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Abstract

Watermarking models a copyright protection mechanism where an original data sequence is
modi�ed before distribution to the public in order to embed some extra information. The
embedding should be transparent (i.e., the modi�ed data should be similar to the original
data) and robust (i.e., the information should be recoverable even if the data is modi�ed
further). In this thesis, we describe the information-theoretic capacity of such a system as a
function of the statistics of the data to be watermarked and the desired level of transparency
and robustness. That is, we view watermarking from a communication perspective and
describe the maximum bit-rate that can be reliably transmitted from encoder to decoder.

We make the conservative assumption that there is a malicious attacker who knows how
the watermarking system works and who attempts to design a forgery that is similar to
the original data but that does not contain the watermark. Conversely, the watermarking
system must meet its performance criteria for any feasible attacker and would like to force
the attacker to e�ectively destroy the data in order to remove the watermark. Watermarking
can thus be viewed as a dynamic game between these two players who are trying to minimize
and maximize, respectively, the amount of information that can be reliably embedded.

We compute the capacity for several scenