information problem, the shaping gain is achieved through source coding and

the packing gain through channel coding. In order to get close to the Costa capacity

limit, the source coder should be designed such that its Voronoi region is almost a

spherical region in high dimensional Euclidean space (such as TCQ). Similarly the

channel code should also be near capacity (such as Turbo codes or LDPC).

Erez et al [35] provided an information theoretic limit of DPC when employing



27

lattice precoding. Let Λ be an L dimensional lattice quantizer with the basic Voronoi

region V . Then, for any source codeword u ∈ V (selected by the information to be

transmitted), the encoder transmits

X = (u− αS−D)mod Λ,

where S is the side-information sequence, and D is the random dither sequence uni-

formly distributed over V and is shared by the encoder and the decoder. At the

decoder, the received sequence is given as

Y = X+ S+ Z.

The decoder first scales Y by α and adds the shared dither before modulo reducing

it with respect to the quantization lattice. The output is then given as [32, 35]

Y′ = (αY +D)modΛ

= (αX+ αS+ αZ+ u− u+D)mod Λ

= (u− (1− α)X+ Z)mod Λ

Because of the dither, X is uniformly distributed over V and therefore has the same

distribution as D [32]. Thus, Y′ is equivalent in distribution to [32]

Y′ = (u+ Z′)mod Λ,

where Z′ ≡ ((1− α)D+ αZ)mod Λ. It was shown in [35], that the capacity limit for

such a modulo additive noise channel is given as

C∗ =
1

2
log

(
1 +

Pt

PZ

)
− 1

2
log (2πeG(Λ)) , (2.8)

whereG(Λ) is the normalized second moment of the quantizer lattice Λ. G(Λ) is upper
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bounded by 1
12

for a uniform quantizer whose Voronoi region is a high dimensional

cuboid, and asymptotically approaches 1
2πe

with the dimensionality of Λ going to

infinity for a quantizer lattice whose Voronoi region is a high dimensional sphere [39].

We can see that with a lattice that achieves the lowest normalized second moment

(ideal quantizer), the capacity limit of the nested lattice DPC scheme is equivalent

to Costa’s capacity in (2.7). This necessitates the use of a strong source code, along

with a capacity achieving channel code in order to get close to Costa’s capacity limit.
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CHAPTER III

THE GAUSSIAN RELAY CHANNEL

A. Introduction

The relay channel, introduced by van der Meulen in [6], consists of three terminals:

the source, the relay, and the destination. The source broadcasts its message to both

the relay and the destination. The relay processes the message it receives from the

source and forwards the processed signal to the destination, which reconstructs the

original message by decoding the signals received from both the source and the relay.

The task of the relay is thus to facilitate joint decoding at the destination by means

of spatial/temporal diversity.

The capacity of the general relay channel is still not known. Cover and El Gamal

[40] derived the tightest upper and lower bounds of the general relay channel using

random coding and converse arguments. These two bounds coincide only in few

special cases (e.g., the degraded Gaussian relay channel). Since optimum processing

at the relay is unknown, several random coding schemes (see, for example, [41, 42,

40, 43, 44, 1, 2]) have been proposed to obtain the lower bound on the capacity. In

general, these coding schemes can be divided into two classes: decode-forward (DF)

and compress-forward (CF) [40]. In DF, the relay attempts to decode the transmission

from the source before forwarding it to the destination. As a result, the source to

relay channel quality acts as the bottle-neck for the overall achievable rate. In order

to alleviate the effect of this limitation, CF has been proposed, where the relay does

not attempt to decode the signal from the source. Instead, it relies on Wyner-Ziv

(WZ) coding [16] (or source coding with side information at the decoder). Since the

signals received at the receiver and the destination are different noisy versions of the
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same source signal, they are correlated. The relay can exploit this correlation to

compress the relay received signal without the knowledge of the received signal at

the destination, i.e., the side information; thus it does not attempt to decode. At

the destination, the signal is recovered via joint decoding with the presence of side

information. CF is desirable over DF when the signals received at the relay and the

destination are highly correlated, e.g., when the relay is close to the destination. In

addition, as opposed to DF, CF always outperforms direct transmission. Thus, in CF,

the relay always helps the source, even if the link between the source and the relay is

poor. Therefore, CF gives many rate points that are not achievable with any other

coding strategy. More importantly, it was shown in [3] that WZ coding-based CF

relaying is optimal in terms of asymptotically achieving the upper bound for receiver

cooperation in ad hoc networks.

There are two operating modes in relaying: full-duplex and half-duplex. If the

relay is able to transmit and receive signals simultaneously, then we say that it works

in the full-duplex mode; otherwise, it works in the half-duplex mode. In this latter

mode, the relay either works in a time-division (in which the relay receives and trans-

mits signals in different time slots) or frequency-division manner (in which the relay

receives and transmits at different frequencies). Half-duplex is a simpler and cheaper

approach [45] because the microwave design challenge (e.g., due to the large difference

in the transmitting and receiving signal power levels) associated with the full-duplex

mode can be avoided. Therefore, we will focus on half-duplex relaying in this disserta-

tion. Since time- and frequency-division are equivalent from an information-theoretic

viewpoint, we will assume time-division multiplexing in the sequel.

Motivated by the wide application of cooperative communications [1, 2, 3, 4, 5]

and the information-theoretic importance of the relay channel, several research groups

have recently proposed practical cooperative code designs. However, most of them
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employ DF. For example, practical user cooperative scheme was given in [44] using

space-time coding. Rate-compatible punctured convolutional codes were employed

in [4]. A DF scheme based on incremental redundancy designed in [5] exploited

optimized convolutional codes in a Rayleigh slow fading environment; it was further

shown that this scheme achieved full diversity. A practical turbo-based code design for

DF, called distributed turbo coding, was proposed in [46]. A similar code design was

also given in [47], and a more advanced turbo-based code design was proposed in [48]

for both single-input single-output and multiple-input multiple-output relay system,

showing a gap typically 1.0-1.5 dB away from the theoretical limits. Extension of

[48] to half-duplex relays was done in [49]. As opposed to the turbo-based designs

mentioned above, [50] focused on low-density parity-check (LDPC) code design for

the half-duplex DF relaying, reporting a similar loss of 1.2 dB to the theoretical

limit. Two more recent works on DF relaying using LDPC codes were documented

in [51, 52].

On the other hand, only a few works on practical CF code designs have been

published in the literature. This is due to the fact that, despite the significance of

WZ coding in CF relaying, practical WZ code design was not well understood until

very recently [28, 53, 29]. The first CF design for the half-duplex Gaussian relay

channel using WZ coding was devised in our preliminary work of [54, 55], which was

soon followed by the publication of [56, 57]. However, no WZ compression or dis-

tributed joint source-channel coding (DJSCC) was employed at the relay in [56, 57];

in addition, the source was not allowed to transmit during the relay-transmit period,

making the decoder design much easier than in [54, 55] and the overall relay scheme

highly suboptimal. A related work by the same authors of [56, 57] was presented in

[56], which was based on WZ coding at the relay and used scalar quantization and

convolutional codes, but it did not exploit limit-approaching CF designs or give the-
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oretical bounds with performance comparisons (to the bounds). A quantize-forward

scheme was put forth in [58], which did not exploit WZ coding at the relay. Another

quantize-forward schemes was described in [59]. Finally, a comprehensive survey of

coding techniques for cooperative communications was given in [60].

Inspired by recent theoretical studies (e.g., [61]) on capacity bounds for the wire-

less relay channel, we address CF coding for the half-duplex Gaussian relay channel

− extension of this work to the fading case will be discussed in the next chapter.

Guassian (or unconstrained) modulation was assumed in [61], but the complexity of

implementing approximate Gaussian modulation (e.g., via turbo trellis-coded modu-

lation and shaping) is high, we thus treat the simplest setup with binary phase shift

keying (BPSK) modulation in this work as a first step. However, with BPSK, the

signal to be compressed by WZ coding at the relay and the side information at the

destination are not jointly Gaussian (as in [61]); in fact, both the source and the side

information are Gaussian mixtures, for which the theoretical limit of WZ coding is

not known. Consequently, we do not attempt to find the capacity of CF relaying with

BPSK modulation.

In this chapter, we first derive the achievable rate of CF coding with BPSK

for the half-duplex Gaussian relay channel by considering Slepian-Wolf coded nested

scalar quantization (SWCNSQ) [28] as a practical form of WZ coding at the relay. The

resulting achievable rate serves as the theoretical bound of our subsequent code design,

in which we employ a low-density parity-check (LDPC) code for error protection at

the source, and SWCNSQ, i.e., nested scalar quantization followed by Slepian-Wolf

(SW) coding [15], at the relay. Since the SW coded bitstream at the relay has

to be transmitted over the noisy channel between the relay and the destination,

additional error protection is needed. To provide both SW compression and error

protection, we resort to distributed joint source-channel coding (DJSCC) [62] of the
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quantization indices using a single irregular-repeat accumulate (IRA) code [63]. Once

the quantization indices are recovered after IRA decoding, the destination effectively

receives the source transmission over two parallel channels. Thus the design process

for the LDPC code is different from conventional LDPC code design for point-to-

point communication since it has to cater for these two channels. We formulate an

optimization problem for designing the degree distributions of the LDPC code using

extrinsic information transfer (EXIT) charts [64] and the Gaussian assumption [65],

which can be solved using linear programming. In addition, the IRA code is designed

using a technique similar to the one in [62] for DJSCC. Utilizing discretized density

evolution (DDE) [66], we observe that with asymptotically large block lengths, our

code design with optimized LDPC and IRA codes performs 0.11− 0.21 dB away

from the achievable rate bound of SWCNSQ based CF relaying. Simulations with

LDPC/IRA codes of length 2 × 105 bits show a performance loss of 0.27− 0.38 dB

from the theoretical limit.

The rest of the chapter is organized as follows. The channel model and the WZ

coding-based CF coding scheme are described in Section B. We give the achievable

rates of CF coding in Section C by employing SWCNSQ as a practical means of

WZ coding. We also present several simplifications to the scheme (with negligible

performance loss) to facilitate practical implementation. Practical CF relaying using

LDPC and IRA codes is described in Section D, followed by the simulation results in

Section E. Finally, Section F provides a summary of the chapter.

B. Channel Model and WZ Coding-based CF Relaying

The three-node relay channel is shown in Fig. 11, where dsd, dsr and drd denote

the source to destination, source to relay, and relay to destination distances, respec-
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Fig. 11. The relay channel with three nodes: the source, the relay, and the destination.

tively, and csd, csr, and crd are the corresponding channel gains. All links experience

additive white Gaussian noises, which are assumed to be of unit variances. As in

[46], we assume that the channel coefficients are given by csr = csd

(
dsd
dsr

)l/2

and

crd = csd

(
dsd
drd

)l/2

, where l is the path loss coefficient. Throughout the paper, we fix

the path loss coefficient l to three and, without loss of generality, assume that the

source to destination channel coefficient is normalized to one, i.e., csd = 1, and that

the distance between the source and the destination is also fixed. The exact value

of this distance is not important since all distances can be scaled appropriately to

obtain the same channel statistics. However, for the sake of expositional clarity, we
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assume that the source-to-destination distance is fixed at dsd = 10.

In the following, we explain the coding strategy for the half-duplex CF relaying,

depicted in Fig. 12.

WZ Coding

Channel Encoderm Xs11. Encode message m.2. Transmit Xs1Source 1. Transmit Xs2Source

1. Recover W from Yd2 after channel        and WZ decoding. Use Yd1 as SI. 2. Jointly decode m from Yd1, Yd2, and    W.
Destination

Quantiza--tion Channel codingYr W Xr

Channel decoding WZdecoding

SW Coding

Yd2
Yd1 Decoder

1. WZ encode Yr using Yd1 as  SI.2. Channel code WZ output and transmit     to destination.Relay
RelayYr[i] = csrXs1[i] + Zr[i]

Yd1[i] = csdXs1[i] + Zd1[i]
Destination

Channel Encoderm Xs2
Yd2[i] = csdXs2[i] + crdXr[i]+ Zd2[i]

Relay-receive period T1 with duration αT Relay-transmit period T2 with duration (1-α)T

Ŵ m̂

Fig. 12. An illustration of the WZ coding based CF relaying for the half-duplex Gaus-

sian relay channel.

Encoding at the source: A message m of nR bits at the source is encoded

into a length n codeword X(m). The codeword is split into two non-overlapping

parts: Xs1(m) of length αn as the first block of transmission and Xs2(m) of length

αn as the second block of transmission, where α ∈ (0, 1) and α = 1 − α. The

two parts of the codeword satisfy the power constraints 1
αn

∑αn
i=1 Xs1[i]

2 ≤ Ps1 and
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1
αn

∑αn
i=1 Xs2[i]

2 ≤ Ps2, where Ps1 and Ps2 are the source powers during the first and

second block of transmission, respectively. We point that that in describing the en-

coding process at the source, we have deviated slightly from the CF relaying scheme

mentioned in [61], where instead of the codeword, the message m is split into two

non-overlapping parts m1 and m2. These two messages are then encoded to two

independent codewords Xs1(m1) and Xs2(m2) of lengths αn and αn, respectively.

We will refer to the scheme of [61] as the message-splitting (MS) scheme since the

original message is split into two parts. On the other hand, the coding strategy in

which the codeword instead of the message is split, will be referred to as the codeword-

splitting (CS) scheme. Information-theoretically, the two schemes result in the same

achievable rate. However, for reasons that will be explained in Section D, practical

implementation of an MS scheme using LDPC and IRA codes performs worse than

that of a CS scheme. Thus we use the latter in our practical CF system design. For

this reason, our description is specific to the CS scheme only.

At the frame level, the time interval T for each communication cycle is divided

into the relay-receive period T1 = αT and the relay-transmit period T2 = αT with

T1 + T2 = T .

Relay-receive period: During the relay-receive period, the source transmitsXs1(m)

and the signals received at the relay and the destination at time index i = 1, . . . , αn

are given by

Yr[i] = csrXs1(m)[i] + Zr[i], (3.1)

Yd1[i] = csdXs1(m)[i] + Zd1[i], (3.2)

respectively, where Zr and Zd1 are i.i.d. white Gaussian noises with unit power,

independent of the source and each other. We thus have a broadcast channel in the
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relay-receive period.

Relay-transmit period: Note that during T1, the relay receives a correlated version

of the signal received at the destination, because both Yr and Yd1 are noisy replicas of

the same signal Xs1. Thus during T2, the relay exploits this correlation to compress

Yr using WZ coding [16] at a rate of RWZ , using an auxiliary random variable W

such that Yd1 → Yr → W forms a Markov chain. As mentioned in Chapter II, W

in practice can be thought of as the quantized version of Yr. The WZ coding output

is then mapped to a codeword Xr(W) and transmitted to the destination. The

codeword is of length αn and satisfies the power constraint 1
n

∑αn
i=1 Xr[i]

2 ≤ Pr, where

Pr is the average relay modulation power. At the same time, the source transmits

Xs2(m) to the destination. The signal received at the destination is thus

Yd2[i] = crdXr(W)[i] + csdXs2(m)[i] + Zd2[i], i = 1, . . . , αn, (3.3)

where Zd2 is again i.i.d. white Gaussian noise with unit power, independent of the

source and the relay signals. We thus have a multiple-access channel (MAC) during

the relay-transmit period.

Decoding at the destination: At the destination, an estimate Ŵ of the quanti-

zation indices is first obtained from Yd2 using Yd1 as decoder side information. The

effective transmission channel from source to destination after Ŵ has been recovered

is shown in Fig. 13, where the destination receives a noisy version of the code-

word Xs(m) over two parallel sub-channels. The length-αn output of sub-channel 1

corresponding to the relay-receive period is Yd1 and Ŵ, and that of sub-channel 2

corresponding to the relay-transmit period is Yd2, which is of length αn. The decoder

therefore recovers the message m jointly from Yd1, Ŵ, and Yd2.
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Fig. 13. After decoding the quantization indicesW, the destination effectively receives

the source transmission over two parallel sub-channels.

C. Achievable Rates of CF Coding Using SWCNSQ with BPSK

In this section, we describe a special case of the WZ coding-based CF relaying scheme

of Section B by limiting W to be the output of nested scalar quantization [28] of Yr.

We are interested in this case because our practical CF code design of Section D

quantizes Yr using a nested scalar quantizer before SW coding. In order to gauge

the performance of our BPSK modulated code design, we compute the achievable

rate R for this special case (with all channel inputs Xs1, Xs2, and Xr being BPSK

modulated). We start with preliminaries and background on SWCNSQ.

1. Preliminaries

The upper bound on the capacity and the achievable rates for CF and DF of the

relay channel with the inputs being Gaussian modulated are given in [61]. In that
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case, the capacity bounds are relatively simple to derive, since the capacity for the

Additive White Gaussian Noise (AWGN) channel and the rate-distortion function

of quadratic Gaussian WZ coding exist in close-form expressions. As opposed to

the Gaussian input case, with BPSK modulation we have a binary-input AWGN

(BIAWGN) channel between each pair of nodes, the capacity of which can only be

computed numerically as [67]

CBIAWGN(s) = 1−
∫ ∞

−∞

e−τ2/2

√
2π

log(1 + e−2
√

sτ−2s)dτ, (3.4)

where s is the channel signal-to-noise ratio (SNR). We will also come across another

type of channel, where in addition to the Gaussian noise, there is an equi-probable bi-

nary interference. We call this channel binary-input mixture Gaussian noise (BIMGN)

channel. For example, the channel represented by (3.3) becomes a BIMGN channel

if Xr is treated as binary input signal and Xs2 as binary interference. The capacity

of such a BIMGNC can be derived as (see Appendix A)

CBIMGN(P, Pi, σ
2) = 1−

∫ ∞

−∞
p+(y) log

(
1 +

p−(y)

p+(y)

)
dy, (3.5)

with

p+(y) =
1

2
√
2πσ

e−(y−
√
P−

√
Pi)

2/2σ2

+
1

2
√
2πσ

e−(y−
√
P+

√
Pi)

2/2σ2

,

p−(y) =
1

2
√
2πσ

e−(y+
√
P−

√
Pi)

2/2σ2

+
1

2
√
2πσ

e−(y+
√
P+

√
Pi)

2/2σ2

,

where P and Pi are the received signal and interference powers, respectively, and σ2 is

the AWGN variance. Note that (3.5) degenerates to (3.4) (with s = P
σ2 ) when Pi = 0.

In the following, we will abuse the notation by using C(·) and C(·, ·, ·) to indicate

capacity of a BIAWGN and BIMGN channel, respectively.
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2. SWCNSQ

As mentioned in Chapter II, WZ coding can be implemented by first quantizing

the information sequence followed by SW coding. A framework based on Slepian-

Wolf coded nested lattice quantization, i.e., nested lattice quantization of the source,

followed by SW coding [15], was put forth for practical WZ coding in [28]. A nested

lattice consists of a fine lattice and a coarse lattice that are nested in the sense that

any point of the coarse lattice is also a point of the fine lattice, but not vice versa.

Nested lattice quantization involves computing the difference between the quantized

versions of the source with respect to the fine and coarse lattices. SW coding aims to

exploit the remaining correlation between the quantizer output and the decoder side

information.

SWCNSQ is the simplest form of Slepian-Wolf coded nested lattice quantization

where a 1-D nested scalar lattice is employed for quantization. Fig. 14 depicts a

nested scalar quantizer with stepsize q and nesting ratio M = 4. When the nesting

ratio M goes to infinity, a nested scalar quantizer becomes a conventional uniform

scalar quantizer with stepsize q. For the basic rationale behind Slepian-Wolf coded

nested lattice quantization for WZ coding, and its performance under the quadratic

Gaussian setup, please refer to Chapter II. Readers seeking a more detailed analysis

are referred to [28].

3. CF relaying using SWCNSQ

When SWCNSQ is employed for CF relaying, the relay received signal Yr is first

quantized by a nested scalar quantizer with stepsize q and nesting ratio M . The

quantization index W is treated as the WZ auxiliary random variable [16] with W =
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Fig. 14. A nested scalar quantization with stepsize q and nesting ratio M = 4.

w ∈ {0, . . . ,M − 1} if

Yr ∈
∞∪

k=−∞

{x : x ∈ R, 0 ≤ x− (w + kM)q < q}.

Note that we are using a mid-rise quantizer (with the origin as a quantization cell

boundary)1. The relay then compresses W to rate RWZ using SW coding. According

to [16], RWZ has to satisfy

RWZ ≥ I(Yr;W |Yd1)

= H(W |Yd1)−H(W |Yr, Yd1)

= H(W |Yd1). (3.6)

The last equality (3.6) follows from the fact that H(W |Yr, Yd1) = 0, since W is a func-

tion of Yr. Thus the WZ rate bound reduces to the SW rate for lossless compression

of the quantization index W given the decoder side information Yd1. The compressed

version of W is then channel coded into Xr at the relay before transmission to the

destination during the relay-transmit period.

Recall from Fig. 13 that the destination effectively receives the source trans-

1Our numerical results indicate that the achievable rates with a mid-rise quantizer
are higher than that of a mid-tread quantizer.
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mission over two noisy parallel sub-channels. If the achievable rates on the two

sub-channels corresponding to the relay-receive period and relay-transmit period are

R1 and R2, respectively, an overall rate of

R = αR1 + αR2 (3.7)

is then achievable from source to the destination. We now take a close look at rates

R1 and R2.

During the relay-transmit period, the destination receives transmissions from the

source and the relay over a MAC. It can be easily shown that the overall achievable

rate for the relay channel is maximized [17] when RWZ and the achievable rate R2 on

sub-channel 2 are on the sum-rate line segment of the MAC capacity region, i.e.,

RWZ ≤ α

α

[
βC
(
c2
rdP̃r, c

2
sdPs2, 1

)
+ βC

(
c2
rdP̃r

)]
(3.8)

R2 ≤ βC
(
c2
sdPs2

)
+ βC

(
c2
sdPs2, c

2
rdP̃r, 1

)
, (3.9)

where the normalization factors α and α are due to half-duplexing, P̃r = Pr

α
, the

parameter β ∈ [0, 1] indicates the relative position of the operating point on the

MAC sum-rate line segment and β = 1 − β. For instance, β = 0 corresponds to

one corner point, where the destination first decodes Xr(W) by treating Xs2(m) as

binary interference, and then decodes Xs(m) after interference cancellation. On the

other hand, β = 1 represents the other corner point which corresponds to the same

decoding strategy as β = 0, except that the roles of Xr(W) and Xs2(m) are reversed.

Combining the constraints (3.6) and (3.8), we get the following constraint for

error free recovery of W

H(W |Yd1) ≤
α

α

[
βC
(
c2
rdP̃r, c

2
sdPs2, 1

)
+ βC

(
c2
rdP̃r

)]
. (3.10)
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Since W along with Yd1 are two noisy versions of Xs1(m), the achievable rate

R1 on sub-channel 1 corresponding to the relay-receive period satisfies

R1 ≤ I(W,Yd1;Xs1)

= I(Yd1;Xs1) + I(W ;Xs1|Yd1)

= C
(
c2
sdPs1

)
+ Cr, (3.11)

where Cr is the new information rate W conveys about Xs1 through the relay link

(in addition to Yd1 through the direct link). This information rate is given as

Cr , I(W ;Xs1|Yd1)

= H(W |Yd1)−H(W |Xs1, Yd1)

= H(W |Yd1)−H(W |Xs1), (3.12)

where the last equality follows from the fact that given Xs1, the quantization indices

are independent of the received signal Yd1 at the destination.

Thus the destination can decode the original message at a rate of R = αR1+αR2

with arbitrarily low probability of error if inequalities (3.9), (3.10) and (3.11) hold.

The maximum achievable rate RCF for SWCNSQ is obtained by maximizing R over

the feasible set of q’s, M ’s and 0 ≤ α, β ≤ 1, i.e.,

RCF = max
0≤α,β≤1

max
q,M

R

= max
0≤α,β≤1

max
q,M

[αR1 + αR2]

= max
0≤α,β≤1

max
q,M

[
α(C

(
c2
sdPs1) + Cr

)
+

.

α
(
βC
(
c2
sdPs2

)
+ βC(c2

sdPs2, c
2
rdP̃r, 1)

)]
, (3.13)

while subjecting to the constraint in (3.10).

The optimization in (3.13) can only be performed by a numerical search over the
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parameters α, β, q and M . The only term in (3.13) that depends on the quantizer

parameters is Cr. In addition, the constraint in (3.10) is also a function of the

quantizer. Thus, for fixed α and β, the quantizer design problem in WZ coding at

the relay involves finding the quantization step size q and the nesting ratio M that

maximizes the rate Cr = I(W ;Xs1|Yd1) such that the constraint (3.10) on H(W |Yd1)

is satisfied.

Fig. 15 shows Cr as a function of H(W |Yd1) for various M (and associated q’s).

Each curve associated with a specific M is obtained by varying q and recording the

corresponding Cr and H(W |Yd1). The operational rate curve is identified as the upper

concave envelope of the curves corresponding to various M . The optimal Cr for a

fixed α and β corresponds to the point on the operational rate curve where (3.10) is

satisfied with equality, with the corresponding q and M being the best quantization

parameters. Repeating the process over all α and β gives the optimum quantizer.

We also include in Fig. 15 the upper bound of Cr, which is I(Xs1;Yr|Yd1), achievable

when the relay to destination link has infinite capacity, allowing the quantization

error between Yr and W to approach zero.

An important point to note is that the optimization optimization problem men-

tioned above is different from the usual rate-distortion tradeoff problem in conven-

tional quantizer design, which would have focused on minimizing the mean square

distortion between Yr and its reconstructed version at the destination. Thus a quan-

tizer that minimizes this mean square distortion might not necessarily be the one that

maximizes the rate Cr. Indeed, our experiments indicate that for the BPSK modu-

lated relay channel, a vector quantizer with a Gaussian quantization noise achieves a

lower Cr than a scalar quantizer even though the former has a smaller mean square

distortion associated with it than the latter. This fact is indicated in Fig. 16, in which

we consider, besides the NSQ, a Gaussian quantizer with W = Yr +Zq, where Zq is a
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Fig. 15. Rate Cr versus conditional entropy H(W |Yd1) curve for dsr = 9.5 and Ps1 = 0

dB.

zero-mean Gaussian quantization noise with variance σ2
q . We obtain the curves in Fig.

16 by varying the quantization noise σ2
q over a range of values and plotting the asso-

ciated mean squared distortion and the achievable rate I(Xs1;W |Yd1) in Fig. 16(a)

and 16(b), respectively. It can be seen that the Gaussian quantizer always achieves

a lower mean square distortion than the NSQ. For example, Fig. 16(a) shows that

at a WZ compression rate of 0.9 bits, the Gaussian quantizer achieves a mean square

distortion which is approximately 1.1 dB better than that of the NSQ. However, this

does not guarantee the Gaussian quantizer to outperform the NSQ with respect to
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the desired objective, which is the achievable rate I(Xs1;W |Yd1). Indeed, as shown

in Fig. 16(b), at the same WZ compression rate of 0.9 bits, NSQ outperforms the

Gaussian quantizer by approximately 0.01 bits.

Note that the achievable rate RCF in (3.13) is given under the transmitting power

constraints Ps1 and Ps2. For our practical setup, we assume a constraint Ps on the

average source transmission power. The power constraints during the relay-receive

period and the relay transmit period are related to the average power constraint by

Ps1 = γ
α
Ps, and Ps2 = γ

α
Ps, respectively, where γ ∈ (0, 1) determines the power

allocation at the transmitter, and γ = 1− γ. Then the achievable rate for an average

source power Ps is obtained by maximizing (3.13) over γ.

Next, we briefly discuss numerical computations of the conditional entropies

H(W |Yd1) and H(W |Xs1) in Cr, which are required to solve the optimization problem

in (3.13).

Computation of conditional entropies: In order to compute H(W |Yd1) and

H(W |Xs1), we need the conditional probability density of Yr given Yd1. This can

be derived as (see Appendix B)

f(yr|yd1) = ζ (yd1) fg (yr − c̃sr) + [1− ζ (yd1)] fg (yr + c̃sr) , (3.14)

where ζ (yd1) = (1 + e−2c̃sd1yd1)−1, c̃sr = csr
√
Ps1, c̃sd1 = csd

√
Ps1 and fg(x) is the

zero mean, unit variance Gaussian probability density function evaluated at x. The

conditional probability mass function PW (w|yd1) for a given q andM can be computed

as

PW (w|yd1) =
∞∑

k=−∞

∫ (w+1+kM)q

(w+kM)q

f(yr|yd1)dyr. (3.15)

Since f(yr|yd1) in (3.14) is mixture Gaussian, (3.15) can be evaluated using the erf

functions. In addition, since the Gaussian distribution decays exponentially from the
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Fig. 16. Comparison of a NSQ with a Gaussian quantizer for dsr = 9 and Ps1 = 0

dB. (a) Wyner-Ziv compression rate versus the mean square distortion. (b)

Wyner-Ziv compression rate versus the achievable rate I (Xs1;W |Yd1).
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origin, PW (w|yd1) can be well approximated using a finite number of summations with

respect to k. Using (3.15), the SW rate can be computed as

H(W |Yd1) = −
∫

f(yd1)
M−1∑
w=0

PW (w|yd1) log [PW (w|yd1)] dyd1, (3.16)

with f(yd1) =
1
2
(fg (yd1 − c̃sd1) + fg (yd1 + c̃sd1)). Since given Xs1, Yr is Gaussian, the

conditional entropy H(W |Xs1) can be computed in a similar manner.

4. Numerical results

In Fig. 17, we plot the achievable rates of CF in (3.13), the DF achievable rate [50],

along with the direct transmission rate versus the source-to-relay distance dsr and the

relay-to-destination distance drd. In order to provide a fair comparison, the source

power in the direct transmission case is assumed to be equal to the total power Ps+Pr

in the relaying case. The average source and relay power is set to Ps = 0 dB and

Pr = −12 dB, respectively. The low power constraint for the relay is motivated by

the fact that, in practical cooperative networks, an idle user might agree to relay the

transmission of the source provided it allocates only small amounts of transmission

resources for relaying. It can be seen from Fig. 17 that CF in general performs better

than DF when the relay is close to the destination. In order to provide a better

comparison of CF and DF rates, we indicate the difference of the achievable rates of

the two schemes as a function of the relay position in Fig. 18. It can be observed

that CF outperforms DF for a significant portion of the relay positions, and in fact

the closer the relay is to the destination, the more the CF outperforms DF.

Fig. 19 (a) compares RCF with the DF achievable rates as a function of the

average source power Ps for a fixed relay position with dsr = 10 and drd = 2.5. The

average relay power is Pr = −12 dB such that the average SNR on the relay to
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Fig. 17. CF, DF and direct transmission achievable rates as a function of the distances

dsr and drd. The average source and relay power is Ps = 0 dB, Pr = −12 dB,

respectively.

destination link is c2
rdPr = 6 dB. We also plot the cut-set upper bound for the half-

duplex Gaussian relay channel with BPSK modulation, which is obtained by replacing

the capacity function of AWGN channels in the upper bound of [61, Proposition 1]

by the capacity function (3) of BIAWGN channels. We also plot the achievable rate

of CF coding with Gaussian modulation [61], along with the transmission rate when

the source transmits directly to the destination without the help of the relay. It

is seen that at an overall transmission rate of 0.5 bits/sample (b/s), DF requires
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Fig. 18. Comparison of RCF with DF achievable rates as a function of the relay po-

sition. The average source and relay power is Ps = 0 dB, Pr = −12 dB,

respectively. The two specific relay positions shown here correspond to the

positions for which rate bounds are presented in Fig. 19. Also, it is for the

same positions that simulation results of practical CF coding using LDPC

and IRA codes are presented in Section E.

1.18 dB more source power than SWCNSQ to achieve the same rate, which in turn

outperforms direct transmission by 0.91 dB with source power Ps + Pr. Fig. 19 (b)

shows the same curves for dsr = 9.5 and drd = 3.15 (this setup is chosen such that

c2
rdPr is 3 dB).
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Fig. 19. Achievable rates with SWCNSQ as a function of the average source power,

with Pr = −12 dB and (a) dsr = 10, drd = 2.5, and (b) dsr = 9.5, drd = 3.15.
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5. CF coding using simplified SWCNSQ

In this subsection, we propose a few simplifications to the CF coding scheme described

earlier. These simplifications greatly reduce the complexity of a practical implemen-

tation, while resulting in very little loss in performance. We list these simplifications

along with an intuitive understanding of why they result in only a small loss in per-

formance, we also explain how these simplifications help in reducing the complexity

of a practical implementation.

• When the MAC time-sharing parameter β ̸= 0, the destination in the relay-

transmit period can decode Xr(W) and Xs(m) using either joint decoding [68],

or rate splitting [69]. These techniques add complexity to practical implemen-

tation. Thus, the first simplification we make is to set β = 0, i.e., we force

the destination to first decode Xr(W) treating Xs2(m) as binary interference.

The destination then decodes the source transmission after interference cancel-

lation. This simplifies the design in the sense that it allows decoding of the

MAC transmissions using single-user decoders only. For our setup, we assume

that the SNR over the relay to destination link is much higher than that of

the source to destination link. Thus when β = 0, i.e., the relay treats the

source transmission as interference, the relay is able to transmit at a rate close

to the case when there was no interference. Thus both the relay and source

can achieve near single-user performance. Because of this, one does not expect

a sizable performance loss from this simplication (as confirmed by numerical

results).

• Another simplification we make is to set the nested scalar quantization step

size to q = ∞ and nesting ratio to M = 2, thus forcing the quantization

index at the relay to be binary. The quantization index is obtained by hard
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thresholding the received signal Yr, i.e., we set W = 0 if Yr ≥ 0, and W = 1

if Yr < 0. One motivation behind using such a quantizer is that the resulting

binary quantization indices can be easily SW coded using binary graph-based

codes [70, 62]. The main reason why this binary quantization should yield near

optimum performance is because the capacity on the relay to the destination link

is upper bounded by one, and hence a low rate binary quantizer should suffice.

In addition, as mentioned above, the optimum quantizer should maximize the

conditional mutual information I(Xs1;W |Yd1). Since Xs1 takes on values from

a binary alphabet, a binary W should intuitively be able to achieve most of

the relaying gain. This is confirmed by Fig. 15 where the difference between

I(Xs1;W |Yd1) when W is binary and the upper bound I(Xs1;Yr|Yd1) (when

W = Yr belongs to a continuous alphabet) is small. Hence M = 2 and q = ∞

should perform well in practice. We point out that good performance was also

reported in [56, 57] with a binary quantizer, and leave the problem of quantizer

design for the relay channel with higher modulation formats as an interesting

topic for future research.

The achievable rates of our simplified SWCNSQ scheme are also included in Fig.

19 alongside the achievable rates of the optimal SWCNSQ scheme, with the former

being only 0.004 bits / 0.04 dB worse than the latter. Before moving on to practical

code design, we summarize key notations used in Sections B and C in Table I to assist

exposition of the material in these sections.

D. Practical CF Code Design

The block diagram of our proposed practical CF relaying system using the simplified

scheme of Section C-5 is shown in Fig. 20. We assume that all three nodes have
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Table I. List of important variables.

Variable Description Comments

α Half-duplexing parameter, α ∈ (0, 1) α = 1− α

T , T1, T2 Length of each tranmission cycle, and
relay-receive/transmit period

T1 = αT, T2 = αT

Ps,Pr Total power constraint at source, relay P̃r =
Pr

α

Xs1,Xs2 Source transmission during T1, T2

γ Power allocation parameter at source,
γ ∈ (0, 1)

γ = 1− γ

Ps1,Ps2 Power constraint at source during T1,
T2

Ps1 =
γ
α
Ps, Ps2 =

γ
α
Ps

Yd1,Yd2 Destination reception during T1,T2

Yr Relay reception during T1

W Quantized version of Yr

q Uniform quantization step size q = ∞ in simplified scheme

M Nesting ratio M = 2 in simplified scheme

Xr Relay transmission during T2

RWZ Rate after WZ compression of Yr at re-
lay

RWZ ≥ H(W |Yd1)

Cr Rate conveyed through the relay about
Xs1

Cr = H(W |Yd1) −
H(W |Xs1)

R1, R2 Achievable rate on sub-channels 1 and
2 in Fig. 13

R1 ≤ C(c2
sdPs1) + Cr

R Total transmission rate with CF relay-
ing

R = αR1 + αR2

β MAC decoding parameter at destina-
tion during T2, β ∈ [0, 1]

β = 0 in simplified scheme

perfect knowledge of the channel coefficients, which are used to compute the optimal

half-duplexing parameter α and the power allocations Ps1 and Ps2, as explained in

Section C-3. In the following, we explain the practical system by describing encoding

at the source and the relay, followed by a description of decoding at the destination.
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Fig. 20. Block diagram of our proposed CF code design.

1. Encoding at the source

As explained in Section B, in an MS scheme, the source divides its messagem into two

non-overlapping partsm1 andm2 before encoding them using independent codebooks

C1 and C2, of rates R1 and R2, respectively. It then transmits the first length-αn code-

word Xs1(m1) during T1 and the length-αn codeword Xs2(m2) during T2. However,

for our practical system, instead of MS, we use the CS scheme where the message is

encoded using a single LDPC code C of block length n and rate R = αR1 + αR2.

During T1, the first αn codeword bits are mapped to the BPSK constellation points

±
√
Ps1 and broadcast to the relay and the destination. The remaining αn codeword

bits are BPSK modulated to the constellation points ±
√
Ps2 and transmitted to the

destination during T2. As mentioned earlier, theoretically, the two schemes require
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the same source power Ps to achieve a fixed transmission rate. However, as verified

by our simulations in Section E, a practical implementation of the CS scheme with a

finite length LDPC code requires a lower source power than that of the MS scheme to

achieve the same bit error rate (BER) performance. This is because of the following

two reasons:

1. It is well known that the BER performance of finite length LDPC codes improves

with an increase in block length. Note that since 0 ≤ α ≤ 1, the block length

of either LDPC code C1 and C2 is less than the block length of C. As a result,

the CS scheme which uses C will have a superior BER performance than that

of the MS scheme (the BER of MS is the weighted average of the BERs of C1

and C2).

2. The second reason why a finite length implementation of CS outperforms that

of MS is subtler than the first. As opposed to joint decoding in CS, the destina-

tion in MS decodes the two parts of the message, m1 and m2, sequentially [61].

After W has been decoded, the destination cancels the interference from Yd2

and attempts to decode m2. However, since the LDPC code C2 suffers a prac-

tical coding loss, the power Ps2 required to achieve a low BER is higher than

the theoretical minimum. Thus, in order to obtain a satisfactory performance

while decoding m2, the source has to use a higher transmission power Ps2. Con-

sequently, the decoder for W sees a stronger interference from the source. We

assume that the system does not allow an increase in relay transmission power,

and therefore, the only way to compensate for the increased interference is by

increasing Ps1 (increasing Ps1 increases the correlation between Yd1 and W and

hence facilitates the decoding of W at the destination). Thus, in an MS scheme,

Ps1 is adversely affected indirectly because of an increase in Ps2, and directly
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because of the practical coding losses of W and m1 decoders. In contrast, in a

CS scheme, since the message is recovered jointly from Yd1 and Yd2, one can

avoid the indirect affect by keeping Ps2 at the theoretical minimum while in-

creasing Ps1 to obtain satisfactory BER performance, thus resulting in a lower

required source transmission power than MS.

2. DJSCC at the relay

While presenting the achievable rate of CF relaying, Section C assumes that the relay

encodes the quantization indices W using separate SW source coding (for compres-

sion) and channel coding (for forward error protection). Since practical SW coding is

done using a channel code [70], separate source-channel coding at the relay (with side

information Yd1 at the destination) requires two channel codes: one for SW compres-

sion and another for forward error protection. However, just like Shannon’s classic

separation principle [17], the separation principle [71] for the noisy channel SW/WZ

coding problem only holds asymptotically (i.e., with infinite code length). In practi-

cal designs with finite code length, well-designed joint source-channel coding with

side information (or DJSCC) outperforms a separate design [72]. Thus, we propose

to code the quantization indices W at the relay using DJSCC. In the following, we

explain how DJSCC can be implemented using IRA codes [62].

The basic idea of DJSCC using an IRA code is depicted in Fig. 21. The binary

indices W obtained after hard-thresholding (quantizing) the received sequence Yr

are encoded using an (n, αn) systematic IRA code. However, the relay transmits only

the αn parity bits to the destination, which are BPSK modulated to the constellation

points ±
√

P̃r. These parity bits are not only used for SW coding, but also for error

protection. Note that we have the side information Yd1 available at the destination,

which can be viewed as a “noisy” version of the systematic bits W. Thus, even
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Systematic bits

IRA Parity bits
W

BPSK 
Modulation

Physical noisy channel
f(Yd2|Xr)Xr

Virtual Correlation channel
f(Yd1|W)

IRA 
Decoder

Yd1

Yd2

Ls

Lp

Fig. 21. DJSCC of the quantization indices W and the side information Yd1 using

a systematic IRA code that is designed for both the physical noisy channel

and the “virtual” correlation channel between W and Yd1. The IRA de-

coder outputs the extrinsic LLRs Ls and Lp of the systematic and parity bits,

respectively.

though the systematic bits are not transmitted over the physical channel, Yd1 can be

viewed as the output of a virtual correlation channel characterized by the probability

density function (pdf) f (yd1|W ). Using the concept of DJSCC, we can examine

the constraint on conditional entropy H(W |Yd1) which is necessary for successful

recovery of W as follows. The total information to be transmitted from the relay to

the destination is αnH(W ) bits. The information received at the destination from the

virtual correlation channel is αnI(W ;Yd1) bits, and from the physical noisy channel

is nαI(W ;Yd2). The condition necessary for successful decoding of W is that the

information to be transmitted is less than or equal to the information received, i.e.,

αnH(W ) ≤ αnI(W ;Yd2) + αnI(W ;Yd1)

= αnI(W ;Yd2) + αnH(W ) + αnH(W |Yd1)

⇒ αH(W |Yd1) ≤ αI(W ;Yd2),

which is the same constraint as in (3.10). This also implies that if the channel code

being used for DJSCC is a capacity achieving code on the combined physical noisy

channel and the virtual correlation channel, it will also be able to achieve the DJSCC

limit of (3.10).
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3. Decoding at the destination

The first step in the decoding process is to recover the quantization indices W by

applying iterative sum-product algorithm (SPA) decoding on the IRA code graph.

The variable/bit nodes of the IRA graph are divided into two categories: the first

category corresponds to the systematic bits W, and the second one to the parity bits

Xr. As explained earlier, the side information Yd1 can be thought of as an output of a

virtual correlation channel which has the systematic bits as inputs. Thus, the decoder

uses Yd1 to calculate the channel log-likelihood ratios (LLR) for the systematic bits.

With the quantization step size q = ∞, these LLRs can be evaluated using the

conditional pdf f(yr|yd1) given in (3.14) as

Ls
ch[i] = log

P
(
W [i] = 0

∣∣ yd1[i]
)

P
(
W [i] = 1

∣∣ yd1[i]
) = log

f
(
yd1[i]

∣∣W [i] = 0
)

f
(
yd1[i]

∣∣W [i] = 1
)

= log

∫∞
0

f(yr|yd1[i])dyr

1−
∫∞

0
f(yr|yd1[i])dyr

(3.17)

= log
1 + (2ζ (yd1[i])− 1) erf

(
c̃sr√

2

)
1− (2ζ (yd1[i])− 1)erf

(
c̃sr√

2

) , i = 1, . . . , αn, (3.18)

where ζ (yd1) and c̃sr are defined in Section C-3, and erf (x) = 2√
π

∫ x

0
e−t2dt. In going

from (3.17) to (3.18), we note that∫ ∞

0

f(yr|yd1[i])dyr = ζ (yd1[i])

∫ ∞

−c̃sr

fg(yr)dyr + (1− ζ (yd1[i]))

∫ ∞

c̃sr

fg(yr)dyr

= ζ (yd1[i])

∫ c̃sr

−∞
fg(yr)dyr

+(1− ζ (yd1[i]))

(
1−

∫ c̃sr

−∞
fg(yr)dyr

)
= 1− ζ (yd1[i]) + (2ζ (yd1[i])− 1)

(
1

2
+

∫ c̃sr

0

fg(yr)dyr

)
=

1

2

(
1 + (2ζ (yd1[i])− 1) erf

(
c̃sr√
2

))
, (3.19)
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where the first equality is due to (3.14).

As for the parity bit nodes, the corresponding LLRs are obtained by treating the

transmission from the source as binary interference. These LLRs can be evaluated as

Lp
ch[i] = log

P
(
Xr[i] = +

√
P̃r

∣∣ yd2[i]
)

P
(
Xr[i] = −

√
P̃r

∣∣ yd2[i]
) = log

f
(
yd2[i]

∣∣Xr[i] = +
√

P̃r

)
P
(
yd2[i]

∣∣Xr[i] = +
√

P̃r

)
= log

∑
d=±1 fg (yd2[i] + dc̃sd2 − c̃rd)∑
d=±1 fg (yd2[i] + dc̃sd2 + c̃rd)

, i = 1, . . . , αn, (3.20)

where c̃sd2 = csd
√
Ps2 and c̃rd = crd

√
P̃r. Using the channel LLRs in (3.18) and

(3.20), the destination performs iterative SPA decoding on the IRA graph until some

stopping criterion is met2. At the end of the iterative process, the decoder obtains

extrinsic LLRs Ls and Lp of the systematic and parity bits, respectively.

We now look at decoding of the original message from the source. Recall that the

message m in a CS scheme is encoded using a single LDPC code, but the destination

effectively sees the length-n codeword transmitted over two parallel sub-channels.

Thus the bit nodes of the LDPC decoding graph can be divided into two groups:

the first αn nodes corresponding to codeword bits received over sub-channel 1, and

the remaining αn nodes corresponding to bits received over sub-channel 2. In the

following, we refer to the two categories as bit nodes of type-1 and type-2, respectively.

According to the information-theoretic scheme of Section C-5, the decoded version of

Xr is used to cancel interference from Yd2, and the resulting interference-free signal is

used for decoding the bits received from the source over sub-channel 2. However, for

our practical system, instead of using the hard-threshold decoded version of Xr, we

use the corresponding extrinsic LLR Lp to implement a soft interference cancellation

strategy. Specifically, if x =
√

P̃r, the LLRs to type-2 bit nodes can be evaluated as

2In our simulations, we stop iterations when either a valid codeword is decoded,
or a maximum number of iterations are reached.
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follows.

L2
ch[i] = log

P
(
Xs2[i] = +

√
Ps2

∣∣ yd2[i], Lp[i]
)

P
(
Xs2[i] = −

√
Ps2

∣∣ yd2[i], Lp[i]
) = log

f
(
yd2[i]

∣∣Xs2[i] = +
√
Ps2, Lp[i]

)
f
(
yd2[i]

∣∣Xs2[i] = −
√
Ps2, Lp[i]

)
= log

∑
d=±x P

(
Xr = d

∣∣ Lp[i]
)
fg (yd2[i]− c̃sd2 + dcrd)∑

d=±x P
(
Xr = d

∣∣ Lp[i]
)
fg (yd2[i] + c̃sd2 + dcrd)

= log
eLp[i]fg (yd2[i]− c̃sd2 + c̃rd) + fg (yd2[i]− c̃sd2 − c̃rd)

eLp[i]fg (yd2[i] + c̃sd2 + c̃rd) + fg (yd2[i] + c̃sd2 − c̃rd)
, (3.21)

for i = 1, . . . , αn. Note that when Lp[i] = ±∞, the channel LLR in (3.21) is the same

as that obtained using hard interference cancellation. Similarly, instead of using the

hard-threshold decoded version of W, we use the corresponding extrinsic output LLR

Ls to obtain the channel LLRs for type-1 bit nodes. These are given by

L1
ch[i] = log

P
(
Xs1[i] = +

√
Ps1

∣∣ yd1[i], Ls[i]
)

P
(
Xs1[i] = −

√
Ps1

∣∣ yd1[i], Ls[i]
)

= log
f
(
yd1[i]

∣∣Xs1[i] = +
√
Ps1

)
f
(
yd1[i]

∣∣Xs1[i] = −
√
Ps1

) + log
P
(
Xs1[i] = +

√
Ps1

∣∣ Ls[i]
)

P
(
Xs1[i] = −

√
Ps1

∣∣ Ls[i]
)

= 2c̃sdyd1[i] + log
P
(
Xs1[i] = +

√
Ps1

∣∣ Ls[i]
)

P
(
Xs1[i] = −

√
Ps1

∣∣ Ls[i]
) . (3.22)

Let us take a look at the second term on the right hand side of (3.22). As shown in

Fig. 22, W can be viewed as an output of a binary-symmetric channel (BSC) withXs1

as the input, with the crossover probability ϵ equal to the probability that the unit-

variance zero-mean AWGN is greater than c̃sr. Thus, we have ϵ = 1
2

[
1− erf

(
c̃sr√

2

)]
.

However, the DJSCC decoder outputs some a-priori information on the quantization

indicesW in the form of the LLRs Ls[i], i = 1, . . . , αn. Using this a-priori information,

the second term on the right hand side of (3.22) can be given as (Using x =
√
Ps1 for
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Fig. 22. Equivalent channel from Xs1 to W . The crossover probability from Xs1 to W

is ϵ = 1
2

[
1− erf

(
c̃sr√

2

)]
.

notational convenience)

P
(
Xs1[i] = +x

∣∣ Ls[i]
)

P
(
Xs1[i] = −x

∣∣ Ls[i]
) =

∑
w=0,1 P

(
Xs1[i] = x,W = w

∣∣ Ls[i]
)∑

w=0,1 P
(
Xs1[i] = −x,W = w

∣∣ Ls[i]
)

=

∑
w=0,1 P

(
W = w

∣∣ Ls[i]
)
P
(
Xs1[i] = +x

∣∣W = w
)∑

w=0,1 P
(
W = w

∣∣ Ls[i]
)
P
(
Xs1[i] = −x

∣∣W = w
)

=

∑
w=0,1 P

(
W = w

∣∣ Ls[i]
)
P
(
W = w

∣∣Xs1[i] = +x
)∑

w=0,1 P
(
W = w

∣∣ Ls[i]
)
P
(
W = w

∣∣Xs1[i] = −x
)

=
eLs[i](1− ϵ) + ϵ

(1− ϵ) + eLs[i]ϵ

Thus, the channel LLR to the type-1 bit nodes are given as

L1
ch[i] = 2c̃sdyd1[i] + log

eLs[i](1− ϵ) + ϵ

(1− ϵ) + eLs[i]ϵ
, i = 1, . . . , αn, (3.23)
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Using (3.21) and (3.23), the decoder obtains the channel LLR for the two types

of bit nodes and performs iterative decoding on the LDPC graph until a stopping

criterion is met. Finally, the output LLRs obtained after the iterations are used to

obtain an estimate of the LDPC codeword transmitted by the source.

4. Design of degree distributions for asymptotically large block length

The code design requires optimizing the degree distributions of the IRA code being

used for DJSCC, as well as the LDPC code being used for the transmission of the

original source message. For designing the degree distributions for both codes, we use

the Gaussian approximation [65] and EXIT charts strategy [64]. In the following, we

discuss the design of the two codes separately.

a. Design of IRA code for DJSCC

Interleaver

Systematic Bit -Nodes

Parity Bit-Nodes

Check nodes

( )1; d
p

ch YWII = ( )2; dr
p

ch YXII =

IAC

IEC

IAP

IEP

IEV

IAV

Fig. 23. Information flow in the IRA code decoding graph for DJSCC.

The design methodology we use for designing the degree distributions for the

IRA code is similar to the one in [62], except that we use the EXIT chart strategy in
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addition to the Gaussian approximation in [62]. For the optimization of the degree

distributions, we assume that all LLR messages on the graph edges in the iterative

SPA decoding are Gaussian. It can be verified that both the physical noisy channel,

as well as the virtual correlation channel are symmetric (see Appendix C), and hence

if an LLR at a particular iteration has mean µ, it will have a variance 2µ [73]. Let

J(µ) be the information that the LLR conveys about the bit node that the edge is

connected to. Since the channels are symmetric, we can assume the transmission of an

all-zero codeword [73]. In addition, since the messages are assumed to be Gaussian,

J(µ) can be related to the capacity of a BIAWGN channel in (3.4) by J(µ) = C
(
µ
2

)
[64]. The information flow in the IRA code decoding graph for DJSCC is shown in

Fig. 23. The bit nodes on the left hand side of Fig. 23 correspond to the systematic

bits (associated with the virtual correlation channel), whereas the right ones to the

parity bits (associated with the physical noisy channel). Due to the structure of the

IRA decoding graph [63], the right bit nodes always have degree two, with the two

edges connected to adjacent check nodes. For our design, we assume that the check

node degree distribution is regular, i.e., all check nodes have the same degree dc. The

design parameters therefore are the systematic bit degree distribution coefficients.

Let IAC ∈ [0, 1] be the average a-priori input information to the check nodes. Let

IAP be the a-priori information to the parity bit nodes from the check nodes, and

IEP be the extrinsic information from the parity bit nodes to the check nodes. In

order to calculate the output extrinsic information from the check nodes, we use the

approximate bit and check node information duality [74] according to which

IAP ≈ 1− J
(
dcJ

−1(1− IAC) + J−1(1− IEP )
)
. (3.24)
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The extrinsic information IEP from the parity bit nodes is then given as

IEP = J
(
J−1(IAP ) + J−1(Ipch)

)
, (3.25)

where Ipch = I(Xr;Yd2) is the input channel information to the parity bit nodes over

the physical noisy channel. Then, following the spirit of [62], we compute I∗EP for

a given IAC which is obtained by substituting (3.24) in (3.25) and solving for IEP .

For a given IAC , this is akin to running belief-propagation (BP) iterations on the

sub-graph to the right of the check nodes until a fixed point is reached. The extrinsic

information from the check nodes to the systematic bit nodes is then given as

IEC (IAC) ≈ 1− J
(
(dc − 1)J−1(1− IAC) + 2J−1(1− I∗EP )

)
. (3.26)

At the systematic bit nodes, the extrinsic information as a function of IAC is given

as [64]

IEV (IAC) =
Dv∑
i=2

ωiJ
(
J−1(Isch) + (i− 1)J−1 (IEC(IAC))

)
, (3.27)

where Isch = I(W ;Yd1) is the input channel information the systematic parity bit

nodes over the virtual correlation channel, ωi is the fraction of edges connected to

degree-i systematic bit nodes, and Dv is the maximum degree. Then for an error

probability zero, we need [64]

IEV (IAC) > IAC ∀ IAC ∈ [0, 1). (3.28)

The rate of the code in terms of the degree distributions is given as R = 1− 1

dc
∑Dv

i=1
ωi
i

.

Thus, for given channel conditions, the rate should be maximized such that the error

free condition in (3.28) is met. If the check node degree is fixed, maximizing the rate

is equivalent to maximizing
∑Dv

i=1
ωi

i
, which is linear in terms of the design coefficients

ωi. In addition, we have the trivial linear constraints stating that the coefficients
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should be non-negative and should to sum to one. Thus the optimization can be

solved using linear programming.

b. Design of LDPC code for source transmission

Interleaver   

(1-α)n Type-2 Bit nodes
Check nodes

( )22
2 ~

; dsch YXII =

IAC

IEC

( )11
1 ,; dsch YWXII =

αn Type-1 Bit nodes

IEV

IEV

IAV

IAV

Fig. 24. Information flow in the LDPC code decoding graph for the source transmis-

sion.

As mentioned earlier, the LDPC decoding graph for the source transmission

has two groups of bit nodes. Typically, the characteristics of the received signal

corresponding to the two bit node types are very different from each other, e.g., the

SNR for type-1 nodes is much larger than the one for type-2 nodes. Thus, in the

design process, we consider different degree distributions for the two bit node types.

Let Ω
1(2)
i be the fraction of degree i bit nodes of type 1 (2). Since the fraction of
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type-1 bit nodes is α and that of type-2 is α, we have the following constraints

Db∑
i=2

Ω1
i = α;

Db∑
i=2

Ω2
i = α, (3.29)

where Db is the maximum bit node degree. Also let ω
1(2)
i be the fraction of total edges

connected to degree i variable nodes of type 1(2). Then we have the relationship

ω
1(2)
i =

Edges connected to deg i nodes of type 1(2)

Total edges

=
Ω

1(2)
i i∑Db

j=2(Ω
1
j + Ω2

j)j
. (3.30)

Summing over i and the two types of bit nodes and since
∑Db

i=2(Ω
1
i +Ω2

i ) = 1, we get

Db∑
i=2

ω1
i + ω2

i

i
=

1∑Db

i=2(Ω
1
i + Ω2

i )i
. (3.31)

By summing (3.30) over i and using (3.31), we can translate the constraints in (3.29)

to a constraint on the degree distributions ω
1(2)
i ’s as

Db∑
i=2

α
ω1
i

i
− α

ω2
i

i
= 0. (3.32)

In addition, the degree distribution coefficients should obviously sum to one, i.e.,

Db∑
i=2

ω1
i + ω2

i = 1. (3.33)

The LDPC decoding graph along with the information flows is shown in Fig. 24. As

in the previous subsection, let IAC ∈ [0, 1] be the average a-priori input information to

the check nodes. The extrinsic information from the check nodes can be approximated

as

IEC (IAC) ≈ 1−
Dc∑
j=2

ρjJ
(
(j − 1)J−1(1− IAC)

)
, (3.34)
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where ρj is the fraction of edges connected to check nodes of degree j, and Dc is the

maximum check node degree.

As for the EXIT function for the bit nodes, the a-priori information to the

bit nodes is the extrinsic information from the check nodes, i.e., IAV = IEC . Let

I1
ch = I(Xs1;W,Yd1) be the input information from the channel for type-1 bit nodes.

Similarly, let I2
ch = I(Xs2; Ỹd2) be the input information from the channel for bit

nodes of type 2, where Ỹd2 is obtained after hard interference cancellation. Note that

we have assumed here that the IRA codeword (comprising of W and Xr) has been

decoded perfectly before the LDPC decoding begins, and hence there is no need to

employ soft interference cancellation. The assumption is valid since the design process

for the IRA code degree distributions in the previous subsection guarantees (in the

Gaussian assumption sense) zero bit error rate for asymptotically large block lengths.

In SPA decoding, the extrinsic message on an edge from a bit to check node is the

sum of the incoming check to bit node messages on the adjacent edges, and hence,

the average extrinsic information from the bit to check nodes is given by

IEV (IAC) =
2∑

k=1

Dv∑
i=2

ωk
i J
(
J−1(Ikch) + (i− 1)J−1(IEC(IAC))

)
. (3.35)

For an error probability zero, we should have [64]

IEV (IAC) > IAC ∀ IAC ∈ [0, 1). (3.36)

The rate of the code in terms of the degree distributions is given by R = 1 −∑Dc
j=2

ρj
j∑Db

i=2

ω1
i
+ω2

i
i

. For given channel conditions, the rate should be maximized such that the

error free condition in (3.36) is met. If the check node degree distribution is fixed,

maximizing the rate is equivalent to maximizing
∑Db

i=2
ω1
i +ω2

i

i
, which is linear in terms

of the coefficients ω
1(2)
i . In addition, the constraints (3.32), (3.33), and (3.36) that

need to be satisfied are all linear in terms of these coefficients. Hence this constrained
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optimization problem also can be solved using linear programming.

E. Simulation Results

In all our simulations, we assume that the distribution of the binary source messages

is uniform. Two topological channel setups, as depicted in Fig. 18, are considered:

one with dsr = 9.5 and drd = 3.15; another with dsr = 10 and drd = 2.5. In each setup,

we fix Pr and Ps before finding the information-theoretic optimal half-duplexing pa-

rameter α, and the power allocations Ps1 and Ps2 required by the simplified SWCNSQ

scheme to achieve a given transmission rate R. For both channel setups, Table II lists

the optimal parameters for R = 0.5 b/s, together with the resulting relay to destina-

tion link capacity Crd =
α
α
C(c2

rdP̃r, c
2
sdPs2, 1), the achievable rate R1 = C(c2

sdPs1)+Cr

on sub-channel 1, and the achievable rate R2 = C(c2
sdPs2) on sub-channel 2.

Table II. Optimized parameters for simplified SWCNSQ scheme for R = 0.5 b/s and

relay power Pr = −12 dB

dsr drd α Ps (dB) Ps1 (dB) Ps2 (dB) Crd R1 R2

9.5 3.15 0.51 -1.10 -0.047 -2.561 0.783 0.676 0.317

10 2.5 0.54 -1.03 -0.361 -1.976 0.8252 0.628 0.35

Note that if the above information theoretic parameters are used to design LDPC

and IRA codes, the rates of the optimized codes will be less than those required

because of coding losses. Thus, we fix α and Ps2 at their theoretical optimum, and

keep increasing Ps1 until the optimization procedure for the CS scheme yields codes

of required rates, i.e., we gradually increase Ps1 until a rate-α IRA code and a rate-

R = αR1 + αR2 LDPC code are obtained. We fix Ps2 at its theoretical minimum

and only increase Ps1 to minimize interference for the IRA decoder as explained in
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Section D-1. After good IRA and LDPC codes have been designed, we use DDE [66]

to find the minimum transmission power required by the iterative SPA decoder to

achieve a close to zero BER when block length and the number of iterations approach

infinity. The degree distributions are then used to simulate performance for a finite

block length of n = 2 × 105 for transmission rates of 0.75, 0.5 and 0.25 b/s. In the

following, we summarize our results for the two setups mentioned above.

1. Setup I: dsr = 9.5, drd = 3.15, and Pr = −12 dB

The optimized degree distributions for the LDPC code at a transmission rates of

R = 0.25, 0.5, 0.75 b/s are shown in Table III. The BER performance of the degree

distributions for R = 0.5 b/s is given in Fig. 25. We observe that the CS scheme

using IRA and LDPC codes of asymptotic block lengths suffers a coding loss of only

0.17 dB compared to the theoretical SWCNSQ limit. Also, at a BER of 10−5, the

practical CF system with finite length codes loses only 0.34 dB from the theoretical

bound.

For comparison, we also simulate BER performance of the MS scheme. The

LDPC design process for the MS scheme requires designing two separate codes of

rates R1 and R2 (for example, the two target rates R1 and R2 are given in the

second row of Table II), and block lengths αn and αn, respectively. Using DDE, the

performance threshold for MS is found to be 0.05 dB worse than that of CS. Recall

that MS performs worse than CS because of two reasons; firstly, because of increased

interference caused by a higher Ps2, and secondly, because of a smaller block length.

Since the threshold is calculated for asymptotically large block lengths, this loss of

0.05 dB is due to the increased interference only. The performance of the MS scheme

for finite block length of n = 2 × 105 is shown in Fig. 25, which is observed to be

0.28 dB worse than CS. At this finite block length, both reasons mentioned above
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Table III. Optimized degree distributions at various rates for setup I: dsr = 9.5,

drd = 3.15, and Pr = −12 dB.

R (b/s)

ω1(x) 0.2816x

LDPC ω2(x) 0.0997x+0.1711x2 +0.0619x4 +0.1322x5 +0.0678x14 +
0.0703x15 + 0.1153x49

0.25 ρ(x) 0.4x3 + 0.6x4

IRA ω(x) 0.3085x+ 0.2587x2 + 0.1748x3 + 0.0219x6 + 0.1444x7 +
0.0005x25 + 0.0913x27

ρ(x) x2

ω1(x) 0.151385x+ 0.059467x10 + 0.069372x14 + 0.349055x49

LDPC ω2(x) 0.047244x + 0.112977x2 + 0.117668x4 + 0.022279x8 +
0.070544x12

0.5 ρ(x) 0.2x9 + 0.8x10

IRA ω(x) 0.133826x+ 0.250839x2 + 0.302605x6 + 0.31273x49

ρ(x) x4

ω1(x) 0.1776x+ 0.3747x49

LDPC ω2(x) 0.0095x+ 0.1514x2 + 0.0319x5 + 0.0061x6 + 0.0875x9 +
0.0766x10 + 0.0847x49

0.75 ρ(x) 0.2x21 + 0.8x22

IRA ω(x) 0.1518x + 0.0428x2 + 0.2491x3 + 0.156x5 + 0.1186x9 +
0.2691x19 + 0.0126x24

ρ(x) x5

contribute to this performance loss.

For transmission rates of R = 0.75 and R = 0.25 b/s, the gap to SWCNSQ

theoretical limit with practical LDPC/IRA codes is only 0.14 and 0.2 dB, respectively,

for the asymptotic thresholds, and 0.3 and 0.38 dB for finite-length simulations (at

BER of 10−5). The three operating points of the practical CS SWCNSQ scheme at a

BER of 10−5 in comparison with the theoretical limits of DF and direct transmission

are shown in Fig. 26(a). As can be seen the operating points at rates 0.75, 0.5, and

0.25 b/s require 0.53, 0.37 and 0.68 dB less power than the DF bound, respectively.
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Fig. 25. BER versus the average source power Ps for a transmission rate of R = 0.5

b/s, dsr = 9.5, drd = 3.15, and Pr = −12 dB.

The corresponding gap to the direct transmission limit is 0.86, 0.7, and 0.47 dB,

respectively.

2. Setup II: dsr = 10, drd = 2.5, and Pr = −12 dB

We design three sets of LDPC/IRA codes for transmission rates of 0.75, 0.5 and

0.25 b/s in this new setup − one set of codes for each rate. The optimized degree

distributions are shown in Table IV. The asymptotic thresholds are observed to be

0.11, 0.17 and 0.21 dB away from the SWCNSQ limit, respectively. The performance

gaps at BER of 10−5 with n = 2× 105 are 0.27, 0.33 and 0.38 dB, respectively. Fig.

26(b) shows the operating points at BER of 10−5 along with the theoretical bounds.

Compared to the the DF limit, the operating points with finite-length simulations
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Fig. 26. Operating points at BER of 10−5 for R=0.25, 0.5 and 0.75 b/s in comparison

with DF and direct transmission limits. The relay position corresponds to (a)

dsr = 9.5 and drd = 3.15, (b) dsr = 10 and drd = 2.5. The average relay power

is set at Pr = −12 dB.
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perform better by 1.02, 0.92 and 1.03 dB, respectively, whereas the gap to the direct

transmission limit is 0.89, 0.65 and 0.31 dB, respectively.

Table IV. Optimized degree distributions at various rates for setup II: dsr = 10,

drd = 2.5, and Pr = −12 dB.

R (b/s)

ω1(x) 0.2991x

LDPC ω2(x) 0.061x + 0.2393x2 + 0.0631x6 + 0.1501x7 + 0.0187x26 +
0.1121x27 + 0.0127x59 + 0.0438x60

0.25 ρ(x) 0.4x3 + 0.6x4

IRA ω(x) 0.4797x + 0.198x2 + 0.0917x3 + 0.0743x7 + 0.0799x9 +
0.0672x35 + 0.009x36 + 0.0002x37

ρ(x) x2

ω1(x) 0.1593x+ 0.2052x14 + 0.0058x15 + 0.3127x49

LDPC ω2(x) 0.0282x+ 0.1521x2 + 0.0352x5 + 0.1014x6

0.5 ρ(x) 0.2x9 + 0.8x10

IRA ω(x) 0.3345x+ 0.1619x2 + 0.1883x3 + 0.0432x6 + 0.0798x8 +
0.0628x12 + 0.1295x25

ρ(x) x3

ω1(x) 0.1893x+ 0.0685x2 + 0.1775x49

LDPC ω2(x) 0.1312x2+0.0184x3+0.0538x4+0.1482x10+0.0607x11+
0.1524x49

0.75 ρ(x) 0.2x18 + 0.8x19

IRA ω(x) 0.203x+ 0.1424x2 + 0.2228x4 + 0.0316x11 + 0.1748x12 +
0.2255x49

ρ(x) x5

F. Summary

In this chapter, we have considered CF coding with BPSK modulation for the half-

duplex Gaussian relay channel. Specifically, we propose SWCNSQ as a means of im-

plementing WZC based CF relaying. We derive the achievable rates of this scheme,

specifically with BPSK modulation. Using the information-theoretic bound as a
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benchmark, we have developed the first limit-approaching practical CF code design

using LDPC codes at the source, and nested scalar quantization and distributed

joint source-channel coding with IRA codes at the relay. We have shown that after

the quantization indices have been recovered, the destination effectively receives the

source transmission over two parallel sub-channels. We use EXIT charts strategy

along with a Gaussian approximation to design good degree distributions for LDPC

decoding over the two sub-channels. Using density evolution, we find that our code

design with an asymptotically large block length is only 0.11−0.2 dB away from the

theoretical limit, whereas finite-length simulation exhibit a gap of only 0.27 − 0.38

dB from the achievable SWCNSQ bound.
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CHAPTER IV

THE QUASI-STATIC FADING RELAY CHANNEL

A. Introduction

In the previous chapter we considered a half-duplex Gaussian relay channel, where all

channel coefficients were fixed. In this chapter, we go a step further by considering

a half-duplex wireless relay channel where all links experience independent quasi-

static Rayleigh flat fading. We assume that the instantaneous fading realizations are

not available at the transmitters but are known perfectly at the destination. We

focus our attention to the case where the relay network does not have stringent delay

requirements. In addition, we assume that it is imperative for the destination to

always correctly decode the information being transmitted from the source. In other

words, the source and/or the relay can continue to transmit until the destination

successfully decodes the message from the source. Since the source does not know

beforehand the rate it should use to encode its message, it is impossible to use fixed-

rate codes at the source. A similar situation applies at the relay, where it does not

know (a) the rate at which to re-encode the message it decoded from the source

in case of decode-forward (DF) or (b) the rate at which it should compress and

forward what it received from the source in case of compress-forward (CF) relaying.

As a solution, we propose rateless coded versions of DF and CF strategies, in which

both the source and the relay continue to transmit, using rateless codes, until an

acknowledgement (ACK) is received from the destination. Since in DF, the relay first

decodes the message from the source before encoding it again and transmitting to the

destination, the need for rateless coding at the relay is quite obvious. On the other

hand, recall from Chapter III that for the case of CF, the signal received at the relay is



77

source-channel coded before being transmitted to the destination – thus the need for

rateless coding might not be so clear. As shown in Chapter III, one can use a single

channel code to jointly provide compression (source coding) as well as error protection

(channel coding). Thus, in this chapter, we propose using a single rateless channel

code to continuously source-channel code the signal at the relay until its decoding

at the destination is successful, with the rate compatibility of the underlying rateless

channel code lending itself nicely to developing a rate-compatible joint source-channel

code. Here we consider it important to mention that whereas rateless coded DF has

been explored in the past [75, 76, 77, 78], we believe that this work is the first in the

literature which designs and implements a rateless coded CF relaying strategy.

For the fixed channel case, either CF or DF will outperform the other. However,

in order to achieve superior performance for the fading case, it is natural that the

system should switch to the scheme which results in a higher achievable rate for the

current channel conditions. In order to let the system switch between the two relaying

schemes, we propose a simple protocol which involves an additional bit of feedback

from the destination (in addition to the ACK signals) which lets the relay know which

scheme to employ. For the case of CF, the time at which this feedback is sent also

helps the relay determine the optimum (or near optimum) number of received symbols

it should compress (using Wyner-Ziv coding) before starting to transmit to the desti-

nation. Assuming the presence of this feedback, we derive achievable rates for rateless

coded DF and CF strategies specifically with binary phase-shift keying (BPSK). Next,

we implement the rateless coded relaying protocol using Raptor codes [79]. It was

shown in [80] that Raptor codes are not universal over additive white Gaussian noise

(AGWN) channels, i.e., the optimum degree distribution of the underlying decoding

graph is a function of the channel signal-to-noise ratio (SNR). Since the transmitters

do not have knowledge of the instantaneous channel SNRs, the source and the relay
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do not have the luxury of using degree profiles optimized specifically for the current

channel conditions. Instead, we propose a practical approach of using the same de-

gree profiles for all channel conditions, with the degree profiles designed to maximize

the throughput averaged over the ensemble of fading realizations. We identify the

challenges associated with designing degree distributions for the fading relay channel

setting, and formulate the design as a non-linear but convex optimization problem

which can be solved using standard iterative convex solvers. Results indicate that

with DDE [66] for asymptotically large block lengths, the optimized codes lose only

0.024 − 0.0299 (∼ 5%) bits from the theoretical limit. On the other hand, the per-

formance loss with finite length codes is observed to be only 0.039 − 0.0528 (∼ 9%)

bits from the theoretical average throughput.

The chapter is organized as follows: We first present the system model in Section

B. The relaying protocol which utilizes a combination of rateless coded DF and CF

schemes is then described in Section C along with the corresponding performance

limits. We then describe the implementation of this rateless coded protocol using

Raptor codes and the code design in Section D. The performance with Raptor codes

is provided in Section E, and finally a summary of the chapter is provided in Section

F.

B. System Model 1

We consider the same three node as relay model as in Fig. 11, reproduced here as Fig.

27. We assume that all channel coefficients are real − extension of the coding schemes

to complex coefficients is straightforward. All channels are assumed to experience

quasi-static Rayleigh flat fading, i.e., the channel coefficients change independently

1The material presented in this section has some overlap with that in Section B
of Chapter III – we will repeat that material here for the reader’s convenience.
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from one block of transmission to the next with the squares of the absolute values

following an exponential distribution whose means are determined by the respective

distances. Without loss of generality, we assume that E[c2
sd] = 1, E[c2

sr] =
(

dsd
dsr

)l
, and

E[c2
rd] =

(
dsd
drd

)l
, where l is the path loss coefficient. In addition, all links experience

additive white Gaussian noises of unit variances. As before, we assume that the path

loss coefficient is l = 3 and that the source-to-destination distance is fixed at dsd = 10.

Destination

Relay

Source

csr

dsr

d
rd

dsd

csd

crd

Fig. 27. The relay channel with three nodes: the source, the relay, and the destination.

If the total number of symbols required for successful decoding is N , the relay

receives N1 = αN symbols during the relay receive period T1, (α ∈ [0, 1]). During T1,
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the source broadcasts its transmission Xs1[n], n = 1, . . . , αN , to the relay and the

destination which receive

Yr[n] = csrXs1[n] + Zr[n], and (4.1)

Yd1[n] = csdXs1[n] + Zd1[n], (4.2)

respectively, where Zr[n] and Zd1[n] are i.i.d. Gaussian noises of unit variances,

independent of each other. The relay then transmits for the remaining αN symbols

during the period T2 referred to as the relay transmit period, and where α ≡ 1 −

α. During T2, the destination receives the source transmission Xs2[n] and the relay

transmission Xr[n] over a multiple-access channel (MAC) with the received signal

given by

Yd2[n] = csdXs2[n] + crdXr[n] + Zd2[n], n = 1, . . . , αN, (4.3)

where once again Zd2[n] is an i.i.d. additive Gaussian noise of unit variance. Let the

source transmission power during T1 and T2 be denoted by Ps1 = 1
αN

∑αN
n=1 |Xs1[n]|2

and Ps2 = 1
αN

∑αN
n=1 |Xs2[n]|2, respectively, and the relay transmission power during

T2 be Pr =
1

αN

∑αN
n=1 |Xr[n]|2. We consider the following total average system power

constraint

αPs1 + α(Ps2 + Pr) ≤ P, (4.4)

where P is the maximum allowed average system power per block of transmission.

Note that this power constraint is different from the one in Chapter III – we now

consider the power budget to be a little more flexible in the sense that one can now

also allocate power amongst the source and the relay. If the channel state information

(CSI) was available at the transmitters, it would have been possible to optimize the

power allocation for every channel realization, i.e., one could have optimized over Ps1,
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Ps2 and Pr to maximize the overall achievable rate under the total power constraint

(4.4). However, since we assume that the CSI is not available at the transmitters,

the system cannot reap the benefit from such a power allocation strategy. Instead,

we assume that the system employs the same total power in both time slots, i.e.,

Ps1 = Ps2 + Pr = P . In addition, the power allocation between the relay and source

during T2 cannot be a function of the channel realizations. Instead, it is a function

of the channel statistics only with the specific power allocation chosen to maximize a

certain performance criterion such as the average throughput.

C. Ratless Coded Relaying Protocol and Performance Limits

In this section, we will first separately describe the proposed rateless coded DF and

CF schemes, along with the corresponding information theoretical performance limits

specifically with BPSK modulation. We will then explain the proposed relaying pro-

tocol which uses a combination of DF and CF schemes by employing an additional

bit of feedback from the destination.

1. Decode-forward

The rateless coded DF scheme we use is similar to the one in [75], except that we have

a system power constraint as opposed to separate power constraints for the source

and the relay. The source encodes the message sequence m using a binary rateless

codebook of power Ps1 = P . If the source uses a capacity achieving codebook, the

relay can decode the message from the source after N1 symbols if [81]

k ≤ N1C(c2
srP ), (4.5)
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where k is the length of the information sequence m, and C(s) is the BPSK channel

capacity with SNR s (3.4). It is obvious that the relay can decode the source message

before the destination does if and only if (iff) the capacity on the source-to-relay link

is higher than that on the source-to-destination link, i.e., N1 < N iff |csd| < |csr|. In

such a case, after successfully decoding the source message, the relay starts to encode

the decoded message using an independent binary rateless codebook of power Pr.

Meanwhile, the source continues to ratelessly encode the message using power Ps2

such that Ps2 + Pr = P . Thus the destination receives C(c2
sdP ) bits of information

per symbol during the relay receive period, and C(c2
sdPs2 + c2

rdPr) bits per symbol

during the relay transmit period. Since we have the power constraint Ps2 + Pr = P ,

the optimum power allocation strategy during T2 allocates all power to the node

with better channel quality – the other node does not transmit. Thus, if |csd| <

min (|csr|, |crd|), all power is allocated to the relay during T2, and the destination can

decode the message after N symbols if

k ≤ N1C(c2
sdP ) + (N −N1)C(c2

rdP ). (4.6)

On the other hand, if |csd| ≥ min (|csr|, |crd|), either the relay cannot decode the

message before the destination, or if it does, it is best for it not to transmit. In either

case, relaying does not help at all and the number of symbols N required by the

destination for successful decoding satisfies

k ≤ NC(c2
sdP ). (4.7)

The overall achievable rate RDF = k
N

as a function of the half-duplexing parameter

α = N1

N
, can be obtained by combining the constraints (4.5), (4.6), and (4.7) and is
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given by

RDF =


C(c2

sdP ) if |csd| ≥ min (|csr|, |crd|) ,

maxα

[
min

(
αC(c2

sdP ) + αC(c2
rdP ), αC(c2

srP )
) ]

, otherwise.
(4.8)

The achievable rate expressions in (4.8) can further be simplified as follows. Since

|csd| < |crd| in the second line of (4.8), the first argument of the min function decreases

while the second argument increases with α. Thus the optimum choice of the half-

duplexing parameter α† =
C(c2rdP )

C(c2rdP )+C(c2srP )−C(c2sdP )
in (4.8) is the solution obtained by

equating the two arguments. When |csr| ≤ |csd|, i.e., when DF relaying reduces to

the direct transmission case, α† ≥ 1. Thus if α∗
DF = min(α†, 1), we have

RDF = α∗
DFC(c2

sdP ) + (1− α∗
DF )C(max(c2

rd, c
2
sd)P ). (4.9)

The overall rateless coded DF relaying can be summarized as follows. The source

starts to encode its message with a ratless codebook using power P . If |csd| ≥

min (|crd|, |csr|), the relay does not attempt to decode and the source continues its

transmission until an ACK has been received from the destination. Otherwise, the re-

lay attempts to decode and sends an ACK to the source once it is successful, at which

point the source stops transmitting. The relay now starts encoding using a rateless

codebook with power P and continues transmitting until an ACK is received from the

destination.

2. Compress-forward

For the CF scheme, the source initially encodes the message using a binary rateless

code with power Ps1 = P . After N1 symbols have been received at the relay, it

quantizes Yr to W and then employs Slepian-Wolf (SW) coding [15] to compress the

random sequence W with the sequence Yd1 treated as the side-information known
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at the decoder, but not at the encoder. During the relay transmit period T2, the

compressed version is coded using a rateless channel code and transmitted to the

destination using power Pr. Meanwhile, the source continues to transmit using a

rateless codebook of power Ps2 with Ps2 + Pr = P . Let the achievable rates during

T2, lying inside the MAC capacity region [17], on the relay-to-destination and source-

to-destination link be Rrd and Rsd, respectively. Then the destination should be able

to recover W after a total of NR symbols have been transmitted if [71]

N1H(W |Yd1) ≤ (NR −N1)Rrd, (4.10)

where the italicized letter represents the random variable associated with the i.i.d.

sequence denoted by the same boldface letter. After W has been successfully re-

covered, it is used to extract information about m. Thus the destination receives

I(Xs1;W,Yd1) bits of information during T1, and Rsd bits of information during T2 –

the message can be recovered after N symbols if

k ≤ N1I(Xs1;W,Yd1) + (N −N1)Rsd (4.11)

provided that N1 and NR satisfy (4.10) and that N ≥ NR (the destination can

recover m only after W has been decoded). Dividing both sides of (4.11) by N , using

RCF = k
N
, α = N1

N
, expanding the term I(Xs1;W,Yd1), and maximizing over α, we

get the rate for the rateless coded CF relaying scheme as

RCF = max
0≤α≤1

α
(
C(c2

sdP ) +H(W |Yd1)−H(W |Xs1)
)
+ αRsd, (4.12)

subject to the condition (obtained by diving both sides of (4.10) by N)

αH(W |Yd1) ≤
(
NR

N
− α

)
Rrd. (4.13)
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We restrict our attention to the case where W is the output of a binary quantizer

with Yr as the input. The primary motivation, as mentioned in Chapter III, is the

fact that for BPSK modulated channels, restricting the quantization to be binary

suffers an insignificant performance loss. At the same time, it offers great practical

advantages for the fading case since the quantizer need not change for varying channel

conditions. Thus for our practical scheme, we use the same quantizer as that of the

simplified scheme of Section C-5 in Chapter III. Upon observing (4.13), we find that

in order to aid the recovery of W for a fixed quantizer (and thus fixed H(W |Yd1))

and a fixed N , one must either increase NR, or decrease α by decreasing N1. The

former can be varied by letting the relay continue to transmit until the destination

generates an ACK, and the latter with the help of an additional feedback as mentioned

in Section C-3. The following result shows the optimum balance between NR, and α.

Proposition 1 For a fixed quantizer, achieving the best rate in (4.12) requires that

the destination recover W and m at the same time. In addition, the half-duplexing

parameter which maximizes (4.12) is given as

α∗
CF =

Rrd

Rrd +H (W |Yd1)
. (4.14)

Proof The first part of the proposition follows from the constraint NR ≤ N , implying

that the value of NR for which the the constraint (4.13) is the most relaxed, and hence

RCF is maximized is NR = N . The proof of the second part of the proposition is as

follows. We have that

C
(
c2
sdP
)
> C

(
c2
sdPs2

)
≥ Rsd,

where the first inequality is because P > Ps2, and the second follows from the con-

straints on the MAC capacity region [17]. In addition, we have

H (W |Yd1) ≥ H (W |Yd1, Xs1) = H (W |Xs1) ,
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where the inequality appears because conditioning reduces entropy, whereas the equal-

ity is because of the fact that given Xs1, W is independent of Yd1. We thus have

C
(
c2
sdP
)
+H (W |Yd1)−H (W |Xs1) > Rsd,

implying that RCF is increasing in α. As for the constraint (4.13), note that the

left hand side is increasing in α, while the right hand side is decreasing. Thus, the

maximum, and the optimum value of α which maximizes (4.12) while at the same

time satisfying (4.13) is obtained by equating the two sides of the constraint, thus

giving rise to the value in (4.14).

A loose end that still remains is to determine where Rsd and Rrd should lie in

the MAC capacity region. The optimum operating point in the MAC capacity region

is as follows.

Proposition 2 The achievable rate of the CF strategy described above is maxi-

mized when Rsd and Rrd lie on the corner point of the sum-rate side of the MAC

capacity region, with the corner point characterized by Rsd = I (Xs2;Yd2|Xr) and

Rrd = I (Xr;Yd2).

Proof See Appendix D.

The above proposition implies that the destination should first attempt to decode

the quantized sequence W using Yd1 as the side-information and by treating the

transmission Xs2 from the source as binary interference − then the destination should

cancel the interference Xr from Yd2 before attempting to decode the original message

m. The result fares well for a practical scheme since one can use separate decoders for

W and m instead of a more complex joint decoder. Finally, since no CSI is available

at the transmitters, the power allocations Ps2, Pr cannot change from one channel
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realization to the other. Therefore, for some channel realizations, the expression in

(4.12) might result in an achievable rate less than the direct transmission strategy,

as also indicated in the proof of Proposition 2. However, one can always reduce the

CF scheme to a direct transmission strategy by setting α = 1 and not attempting to

recover W at the destination. In short, the achievable rate for the rateless coded CF

relaying is given by

RCF = max
{
α∗
CF

(
C(c2

sdP ) +H(W |Yd1)−H(W |Xs1)
)
+ α∗

CFC(c2
sdPs2) , C(c2

sdP )
}
.

(4.15)

Note that the above analysis requires the relay to know the optimum number of

symbols it should receive and quantize before it starts transmitting. With no CSI,

the relay is unable to determine this on its own. However, in the following, we explain

how an additional bit of feedback from the destination can convey this information.

3. Overall relaying protocol

The proposed relaying protocol, which uses a combination of rateless coded DF and

CF schemes, depending on which results in a higher achievable rate is depicted in

Fig. 28. Without full CSI, the source and the relay cannot determine

1. whether to employ DF or CF coding, and

2. the optimum half-duplexing parameter α∗ for CF coding (for DF coding without

CSI, the relay is still capable of determining when to stop receiving and start

transmitting − it does so when it correctly decodes the source message).

On the other hand, since the destination knows all channel coefficients, it is able

to determine both of the above. Thus, we propose for the destination to broadcast

one additional bit of feedback, referred to as SCH, after it has received N1 symbols –
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the optimum number of symbols the relay should receive. The signal SCH not only

indicates to the source and the relay whether to employ the DF or the CF scheme,

but the time at which it is broadcasted also conveys information about the number

of symbols the relay should receive before it starts transmitting. The achievable

rate of the overall relaying strategy for fixed channel realizations is then given by

R = max {RDF , RCF}, where RDF and RCF are given by (4.9) and (4.15), respectively.

Finally, as mentioned before, for some channel realizations, the best thing to

do is not to relay at all. The protocol described above can easily incorporate such

a transmission strategy. If the destination determines direct transmission to be the

best choice, it never broadcasts SCH. The relay continues to wait for SCH which never

comes, and thus the relay never transmits. The destination therefore attempts to

decode directly from the source transmissions.

4. Numerical results

As a performance measure, we consider the mean throughput averaged over the fading

distributions. In Fig. 29(a), we plot the average throughput as a function of the

source-relay distance when dsd = dsr + drd, i.e., the relay is moving along a straight

line between the source and the destination, and when the power allocations Ps2 and

Pr are chosen to maximize the average throughput. We point out that we consider the

straight line setup for illustration purposes only; the analysis and the coding schemes

presented in earlier sections are applicable to any geometrical setting of the nodes.

For comparison, we also plot the average throughput for the case where all nodes have

perfect knowledge of the instantaneous realizations of all channel coefficients. The

achievable rates for the perfect knowledge case can be found by maximizing (4.9) and

(4.15) over the power allocations Ps1, Ps2 and Pr such that the power constraint (4.4)

is satisfied. As seen from Fig. 29(a), even with no CSI at the transmitters, the relaying



90

2 3 4 5 6 7 8 9 10 11

0.4

0.45

0.5

0.55

0.6

Source−Relay Distance

A
ve

ra
ge

 T
hr

ou
gh

pu
t

 

 

R
CF

R
DF

max(R
CF

, R
DF

) 

max(R
CF

, R
DF

) − Full CSI

Direct Transmission

(a)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Source−Relay Distance

P
ro

ba
bi

lit
y 

of
 U

sa
ge

 

 

Compress−Forward
Decode−Forward
Direct Transmission

(b)

Fig. 29. Source-to-relay distance versus (a) average system throughput and (b) prob-

ability of usage of each relaying scheme with no channel knowledge at the

transmitters. The relay is assumed to be moving along a straight line be-

tween the source and the destination and the average system power is set at
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strategy described in Section C-3 achieves a significantly higher average throughput

than that with direct transmission. For instance, when dsr = 6, relaying outperforms

direct transmission by 0.173 bits/sample (b/s). At the same distance, having perfect

channel knowledge at the nodes results in an additional gain of 0.013 b/s, where the

additional gain is because of the flexibility the perfect channel knowledge allows in the

power allocation, as mentioned in Section B. We also provide the average throughput

if the system were to employ only a single relaying strategy instead of a combination.

It is obvious that using a combination is better than CF or DF employed individually.

For example, at dsr = 6, the proposed protocol outperforms DF by 0.019 b/s, whereas

at dsr = 8, it is 0.0224 b/s better than CF.

In Fig. 29(b), we plot the probability of usage of each relaying scheme as a

function of dsd, where once again the relay is assumed to moving along a straight line

between the source and the destination. When the relay is close to the source, DF is

employed more often than CF. However, as the relay moves closer to the destination,

the probability of usage of CF relaying increases while that of DF decreases. For

example, at a distance dsr = 9, the CF scheme is the best choice with probability

0.68, while DF outperforms all others with a lower probability of 0.28. This makes

intuitive sense since as the relay moves closer the destination, it is more likely that

the source-to-relay channel is weaker, due to which it takes longer, if at all, for the

relay to decode the source transmission. On the other hand, with the relay being

closer to the destination, it is quite likely that the signals received at the relay and

the destination are highly correlated, thus allowing SW coding at the relay to reap

the benefits of this correlation. Also note that the probability of usage of the direct

transmission strategy is non-zero. Had perfect CSI been available at all nodes, the

nodes would have been able to utilize the optimum power allocation due to which the

relaying protocol would have always been able to outperform direct transmission.
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D. Practical Rateless Coded Relaying with Raptor codes

In this section, we explain how the rateless coded relaying protocol described in Sec-

tion C can be put into practice using Raptor codes [79]. As mentioned before, we

propose using the same degree profiles for all channel conditions, with the degree pro-

files designed to maximize the average system throughput. The source first precodes

its message with a rate-Rp LDPC code. The precoded bits are then encoded with an

LT code [82] characterized by a degree distribution polynomialΩ(1)(x) =
∑D

d=1 Ω
(1)
d xd,

where D is the maximum node degree. The degree of every output node is chosen

randomly, with the probability of choosing a degree d being Ωd. For a degree d output

node, d precoded bits are chosen randomly, which are added modulo-two to obtain

the corresponding output bit. The output bits are then BPSK modulated to the

constellation points
{
+
√
P ,

√
−P
}

and transmitted to the source as well as to the

relay. The source continues to transmit until the relay receive period is over. Since

the source does not know beforehand which relaying scheme, if any, will be employed

in the future, we let the source during T1 encode its message using a single profile

Ω1(x) regardless of whether DF, CF or direct transmission will be employed. After

N1 symbols have been transmitted, the relay network either employs a DF or a CF

scheme, indicated to it by the SCH feedback from the destination. In the following,

we will first describe separately the implementation of rateless coded DF and CF

schemes with Raptor codes – the implementation of the two schemes along with the

overall relaying protocol is summarized in Fig. 28. We will then explain the design

process for the Raptor code degree distributions which we formulate as a non-linear

convex optimization problem.
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1. Decode-forward

The implementation of the DF scheme with Raptor codes is fairly straightforward.

The destination broadcasts SCH after N1 = ⌈α∗N⌉ = ⌈ k
C(c2srPs1)

⌉ symbols − the theo-

retical limit for successful decoding. The source continues to transmit until decoding

at the relay is successful2, indicated to the source by an ACK. At this point in time,

the source stops transmitting and all the power is allocated to the relay. The relay

first precodes the decoded information sequence with the same rate-Rp LDPC code

that the source was using, and then encodes the precoded bit sequence with an LT

code characterized by the degree distribution polynomial Ω(2)DF (x). Since both the

source and the relay use the same LDPC code to precode the same information se-

quence, the destination can recover the source message using a joint decoding graph

as shown in Fig. 30. As indicated in the figure, the decoding graph of a Raptor/LT

code contains two types of bit nodes: (a) the left bit nodes corresponding to the

precoded information bits and (b) the right bit nodes corresponding to the LT coded

bits transmitted over the channel. Whereas the left bit nodes do not have any a-priori

log-likelihood ratios (LLRs), the a-priori LLRs for the right bit nodes are evaluated

from the corresponding channel values. If N1 and N2 = N − N1 are the number of

symbols transmitted from the source and the relay, respectively, the right bit nodes

can further be divided into two categories: (a) N1 Type-1 bit nodes corresponding

to the coded bits transmitted from the source during T1 using degree profile Ω(1)(x)

and whose channel LLRs are calculated from Yd1 and (b) N2 Type-2 bit nodes corre-

sponding to the coded bits transmitted from the relay during T2 using degree profile

Ω(2)DF (x) and whose channel LLRs are calculated from Yd2. With these channel

2We assume that the nodes always know if they have decoded the correct codeword.
In practice this can be ensured by using the likes of cyclic redundancy-check codes.
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LLRs, the decoder runs iterative belief-propagation (BP) algorithm on the joint de-

coding graph of Fig. 30 and obtains the extrinsic LLRs on the information bits. For a

given number of received symbols N , the BP algorithm runs until either a maximum

number of iterations are reached or the correct codeword is decoded. In the case of

the former, the decoder waits for more transmissions from the relay before restarting

the decoding process. On the other hand, if the correct codeword is decoded, the

destination generates an ACK and a practical achievable throughput of k
N

is recorded.
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Fig. 30. Joint decoding graph for recovering the original message from the source. The

decoding graph for the LDPC precode is not shown here for clarity.
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2. Compress-forward

If SCH, transmitted after N1 symbols, indicates CF to be the best choice, the relay

quantizes Yr to obtain W. The quantized sequence now needs to be source coded

(SW compressed) with Yd1 as the side-information, as well as channel coded against

the noise on the relay-to-destination link. As opposed to the fixed-rate distributed

joint source-channel coding (DJSCC) for the Gaussian relay channel mentioned in

Chapter III, we propose rateless DJSCC using Raptor codes for the fading relay

channel. After describing the rateless DJSCC at the relay, we will briefly describe

the decoding of the joint source-channel code at the destination, in addition to the

decoding of the original message from the source.

a. Rateless DJSCC

The basic idea of rateless DJSCC of the sequence W using Raptor codes is shown

in Fig. 31 (a). The binary sequence W is first precoded with a systematic LDPC

code. The precoded output is encoded with an LT code characterized by the degree

distribution polynomial ΩJ(x), where we have used the superscript J to indicate joint

source-channel coding. The output bits of the LT code are BPSK modulated with

power Pr and transmitted over the noisy relay-to-destination channel. As in regular

point-to-point Raptor encoding/decoding, the precoded information bits themselves

are not transmitted over the physical channel. However, note that the systematic

precoded information bits W are correlated with Yd1 which was received by the

destination during T1 and is therefore already available as the side-information. Thus,

one can think of W as being transmitted over a virtual correlation channel with Yd1

as the output. The decoding graph at the destination for recovering W is shown in

Fig. 31 (b). Treating Xs2 as binary interference, the destination uses the received



96

Systematic 
LDPC 

Precode
W

LT Code
ΩJ(x)

+ 
BPSK

Xr

W

Parity bits

Systematic 
bits

Physical 
Noisy 

Channel
f(Yd2|Xr)

Virtual 
Correlation  

Channel
f(Yd1|W)

Raptor 
Decoding

Yd2

Yd1

LLR

LLR

Lp(a)

Ls(a)

Lp(e)

Ls(e)

(a)

Interleaver Ω
J(x)

Left bit nodes
No channel evidence

Right bit nodes
Channel evidence available

Check nodes

)1()(esL

)1()(asL

)( 1)( NL es

)( 1)( NL as

L
D

PC
 s

ys
te

m
at

ic
 b

its
 -

a-
pr

io
ri

 L
L

R
s 

fr
om

 Y
d1

L
D

PC
 p

ar
it

y 
bi

ts
 -

N
o 

a-
pr

io
ri

 L
L

R
s

)1()(apL

)1()(epL

)( 1)( NNL ap −
)( 1)( NNL ep −

(b)

Fig. 31. Rateless DJSCC of W and the side-information Yd1 using a Raptor code. (a)

The LT coded bits are transmitted over the physical noisy channel, whileW is

assumed to be transmitted over the virtual correlation channel. (b) Decoding

graph for recovering W. Yd1 and Yd2 are used to evaluate the LLRs for the

left and right bit nodes, respectively. The decoding graph outputs extrinsic

LLRs for both W and Xr. The decoding graph for the LDPC precode is once

again not shown for clarity.
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sequence Yd2 to evaluate the a-priori LLRs for the right bit nodes corresponding

to Xr. In traditional Raptor decoding, only the right bit nodes have the a-priori

LLRs available from the channel − the a-priori LLR inputs to the left bit nodes are

zero. On the other hand, for DJSCC, the received sequence Yd1 is correlated with

the systematic bits of the LDPC precode, and hence can be used to provide non-

zero a-priori LLR values3. However, since the LDPC parity bits are, in general, not

correlated with Yd1, the a-priori LLRs to the left bit nodes corresponding to these

bits will still be zero. After running a predetermined number of BP iterations on

the graph, the DJSCC decoder outputs the extrinsic LLRS Ls(e) and Lp(e) for the

systematic bits W and the coded symbols Xr, respectively. These extrinsic LLRs are

then used to recover the original information from the source, as will be explained

next.

b. Decoding the source information

During the relay transmit period, the source uses power Ps2 and continues to transmit

by LT encoding the precoded information sequence using a degree profile Ω(2)CF (x).

Thus as in the DF scheme, the right bit nodes of the decoding graph for CF can also

be divided into two categories: (a) N1 Type-1 bit nodes corresponding to T1 encoded

with profile Ω(1)(x). Both Yd1 and the decoded version of W are used to calculate

the a-priori LLRs for these bit nodes, and (b) N2 Type-2 bit nodes corresponding

to T2 encoded with profile Ω(2)CF (x). The LLRs for these nodes are calculated from

Yd2 after canceling the interference caused by Xr. The LLRs for type-1 bit nodes

can be evaluated from Yd1 and the extrinsic information on the systematic nodes of

3See (3.18) and (3.20) for exact expressions for the a-priori LLRs to the left and
right bit nodes, respectively



98

the DJSCC decoder 4. Using these a-priori LLRs the destination runs BP algorithm

on the decoding graph for a fixed number of iterations. If the correct codeword is

decoded, the destination generates an ACK indicating to the source as well as to the

relay to stop transmitting. Otherwise, the destination waits for the source and the

relay to transmit more symbols and keeps running iterative BP algorithm on the two

decoding graphs (for W and m) until m is decoded correctly.

Finally, we mention a couple of important points about the rateless coded CF

scheme. First, note that the length N1 of the relay receive period is always fixed for

given channel realizations. This is in contrast to the DF scheme, where for a given set

of channel realizations, N1 is variable, at least for finite length codes. This is because

for DF, the relay receive period does not end until the relay is able to correctly

decode m. Second, recall that Proposition 1 dictates that N1 should be chosen in

such a manner so that the destination recovers the quantized sequence W and the

source message m at exactly the same time. Another way, perhaps from a practical

standpoint, to explain the logic behind this requirement is the following. If N1 were

too small, W would be recovered before m, and thus the relay would be sending

redundant information during the time W has been recovered but not m. In such a

case, one could have clearly picked a larger N1 such that the new W would have still

been recoverable before m while at the same time conveying more information about

the source transmissions − thus effectively reducing the time it takes to decode m.

On the other hand, if N1 were too large, the time it takes for the destination to decode

W would be large, and might serve as a bottleneck in declaring successful decoding.

This is because the destination has to have (almost) successfully decoded W before

attempting to decode m. Clearly, one could have chosen a smaller N1 in order to

4See (3.23) and (3.21) for exact expressions for the a-priori channel LLRs to type-1
and type-2 bit nodes, respectively
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reduce the time it takes to decode W and thus avoid the bottleneck. The optimum

balance between N1 being too small or too large is struck when it is chosen such that

W and m are recovered at the same time, as indicated by Proposition 1. Besides

the information-theoretic analysis, such an optimum choice of N1 is also possible for

asymptotically large code lengths, as will be explained in Section E. However, it is

not always possible to choose such an N1 for finite-length codes, in which case we set

it to the optimum value obtained for infinite code lengths.

3. Degree profile design

The design requirement is to choose the degree profiles Ω(1)(x), Ω(2)DF , Ω(2)CF , and

ΩJ(x) such that the system throughput, averaged over the channel ensemble, is max-

imized. The design process for optimizing the degree profiles for the fading relay

channel is obviously more challenging than that of traditional point-to-point commu-

nication. This is because the design methodology must:

1. obtain degree profiles which yield the best average performance when used over

a variety of channel conditions,

2. cater for different channel conditions on the two types of right bit nodes of the

decoding graph (for example, in DF, the SNR for nodes corresponding to T1 is

determined by csd, while for those correpsonding to T2, it is determined by crd),

and

3. take into account the non-zero information on the systematic precoded bits in

DJSCC decoding – for typical Ratpor code decoding, this information is always

zero.

For the design process, we use the EXIT function strategy [64] along with the Gaussian

assumption [65], i.e., we assume that all LLRs in the iterative BP decoding have a
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symmetric Gaussian distribution. In addition, we use the following approximation

J(µ) ≈ 1− e−aµ, (4.16)

where a > 0 is a constant, and J(µ) is the information conveyed by a Gaussian

LLR with mean µ and variance 2µ [64]. The use of this approximation is justified

for two reasons. First, the approximation can be shown to be close to the actual

function as shown in Fig. 32. Second, we use the approximation only for designing

the degree profiles − the actual performance of the designed profiles is evaluated using

exact DDE [66] as well as finite length simulations, both indicating operation close

to the theoretical limits. In the following, we first describe a condition necessary for

successful BP decoding (in the EXIT function and Gaussian assumption sense) for a

very general Raptor decoding setup. We will then use this condition to explain the

design procedure for the rateless coded relaying schemes by showing that all decoders

for the relaying schemes can be considered as specific cases of this general decoder.

a. General decoding setup

For the general setup, we consider the case where there are two types of right bit

nodes. For example, one type of right bit nodes can correspond to the relay receive

period, and the other type to the relay transmit period. We assume that the check

nodes corresponding to these two types of right bit nodes follow different degree

distributions (from the node perspective) Ω(i)(x) =
∑D

d=1 Ω
(i)
d xd, i = 1, 2. In addition,

we assume that both the right as well as the left bit nodes have an a-priori channel

information available. Let IAb be the a-priori information to the left bit nodes on the

edges emanating from the check nodes. Then using the Gaussian assumption, the

mean of the messages from the check nodes to the bit nodes is µAb = J−1 (IAb). Let

Il be the channel information available to the left bit nodes with the corresponding
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mean being µl. Then the extrinsic information from the left bit nodes is given by [65]

IEb =
∞∑
d=1

idJ ((d− 1)µAb + µl)

≈ 1− e−aµl

∞∑
d=1

ide
−a(d−1)µAb , (4.17)

where id is the fraction of edges connected to degree d left bit nodes. If the average

left bit node degree is γ, the degree profile I(x) =
∑

d idx
d−1 ≈ eγ(x−1) [79, 80], with

the approximation becoming exact as the length of the information sequence reaches
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infinity. The extrinsic information IEb from the left bit nodes as a function of the

a-priori information IAb can then be approximated as

IEb (IAb) ≈ 1− e−aµleγ(e−aµAb−1)

≈ 1− (1− Il)e
−γIAb , (4.18)

where we have used e−aµl ≈ 1−Il, and e−aµAB−1 ≈ −IAb. Note that the exact value of

the constant a becomes irrelevant in the approximated information transfer function.

We now take a look at the information transfer function at the check nodes. For

an a-priori information IAc to the check nodes on the edges emanating from the left

bit nodes, the extrinsic information at the two types of check nodes5 is given as

I
(i)
Ec =

D∑
d=1

dΩ
(i)
d

βi

Td

(
IAc, I

(i)
r

)
i = 1, 2, (4.19)

where βi is the average degree of check nodes of type i, I
(i)
r the channel information

to the right bit nodes of type i, and Td (IAc, Ir) the information transfer function at

a check node of degree d with IAc and Ir being the a-priori information from the left

and right bit nodes, respectively. This information transfer function can be evaluated

using either DDE or Monte-Carlo simulations. If α is the fraction of right bit nodes

that are of type-1, and β = αβ1 + αβ2 is the overall average check node degree, then

the overall extrinsic information IEc from the check nodes to the left bit nodes as a

function of the a-priori information IAc is given as

IEc (IAc) =
αβ1

β
I

(1)
Ec +

αβ2

β
I

(2)
Ec

=
D∑

d=1

d

β

[
αΩ

(1)
d Td

(
IAc, I

(1)
r

)
+ αΩ

(2)
d Td

(
IAc, I

(2)
r

)]
(4.20)

5Each one of the two types of check nodes correspond to the two types of right bit
nodes – see Fig. 30.
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For successful decoding, we require that [64]

IEb > 1− (1− Il)e
−γIEc(IEb), ∀ IEb ∈ [0, Imax],

where it is assumed that the precode is able to correct any decoding errors when

IEb > Imax. Expanding this convergence condition we obtain

D∑
d=1

d
[
αΩ

(1)
d Td

(
I, I(1)

r

)
+ αΩ

(2)
d Td

(
I, I(2)

r

)]
+Ra ln

(
1− I

1− Il

)
> 0 ∀ I ∈ [0, Imax],

(4.21)

where Ra =
β
γ
represents the overall rate of the LT code. Thus for a given α, Il, I

(1)
r ,

I
(2)
r and the node degree profiles, the maximum achievable rate Ra for the LT code is

the maximum rate for which the convergence condition (4.21) is satisfied.

b. Overall code design

We now explain how the convergence condition for the general decoding setup dis-

cussed above can be utilized in designing the degree distributions for the fading relay

channel. Let c = {csd, csr, crd} be the specific realizations of the three channel coef-

ficients. Also let CDF be the set of channel coefficients c for which the theoretically

achievable rates of DF outperform those of CF and direct transmission. Let CCF and

Cd be similarly defined for the CF and direct transmission case, respectively. For

some given degree distributions, let RDF (c) be the achievable LT code rates for all

c ∈ CDF and let RCF (c) and Rd(c) be similarly defined for the CF and the direct

transmission case, respectively. One can then obtain a convergence condition for all

relaying schemes using the general convergence constraint in (4.21) as follows.

Direct Transmission: For the case of direct transmission, there is only a single type

of check nodes in the decoding graph, and in addition Il is always zero. Thus, one

can obtain a convergence condition for the direct transmission case by substituting
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α = 1, and Il = 0 in (4.21). The check nodes follow a degree distribution Ω(1)(x), and

the channel information to the right bit nodes is equal to the capacity on the direct

link from the source to the destination, i.e., I
(1)
r = C(c2

sdP ). Thus, for all c ∈ Cd,

successful decoding requires

D∑
d=1

Ω
(1)
d Td

(
I, C(c2

sdP ))
)
+Rd(c) ln(1− I) > 0 ∀ I ∈ [0, Imax]. (4.22)

Decode-Forward: Let RSR(c) be the LT code rate at which the relay is able to

decode the transmission from the source. The relay decodes the source transmission

over a point-to-point link, and therefore the convergence condition for decoding at

the relay can be obtained on the same lines as (4.22). Thus, for all c ∈ CDF , the rates

RSR(c) should satisfy

D∑
d=1

Ω
(1)
d Td

(
I, C(c2

srP ))
)
+RSR(c) ln(1− I) > 0 ∀ I ∈ [0, Imax]. (4.23)

At the destination, the fraction of the relay-receive period nodes is given as α = N1

N
=

RDF (c)
RSR(c)

. Substituting this definition of α, Il = 0, Ω
(2)
d = Ω

(2)DF
d , I

(1)
r = C(c2

sdP ), and

I
(2)
r = C(c2

rdP ) into (4.21) and rearranging some terms, we get the constraint on DF

achievable rates as

D∑
d=1

d
[
Ω

(1)
d

(
R̃DF (c)− 1

)
Td

(
I, C(c2

sdP )
)
+ Ω

(2)DF
d Td

(
I, C(c2

rdP )
)]

> (1− R̃DF (c))RSR(c) ln(1− I) (4.24)

∀ I ∈ [0, Imax], and where R̃DF (c) = RSR(c)
RSR(c)−RDF (c)

and RSR(c) is determined from

(4.23).

Compress-Forward: Let RJ(c) be the achievable rate for the LT code being used

for DJSCC. Then for the DJSCC decoder, there is only one type of check nodes with

Ω
(1)
d = ΩJ

d . Then for all c ∈ CCF , the convergence condition in (4.21) for recovering
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the quantized sequence W at the destination becomes

D∑
d=1

dΩJ
dTd

(
I, Ir(c)

)
+RJ(c) ln

(
1− I

1− Il(c)

)
> 0 ∀ I ∈ [0, Imax], (4.25)

where Ir(c) = I (Xr;Yd2) is the information on the relay to destination link treating

the transmission from the source as interference, and Il(c) = RpI(W ;Yd1) is the

average a-priori information input to the left bit nodes. As mentioned before, the

optimum choice of the half-duplexing parameter in CF is such that both W and m

are decoded at the same time. This is ensured when the ratio of the length of DJSCC

information sequence to that of the output codeword is α
1−α

. In other words the

optimal choice of the half-duplexing parameter is α = RJ (c)Rp

1+RJ (c)Rp
. Substituting this

value of α and Il = 0 into (4.21), we find that for all c ∈ CCF , successful decoding of

m for CF relaying requires

D∑
d=1

d
[
RJ(c)RpΩ

(1)
d Td

(
I, I(1)

r (c)
)
+ Ω

(2)CF
d Td

(
I, I(2)

r (c)
)]

+
(
1 +RJ(c)Rp

)
RCF (c) ln(1− I) > 0, (4.26)

∀ I ∈ [0, Imax], and where I
(1)
r (c) = I(Xs1;W,Yd1), I

(2)
r (c) = C(c2

sdPs2) and RJ(c) is

determined from (4.25).

The average throughput over the channel ensemble is then given by

Ravg =
∑
c∈Cd

p(c)Rd(c) +
∑

c∈CDF

p(c)RDF (c) +
∑

c∈CCF

p(c)RCF (c), (4.27)

where we have made the assumption that the fading coefficients have been discretized

and p(c) is the probability that the channel coefficients are equal to c. Thus the op-

timization variables are {Rd(c)}, {RDF (c)}, {RSR(c)}, {RCF (c)}, {RJ(c)},
{
Ω

(1)
d

}
,{

Ω
(2)DF
d

}
,
{
Ω

(2)CF
d

}
,
{
ΩJ

d

}
, and the objective function to maximize is Ravg such that

the convergence conditions in (4.22), (4.23), (4.24), (4.25) and (4.26) are satisfied. In
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addition, we have the trivial constraints that all degree profile coefficients should be

non-negative and should sum to one. In its current form, the optimization problem

is quite cumbersome, and is not convex. For our code design, we follow a simplified

and possibly a sub-optimum approach, which is summarized as follows.

1. Choose the degree profile coefficients
{
Ω

(1)
d

}
to maximize

∑
c∈C p(c)Rd(c) such

that the convergence constraint (4.22) is satisfied for all c ∈ C – the optimization

can be solved using linear programming. The primary motivation for this sim-

plification is the fact that once the coefficients
{
Ω

(1)
d

}
have been pre-designed,

the CF and DF degree profiles can be designed separately.

2. DF: Using the pre-designed coefficients
{
Ω

(1)
d

}
, find the maximum RSR(c) for

all c ∈ CDF such that the convergence condition (4.23) is satisfied.

3. DF: Treating
{
Ω

(1)
d

}
and {RSR(c)} as constants, optimize the coefficients{

Ω
(2)DF
d

}
to maximize RDF

avg =
∑

c∈CDF
p(c)RDF (c) such that the convergence

constraint (4.24) is satisfied. Using some algebra, the optimization can be shown

to be non-linear but convex, which we solve using CVX [83], a tool for disciplined

convex programming.

4. CF: Design the coefficients
{
ΩJ

d

}
to maximize the theoretical achievable rate

(with practical DJSCC)
∑

c∈CCF
p(c)

[
αJ(c)I1(c) + αJ(c)I2(c)

]
such that the

constraints in (4.25) are satisfied, and where I1(c) = I(Xs1;W,Yd1), I2(c) =

C(c2
sdPs2) and αJ(c) = RJ (c)Rp

1+RJ (c)Rp
. Once again, the optimization can be trans-

formed to a non-linear convex problem.

5. CF: Treating the predesigned coefficients
{
Ω

(1)
d

}
and {RJ(c)} as constants,

design
{
Ω

(2)CF
d

}
to maximize the objective

∑
c∈CCF

p(c)RCF (c) such that the
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convergence condition in (4.26) is satisfied. The optimization can be solved

using linear programming.

E. Performance of Rateless Coded Relaying with Raptor Codes

1. Practical considerations

For all Raptor codes, we use an LDPC precode of rate Rp = 0.95 with all bit nodes

being of degree 4, and the edges to the check nodes selected uniformly (Poisson

distribution). We first evaluate the performance of the designed degree distributions

using DDE for asymptotically large block lengths with the number of iterations at

all decoders limited to 200 – the parameters obtained from DDE are then used for

finite length simulations. The performance evaluation of rateless coded DF relaying is

quite straightforward. For its CF counterpart, we will try to motivate our particular

choice of parameters by drawing parallels with the analysis of Section C-2. Recall

that for given channel conditions, the optimum choice of α is the maximum value

it can take under the condition that the quantized sequence W is decoded correctly

at the destination. Translating this information-theoretic requirement to practice,

we first find, using DDE, the maximum rate RJ for the Raptor code being used for

DJSCC such that the probability of decoding error for W approaches zero. Using the

fact that W and m should be decoded at the same time, we obtain the optimum half-

duplexing parameter with DDE as α∗ = RJ

1+RJ . Then, following the spirit of (4.15),

we find, for this optimum choice α∗, the maximum Raptor code rate corresponding

to which the probability of decoding error for m approaches zero. For the given

channel conditions, this rate is recorded as the achievable rate for rateless coded CF

relaying with infinite length Raptor codes. As for the finite length Raptor codes

for CF relaying, it is impossible to have some fixed N1 which ensures, even in the
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absence of fading, that the quantized sequence W and the source message m are

always decoded at the same time. This is because the performance of a finite length

Raptor code would be a function, among a host of other factors, of the exact noise

vector realization − which is unknown at the nodes. Thus, as a practical solution

for CF relaying, we always generate SCH after N1 = ⌈α∗k/R⌉ symbols, where α∗

is the optimum half-duplexing parameter, and R is the maximum achievable rate

found with DDE. We also point out that even though the network does not have

stringent delay constraints, the destination in practice cannot wait forever to decode

the source information. Thus for our practical implementation, the destination stops

attempting to decode after waiting for N = 100×k symbols, and records the practical

achievable rate as zero. In addition, ideally, the relay and the destination should start

a new decoding attempt each time they receive a new symbol. However, that entails

significant computational costs and therefore in practice we let the nodes wait for a

100 new symbols before they attempt to decode again.

2. Simulation results

We show the optimized degree distributions for dsr = 9, drd = 1 and P = 0 dB in

Table V. In Fig. 33(a), we show the probabilistic distribution of the information

theoretic rates, as well as the rates obtained with the optimized Raptor code degree

profiles of Table V and k = 9500 bits, with the maximum number of iterations at

all nodes limited to 200. On the other hand, Fig. 33(b) shows the distribution of

the normalized rate loss (from the information theoretic limit) of practical Raptor

coded relaying with optimized degree distributions. For comparison, we also show

the rate losses when using the Raptor code degree profile designed for the binary

erasure channel (BEC) [79]. Some observations that can be made are:
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Fig. 33. (a) Distribution of the achievable rates using finite length Raptor codes. (b)

Distribution of the percent normalized rate losses using finite length Raptor

codes. The distances are set at dsr = 9, drd = 1, the total power P = 0 dB,

and the information sequence length at k = 9500.
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Table V. Designed degree distributions for dsr = 9, and drd = 1 when the system

power is set at P = 0 dB.

Ω(1)(x) 0.0085x+ 0.4584x2 + 0.2511x3 + 0.1387x6 + 0.0329x7 + 0.0024x8 +

0.01x13 + 0.0567x15 + 0.0069x18 + 0.0338x46 + 0.0007x48

Ω(2)DF (x) 0.5370x2 +0.0590x3 +0.1806x4 +0.0702x5 +0.090611 +0.0204x12 +

0.0247x40 + 0.0176x41

Ω(2)CF (x) 0.5164x2+0.1557x3+0.1673x5+0.0573x7+0.0223x11+0.0177x17+

0.0207x18 + 0.0426x29

ΩJ(x) 0.0012x+0.3315x2 +0.2445x3 +0.2368x5 +0.0076x11 +0.1201x12 +

0.0583x41

• The rate losses are (obviously) reduced when using a combination of the two

schemes, instead of using the two schemes individually.

• Higher rate losses are more likely for rateless coded CF relaying as compared

to DF, with the DJSCC coding losses playing a major part in the extra perfor-

mance degradation. This holds true for the optimized degree profiles as well as

for the BEC degree profile.

• Higher rate losses are more likely with the BEC degree profile than the optimized

degree profiles, both for CF and DF relaying. However, the higher rate losses

are much more pronounced for CF relaying than DF. This is because the BEC

degree profiles are optimized for the case when the a-priori channel information

the left bit nodes is always zero – the optimized degree profiles attempt to cater

for the non-zero channel information in DJSCC decoding.
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These observations can also be verified from the average throughputs shown in Ta-

ble VI, which indicates that the optimized degree profiles achieve a higher aver-

age throughput than the BEC degree profile, irrespective of whether the DF or CF

schemes are used individually, or in combination. In addition, CF relaying suffers a

higher loss in average throughput than the DF case, with this loss being more signif-

icant for the BEC degree profile. Because of varying degree of rate losses of the two

practical schemes, one would expect the probabilities of their usage (when employing

a combination) to be different than that with ideal coding. As shown in Fig. 34, the

probabilities of usage of the relaying schemes with Raptor codes is indeed different

than those with information-theoretic codes. For example, at dsr = 9 and drd = 1,

the probability of usage of CF is about 3.6% less than that with ideal coding. This is

explained by the fact that CF suffers higher rate losses compared to DF, as indicated

in Fig. 33(b) and Table VI.

Table VI. Average throughput with finite length Raptor codes. The parameters are

set at dsr = 9, drd = 1, P = 0 dB, and k = 9500 bits.

Combination DF only CF only

Theoretical 0.530 0.500 0.514

Optimized Degree Distributions 0.491 0.4626 0.4723

BEC Degree Distribution 0.4774 0.4583 0.4541

We also evaluate the performance of practical rateless coded relaying with Rap-

tor codes for several other relay positions – assuming that the relay is moving along a

straight line between the source and the destination. The average practical through-

put along with the information theoretic bounds are shown in Fig. 35, where the

practical system can be observed to lose only 0.039 (7.36%), 0.0459 (8.37%), 0.0498
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Fig. 34. Probability of usage of practical relaying schemes with optimized Raptor

codes.The relay is assumed to be moving along a straight line between the

source and the destination with the system power set at P = 0 dB.

(8.8%) and 0.0528 (9.16%) bits in average throughput from the theoretical limit when

the source-to-relay distance is 9, 8, 7, and 6, respectively. On the other hand, using

DDE for codes of asymptotically large block lengths, the performance loss is observed

to be only 0.024 (4.52%), 0.0264 (4.8%), 0.0292 (5.17%) and 0.0299 (5.19%) bits at

source-to-relay distances of 9, 8, 7, and 6, respectively. For comparison, we also

plot the average throughputs obtained with the BEC profile, which is observed to be

always worse than the optimized degree profiles.
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Fig. 35. Practical performance of rateless coded relaying protocol with Raptor codes.

The relay is assumed to be moving along a straight line between the source

and the destination with the system power set at P = 0 dB.

F. Summary

We have considered a half-duplex relay channel in which all links experience indepen-

dent quasi-static Rayleigh fading and where the CSI is not available at the transmit-

ters. We considered a situation where decoding delay is not a constraint and thus

the source and the relay continue transmitting until successful decoding occurs at the

destination. Identifying rateless coding as the natural choice, we proposed rateless

coded versions of DF and CF relaying, and derived the corresponding performance

limits with BPSK modulation. Since the CSI is assumed not be available at the trans-

mitters, we proposed a protocol which allows an additional bit of feedback from the
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destination, informing the source and the relay of which relaying scheme to employ,

as well as indicating to the relay when to stop receiving and start transmitting. The

proposed rateless coded DF and CF schemes are then put into practice using Raptor

codes, which are not only used for the traditional rateless channel coding, but also

for rateless DJSCC for CF relaying. The degree distributions for the Raptor codes

are designed to maximize the throughput averaged over the channel ensemble, with

the design formulated as a convex but non-linear optimization problem. For asymp-

totically large block lengths, the rateless coded relaying protocol with the optimized

Raptor codes loses only ∼ 5% in performance from the theoretical average through-

put. With finite length simulations, the corresponding losses in average throughput

are only ∼ 9%.
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CHAPTER V

THE COOPERATIVE MULTIPLE-ACCESS CHANNEL

A. Introduction

Consider a multiple-access channel (MAC), e.g., a cellular or sensor network, where

a number of nodes communicate information to a central base station or a collector

node. Traditionally, nodes communicate either directly to the base station or through

multi-hopping, i.e., by routing information through intermediate nodes. An alterna-

tive is to let the users cooperate when transmitting information, i.e., cooperative

diversity [1, 2, 44]. Cooperation is particularly useful over multi-hopping when the

channel is subject to variation due to fading or mobility, thus making the routing

table quickly outdated. In this chapter, we consider the extreme of this situation

where nodes have no channel knowledge. In this case, routing does not make sense,

and direct transmission or cooperation are the only alternatives.

The focus of this chapter is on the energy utilized at the nodes, specifically the

energy needed to transmit one bit of information. It is well known [17, 84] that for a

point-to-point additive white Gaussian noise (AWGN) channel, the minimum energy

per bit Eb

N0

∣∣∣
min

approaches -1.59 dB as the bandwidth B → ∞, or equivalently as the

spectral efficiency (in bits/s/Hz) R → 0 or the power (in Watts) P → 0. This is the

low power or the low SNR regime. For networks it is not known if the minimum energy

per bit is approached as R → 0; some results [85, 86] could indicate the contrary, i.e.,

the minimum energy per bit is achieved for some R > 0. Nevertheless, for the channel

model we consider, the minimum energy per bit for the outer bounds is approached

as R → 0. In addition, the outer bounds and the achievable rates with the proposed

cooperation methods get very close, indicating that the limit of the minimum energy
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per bit as R → 0 is at least close to the actual minimum energy per bit.

The motivation behind considering cooperation in the low power regime are

twofold. First, in the low power regime, fading has a more significant negative impact

when considering the outage capacity [87, 88], indicating the need to use cooperative

diversity to overcome fading. Second, our results show that a huge energy gain is

achievable through cooperation for very low spectral efficiencies. However, as soon as

the spectral efficiency becomes just moderately high (say >0.5 bits/s/Hz), this gain

disappears.

Nodes can operate either in full-duplex or half-duplex. In full-duplex, the nodes

can receive and transmit simultaneously in the same frequency band with the trans-

missions possibly distinguished through different codes (code division multiple access

or CDMA), whereas in half-duplex, the nodes receive and transmit in different fre-

quency bands (frequency division multiple access or FDMA). Even though there are

certain microwave techniques (e.g., circulators [89]) that make full-duplex operation

possible, they currently can achieve at most 30 dB separation between transmit and

receive power, which might not be enough for practical wireless networks. It is there-

fore appropriate to consider half-duplex operation of the nodes.It is well known that

duplexing becomes irrelevant in the limit as R → 0. However, as long as R > 0, which

is always the case in practical communications, duplexing does make a difference. One

way to quantify this is through the wideband slope [90]. We therefore use the outage

capacity wideband slope for the outage capacity [91], and use this to compare CDMA

and FDMA. Our results indicate that somewhat surprisingly, the difference between

the two is small.

For achievable rates we consider decode-forward [92] with rateless codes [81],

in conjunction with multiplexed coding. The authors in [93] considered multiplexed

codes for the two-user MAC with block-Markov coding [40]. While block-Markov
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codes perform slightly better than rateless codes for multiplexed coding (for superpo-

sition coding, rateless is better than block-Markov coding), they are very complicated

to implement or analyze as they cause inter-block interference [94]. We therefore focus

exclusively on rateless codes in this chapter. We first analyze theoretical performance,

and then develop a practical coding scheme based on multiplexed Raptor codes [79]

for a general N -user channel. Since the difference between CDMA and FDMA is

observed to be small in the low power regime, the code design assumes that the

nodes operate in half-duplex using FDMA. We simulate the practical scheme for the

two- and four-user cases and find that it operates within 0.52 dB and 1.1 dB of the

theoretical limit, respectively.

The rest of the chapter is organized as follows. We give our system model and

define notations in Section B. Section C covers the low power regime. We derive

the achievable rates for multiplexed rateless coding in Section E, followed by some

numerical results in Section F. In Section G, we develop practical coding methods

using Raptor codes and present simulation results. Section H provides a summary of

the chapter.

B. System Model

We consider cooperative communications in a MAC with N mobile users, numbered

i = 1, . . . , N . The users communicate independent information to a collector (or base

station) node, numbered i = N + 1. We denote the complex channel gain between

node i and node j as cij. For notational convenience, we will often use ci instead of

ci(N+1) to denote the channel gain from user i to the base station. Let Xi[n] and Yi[n]

be the channel input and output of node i at time n, respectively. The channel can
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then be modeled as

Yi[n] =
N∑

j=1,j ̸=i

cijXj[n] + Zi[n], i = 1, 2, . . . , N + 1, (5.1)

where Zi[n] is the white Gaussian noise with power spectral density N0. We assume

that all users share the same frequency band of width B and are subject to the same

power constraint, i.e., E[X2
i ] ≤ P . In addition, for notational simplicity we assume

without loss of generality that N0 = 1. Consequently we will denote the ratio Eb

N0

as Eb in the sequel and refer to it merely as the energy required to transmit one

bit of information. All channel gains cij are assumed to experience i.i.d. block flat

fading. Furthermore, the nodes are assumed to have no channel state information,

except as required for decoding. What a node needs to know is if it has decoded a

packet correctly, so that it can forward it, which could be ensured for example by

error-detection coding. A reasonable performance measure is therefore the outage

capacity. The above model is relevant in a number of real-world scenarios.

• Rayleigh fading: Consider a set of nodes scattered in a small area. In that

case, path loss is a minor factor, while fading is the dominant factor.

• Mobile nodes: Consider a set of nodes that move around. Their path loss

coefficients, shadowing, and fading coefficients will be varying. If they move

around rapidly or transmit only in short bursts, it does not make sense to build

a routing tree structure. In this case, the outage probability is determined by

the spatial distribution of the nodes.

• A combination of the above two.

It should be mentioned that our theoretical analysis in Sections C and D is not lim-

ited to this model. However, the achievable rates presented in Section E and the code
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designs in Section G are aimed at the above scenario, in which the nodes transmit

their information without using any knowledge about the network and forward what-

ever other packets they can decode. Our code designs will also work if nodes are in

fixed positions and they experience mainly path loss, but in that case it is proba-

bly more efficient to estimate the channel, build a routing table, and use multi-hop

communications.

As mentioned before, we consider two modes of node cooperation. In the first

mode, the nodes are assumed to operate in full-duplex, i.e., they can transmit and

receive at the same time on the same frequency band. In that case all nodes transmit

simultaneously, using different codes, and decoding is done jointly, i.e., with multiuser

detection. We refer to this mode as CDMA. It should be pointed out here that we

use the term CDMA in the context it was used in [17], on pp. 547 – it should not

be confused with DS-CDMA. In the second mode, the nodes can operate only in

half-duplex. Half-duplexing is achieved by dividing the total frequency band into N

subbands of equal bandwidth with node i transmitting in subband i and listening on

the remaining N−1 subbands. A relevant model in this case could be to let subbands

fade independently. Both our theoretical analysis and code designs work just as well

for this scenario with independent fading. However, to compare with CDMA, we

restrict our analysis to the flat fading case. In addition, when generating numerical

and simulation results, we assume channel reciprocity for both CDMA and FDMA,

i.e. cij = cji. Whereas this assumption makes sense for CDMA, it might not be valid

for FDMA. However, we point out that all achievable rates we derive are independent

of this assumption. We make this assumption only to provide a fair comparison of

FDMA with CDMA when we generate the numerical results.

In order to clarify concepts related to the MAC, consider first a point-to-point

block fading AWGN channel. Let B be the bandwidth of the channel. If the fading
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coefficient c is fixed and known then

• The spectral efficiency1 R in bits per complex sample is said to be achievable

if there exists a sequence of (2n(R−ϵ), n) codes with asymptotically zero error

probability for any ϵ > 0. For the Gaussian channel, the spectral efficiency

R = log2

(
1 + |c|2 P

B

)
is achievable and is of course the capacity.

• The rate of the transmission is BR in bits/second.

• The transmitted energy (in dB) per information bit as a function of the channel

coefficient c and the spectral efficiency R is given as

Eb(c, R) = 10 log10

(
P

BR

)
. (5.2)

Since nodes have no channel state information at the time of transmission, it is rea-

sonable to consider the outage rate/capacity as a performance measure. The spectral

efficiency R (for a given power P ) is said to be achievable with outage probability p

if for all δ, ϵ > 0 there exists a (2n(R−ϵ), n) code with asymptotically zero error proba-

bility except on a set of channel states with probability p+ δ. For the point-to-point

AWGN channel, let

R(p) = max

{
R

∣∣∣∣Pr(R > log2

(
1 + |c|2P

B

))
≤ p

}
. (5.3)

Then is is clear that R(p) is the maximum achievable spectral efficiency with out-

age probability p. Thus, the outage spectral efficiency can be found by calculating

the distribution of log2

(
1 + |c|2 P

B

)
(as a function of c), and choosing R(p) as the p

percentile. On the other hand, for a given transmission spectral efficiency R and an

1This is often called the rate, but in accordance with [90] we will call it the spectral
efficiency.
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outage probability p, the outage energy per bit Eb(p,R)2 can be found as

Eb(p,R) = min

{
e
∣∣∣ Pr (e < Eb(c, R)) ≤ p

}
. (5.4)

Consider now the N -user MAC. We assume that each user i, 1 ≤ i ≤ N , has the

same power constraint P and needs to send independent information with the same

spectral efficiency Ri = R to the collector with a delay requirement that is short

compared to the coherence time of the channel (the results can be easily generalized

to nodes with different rate and power requirements). In other words, the channel co-

efficients remain constant during a block of transmission. An outage event is declared

if at least one of the users cannot communicate at the target spectral efficiency R

(similar to the individual outage capacity in [95]). Let R(c) be an achievable spectral

efficiency region for a specific set of channel coefficients c. Define

R(p) = max

{
R
∣∣∣ Pr ((R,R, . . . ,R) /∈ R(c)) ≤ p

}
. (5.5)

Then it seems reasonable that R(p) should be achievable with outage probability p.

Indeed, while this is not obvious (cf. [81]), it turns out to be true for the coding

schemes we consider in this chapter. If R(c) is an outer bound on the achievable

spectral efficiency, it is clear, on the other hand, that (5.5) gives an outer bound on

the achievable outage spectral efficiency.

C. The Low Power Regime

In order to extend node and network life, a critical consideration in the design of

the communication systems is power efficiency. Specifically, we want to minimize the

2With a slight abuse of notation, we use Eb(c, R) to denote the energy per bit for
a fixed channel, while Eb(p,R) is the outage energy per bit.
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energy required for transmitting each bit of information. In a point-to-point AWGN

channel, it is known [17, 90] that the rate B log2

(
1 + |c|2 P

B

)
is monotonically increas-

ing with B, and the minimum energy required to transmit one bit of information is

therefore reached as B → ∞, which leads to the spectral efficiency R → 0. For net-

works in general, e.g., the relay network [85], it is not known if the rate is monotonic

in B or if the minimum energy per bit is reached for B → ∞. However, all achievable

rates, as well as outer bounds considered in this chapter are monotonic in B, hence

the minimum energy per bit is indeed reached as B → ∞. We denote this limit of

Eb when B → ∞ as Eb,min.

The investigation of Eb,min has been concentrated on the ergodic capacity [90, 96,

97] for point-to-point channels and later extended to relay channels [85, 86, 88, 98]

for ergodic or outage capacity. In [86], the authors derived bounds on Eb,min in

AWGN relay channels. In [85], the authors considered the achievable Eb,min for ergodic

capacity in fading relay channels. It was later shown in [88, 98] that bursty amplify-

forward achieves the ϵ-outage capacity and consequently the ϵ-outage capacity per

unit cost when the outage probability ϵ is arbitrarily small with or without channel

state information at the receivers. In this chapter we focus on a finite, fixed outage

probability.

As mentioned earlier, we assume that all users transmit at the same spectral

efficiency R. The energy per bit Eb(c, R) required to achieve a spectral efficiency

R for a given channel state c is a random variable, which we will assume to have a

continuous distribution fE(x;R). We define the minimum energy per bit as a function

of the channel coefficients as Eb,min(c) = Eb(c, 0). The outage energy Eb(p,R) can

then be written as

Eb(p,R) = min

{
e

∣∣∣∣∫
x>e

fE(x;R)dx ≤ p

}
. (5.6)
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We now have

Eb,min(p) = lim
R→0

min

{
e

∣∣∣∣∫
x>e

fE(x;R)dx ≤ p

}

= min

{
e

∣∣∣∣∫
x>e

lim
R→0

fE(x;R)dx ≤ p

}
, (5.7)

assuming the distribution fE(x;R) is sufficiently nice. Therefore we can also write

Eb,min(p) = min

{
e

∣∣∣∣∣
∫
Eb,min(c)>e

f(c)dc ≤ p

}
. (5.8)

The expression for Eb,min(p) in (5.8) simplifies performance analysis, as we just have

to find the function Eb(c, 0) = Eb,min(c). For simple networks, we can further

solve the inequality Eb,min(c) > e analytically. In other cases we have to calculate∫
Eb,min(c)>e

f(c)dc using Monte Carlo simulations instead.

Verdu pointed out in [90] that the limit of Eb as B → ∞ is not necessarily a

good indicator of performance for large, but finite, B. For example, in the context

of this chapter, FDMA and CDMA have the same Eb,min, but their spectral usage is

very different. Verdu therefore introduced the wideband slope defined as

S0 = lim
Eb→Eb,min

R(Eb)

Eb − Eb,min

10 log10 2 (5.9)

= lim
B→∞

∂R(Eb)

∂Eb

10 log10 2, (5.10)

where Eb is given in dB. The wideband slope for outage rate is not quite as straight-

forward to find as Eb,min(p), but it can be obtained by using Theorem 1 in [91]. The

theorem has been reproduced below for the reader’s convenience.

Theorem 1 Assume that the fading distribution is continuous and that its pdf is
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continuously differentiable. Let

∇Eb,min(c) =

(
∂Eb,min(c)

∂c1

, . . . ,
∂Eb,min(c)

∂cM

)
(5.11)

and C(p) = {c|Eb,min(c) = Eb,min(p)}. Assume that C(p) is a compact, differentiable

manifold. Then

S−1
0 (p) =

(∫
C(p)

1

∥∇Eb,min(c)∥S0(c)
f(c)dc

)
×(∫

C(p)

1

∥∇Eb,min(c)∥
f(c)dc

)−1

, (5.12)

where the integrals denote integration over the N − 1 dimensional manifold C(p) with

induced measure.

Alternatively,

S−1
0 (p) = lim

δ→0

(∫
|Eb,min(c)−Eb,min(p)|<δ

1

∥∇Eb,min(c)∥S0(c)
f(c)dc

)
×(∫

|Eb,min(c)−Eb,min(p)|<δ

1

∥∇Eb,min(c)∥
f(c)dc

)−1

. (5.13)

The reader is referred to [91] for a detailed proof. Notice that if Eb,min only depends

on |cn|2, the derivative in (5.11) can be computed with respect to |cn|2. Also note

that if the wideband slope S0 is independent of the channel coefficients, the outage

wideband slope is given as S0(p) = S0, and is therefore always independent of the

outage probability.

D. Bounds for Cooperation

In this section, we will compare FDMA and CDMA by considering some simple

bounds for cooperation and evaluating the corresponding Eb,min(p) and the outage

wideband slopes. In the following, we consider the lower and upper bounds for the
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two schemes separately.

1. Lower (No Cooperation) bounds

A simple lower bound on cooperation is of course provided by the no cooperation

case3. For a fixed set of channel coefficients c, the capacity region for the CDMA case

is well known [17]. The minimum energy per bit is obtained as

Eb,min(c) = 10 log10

(
ln 2

mini=1...N {|ci|2}

)

= −1.59− 10 log10

(
min

i=1...N

{
|ci|2

})
. (5.14)

We can now use (5.8) to find the outage minimum energy (in dB) as

Eb,min(p) = −1.59− 10 log10

(
max

{
c
∣∣∣Pr( min

i=1...N

{
|ci|2

}
< c
)
≤ p

})
. (5.15)

This expression can be evaluated analytically, since it depends on the distribution of

the minimum of N χ-squared random variables. Using Theorem 9 in [90], we can find

the wideband slope as S0 = 2. Since this is independent of the channel, it is also the

outage wideband slope by Theorem 1.

With FDMA, the achievable spectral efficiency for the no cooperation case is

given by

R =
1

N
min

i=1...N
log
(
1 + |ci|2NSNR

)
. (5.16)

This gives the same Eb,min as that in (5.15) for the CDMA case. However, this does

not mean that FDMA and CDMA are equivalent in the low power regime since their

3We will consider tighter lower bounds in the form of achievable rates with coop-
eration in the next section
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wideband slopes could be very different. Indeed, using Theorem 9 in [90], the wide-

band slope for FDMA can be evaluated as S0 =
2
N
, which is also the outage wideband

slope. Thus, while FDMA with no cooperation achieves the same minimum energy

as CDMA, FDMA operation needs approximately N times as much bandwidth, and

is therefore very inefficient.

2. Upper bounds

An outer bound for cooperative communications can be obtained by assuming that

all nodes know all messages. If the nodes use CDMA, this outer bound is given by

R =
1

N
log

(
1 +

N∑
i=1

|ci|2SNR

)
. (5.17)

Similarly for FDMA, this outer bound can be evaluated as

R =
1

N2

N∑
i=1

log
(
1 + |ci|2NSNR

)
. (5.18)

For both schemes we get

Eb,min(c) = −1.59− 10 log10

(
1

N

N∑
i=1

|ci|2
)

(5.19)

and the corresponding outage energy per bit is

Eb,min(p) = −1.59− 10 log10

(
max

{
c

∣∣∣∣∣Pr
(

1

N

N∑
i=1

|ci|2 < c

)
≤ p

})
, (5.20)

which can be evaluated analytically. For CDMA, the wideband slope associated with

the outer bound of (5.18) can be evaluated as S0(c) = 2
N

using Theorem 9 in [90].

Using the same Theorem for the FDMA bound in (5.18) gives

S0(c) =
2
(∑N

i=1 |ci|2
)2

N2
∑N

i=1 |ci|4
. (5.21)
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Since this depends on c, we cannot directly obtain the wideband slope for outage

capacity. We can instead use Theorem 1. Notice that the rate only depends on |ci|2,

so we can do all calculations with respect to these coefficients, leading to

∥∇Eb,min(c)∥ =
10

ln 10

(
N∑
i=1

|ci|2
)−1

. (5.22)

Since the integration in (5.12) is over the region specified by Eb,min(c) = Eb,min(p),

N∑
i=1

|ci|2 =
N ln 2

10Eb(p)/10

△
= κ (5.23)

is fixed. This implies that ∥∇Eb,min(c)∥ is also a constant. We can therefore write

the wideband slope as

S−1
0 (p) =

∫
∑N

i=1 |ci|2=κ

N2
∑N

i=1 |ci|4

2
(∑N

i=1 |ci|2
)2f(c)dc

(∫
∑N

i=1 |ci|2=κ

f(c)dc

)−1

. (5.24)

If the distribution f(c) is circular symmetric, this value is independent of κ. This

means that the wideband slope is independent of the outage probability p, and can

be re-written as

S−1
0 (p) =

∫
RN

N2
∑N

i=1 |ci|4

2
(∑N

i=1 |ci|2
)2f(c)dc. (5.25)

While it is difficult to evaluate this integral analytically, it can easily be evaluated

by Monte-Carlo integration. Fig. 36 shows the wideband slope for Rayleigh fading.

While the wideband slopes for CDMA and FDMA considered above are associated

with the upper bounds, we will later see that we can achieve rates very close to the

upper bounds, and we will therefore briefly discuss these results here.

As indicated in Section F, FDMA and CDMA give the same big gain in minimum

Eb. The wideband slopes are not very different either, indicating that FDMA has

little loss compared to CDMA. This is in stark contrast to the no cooperation case,
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where FDMA is significantly inferior to CDMA. On the other hand, both cooperation

methods have much smaller slope than non-cooperative CDMA. This indicates that

the gain from cooperation quickly evaporates when leaving the very low power regime.

These observations, verified by numerical results, will be discussed in more detail in

Section F.
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Fig. 36. The wideband slope (for different number of users) based on the rate upper

bound for cooperation under Rayleigh fading.

E. Achievable Rates using Multiplexed Rateless Codes

In this section, we will derive achievable rates for multiplexed rateless coding. We

explain the main ideas for the two-user MAC before generalizing to the N -user case.
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1. Cooperation methods

There are three basic cooperation strategies: decode-forward, amplify-forward, and

compress-forward [40, 43, 61]. The latter two do not make much sense in the low

SNR regime since at low power almost all of the received signals are pure noise, and

forwarding this is not sensible. In fact for amplify-forward, Eb,min is reached at finite

SNR [85]. We will therefore only consider decode-forward. It is shown in [98, 88] that

bursty amplify-forward scheme achieves the outage capacity in the low power regime

when the outage probability p → 0. However, for a finite outage probability, bursty

amplify-forward is not advantageous over decode-forward in the low power regime

[94]. For example, for a simple three-node relay channel with i.i.d. Rayleigh fading

on all links, the Eb performance for outage probability 10−2 is shown in Fig. 37. It

is seen that in the low power regime (when data rate is very low), decode-forward

performs better than bursty amplify-forward.

In decode-forward, a node needs to re-encode its decoded messages from the

partner together with its own message. A commonly used coding scheme is su-

perposition coding. Suppose that the transmitter wants to transmit two messages

w1 ∈ {1, . . . 2nR1} and w2 ∈ {1, . . . 2nR2}. The transmitter then splits its transmis-

sion power P between the messages to be sent and each of the messages is encoded

by an independent codebook. The resulting signal is the superposition of both cor-

responding codewords. Thus the transmitter has one codebook C1 for w1 and en-

codes w1 to X1(w1) and another independent codebook C2 for w2 and encodes w2

to X2(w2). Both X1 and X2 have average power P . The resulting signal is then

X(w1, w2) =
√
αX1(w1) +

√
1− αX2(w2), where α ∈ [0, 1]. It is seen that if the

receiver has the knowledge of w1 (or w2), part of the transmission power is wasted. In

a two-user MAC, if w1 is a user’s own message and w2 is the message it decoded from
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Fig. 37. Eb

N0
versus rate performance when the outage probability is 10−2 for a three-

-node relay channel with i.i.d. Rayleigh fading.

the transmission of its partner, from the perspective of the partner, part of the trans-

mission power (1− α)P is wasted and thus the likelihood of cooperation is reduced.

Increasing α will increase the likelihood of cooperation but decrease the cooperation

efficiency, which depends on how much power is assigned for the transmission of the

partner’s messages by a user.

A coding scheme which circumvents the above problem is called multiplexed cod-

ing [93]. The idea is as follows: A codeword can convey different kinds of information

depending on the side information the receiver has. The transmitter makes a table

with 2nR1 rows and 2nR2 columns, and assigns a random (Gaussian) code to each

entry in the table, denoted as X(w1, w2). A receiver can decode both w1 and w2 if the
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channel capacity C > R1 + R2. If it knows w1, however, it can decode w2 if C > R2

simply by searching only the row corresponding to w1, and similarly if it knows w2 it

can decode w1 if C > R1. Multiplexed coding applies to both binary and non-binary

codes and can be extended to more messages. A related scheme is in [99], where the

authors XOR binary codes. However, this cannot be used in the kind of networks we

consider, as a receiver has to be able to decode both messages if neither is known.

Multiplexed coding and superposition coding can be implemented using block

Markov [100] or rateless codes [101]. In [93], block Markov coding for the two-user

case was explored. However, block Markov coding is not easy to scale to more than

two users due to inter-block interference [94], and therefore we only consider rateless

codes.

2. The two-user case

Consider first a point-to-point link, and suppose that the channel gain c is unknown.

A (n, 2nR) code can be constructed so that the destination can decode the message

with low probability of error after n1 symbols if

n1 log(1 + |c|2SNR) ≥ nR, (5.26)

where SNR = P
B
. Define t = log(1 + |c|2SNR)−1. Then if t−1 ≥ R, the destination

can decode the message without outage; if t−1 < R, there is an outage. Furthermore,

if n tends towards infinity, then the destination can decode after a fraction tR of

the whole block. We can therefore view t as the time it takes for the destination

to decode the message. This is the principle of rateless coding, and in the following

we will apply this to the two-user MAC. Since this is a compound channel, going

from the rate for a specific channel to outage rate requires a formal proof as in [81].

However, we will keep the discussion in this chapter more informal – we refer the
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reader to [11] for a formal proof. In addition, for better explaining the basic concepts

behind the calculation of achievable rates for the two user case, we will assume that

c12 = c21. The general N -user case without channel reciprocity is discussed in the

next subsection.

Consider first the CDMA case. If |c12| ≤ min{|c1|, |c2|}, the two users do not

cooperate. From the achievable rate region of a non-cooperative MAC, we get

R ≤ log
(
1 + |c1|2SNR

)
R ≤ log

(
1 + |c2|2SNR

)
(5.27)

R ≤ 1

2
log
(
1 + (|c1|2 + |c2|2)SNR

)
On the other hand, if |c12| > min{|c1|, |c2|}, the users cooperate. Because of the

symmetry of the channel, we can assume without loss of generality that |c1| < |c2|.

The two users can decode each other after a duration of

tc =
1

log(1 + |c12|2SNR)
. (5.28)

After decoding, user 2 transmits messages 1 and 2 using a multiplexed codebook (as

does user 1). If the transmission continues for a total time t, the collector can decode

message 1 if

R ≤ (t− tc) log(1 + (|c1|2 + |c2|2)SNR) + tc log(1 + |c1|2SNR). (5.29)

There is a similar condition for decoding message 2 at the collector, but this bound

is larger. Finally the condition for joint decoding is given as

R ≤ 1

2
log
(
1 + (|c1|2 + |c2|2)SNR

)
. (5.30)
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If we define

tc =
1

log(1 + |c12|2SNR)
,

t1 =
1

log(1 + |c1|2SNR)
,

t2 =
1

log(1 + |c2|2SNR)
,

t12 =
2

log(1 + (|c1|2 + |c2|2)SNR)
,

t̃1 =
1− tc log(1 + |c1|2SNR)

log(1 + (|c1|2 + |c2|2)SNR)
+ tc,

t̃2 =
1− tc log(1 + |c2|2SNR)

log(1 + (|c1|2 + |c2|2)SNR)
+ tc, (5.31)

then we can rewrite the achievable spectral efficiency as

R =
1

t
, (5.32)

t = max{min{t1, t̃1},min{t2, t̃2}, t12}. (5.33)

Similarly, for FDMA, the spectral efficiency can also be evaluated using (5.32) and

(5.33) but with the following definitions

tc =
2

log(1 + |c12|22SNR)
,

t1 =
2

log(1 + |c1|22SNR)
,

t2 =
2

log(1 + |c2|22SNR)
,

t12 =
4

log(1 + |c1|22SNR) + log(1 + |c2|22SNR)
,

t̃1 =
1− tc

2
log(1 + |c1|22SNR)

1
2
log(1 + |c1|22SNR) + 1

2
log(1 + |c2|22SNR)

+ tc,

t̃2 =
1− tc log(1 + |c2|2SNR)

1
2
log(1 + |c1|22SNR) + 1

2
log(1 + |c2|22SNR)

+ tc. (5.34)

An intuitive interpretation of (5.31) is shown in Fig. 38. Each one of the three
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rate constraints of a MAC can be thought of as an empty bucket of unit volume. Two

of these buckets B1and B2 correspond to the individual rate constraints (5.29) of each

user and are to be filled up by the individual information of user 1 and 2, respectively.

The third bucket B12 corresponds to the sum-rate constraint (5.30) and is to be filled

up by the joint information of both users. A user’s information is decodable at the

collector if the two buckets associated with this user are both full. Each user also

has a unit volume bucket to be filled up by the information of the other user. The

rate to fill up the users’ bucket is log(1 + |c12|2SNR). For the collector’s buckets,

initially, the rate of filling up the bucket Bi, i = 1, 2, is log(1 + |ci|2SNR) and for

bucket B12, 1/2 log(1 + (|c1|2 + |c2|2)SNR). If after n1 < n symbols (after time tc),

the two users’ buckets are full, the two users are able to decode each other and can
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therefore start transmitting cooperatively. At this point, the fill rate of Bi, i = 1, 2,

should be updated to log(1+(|c1|2+|c2|2)SNR) but the rate for B12 remains the same

(cooperation does not give any gain for sum-rate). A rate of R = 1/t is achievable

if after a time t all three buckets of the collector are full. A similar strategy with

different fill rates can be used to calculate the spectral efficiency for the FDMA case.

To get the achievable Eb,min, the easiest way is to redefine quantities in terms of

rate instead of spectral efficiency. So, in (5.31) (equivalently (5.34)) we replace SNR

with P
B
and log(·) with B log(·). In the limit as B → ∞ we get

tc =
1

|c12|2
,

t1 =
1

|c1|2
,

t2 =
1

|c2|2
,

t12 =
2

|c1|2 + |c2|2
,

t̃1 =
1− tc|c1|2

|c1|2 + |c2|2
+ tc,

t̃2 =
1− tc|c2|2

|c1|2 + |c2|2
+ tc, (5.35)

and the achievable Eb,min (in dB) is

Eb,min = 10 log10(t ln 2), (5.36)

with t = max{min{t1, t̃1},min{t2, t̃2}, t12}.

For the wideband slope, we need to find S0(c). If |c12| < min{|c1|, |c2|}, the two

users do not cooperate, and in that case we have

S0(c) = 2 CDMA, (5.37)

S0(c) = 1 FDMA. (5.38)
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On the other hand, if |c12| > min{|c1|, |c2|} the users cooperate. As before, we assume

that |c1| ≤ |c2|. If t12 ≥ t̃1 in (5.35), the sum rate constraint determines Eb,min for

small Eb − Eb,min, and by continuity also the wideband slope. Therefore

S0(c) = 1 CDMA, (5.39)

S0(c) =
(|c1|2 + |c2|2)2

2 (|c1|4 + |c2|4)
FDMA, (5.40)

where for FDMA we have substituted N = 2 in (5.21). Finally, if t12 < t̃1 in (5.35),

the spectral efficiency is determined by t̃−1
1 in (5.31) or (5.34) for small Eb − Eb,min.

Using R = t̃−1
1 in Theorem 9 of [90] and Mathematica for differentiation and limit

operations, we arrive at

S0(c) =
2|c12|2(|c1|2 + |c2|2)

|c1|2(|c12|2 − |c2|2) + 2|c12|2|c2|2
CDMA,

S0(c) =
|c12|2(|c1|2 + |c2|2)2

|c1|2(|c12|2 − |c2|2)|c2|2 + 2|c12|2|c2|4 + |c1|4(|c12|2 + |c2|2)
FDMA.

Finally we need

∇Eb,min(c) =

(
∂Eb,min(c)

∂|c1|2
,
∂Eb,min(c)

∂|c2|2
,
∂Eb,min(c)

∂|c12|2

)
=

10

ln 10

(
− 1

(|c1|2 + |c2|2)
,

|c1|2 − |c12|2

(|c1|2 + |c2|2)(|c12|2 + |c2|2)
,

− |c2|2

|c12|2(|c12|2 + |c2|2)

)
.

The outage wideband slope can now be calculated from (5.13). The result is shown in

Fig. 39, which shows that for the two-user case, the difference between the achievable

wideband slope of CDMA and FDMA is very small, thus indicating that in the

wideband regime, the performance of FDMA based cooperative MAC is almost the

same as that of CDMA. This can also be seen from the spectral efficiency versus

Eb curve of Fig. 40 where FDMA performs very close to CDMA at low spectral
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Fig. 39. The wideband slope for the two-user case based on the achievable rate with

multiplexed rateless cooperation.

efficiencies. These results, generalized to the N -user case, will be discussed in more

details in Section F.

3. The N -user case

In this section, we generalize the bucket-filling interpretation of the two-user case to

N users. Define (all quantities depend on c and time t, but we do not make it explicit

for notational convenience)



138

Dj : Set of users that node j has decoded; Dj = {j} for t = 0.

S : Decoding set. A set of users to be decoded jointly.

Fj(U ,S) ∈ R+ : Filled volume at node j for the bucket corresponding to

the sum-rate constraint for the users in U , U ⊆ S.

rj(U ,S) ∈ R+ : Fill rate at node j for the bucket corresponding to the

sum-rate constraint for the users in U , U ⊆ S.

In addition, the fill rates rj(U ,S) are also functions of the current decoding state

of users. Expressions for these fill rates for different scenarios (FDMA, CDMA and

the limiting case SNR → 0, both with multiplexed and superposition coding) are

provided in Appendix E. At any given time t, user j can decode a set of users S if

the information buckets at user j corresponding to all sum-rate constraints for users

U ⊆ S are full. In other words, user j can decode a set of users S if Fj(U ,S) ≥ 1 ∀

U ⊆ S. An additional requirement for multiplexed coding is that the decoding state

of users should be such which allow the joint decoding of S. For example, for N = 3,

S = {1} cannot be decoded at user 3 if D1 = D2 = {1, 2}, and D3 = {3}. In general,

a decoding set S is valid if there exists a subset V of users such that4

S =
∪
j∈V

Dj(t). (5.41)

Finally, successful decoding occurs at the collector after time T (c), which is the

minimum time it takes to obtain DN+1 = {1, . . . , N + 1}. The time T (c) can be

obtained by the following algorithm:

1: Initialize: T (c)=0, Dj = {j}, and Fj(U ,S) = 0, ∀ U ⊆ S, S ⊆ {1, . . . , N},

4For superposition coding, all decoding sets are valid.
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j = 1, . . . , N + 1.

2: While |DN+1| < N

3: Update fill rates rj(U ,S) ∀ U ⊆ S, S ⊆ {1, . . . , N}, j = 1, . . . , N + 1 – See

Appendix E.

4: Calculate decoding times: τj(S) = maxU⊆S
1−Fj(U ,S)

rj(U ,S)
, ∀ S ⊆ {1, . . . , N}, j =

1, . . . , N + 1.

5: Calculate minimum fill time: τ = min

{
τj(S)

∣∣∣ τj(S) ≥ 0 and S is valid

}
.

6: Update volumes: Fj(U ,S) = Fj(U ,S) + τrj(U ,S), for all U ,S, and j.

7: Update decoding sets: Dj = Dj

∪ {
S
∣∣∣ τ = tj(S)

}
, j = 1, . . . , N + 1.

8: Update time: T (c) = T (c) + τ .

9: end while

Then for the given channel coefficients c, the achievable spectral efficiency is equal

to 1
T (c)

. In addition, if (for either FDMA, CDMA or SNR → 0, and superposition or

multiplexed coding)

R(p) = max

{
R

∣∣∣∣Pr(R >
1

T (c)

)
≤ p

}
, (5.42)

the spectral efficiency R(p) is achievable with outage probability p using rateless

coding. While this may seem obvious, one does need a formal proof because of the

compound nature of the channel – the interested reader is referred to [91]. Let T0(c)

be T (c) for SNR → 0. Then the outage minimum energy per bit achievable with

rateless coding can be found as

Eb,min(p) = −1.59 + 10 log10

 max

{
T
∣∣∣ Pr (T0(c) > T ) ≤ p

}  . (5.43)
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F. Numerical Results for Capacity

In this section, we provide numerical results for outage capacity when all channel gains

experience i.i.d. Rayleigh fading with unit variance. We plot the outage capacity

versus Eb,min, as well as the outage spectral efficiency R versus Eb for N = 2, 4, 8

users in Figs. 40–42. Some observations that can be made are listed below.

• Cooperation Gain: There is a very large gain in Eb,min from cooperation, in

the order of tens of dB. In fact, when the number of users increase, the required

Eb,min for a particular probability of outage increases without cooperation, but

decreases with cooperation. However, the gain from cooperation quickly dis-

appears as the spectral efficiency increases, at least for the CDMA case. From

Fig. 42, it can be seen that at a spectral efficiency of 1.5 bits/s/Hz, there is

almost no gain from cooperation. This can be explained by the fact that CDMA

without cooperation has a wideband slope of 2 while the wideband slope of any

cooperative scheme is much smaller (see Fig. 36). In fact, from (5.15), (5.20)

and Fig. 36, it can be expected that as the number of users increase further, the

gain in Eb,min will increase, but the spectral efficiency needed to achieve that

gain will become smaller and smaller.

• FDMA versus CDMA: As stated before, FDMA and CDMA have the same

Eb,min. On the other hand, the wideband slope for CDMA is larger than that for

FDMA, but only slightly, as indicated by Figs. 36 and 39. This is also illustrated

in Figs. 40–42, where it can be observed that if the spectral efficiency is kept

very low, there is no loss from using FDMA with cooperation. However, even at

higher spectral efficiencies the loss is limited to a only a few dBs. This is starkly

different from the no cooperation case, where FDMA operation performs much

worse than CDMA. For FDMA, cooperation also pays off at higher spectral
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Fig. 40. Outage performance in two-user MAC under i.i.d. Rayleigh fading (a) Outage

probability versus Eb,min(p) and (b) Outage Spectral efficiency versus Eb for

an outage probability of 0.02.
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efficiencies, as opposed to CDMA.

• Multiplexing versus Superposition: For eight users the gain in Eb,min from

using multiplexing over superposition is around 2.5 dB. Furthermore, for low

outage probability, multiplexed coding comes within 0.1 dB of the outer bound

(i.e., within 0.1dB of capacity). The gain in Eb,min increases with the number

of users, so there might be an even larger gain with more users. On the other

hand, Fig. 42 shows that the spectral efficiency has to be low to realize the gain

from multiplexing.

G. Practical Multiplexed Rateless Cooperation

In this section, we describe how a rateless coded cooperative strategy for a half-

duplex MAC can be implemented using multiplexed Raptor codes [79]. As a first step

towards developing practical coding strategies for a cooperative MAC, we present a

linear programming approach towards designing multiplexed Raptor codes. We then

briefly explain how the designed codes are used in implementing the cooperative

coding scheme of Section E-3 and present simulation results.

1. Multiplexed Raptor code design

A design methodology for Raptor codes specifically geared towards arbitrary binary

input symmetric channels is provided in [80]. However, it is shown that Raptor

codes on AWGN channels are not universal, i.e., the capacity approaching code is a

function of the channel signal-to-noise ratio (SNR). Since in our setup we assume that

the transmitters have no knowledge of the channel fading coefficients, it is not clear

what channel gains the multiplexed Raptor code should be designed for. We therefore

simplify the design process by assuming transmission over a binary erasure channel.
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The motivation for this simplification is the fact that Raptor codes designed for the

binary erasure channel work reasonably well on the AWGN channel [80, 102]. The

optimized codes are then used to simulate practical rateless MAC cooperation with

all channels having AWGN. The scheme is found to operate close to the theoretical

limit as shown in Section G-3.

Encoding in Raptor codes is achieved by first precoding the original message with

a high-rate LDPC code to obtain a k-bit intermediate message. In the following, we

will refer to these intermediate message bits as the input bits. The intermediate

message is then encoded using an LT code [82]. For LT encoding an output bit,

first a degree d is chosen according to the distribution defined by the polynomial

Ω(x) =
∑D

d=1 Ωdx
d, where Ωd is the probability of the degree being d and D is the

maximum node degree. Then d random input bits are chosen and added modulo 2 to

obtain the output bit.

Consider first single user transmission, where the k-bit intermediate message is

LT encoded to form an n-bit codeword and transmitted over a binary erasure channel

with capacity C. If n is large, the decoder receives nC non-erasures, which it uses to

recover the intermediate message. One can define an equivalent LT decoding graph

with k input (variable) nodes and nC output (check) nodes, with the output node

degree distribution given by Ω(x). Since the neighbors of an output node are chosen

randomly, it induces a degree distribution on the input nodes which can be evaluated

as [80]

I(x) ≈ exp

(
Ω′(1)(x− 1)

r

)
, (5.44)

where we define r = k/nC as the inverse overhead with 0 ≤ r ≤ 1 and Ω′(1) is the

first derivative of Ω(x) evaluated at 1. The approximation in (5.44) becomes exact

as k approaches infinity. Decoding of the intermediate message is accomplished by
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running the iterative message-passing algorithm on the LT decoding graph. According

to [73, 103], if x is the probability that a message from an input node to the output

node is an erasure, the condition required to recover a fraction 1−δ of the intermediate

message bits5 for k → ∞ is given by I′
(
1− Ω′(1−x)

Ω′(1)

)
< I′(1)x for all x ∈ [δ, 1]. Using

(5.44), this condition can be simplified as

Ω′(1− x) + r ln(x) > 0, ∀ x ∈ [δ, 1]. (5.45)

Note that in order to recover the message in as few transmissions as possible, one

should minimize the number of output bits required to recover the message, which

is equivalent to maximizing r. However, the degree distribution obtained by solving

the optimization problem performs poorly in practice for finite k, especially since the

solution results in the fraction of degree one nodes approaching zero – in the absence

of degree one nodes, the message passing algorithm does not work . Instead of (5.45),

we use the modified heuristic convergence condition for finite k presented in [79] which

is given by

Ω′(1− x) + r ln

(
x−

√
x

k

)
> 0, ∀ x ∈ [δ, 1]. (5.46)

We now discuss multiplexed codebook design and consider the case when N users

need to be encoded. We assume that the message of each user is encoded by an inde-

pendent LDPC code, thus obtaining N length-k intermediate messages. The overall

intermediate message of length-Nk is then encoded by an LT code characterized by

the degree distribution polynomial ΩN(x). The objective of the design process is to

choose the degree distribution so that 1) the overall length-Nk message is recoverable

close to the channel capacity, and 2) if the decoder were to know messages corre-

5It is assumed that the fixed rate LDPC precode is capable of recovering the
remaining fraction δ of the intermediate bits.
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sponding to an arbitrary subset of users beforehand, the remaining sets of messages

is also recoverable as close to channel capacity as possible. Consider that the decoder

has, through some other means, complete knowledge of the message of N −m users,

m = 1, . . . , N . The decoder needs to recover the remaining m sets of messages. In

iterative BP decoding, the edges emanating from the already available N −m mes-

sages do not play any other role than sign reversals at the check nodes, and can

therefore be removed from the decoding graph. The remaining edges induce a degree

distribution Ωm(x) which is related to ΩN(x) as follows. For a degree-d output node,

the probability that it has dm edges connected to the unknown subset of messages is

given by

p(d, dm) =

(
d

dm

)(m
N

)dm (
1− m

N

)d−dm
u[d− dm],

with dm = 0, 1, . . . , D, u[k] = 1 when k ≥ 0, and u[k] = 0 otherwise. Consequently,

when the edges from the known set of messages are removed, the fraction of output

nodes with degree dm is given by Ωm,dm =
∑D

d=1 ΩN,dp(d, dm). The induced degree

distribution polynomial Ωm(x) =
∑

dm
Ωm,dmx

dm for the m unknown messages can

be computed as

Ωm(x) =
D∑

d=1

ΩN,d

(
1− m

N

)d d∑
dm=0

(
d

dm

)(
m

N −m
x

)dm

=
D∑

d=1

ΩN,d

(
1− m

N

)d(
1 +

m

N −m
x

)d

= ΩN

(
N −m+mx

N

)
.

Let rm be the inverse overhead associated with recovering m sets of messages when

N − m messages are already known. Then the design requirement for recovering a

fraction 1−δ of themk intermediate bits when (N−m)k intermediate bits are already
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known can be obtained from (5.46) and is given by

m

N
Ω′

N

(
N −mx

N

)
+ rm ln

(
x−

√
x

mk

)
> 0, ∀ x ∈ [δ, 1]. (5.47)

For the multiplexed code design, the design requirement in (5.47) should be satisfied

for all m = 1, . . . , N . As described above, for N = 1, the design goal is to find the

maximum r1 for which there exists a valid degree distribution satisfying (5.47). For

N > 1, it is hard to define an objective function for the best frame error rate per-

formance. Instead, we consider a possibly sub-optimum objective function
∑N

m=1 rm

which is linear in rm, and is found to result in a frame error rate close to the theo-

retical limit. By requiring the inequality (5.47) to hold for x belonging to discretized

points in the interval [δ, 1], one obtains a sequence of linear inequalities. In addition,

we have the trivial constraints

ΩN(1) = 1, (5.48)

ΩN,d ≥ 0, d = 1, . . . , D, (5.49)

0 ≤ rm ≤ 1, m = 1, . . . , N, (5.50)

all of which are linear in terms of ΩN,d and rm. Thus the optimization problem can be

solved using linear programming. Table VII shows the rm’s obtained by solving the

linear programming problem for various N when the maximum output node degree

D is limited to 100. It is seen that the resulting Raptor codes are not optimally

multiplexed, since when N is large, rm for m < N is much smaller than one. However,

as indicated by our simulations in Section G-3, rateless multiplexed cooperation using

the degree distributions corresponding to the parameters in Table VII perform well

in practice with a gap of 0.52 dB and 1.1 dB to the theoretical limit for the two- and

four-user case, respectively.
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Table VII. The inverse overheads rm for several N ’s and fixed δ = 0.01.

N r1 r2 r3 r4

1 0.985 – – –

2 0.699 0.925 – –

3 0.539 0.817 0.904 –

4 0.482 0.717 0.821 0.871

2. Coding scheme

As in Section E, we assume that all users transmit at the same rate of R bits per com-

plex sample, and have the same power constraint P . Since we implement the FDMA

based half-duplex cooperation, different users are allocated to non-overlapping fre-

quency bands, the width of each being 1/N of the overall transmission bandwidth.

To obtain an overall transmission rate of R, each user must transmit at a rate NR

with power constraint NP over its allocated frequency band. A user first precodes

its message with an LDPC code of fixed rate RL, LT encodes the length-k inter-

mediate message, QPSK modulates the resulting bits using the constellation points{
±
√

NP
2
,±
√

NP
2

}
and then transmits to the collector. At the same time, it over-

hears the transmission of the remaining users. Since the frequency bands allocated

to the users are non-overlapping, the transmission it receives from other users do not

interfere with each other, and hence it does not need to employ multi-user detection.

It is assumed that all users, in addition to the collector have complete knowledge of

the encoding graphs. When a user has received the minimum number of symbols

required to decode another user, it forms an equivalent decoding graph and performs

iterative belief propagation decoding. If a user at any given time has recovered m

messages including its own, it uses the degree distribution Ωm(x), obtained by the
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linear programming approach presented in Section G-1, to LT encode the intermedi-

ate messages. We assume that a user knows whether it has decoded another message

correctly, something which can be achieved in practice by employing the likes of CRC

codes. If decoding fails, a user waits to receive more symbols before attempting de-

coding again. Ideally, it should make a new decoding attempt every time it receives

a new symbol. However in order to avoid the computation cost associated with mak-

ing so many decoding attempts, we let the users receive an additional 2.5% (of the

information theoretic minimum) symbols before starting a new decoding process.

Ω
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Fig. 43. Decoding graph at the collector for the two-user case when user i, i = 1, 2, de-

codes the other user after ni symbols. The portion of the graph corresponding

to the LDPC pre-codes is not shown for clarity.
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Decoding at the collector is very similar to that at the users, except that it makes

a single decoding attempt after it has received the entire block of length n = kRL

NR

symbols per user. The equivalent decoding graph at the collector for N = 2 when

user i, i = 1, 2, decodes the other user after ni symbols is shown in Fig. 43. Note

that information theoretically the two decoding times should be equal because of

channel reciprocity. However, in practice, the two users might decode each other at

different times, i.e., in general n1 ̸= n2. For the purpose of clarity, the figure does not

show the portion of the decoding graph corresponding to the LDPC pre-codes. The

equivalent decoding graphs at the collector as well as the at the users for N > 2 can

be constructed in a similar manner as in Fig. 43.

3. Simulation results

We present simulation results for the practical rateless cooperation scheme for the

two- and four-user cases for a fixed transmission rate of R = 0.05 bits per sample. As

a performance measure, we consider the frame error rate when all channels experience

independent slow Rayleigh flat fading. All messages are of length 9500 bits and are

precoded using a rate- 95
100

LDPC code to obtain length-k = 10, 000 intermediate

messages. The maximum number of decoding iterations at the users are limited to

100, and at the collector to 200. As in the theoretical outage analysis, a frame error is

declared when the collector is unable to decode at least one of the users’ messages. If

for given channel conditions c and a given Eb, Ra (Eb, c) is the information theoretic

achievable rate calculated by the bucket filling interpretation of Section E-3, the frame

error rate for the practical scheme can be evaluated as

P e (Eb) =
∞∑
i=0

Pe|R (i△, (i+ 1)△) Pr (i△ ≤ Ra (Eb, c) < (i+ 1)△) , (5.51)
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where △ > 0, and Pe|R (i△, (i+ 1)△) is the conditional probability of frame error

for the practical coding scheme given the information theoretic achievable rate lies in

the interval [i△, (i+ 1)△). Note that we have assumed that this conditional proba-

bility of frame error is independent of Eb which is true if △ is small. We obtain Pe|R

through Monte-Carlo simulations of the practical multiplexed rateless cooperation

scheme. Fig. 44 (a) shows this conditional probability of frame error for the two-user

case for the interval Ra ∈ [0.05, 0.07) with △ = 0.0025. In order to calculate the

overall probability of frame error in (5.51), we assume that Pe|R for Ra ≥ 0.07 reaches

an error floor of 3.8 × 10−4 (corresponding to the frame error rate of the interval

Ra ∈ [0.0675, 0.07)) and that the frame error rate for Ra < 0.05 is (obviously) one.

The probability of frame error for the two-user case when all channels experience slow

Rayleigh fading is shown in Fig. 44 (b). At a frame error rate of 2× 10−2, the sim-

ulation results are observed to lose 0.52 dB from the theoretical FDMA cooperation

limit, and are 7.75 dB better than the no cooperation bound (with CDMA).

Fig. 45 shows the same results for the four-user case, which indicate that the

scheme with multiplexed Raptor codes loses only 1.1 dB and 14.66 dB from the

theoretical FDMA cooperation limit and the no cooperation bound, respectively.

H. Summary

The results in this chapter can be used as indicators of how to design energy efficient

networks, in particular when the channels are unknown or uncertain. Foremost, the

network should use cooperative diversity; the energy gain from this is huge. However,

to realize this gain, the network has to operate in the (very) low power regime, either

through slow transmission or by using ultra-wideband transmission. Furthermore, the

nodes do not need to be full-duplex capable to realize the energy saving. Finally, by
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Fig. 44. Simulation results for two-user case at fixed transmission rate of R = 0.05 b/s.

(a) Conditional probability of frame error Pe|R versus the achievable rate with

△ = 0.0025, (b) Probability of frame error versus Eb compared to theoretical

bounds.
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using multiplexed coding, an additional gain of 2-3 dB can be achieved, with energy

consumption close to the theoretical limit. Extending on the theoretical results, we

have presented a practical scheme for the cooperative MAC which utilizes multiplexed

Raptor codes. Simulation results indicate a loss of 0.52 dB and 1.1 dB from the

theoretical limit for the two- and four-user case, respectively.

We have only included numerical results for up to eight nodes, and simulation

results for up to four nodes. The reason for this is certainly complexity, but also

that the model used might not be realistic for very large networks. If the network is

large, nodes are probably spread out over a large area, and path loss is then relevant,

and should be taken into account. In such a situation, a combination of cooperative

diversity (e.g., multiplexed codes) and routing seems to be the right approach. This

could be a direction for further research.
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CHAPTER VI

THE COGNITIVE RADIO CHANNEL

A. Introduction

With the growing trend in the use of wireless systems, it has been observed that

the current licensed spectrum is severely under-utilized. In order to use the licensed

spectrum more efficiently, the idea of deploying secondary wireless devices has been

proposed – with the secondary devices using the same frequency band as the existing

primary systems. In order to have a minimal effect on the operation and performance

of the primary systems, these secondary devices have to be opportunistic in nature.

In other words, they should be able to “cognitively” adapt to their environment to

utilize channel resources when they become available, while at the same time they

should be able to communicate effectively with their respective base stations. Because

of this required cognition capability, the term “cognitive radio” has been widely used

in the literature for these secondary devices.

The simplest form of cognitive radio channel (CRC) consisting of one primary and

one secondary/cognitive user is shown in Fig. 46. Each user wishes to communicate

some information to its respective base-station. However, since the two users share the

same frequency band, the signal transmitted by a user interferes with the transmission

of the other. A number of works have focused on deriving the information theoretic

achievable rates for the CRC when the primary user message is known at the cognitive

user non-causally [104, 105, 106], as well as causally [107]. For the non-causal case,

it was shown in [104] that when the channel from the cognitive user to its respective

base-station is stronger than the cognitive user to primary receiver channel (referred

to as the low-interference regime), a scheme which achieves capacity involves dirty-
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paper coding (DPC) [31]. For the general CRC as well, the inner bounds on the

capacity region rely heavily on DPC. Almost all achievable schemes in the literature

rely on the following methodology: Since it is assumed that the cognitive user knows

the primary user message before it begins transmitting, it can dirty-paper code its

own message by treating a scaled version of the primary user transmission as the side-

information. As a result, the secondary receiver sees no (or partial) interference from

the primary user. At the same time, the cognitive user allocates some of its power

to transmitting the primary user message in order to reduce the effect of interference

caused by its own transmission. In this chapter, we design and simulate a DPC

based coding scheme for the cognitive user channel which relies on the methodology

described above. As a first step towards developing a practical coding strategy, we

assume that the cognitive user has knowledge of the primary user message as well

as its codebook before the transmissions begin. In addition, we consider the low

interference regime where the channel gain from the cognitive user to its base station

is stronger than it is to the primary base station. This scenario is of practical interest

since the cognitive user will typically be closer to its base station than the primary

base station. As mentioned earlier, the cognitive radio should be minimally intrusive

in the operation of the primary system. We consider the extreme situation where

the introduction of the cognitive radio should have no effect on the primary user’s

operation and performance whatsoever, i.e. the primary system should operate as if

there was no cognitive user in the system. For the primary user, we use a low density

parity-check (LDPC) code with the codeword bits mapped to a 4-PAM constellation,

whereas for the cognitive user, we propose a multi-level DPC coding scheme which

uses an LDPC code as the channel coding, and trellis coded quantization (TCQ)

code as the source coding component. Simulations indicate that at a transmission

rate of 1.0 bits/sample (b/s) and a block length of 50,000, the proposed DPC scheme
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performs within 0.78 dB of the theoretical limit.

The chapter is organized as follows. In Section B, we present the model for

the CRC. In Section C, we discuss the DPC based coding scheme and present the

corresponding performance limits. Section D forms the major part of this chapter, in

which we present the proposed DPC scheme, and discuss the design issues. In Section

E, we present the simulation results, and finally provide a summary in Section F.

B. Channel Model

Primary Base-Station

Secondary Base-Station

Secondary/Cognitive User

Primary User

+

+

Xp

Xc

Zp

Zc

Yp

Yc

1

1

a

b

Fig. 46. The cognitive radio channel.

Without loss of generality, we consider the cognitive radio channel in its standard

form [104] as depicted in Fig. 46. The signal received at the primary receiver at time
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n = 1, . . . , L (L being the transmission block length) is given by

Yp[n] = Xp[n] + aXc[n] + Zp[n],

where Xp[n] and Xc[n] are the signals transmitted from the primary and cognitive

user, respectively, Zp[n] is the unit variance additive white Gaussian noise (AWGN),

and a is the channel gain from the cognitive user to the primary receiver. In the stan-

dard form of the cognitive channel, low interference regime implies a < 1. Similarly,

the signal received at the secondary base station is given by

Yc[n] = Xc[n] + bXp[n] + Zc[n],

where Zc[n] is once again unit variance AWGN and b is the channel gain from the

primary user to the secondary base station. The power constraints at the primary

and cognitive users are given by

1

L

L∑
n=1

X2
p [n] ≤ Pp , and

1

L

L∑
n=1

X2
c [n] ≤ Pc,

respectively. For the sake of simplicity, we assume that the source transmissions

Xp[n] and Xc[n], as well as the channel coefficients a and b are real. Extension to

complex base-band is relatively straightforward. In addition, we assume, as mentioned

earlier, that that the cognitive user has non-causal knowledge of the primary user’s

transmissions, i.e., the cognitive user has perfect knowledge of Xp[n], n = 1, . . . , L,

before the transmissions even begin.
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C. Coding Scheme and Performance Limits

In this section, we briefly describe a coding scheme for the CRC [104], and provide

the information theoretical performance limits. The primary user encodes its length-k

messagemp to a length-N codeword using a rate-Rl
p =

k
N
LDPC code. The coded bits

are then mapped to the symbols Xp[n], n = 1, . . . , L, which belong to a constellation

of size M = 2m. Thus the total number of transmitted symbols is L = N
m
, with

the overall transmission rate from the primary user given as Rp = mRl
p b/s. The

average transmission power is given by Pp =
1
L

∑L
n=1 X

2
p [n]. The primary base station

estimates its received signal-to-noise ratio (SNR), and attempts to decode mp using

belief-propagation (BP) algorithm on the LDPC decoding graph. We assume that the

primary user always transmits with the minimum power required for the BP decoder

to satisfy a given bit-error rate (BER) requirement, with the decoder assuming that

the noise (plus any interference) has Gaussian statistics.

On the other hand, the cognitive user allocates a fraction γ of its power for

transmitting the coded symbols of the primary user – it can do so since it is assumed

to know the primary user message as well as its codebook. With the remaining power,

it encodes its message mc using a DPC scheme (the details of which will be discussed

in Section D) with

S[n] =

(
b+

√
γPc

P ∗
p

)
Xp[n]

treated as the known interference/side-information. The dirty paper coded output

X̃c[n] satisfies

1

L

L∑
n=1

X̃2
c [n] = (1− γ)Pc
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and the cognitive user transmits

Xc[n] = X̃c[n] +

√
γPc

Pp

Xp[n].

A key property of the DPC encoder is that the coded output X̃c is uncorrelated with

the side-information [31] and is therefore uncorrelated with Xp[n] – a property verified

by the simulations of our DPC scheme of Section D. Thus, the total transmission

power constraint 1
L

∑L
n=1 X

2
c [n] = Pc is satisfied. The signals received at the primary

and secondary base station are given as

Yp[n] =

(
1 + a

√
γPc

Pp

)
Xp[n] + aX̃c[n] + Zp[n],

Yc[n] = X̃c[n] +

(
b+

√
γPc

P ∗
p

)
Xp[n] + Zc[n],

respectively. The primary base station is assumed to be oblivious to the presence of

the cognitive user, and therefore, it treats the term aX̃c[n] as unknown interference.

Since the interference term aX̃c[n] is uncorrelated with Xp[n], the received SNR at

the primary base station is given as

SNRp =

(
1 + a

√
γPc

Pp

)2

Pp

1 + a2(1− γ)Pc

. (6.1)

In order for the SNR at the primary base station to remain the same as in the absence

of the cognitive user, the power allocation parameter γ should be chosen such that

SNRp =

(
1 + a

√
γPc

Pp

)2

Pp

1 + a2(1− γ)Pc

= Pp

which yields the solution [104]

γ∗(Pp, Pc) =

√Pp

(√
1 + a2Pc(1 + Pp)− 1

)
a
√
Pc(1 + Pp)

2

. (6.2)
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In short, the cognitive user compensates for the added interference at the primary

receiver by allocating a fraction γ∗ of its power for transmitting the primary user

message. Note that even though the SNR at the primary destination remains the same

as that without the cognitive user, the received signal power does not. Thus, when

calculating the log-likelihood ratios for LDPC decoding, the primary receiver needs

to account for this increased signal strength1. At first glance, this might indicate

that the primary receiver has to modify its decoding process. However, note that

even in the absence of the cognitive user, the primary receiver has to estimate the

received signal strength (possibly through some pilot symbols), and hence one can

argue that the increased signal strength does not affect the operation of the primary

decoder. Additionally, if the BER of the primary decoder were a function of only the

SNR, choosing γ = γ∗(Pp, Pc) would ensure that the BER performance of the primary

decoder remains unaffected with the introduction of the cognitive user. However, note

that the primary decoder will calculate its channel log-likelihood ratios by assuming

that the noise plus interference term is Gaussian – which might not be the case in a

practical setup. Thus even though the SNR remains the same, the BER performance

of the primary decoder will not be the same as that without the cognitive user.

Fortunately, our simulations indicate that the dirty-paper coded output X̃c[n] is close

to Gaussian and the performance of the primary decoder is not adversely affected by

assuming that the interference is Gaussian. Because of this reason, we always choose

γ = γ∗(Pp, Pc) in our coding setup.

1In general, the log-likelihood ratios for LDPC decoding with high-level modula-
tion formats cannot be written as functions of the received SNR alone.
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1. Performance limits

With the choice of γ = γ∗(Pp, Pc), the information theoretic achievable rate for the

primary user is given as

Rp =
1

2
log (1 + Pp) . (6.3)

On the other hand, information theoretically, the cognitive user does not see any

interference from the primary user transmission because of DPC. Thus, the achievable

rate for the cognitive user is given as

Rc =
1

2
log (1 + (1− γ∗)Pc) . (6.4)

It was shown in [104], that the rates in (6.3) and (6.4) define the capacity region in

the low power regime. In other words, for the case when a < 1, these rates are the

best that can be achieved. For a given rate requirement Rp at the primary user, the

theoretical minimum for the primary user power is simply given as

Pp,min = 22Rp − 1. (6.5)

Using some trivial algebra, it can be shown that the received SNR at the secondary

base station given by
(
1 − γ∗(Pp, Pc)

)
Pc is an increasing function of the cognitive

user power Pc. Hence, for a given rate requirement Rc for the cognitive user, the

theoretical minimum for the cognitive user power is given as

Pc,min = {Pc|
(
1− γ∗(Pp, Pc)

)
Pc = 22Rc − 1}. (6.6)

D. Dirty-paper Coding Scheme

Several research groups have focused on designing practical DPC schemes, e.g. [34,

33, 35]. Since DPC is a source and channel coding problem, the DPC encoder contains
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a channel as well as source coding component. Focusing on the high rate regime, [33]

proposed a dirty-paper coding scheme based on nested turbo codes. Because of the

nested nature of the scheme, the presence of the random interleaver in the turbo-

channel code negatively impacts the performance of the TCQ source code. Whereas

this does not affect the overall performance too much at higher transmission rates,

the impact on lower rates is much more pronounced. Indeed, using a 256-state TCQ

as the source code, the scheme in [33] performs only 1.42 dB from capacity at a

transmission rate of 1.0 b/s, whereas the gap to capacity increases to 2.65 dB at a

lower transmission rate of 0.5 b/s. On the other hand, the schemes in [34, 35] employ

IRA codes as the channel code and TCQ as the source code. As opposed [33], these

schemes do not suffer loss in source coding performance and were shown to perform

near capacity at low transmission rates of 0.25 b/s. However, in their original format,

these schemes cannot achieve a rate higher than 1.0 b/s. In this work, we use the

coding framework of the scheme in [34] and adapt it to higher transmission rates.

Our extension to higher rates is analogous to the extension of an LDPC code with

BPSK modulation to that over a higher order constellation using multilevel coding

with multi-state decoding [108]. The motivating factors behind using an LDPC code

based DPC scheme over a turbo-coded scheme are:

1). Since the source code does not suffer any degradation in performance (as the

scheme in [33] does), we are able to reduce the gap to capacity. At a transmission

rate of 1.0 b/s, a block length L = 50, 000 and a 256-state TCQ as the source code,

we are able to achieve a gap of 0.78 dB to capacity, as opposed to 1.42 dB in [33]

with the same block length and a 256-state TCQ.

2). Since the basic coding framework for our high-rate scheme remains the same

as that of the low-rate scheme of [34], an obvious advantage is that switching between

the low rate and the high rate regime does not require the coding setup to change.
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This is particularly attractive in situations where the transmission rate needs to be

adapted to the instantaneous channel quality.

In the following, we give the details of our proposed DPC scheme by discussing

the encoding and decoding separately.

1. Encoding

½ Conv. 
Code

TCQ 
Symbol 
Mapper

TCQ (Viterbi)

+

TCQ bit

(To Channel)

TCQ 
Codebook 

Shift

+
3 42b b K( )+ + ∆

b2b1 b3 b4

αS+D

U X

Rate-R2

LDPC Code

Rate-R1

LDPC Code
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bits

Information 
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L

Π2

Π1
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Fig. 47. Proposed DPC encoder with two levels

The encoding scheme for our DPC scheme with two levels is shown in Fig. 47,

where we use LDPC codes and TCQ as the channel and source coding components,

respectively. In the following, we briefly discuss the two coding components. Although

all our discussions below are specific to a DPC scheme with two levels, we point out

that the same design methodology can be easily extended to the case with more than
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two levels.

a. Channel coding

For the channel coding component, the length k message mc is split into two parts.

The first part of length LR1 is encoded using a rate-R1 LDPC code. The LDPC code

is characterized by the variable node degree distribution (from the edge perspective)

λ1(x) =
∑D1v

d=2 λ1dx
d−1, where λ1d is the fraction of edges connected to a degree d

variable node, and D1v is the maximum variable node degree. On the other hand,

the check node degree distribution (from the edge perspective) is given as ρ1(x) =∑D1c

d=1 ρ1dx
2−1, where D1c is the maximum check node degree. Similarly, the second

part of the information sequence of length LR2 is encoded using a rate-R2 LDPC

code characterized by degree distributions λ2(x) and ρ2(x). The coded bit sequences

from the two LDPC codes, each of length L, are first randomly interleaved which

is required, at least in principle, to facilitate iterative decoding between the source

and channel code at the destination. Let the output of these interleavers be denoted

by b1 and b2, as shown in Fig. 47. At any given time instance, elements from the

bit streams b1 and b2 are used to select one out of four TCQ codebooks, as will be

explained in the source coding part. The overall rate of the dirty-paper code can be

calculated as R = k/L = R1 + R2 b/s. Note that with the two levels discussed here,

the maximum achievable rate is 2 b/s as opposed to 1 b/s for the schemes of [34, 35].

As mentioned earlier, the same methodology can be used to devise schemes for even

higher transmission rates by increasing the number of levels. In general, a maximum

rate of P b/s can be achieved by using P levels.
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b. Source coding

As mentioned in Chapter II, a DPC scheme should quantize the interference and

transmit the error sequence, with the quantization codebook selected by the channel

codeword. With an ideal quantization source code, this approach is known to achieve

capacity on the dirty-paper channel [35]. Thus, even though DPC is inherently a

channel coding problem, the presence of the interference entails the need for a strong

source coding/quantization element.

For practical source coding, we employ TCQ, the strongest quantization code

known in the literature. The input to be quantized is V = αS + D, where α is

Costa’s MSE scaling factor [31] given by α = SNR
1+SNR

, S is the known interference/side-

information sequence, and D is the random dither shared by the encoder and the

decoder, and is required to make the quantization error independent of the quantized

output – a condition necessary for achieving capacity on the dirty-paper channel

[35]. The basic component of the TCQ code is a rate-1/2 convolutional code, which

outputs the bit streams b3 and b4. At a time instance n, n = 1, . . . , L, we let the

channel coded bits b1[n] and b2[n] select one out of four TCQ codebooks to which

the convolutional code outputs are mapped. Since the interference can have any

arbitrary variance, each one of the four TCQ codebooks is replicated infinitely in

both directions. Amongst the replicated copies of the codebook, the one closest to

V [n] is chosen. Since the performance of the underlying TCQ quantization codebook

is independent of any shift of the codeword, we let the four TCQ codebooks be

shifted versions of each other, as indicated by Fig. 47. Mathematically, the shifted

TCQ symbol at time n as a function of the bits bi[n], i = 1, 2, 3, 4 and V [n] is given

by (we omit the time indices of the bits bi[n], i = 1, 2, 3, 4 for notational convenience)
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U [n] = f(b1, b2, b3, b4, V [n]) =
[
(b3 + 2b4) +Mb1,b2 + 4K[n]

]
∆, (6.7)

where ∆ is the step size of the TCQ codebook, Mb1,b2 ∈ R is the relative shift of

the TCQ codebook as a function of the channel coded bits b1 and b2, and K[n] is

indicative of the fact that the codebooks are replicated infinitely and the copy closest

to V [n] is selected. Mathematically,

K[n] = argmin
k∈Z

∣∣(b3 + 2b4)∆ +Mb1,b2∆+ 4k∆− V [n]
∣∣2. (6.8)

The mapping of the bits bi[n], i = 1, 2, 3, 4 to the output symbol is graphically

illustrated in Fig. 48. The symbols represented by the circles correspond to the

basic TCQ codebook (corresponding to k = 0) when the channel coded bits are

[b1, b2] = [0, 0]. Similarly, the squares correspond to [b1, b2] = [1, 0], diamonds to

[b1, b2] = [0, 1] and triangles to [b1, b2] = [1, 1]. As can be seen, the TCQ codebooks

corresponding to different channel coded bits are only shifted versions of each other.

Within each codebook, the constellation points are uniformly spaced with the step

size being ∆.

∆C0,0

∆C1,0

∆C0,1

∆C1,1

0

∆

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

Fig. 48. The basic TCQ codebook which is repeated infinitely in both directions. The

bits b1, b2, b3 and b4 are mapped to the output symbol D∑4
i=1 bi2

i−1 .

Given the channel coded bit streams b1 and b2, the quantization procedure
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involves choosing the bit streams b3 and b4 such that the overall MSE is minimized,

i.e.

[
b3,b4

]
= arg min[

b3,b4

]
∈ C

1

L

L∑
n=1

[
f(b1[n], b2[n], b3[n], b4[n], V [n])− V [n]

]2
, (6.9)

where
[
b3,b4

]
∈ C is indicative of the constraint that the bit streams should form

valid codeword of the convolutional code. The optimization problem in (6.9) can

be solved using the Viterbi algorithm. Finally, the error sequence X = U − V is

transmitted over the channel. Note that the transmitter power is in fact the overall

mean-square error (MSE). Thus for a given constraint on the transmit power, one

needs to search for the TCQ step size ∆ for which the MSE is equal to the required

transmission power.

2. Decoding

The DPC decoding scheme is shown in Fig. 49. The received sequence is first scaled

by α followed by dither removal. Thus the output after the dither removal is

Y′ = αY +D,

which can be equivalently written as [35]

Y′ = U+ Z′,

where Z′ is the equivalent Gaussian noise independent of U [35]. If PZ is the variance

of AWGN on the actual transmission channel, the variance of Z ′ is given by αPZ

[35]. The decoding is done by iterative message passing between the BCJR algorithm

(on the TCQ convolutional code trellis) and the belief propagation (BP) algorithms

on the decoding graph of the two LDPC codes. The BCJR algorithm evaluates the
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Fig. 49. DPC decoder.

extrinsic log-likelihood ratios (LLRs) on the coded data sequences b1 and b2 (input to

the TCQ) with the respective a-priori LLRs coming from the LDPC decoding graphs

after interleaving (these a-priori LLRs are initialized to zero for the first iteration)

and with Y′ as the channel input. The extrinsic LLRs from the BCJR algorithm are

first de-interleaved and then fed into the BP algorithms as the a-priori LLRs. We

consider two schedules for decoding, serial and parallel. We briefly describe the two

decoding schedules in the following.

Serial Decoding Schedule: In the serial decoding schedule (SDS), we first perform

iterative message massing between the BCJR on the TCQ trellis, and the BP decoder

for the first LDPC decoder. During this message passing, the a-priori LLRs LAB(2)

to the BCJR are treated as zeros. This iterative message passing continues, until
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some stopping criterion is met2. We then use the extrinsic LLRs from the first LDPC

decoding graph, and run iterative message passing between the BCJR algorithm and

the decoding graph of the second LDPC code. The SDS is summarized in the following

algorithm (see Table VIII for a notation of different LLRs)

1: Initialize: LAV (i) = 0, LAB(i) = 0, for i = 1, 2

2: While (stopping criterion not met) % Message passing for LDPC 1

3: Run BCJR on TCQ trellis with LAB(i) as input. Outputs LEB(i), i = 1, 2.

4: Assign: LAV B(1) = Π−1
1

(
LEB(1)

)
.

5: Run I iterations of BP algorithm on decoding graph of LDPC1 with LAV B(1)

as input channel LLR, and LAV (1) as the CND to VND LLRs. Output extrinsic

LLRs LEV B(1) (LAV (1) is also changed).

6: Assign: LAB(1) = Π1

(
LEV B(1)

)
.

7: end while

8: Repeat the message passing described by the while loop above, but with decod-

ing graph of LDPC2 instead of LDPC1. Keep LAB(1) fixed to values obtained

from message passing with decoding graph of LDPC1.

9: Assign: Li = LEB(i) + LEV B(i), i = 1, 2. Hard-threshold Li to obtain decisions.

Parallel Decoding Schedule: In the parallel decoding schedule PDS, we run it-

erative BP on the two decoding graphs simultaneously. The PDS is summarized

below.

2In our simulations, we let the iterations continue until a maximum number of
iterations is reached, or when a valid codeword has been decoded.
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Table VIII. Summary of LLR notations used in the DPC decoding.

Notation Description of LLRs

LAV (i) LLRs from CND to VND at LDPCi

LEV B(i) Extrinsic LLRs from VND of LDPCi to BCJR

LAV B(i) Channel LLRs inputs to VND of LDPCi (from BCJR decoder)

LAB(i) A-priori LLRs to the BCJR decoder for bit stream bi

LEB(i) Extrinsic LLRs from the BCJR decoder for bit stream bi

1: Initialize: LAV (i) = 0, LAB(i) = 0, for i = 1, 2

2: While (stopping criterion not met)

3: Run BCJR on TCQ trellis with LAB(i) as input. Outputs LEB(i), i = 1, 2.

4: Assign: LAV B(i) = Π−1
i

(
LEB(i)

)
, i = 1, 2.

5: Run I iterations of BP algorithm on decoding graph of LDPCi with LAV B(i) as

input channel LLR, and LAV (i) as the CND to VND LLRs. Output extrinsic

LLRs LEV B(i) (LAV (i) is also changed). i = 1, 2.

6: Assign: LAB(i) = Πi

(
LEV B(i)

)
, i = 1, 2.

7: end while

8: Assign: Li = LEB(i) + LEV B(i), i = 1, 2. Hard-threshold Li to obtain decisions.

The merits/demerits of the two decoding schedules will be discussed in subse-

quent sections.
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3. DPC Design

As mentioned earlier, the DPC scheme consists of a source coding and a channel

coding component. The design for the source code involves choosing appropriate shifts

Mb1,b2 , b1, b2 ∈ {0, 1} of the TCQ codebook, whereas the channel code design involves

choosing appropriate degree distributions for the LDPC codes. In the following, we

discuss these two aspects separately.

a. Source code design

The relative shifts Mb1,b2 , b1, b2 ∈ {0, 1} of our scheme are analogous to the TCQ

codebook shift mentioned in [34]. Since the scheme of [34] has only one channel code,

there are only two shift parameters as opposed to four in our case. We follow the

same approach as in [34] for selecting the appropriate shifts. The shifts characterize

the TCQ induced channel and control the amount of information the induced channel

conveys about the original message. This information can be written as

C ({Mb1,b2}) ≡ 1

L
I
(
b1,b2;Y

′∣∣{Mb1,b2}
)

=
1

L
I
(
b1;Y

′∣∣{Mb1,b2}
)
+

1

L
I (b2;Y

′|b1, {Mb1,b2}) (6.10)

≡ C1 ({Mb1,b2}) + C2 ({Mb1,b2}) , (6.11)

where (6.10) follows from the chain rule of mutual information. In order to evaluate

the information C ({Mb1,b2}) as a function of the relative shifts {Mb1,b2}, we utilize

the EXIT chart strategy and the area theorem [64], according to which, if IE(IA)

is the extrinsic information conveyed by any decoder as a function of the a-priori

information IA, the capacity on that channel can be approximated by the area under
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the curve and is specifically given as

A =

∫ 1

0

IE(I)dI. (6.12)

Although the expression (6.12) is exact only for a binary erasure channel, it is known

to approximate the capacity well on other channels, even if the channel has memory

(such as the TCQ induced channel). Thus, this methodology should be able to provide

a good approximation to the channel capacity in (6.11).

In order to generate the EXIT curve, we resort to Monte-Carlo simulations. We

first generate the bit streams b1 and d2 randomly, each of length L = 100, 000.

We also generate the length-L side-information sequence S randomly. We assume

that the transmissions from the primary user are mapped to a 4-PAM constellation.

Since the primary user transmissions act as the side-information sequence to the DPC

encoder at the cognitive user, we make sure that the side-information is randomly

drawn from a 4-PAM constellation. For some given shifts Mb1,b2 , b1, b2 ∈ {0, 1}, the

sequence V = αS+D (the dither D is uniformly distributed over the interval [0, 4∆])

is quantized using the TCQ code, as mentioned in Section D-1. The step-size ∆ is

chosen such that the resulting MSE is equal to the required received SNR of (1−γ)Pc

at the cognitive user receiver. The error sequnce is then transmitted over an AWGN

channel with unit noise variance. Next, we run the BCJR algorithm on the TCQ

trellis, with Y′ = αY + D ≈ U + Z′ as the channel input, and LAB(1) and LAB(2)

as the a-priori LLRs for the sequence b1 and b2, respectively. In order to evaluate

C ({Mb1,b2}), we follow the chain rule of mutual information and evaluate C1 ({Mb1,b2})

and C2 ({Mb1,b2}) in (6.11) separately. First, for evaluating C1 ({Mb1,b2}), we assume,

as (6.10) dictates, that there is no a-priori information available regarding the bit-

sequence b2, i.e. we assume that LAB(2) = 0. For a given a-priori information IAB(1) to

the BCJR decoder on the bit sequence b1, the a-priori LLR sequence LAB(1) evaluated
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at position n is generated by

LAB(1)[n] = (1− 2b1[n])J
−1(IAB) + Z[n], n = 1, . . . , L, (6.13)

where Z[n] is a zero-mean Gaussian random variable with variance 2J−1(IAB), and

where J(µ), as defined in the previous chapters, is the information a Gaussian LLR

of mean µ and variance 2µ conveys about the message bit3. The BCJR algorithm

outputs the extrinsic LLR sequences LEB(1). The extrinsic information on the bit

stream b1 can be evaluated as

IEB(1) =
1

L

L∑
n=1

log2

(
2

1 + exp
(
(2b1[n]− 1)Le(1)[n]

)) . (6.14)

By repeating the procedure mentioned above for several values of IAB(1), one can

obtain the IEB(1) versus IAB(1) curve which can then be used to approximate the

capacity C1 ({Mb1,b2}) of the TCQ induced channel by (6.12).

In order to evaluate C2 ({Mb1,b2}), we have to assume, as indicated in (6.10),

complete a-priori information about the bit sequence b1. Thus, using LAB(1)[n] =

(1 − 2b1[n]) × ∞, we run the BCJR algorithm on the TCQ trellis for a given a-

priori information IAB(2) and the corresponding LLR sequence LAB(1). The extrinsic

information IEB(2) is evaluated from the extrinsic LLRs in the same manner as in

(6.14) and the approximated capacity C2 ({Mb1,b2}) is evaluated by calculating the

area under the IEB(2) versus IAB(2) curve.

Finally, we point that in order maximize the capacity of the TCQ induced ca-

pacity, one needs to perform an exhaustive search over {Mb1,b2}. In order to illustrate

3The TCQ induced channel might not be symmetric, and hence, in general the
usual assumption of the symmetry of the LLRs might not be valid. However, we
use the concept of i.i.d. channel adapters [109] using which the channel can be
transformed into an equivalent symmetric channel, and hence the assumption of the
LLRs having a symmetric distribution becomes valid.
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Fig. 50. EXIT curves for the BCJR decoder for two sets of shifts of the TCQ code-

book. The SNR is fixed at 5.2 dB and the TCQ uses a 256-state feedback

convolutional code defined by the polynomials h0 = 625 and h1 = 242 in octal

form. The approximate capacities are evaluated using (6.12).

the huge difference that an appropriate choice of the shifts can make, we shown the

EXIT curves for two sets of shifts in Fig. 50. The SNR is fixed at 5.2 dB and

the TCQ uses a 256-state feedback convolutional code defined by the polynomials

h0 = 625 and h1 = 242 in octal form. It can be observed that when employing

uniform shifts, i.e., when {M0,0,M1,0,M0,1,M1,1} = {0.00, 0.25, 0.50, 0.75}, the area

under the curve can be approximated as C = 0.615 (the individual areas are given

as C1=0.098 and C2=0.517). On the other hand, when {M0,0,M1,0,M0,1,M1,1} =

{0.00,−0.50, 0.80, 0.30}, the approximated capacity is C = 1.02 (the individual areas
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under the curve are C1 = 0.196 and C2 = 0.824). Thus the second set of shifts gives

a gain of more than 0.4 bits/sample over the uniform shifts of the first set. In Fig.

51, we show the individual EXIT curves corresponding to the two bit streams b1 and

b2.
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Fig. 51. EXIT curves of the BCJR decoder corresponding to the two bit streams

b1 and b2. The SNR is fixed at 5.2 dB and the TCQ uses a 256-s-

tate feedback convolutional code defined by the polynomials h0 = 625

and h1 = 242 in octal form. The TCQ codebook shifts are set at

{M0,0,M1,0,M0,1,M1,1} = {0.00,−0.50, 0.80, 0.30}.
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b. Channel code design

As in the previous subsection, we once again use the Gaussian assumption and the

EXIT chart strategy to design the degree distributions for the LDPC codes. We fix

the variable node degree profiles λ1(x) and λ2(x) and optimize the check node profiles

ρ1(x) and ρ2(x). We point out that in most works in the literature, the variable node

degree profiles are optimized for fixed check node profiles. However, as we will see in

the following, having the reverse for our DPC design results in a simpler optimization

problem which can be solved using linear programming. At the same time, this design

methodology promises good performance, as will be seen in Section E.

For the design of the degree distributions, we assume an asymptotically large

block length L. The chain rule of mutual information in (6.10) gives us an insight

into how the design procedure can be simplified: One can first design the degree

distribution ρ1(x) for the first LDPC code while assuming that the a-priori informa-

tion to the BCJR decoder from the second LDPC code is zero. Once ρ1(x) has been

designed to guarantee error free recovery of b1, one can then design ρ2(x) with the

a-priori information to the BCJR decoder from the first LDPC code being one. A

keen reader would observe that this strategy corresponds to the SDS presented in

Section D-2. Thus, the SDS is in fact information theoretically optimum – the design

of the degree distributions is carried out with the SDS in mind. However, we will use

the degree distributions designed in this section to implement a SDS as well as PDS

in Section E. As will be seen, the degree distributions perform very well with a PDS

as well, even though they are designed for a SDS. In fact, PDS outperforms SDS by

about 0.1 dB.

As mentioned before, we first design the check node degree distribution ρ1(x)

assuming the variable node degree distribution λ1(x) is fixed. The information flow
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Fig. 52. Information flow for the channel code design.

for the DPC decoder is indicated in Fig. 52. The figure is the same as Fig. 49 except

that the LLRs have been replaced with the respective informations – we reproduce the

figure here for the reader’s convenience. Let the a-priori information to the variable

nodes of the first LDPC code be given as IAV (1) with IAV (1) ∈ [0, 1]. Assuming that

the a-priori LLR to the variable nodes corresponding to this information is Gaussian4

with mean J−1
(
IAV (1)

)
, and variance 2J−1

(
IAV (1)

)
, we evaluate the probability mass

function (pmf) PV (1)→B of the extrinsic LLRs from the variable nodes of LDPC1 to

the BCJR decoder using discretized density evolution [66]. We now need to evaluate

the information transfer function at the BCJR decoder, for which we once again

resort to Monte-Carlo simulations. We first generate two blocks of equally probable

4Once again, using the concept of i.i.d. channel adapters [109], we can assume the
transmission of the all-zero codeword and symmetry of LLR distributions.
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i.i.d. channel adapters c1 and c2. Then encoding and transmission over the AWGN

channel is simulated as in the source code design with b1 ⊕ c1 and b2 ⊕ c2 treated as

the input sequence to the TCQ codebook mapper, where ⊕ represents bit-wire xor.

As pointed out in [109], the modified channel with these channel adapters becomes

symmetric and hence one can assume that b1 and b2 are the all-zero sequences. Thus

the inputs to the TCQ codebook mapper are simply c1 and c2. We then generate a

block of intermediate a-priori LLRs L′
AB(1) according to the pmf PV (1)→B evaluated

earlier using density evolution. The a-priori LLRs to the BCJR algorithm are given

as

LAB(1)[n] =
(
1− 2c1[n]

)
L′
AB(1)[n] n = 1, . . . , L.

Applying the BCJR decoder with LAB(1) and LAB(2) = 0 as a-priori LLRs, and

the equivalent channel output Y′, we then obtain the intermediate LLRs L′
EB(1) for

the combined values of the codeword bits and the channel adapters. The LLRs

for the codeword bits are evaluated by reversing the effect of the channel adapters.

Specifically,

LEB(1)[n] =
(
1− 2c1[n]

)
L′
EB(1)[n] n = 1, . . . , L.

Using the sequence LEB(1), we find the histogram to evaluate the pmf PB→V (1),

i.e., we evaluate the pmf of the LLRs going from the BCJR decoder to the vari-

able nodes of LDPC1. Then with PB→V (1) as the pmf of the channel LLR, and

PAV = N
(
J−1

(
IAV (1)

)
, 2J−1

(
IAV (1)

))
as the pmf of the a-priori LLR from the check

nodes, we evaluate, as a function of the information IAV , the pmf PEV (IAV ) of the

extrinsic LLR from the variable node to the check node using density evolution. Note

that this pmf can be easily evaluated since the variable node degree distribution λ1(x)

is assumed to be fixed, and is hence not a design variable.

Employing density evolution, we use the extrinsic pmf PEV as the a-priori infor-
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mation and evaluate the extrinsic information at check node of degree d as a function

of IAV as Pd
EC (IAV ). This pmf is then mapped to an extrinsic information term

IdEC (IAV ) as

IdEC (IAV ) =
∑
l

Pd
EC (IAV ) [l] log2

(
2

1 + exp(−l)

)
, (6.15)

where Pd
EC (IAV ) [l] is the probability that the LLR is equal to the discretized value

l. The overall extrinsic information from the check node is then given as

IEC (IAV ) =

D1c∑
d=1

ρdI
d
EC (IAV ) . (6.16)

For convergence of BP decoding (in the Gaussian assumption and EXIT function

sense), the following constraint should be satisfied for all IAV ∈ [0, 1) [64]

D1c∑
d=1

ρdI
d
EC (IAV ) > IAV . (6.17)

In addition to the convergence constraint, we require
∑D1c

d=1 ρd = 1, and ρd > 0,

d = 1, . . . , D1c. For these constraints one should maximize the rate of the LDPC code

which is equivalent to minimizing
∑D1c

d=1
ρd
d
. By discretizing the interval IAV ∈ [0, 1)

and requiring the constraint (6.17) to be satisfied for all values of the discretized

values, the optimization problem can be easily solved using linear programming.

After the degree distribution ρ1(x) has been designed, we next design the check

node degree distribution ρ2(x). For that purpose, one can follow, in principle, the

same design procedure mentioned above. Since the design procedure for ρ1(x) ensures,

at least in the EXIT function and Gaussian assumption sense, that the bit stream b1

has been perfectly decoded, one can always assume that LAB(1)[n] = (1− 2c1[n])×∞

when designing ρ2(x). However, we point out a fact here that greatly simplifies the

optimization of the degree distributions of LDPC2. One can observe from Fig. 51

that the EXIT curve IEB(2) for the bit-stream b2 remains almost flat. As a result,
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one need not worry about message passing between the LDPC channel decoder and

the BCJR source decoder. One can simply run BCJR decoding once, and then use

the resulting extrinsic information to run SPA decoding on graph of LDPC2 until the

stopping criteria has been met. In this regard, one can simply optimize the degree

distributions λ2(x) and ρ2(x) using well established techniques for a point to point

AWGN channel [103, 64, 73, 65]. This also simplifies the decoding process in the SDS,

since one can run only a few iterations of message passing between the BCJR decoder

and the decoder for LDPC2, or quite possibly not run any iterations between the two

at all.

As far as the rate allocation of the two LDPC codes R1 and R2 are concerned,

one can simply follow the above design procedures to obtain the optimized LDPC

codes of certain rates for a given SNR. One can then increase/decrease the overall

SNR until the sum of the two rates R1 +R2 is equal to the desired rate.

E. Simulation Results

For the primary user, we fix the transmission rate at Rp = 1 b/s. We use the BICM

scheme with a 4-PAM modulation and a rate-1/2 LDPC code with the optimized

degree profiles of [110]. Simulation results for the primary user indicate that in the

absence of the cognitive user, and a block length of L = 50, 000, the transmission

power required to achieve a target BER of at least 1×10−5 is approximately 5.95 dB.

Thus, in our setup we always fix Pp = 5.95 dB. For the DPC scheme, we use a 256-

state feedback convolutional code for TCQ with polynomials h0 = 625 and h1 = 242

in octal form. The relative shifts of the TCQ codebook are fixed to the second set in

Fig. 50, i.e. M0,0 = 0.0, M1,0 = −0.50, C0,1 = 0.80, and C1,1 = 0.30. As mentioned

earlier, the constellation step size ∆ is chosen such that the quantization error in (6.9)
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Fig. 53. Bit-error rates for the cognitive user at a transmission rate of 1 b/s, a block

length of L = 50, 000 and with a 256-state TCQ. The theoretical limit for the

given rate is 4.77 dB.

is equal to the required power (1− γ∗)Pc. For the LDPC codes in the DPC scheme,

the optimized degree profiles along with their rates are given in Table IX.

With the choice of the degree distributions in Table IX, the overall transmis-

sion rate for the cognitive user is Rc = R1 + R2 = 1.0 b/s. The theoretical limit

for the cognitive user required for this transmission rate is evaluated from (6.6) as

Pc,min = 6.67 dB which ensures that the received SNR at the secondary receiver is

(1−γ∗)Pc,min = 4.77 dB. The BER for the cognitive user as a function of the received
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Table IX. Optimized degree distributions for the two LDPC codes corresponding to

rates R1 = 0.18 and R2 = 0.82. The TCQ code uses a 256-state feedback

convolutional code defined by the polynomials h0 = 625 and h1 = 242 in

octal form.

λ1(x) 0.19x+ 0.21x2 + 0.19x7 + 0.2x31 + 0.21x99

ρ1(x) 0.0021x+ 0.0721x2 + 0.4241x4 + 0.3575x8 + 0.1442x11

λ2(x) 0.1267x + 0.1851x2 + 0.1896x6 + 0.0406x7 + 0.0171x15 + 0.0512x18 +

0.0888x19+0.0299x20+0.0217x21+0.0075x32+0.0092x39+0.0079x53+

0.0872x60 + 0.0413x62 + 0.0890x63 + 0.0071x68

ρ2(x) 0.7x31 + 0.3x32

SNR (1 − γ∗)Pc at a block length of L = 50, 000 is shown in Fig. 53 for both the

SDS and PDS. As can be seen, the PDS outperforms SDS by approximately 0.1 dB,

with the PDS being only 0.78 dB away from the theoretical performance limit at a

BER of 1 × 10−5. As far as we know, this is the best DPC performance reported

in the literature for this rate. In addition, through our simulations we were able to

verify that the performance of the single-user decoder at the primary user remains

below the required 1× 10−5 threshold even in the presence of the cognitive user, thus

satisfying the requirement that the primary user remain oblivious to the presence of

the cognitive user.

F. Summary

We have implemented the DPC based scheme of [104] for the CRC. We have consid-

ered the case where the cognitive radio is already aware of the primary user message

and that the primary user and destination are unaware of the existence of the cog-
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nitive radio. For DPC, we have proposed a scheme which employs multi-level LDPC

codes for channel coding and TCQ for source coding. Using a 256-state TCQ, the

scheme operates within 0.78 dB of the capacity at a transmission rate of 1.0 b/s and

a block length of 50,000. Possible extensions to this work is to consider a scenario

where the cognitive user does not initially know the primary user message, but knows

its codebook. Hence the first phase for the cognitive user would be to listen in on

the primary user transmission and attempt to decode its message before it begins its

own transmissions. Such a scheme would obviously require the primary user code to

be rate-compatible. Another direction of possible future research is to consider the

general scheme of [106] which involves joint decoding of multiple dirty-paper codes.
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CHAPTER VII

CONCLUSIONS

In this dissertation, we have considered four cooperative communication channels.

For each one of these channels, we developed information theoretic coding strategies

and derived the corresponding performance limits. We then implemented the coding

strategies using the likes of LDPC, IRA, and Raptor codes as well as nested scalar

quantization and trellis coded quantization. For each case, we find that the designed

practical coding schemes operate very close to the theoretical performance limits.

The four cooperative communication channels we have studied are: (a) The

Gaussian relay channel, (b) the quasi-static fading relay channel, (c) the cooperative

MAC, and (d) the CRC. In the following, we provide the concluding remarks for each

one of these channels.

A. The Gaussian Relay Channel

We proposed a WZ coding based CF coding strategy with BPSK modulation for

the half-duplex Gaussian relay channel. As a means of implementing the WZ based

CF coding, we proposed SWCNSQ and derived the corresponding achievable rates,

specifically with BPSK modulation. We then proposed several simplifications to the

scheme which greatly simplifies the practical implementation, but result in negligible

loss in performance. Following the guiding principles from the information theoretic

analysis, we then developed the first limit-approaching practical CF code design which

uses LDPC codes for error correction at the source. In addition, it uses nested scalar

quantization and distributed joint source-channel coding with IRA codes at the relay.

We showed that once the quantization indices are recovered at the destination, the

destination effectively sees the transmission from the source reaching it over two
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parallel sub-channels. Using EXIT charts strategy and the Gaussian assumption, we

designed good degree distributions for LDPC decoding over the two sub-channels. We

simulated our design for several transmission rates, and also for different geometrical

settings of the nodes. Using density evolution for asymptotically large block lengths,

we found that our code design operates only 0.11 – 0.2 dB away from the information

theoretic limit, whereas simulations with finite block length of 2 × 105 (and a BER

of 1 × 10−5) exhibit a gap of only 0.27 – 0.38 dB from the achievable information

theoretic bound.

B. The Quasi-static Fading Relay Channel

We considered the extension of the Gaussian relay channel to the case where all links

experience independent quasi-static Rayleigh fading, and where the CSI is not avail-

able at the transmitters, but is perfectly available at the destination. We considered a

situation where it is essential for the destination to always decode the source message

correctly, and where the network did not have any delay constraints. As a result, the

system can allow the source and the relay to continue transmitting until successful

decoding occurs at the destination. Under this setup, we identified rateless coding

as the natural choice where each transmission from the source and/or the relay is a

source of incremental redundancy. We proposed rateless coded versions of DF and CF

relaying, and derived the corresponding performance limits, specifically with BPSK

modulation. Since the CSI is not available at the transmitters, we proposed a novel

protocol which allows an additional bit of feedback from the destination. This feed-

back not only serves to indicate to the source and the relay which relaying scheme to

employ, but also helps informing the relay when to stop receiving and start transmit-

ting. The proposed rateless coded protocol was then put into practice using Raptor
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codes, which are not only used for traditional channel coding, but also for rateless

joint source and channel coding for CF relaying. We proposed for the relaying proto-

col to use the same set of Raptor code degree distributions for all channel coefficients,

with the degree distributions optimized so as to maximize the throughput averaged

over the fading distributions of the channel coefficients. Using EXIT charts and the

Gaussian assumption, we formulated the design of these degree distributions as a

convex but non-linear optimization problem. Results indicate that for asymptoti-

cally large block lengths, the rateless coded relaying protocol with optimized degree

distributions loses only ∼ 5% in average throughput performance compared to the

theoretical limit. With finite length simulations, the corresponding losses in average

throughput were only ∼ 9%.

C. The Cooperative Multiple-access Channel

We considered cooperation in the low power regime for the MAC. The channel model

assumes i.i.d. fading over all links, with the CSI not available at the transmitters.

Under this channel model, we identified outage capacity as the relevant performance

measure. We developed cooperation methods based on multiplexed coding in con-

junction with rateless coding and found the corresponding achievable rates. In the

low power regime, we used the analysis to obtain the minimum energy per bit re-

quired to achieve a certain outage probability. For cooperation, we considered two

modes of operation: full duplex (CDMA), where nodes can transmit and receive si-

multaneously on the same frequency band, and half duplex (FDMA), where the nodes

transmit and listen on different frequency bands. In order to provide a comparison of

the two schemes in the low power regime, we studied their respective performances

using the outage wideband slope. We showed that perhaps surprisingly, there is little
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loss in performance when using FDMA over CDMA. This is of practical significance,

since in real-time wireless systems, the former is much easier to implement than the

latter. Furthermore, our results also indicated that multiplexed rateless coding comes

within 0.1 dB of the upper bounds, and is hence capacity approaching. Finally, we de-

veloping practical coding methods for FDMA using multiplexed Raptor codes which

operate within 0.52 and 1.1 dB of the theoretical limit for the two- and the four-user

case, respectively.

D. The Cognitive Radio Channel

We considered the case of a CRC where the cognitive radio is already aware of the

primary user message. In addition, we considered a situation where the primary

user is oblivious to the presence of the cognitive user – the presence of the cognitive

user should in no way affect the encoding/decoding process of the primary user, not

should it affect its performance. Since the primary user message is known at the

cognitive user, it calls for the cognitive user to dirty-paper code its message with the

primary user transmissions as the side-information known at the encoder, but not at

the decoder. We implemented the dirty-paper based coding strategy by proposing a

DPC scheme which employs multi-level LDPC codes and TCQ as the channel and

source coding component, respectively. We identified the design aspects of the source

and channel code, and found that the optimized scheme operates within 0.78 dB of

the channel capacity at a transmission rate of 1.0 b/s and a block length of 50,000. At

this transmission rate, this is the best performance, as far as we are aware, amongst

any existing DPC scheme in the literature.
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APPENDIX A

CAPACITY OF A BIMGN CHANNEL

In this appendix, we derive the capacity (3.5) of a BIMGNC. Consider the channel

with the output Y = X+S+Z, where X is the equiprobable BPSK modulated input

with power P , S is the equiprobable BPSK modulated interference with power Pi,

and Z is the AWGN with variance σ2. Let x =
√
P , and s =

√
Pi. The capacity of

this channel is given as

CBIMGN = I(X;Y ) = h(Y )− 1

2
h (Y |X = +x)− 1

2
h (Y |X = −x)

= −
∫ ∞

−∞
f(y) log f(y)dy +

1

2

∑
d=±x

∫ ∞

−∞
f(y|X = d) log f(y|X = d)dy

=
1

2

∑
d=±x

∫ ∞

−∞
f(y|X = d) log

f(y|X = d)

f(y)
dy (A.1)

Replacing f(y) = 1
2

∑
d=±x f(y|X = d) in (A.1) we obtain

CBIMGN = 1− 1

2

∑
d=±x

∫ ∞

−∞
f(y|X = d) log

(
1 +

f(y|X = −d)

f(y|X = d)

)
dy (A.2)

Next, since

f(y|X = d) =
1

2
√
2πσ2

∑
m=±s

exp

(
−(y − d− s)2

2σ2

)
, (A.3)

we note that f(y|X = d) = f(−y|X = −d). Since the integration in (A.2) is sym-

metric around zero, we conclude that

CBIMGN = 1−
∫ ∞

−∞
f(y|X = x) log

(
1 +

f(y|X = −x)

f(y|X = x)

)
dy. (A.4)

Substituting (A.3) in (A.4) gives us the capacity expression (3.5).
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APPENDIX B

DERIVATION OF CONDITIONAL PROBABILITY DENSITY OF YR GIVEN YD1

In this appendix, we provide the derivation of the expression (3.14) for the conditional

probability density of Yr given Yd1 . Define x =
√
Ps1. Then, we have

f (yr|yd1) =
f (yr, yd1)

f (yd1)

=

∑
d=±x f (yr, yd1|Xs1 = d)∑

d=±x f (yd1|X = d)

=

∑
d=±x f (yr, |Xs1 = d) f (yd1, |Xs1 = d)∑

d=±x f (yd1|X = d)
(B.1)

=
exp

(
− (yr−c̃sr)2

2
− (yd−c̃sd)2

2

)
+ exp

(
− (yr+c̃sr)2

2
− (yd+c̃sd)2

2

)
√
2π
[
exp

(
− (yd−c̃sd)2

2

)
+ exp

(
− (yd+c̃sd)2

2

)]
=

1

1 + exp (−2c̃sdyd1)

1√
2π

exp

(
−(yr − c̃sr)

2

2

)
+

exp (−2c̃sdyd1)

1 + exp (−2c̃sdyd1)

1√
2π

exp

(
−(yr + c̃sr)

2

2

)
(B.2)

where (B.1) follows from the fact that given Xs1, Yr and Yd1 are independent. Sub-

stituting the definition of ζ (yd1) and fg(·) in (B.2), we obtain (3.14).
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APPENDIX C

PROOF THAT THE DJSCC CHANNELS ARE SYMMETRIC

If X is the binary input to the channel and Y is the output, a channel is symmetric if

f(y|X = 0) = f(−y|X = 1) [73]. We need to prove that both the DJSCC channels,

the physical noisy channel, and the virtual correlation channel are symmetric. It

is quite clear that the physical noisy channel is symmetric, therefore, we will only

consider the correlation channel here. The input to the virtual correlation channel

is W and the output is Yd1. We need to prove that f (yd1|W = 0) = f (yd1|W = 1).

Using the conditional pdf f(yr|yd1) from (3.14), the function Q(x) =
∫∞
x

fg(y)dy, and

ζ(y) =
(
1 + e−2c̃sdy

)−1
, we have

f (yd1|W = 0) =
f (yd1)

P(W = 0)
P (W = 0|yd1)

=
f (yd1)

P(W = 0)
[ζ(yd1)Q(−c̃sr) + (1− ζ(yd1))Q(c̃sr)]

=
f (yd1)

P(W = 0)
[ζ(yd1)Q(−c̃sr) + ζ(−yd1)Q(c̃sr)] .

Also,

f (−yd1|W = 1) =
f (−yd1)

P(W = 1)
P (W = 1| − yd1)

=
f (−yd1)

P(W = 1)
[1− P(W = 0| − yd1)]

=
f (−yd1)

P(W = 1)
[1− ζ(−yd1)Q(−c̃sr)− ζ(yd1)Q(c̃sr)]

=
f (−yd1)

P(W = 1)
[Q(c̃sr) +Q(−c̃sr)− ζ(−yd1)Q(−c̃sr)− ζ(yd1)Q(c̃sr)]

=
f (−yd1)

P(W = 1)
[ζ(yd1)Q(−c̃sr) + ζ(−yd1)Q(c̃sr)] .

Since f(yd1) = f(−yd1) (Yd1 is symmetric around zero) and P(W = 0) = P(W = 1) =

0.5, we have f (yd1|W = 0) = f (yd1|W = 1).
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APPENDIX D

PROOF OF PROPOSITION 2

It is straightforward to show that Rsd and Rrd should lie on the sum-rate side of the

MAC capacity region to maximize the rate. Here, we only the address the issue of

where exactly should the rates be on the sum-rate side. Let t ∈ [0, 1] be a parameter

which indicates the relative positions of Rsd and Rrd on the sum-rate side, i.e.

Rsd = tI(Xs2;Yd2) + tI(Xs2;Yd2|Xr), and

Rrd = tI(Xr;Yd2) + tI(Xr;Yd2|Xs2).

Notice that the value t = 0 corresponds to one corner point where W is decoded

first by treating Xs2 as binary interference. Similarly, t = 1 corresponds to the other

corner point. All other values of t indicate operation on the non corner points. The

proof thus requires us to show that t = 0 is the optimum choice.

The overall CF achievable rate (4.12) can then be generalized as

RCF = max
0≤t≤1

{
α∗(t)I(Xs1;W,Yd1) + α∗(t)

[
tI(Xs2;Yd2) + tI(Xs2;Yd2|Xr)

]}
, (D.1)

where the optimum half-duplexing parameter in (4.14), generalized as a function of t

is given as

α∗(t) =

(
1 +

H(W |Yd1)

tI(Xr;Yd2) + tI(Xr;Yd2|Xs2)

)−1

. (D.2)

Substituting (D.2) in (D.1), we get

RCF = max
0≤t≤1

{α∗(t) [I(Xs1;Yd1)−H(W |Xs1)] + α∗(t)I(Xr, Xs2;Yd2)} , (D.3)

Now since I(Xr;Yd2) ≤ I(Xr;Yd2|Xs2), α
∗(t) in (D.2) is non-decreasing in t. Thus

the rate in (D.3) is maximized for either t = 0 when I(Xs1;Yd1) − H(W |Xs1) ≤
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I(Xr, Xs2;Yd2), or t = 1 when I(Xs1;Yd1) − H(W |Xs1) > I(Xr, Xs2;Yd2). However,

notice that when t = 1 is the best choice, we have

RCF < I(Xs1;Yd1)−H(W |Xs1)

< C(c2
sdP )

meaning that it is better not to relay at all. Thus for CF relaying scheme presented

in Section 2, Chapter IV, t = 0 is the optimum choice, completing the required proof.
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APPENDIX E

EXPRESSIONS FOR BUCKET FILLING RATES

Define
K(i,U ,S) ≡

{
k ∈ {1, . . . , N} − {i}|Di

k ⊆ S,U ∩ Di
k ̸= ∅

}
,

where Di
j = Dj − {i}. Then for multiplexed coding, the fill rate of a set of users

U ⊆ S at node i is (with the convention that an empty sum gives zero)

ri(U ,S) =
1

|U|
log

(
1 +

∑
k∈K(i,U ,S) |cki|2SNR

1 +
∑

k:Di
k ̸*S |cki|2SNR

)
CDMA,

ri(U ,S) =
1

N |U|
∑

k∈K(i,U ,S)

log
(
1 + |cki|2NSNR

)
FDMA,

ri(U ,S) =
1

|U|
∑

k∈K(i,U ,S)

|cki|2 SNR → 0.

For superposition coding, assuming that a user splits its power equally amongst its

decoded set of messages, the fill rate for a set of users U ⊆ S at node i is

ri(U ,S) =
1

|U|
log

1 +

∑N
k=1,k ̸=i

|U∩Di
k|

|Dk|
|cki|2SNR

1 +
∑N

k=1,k ̸=i
|Sc∩Dk−Di|

|Dk|
|cki|2SNR

 CDMA,

ri(U ,S) =
1

N |U|

N∑
k=1,k ̸=i

log

1 +

|U∩Di
k|

|Dk|
|cki|2NSNR

1 + |Sc∩Dk−Di|
|Dk|

|cki|2NSNR

 FDMA,

ri(U ,S) =
1

|U|

N∑
k=1,k ̸=i

|U ∩ Di
k|

|Dk|
|cki|2 SNR → 0.
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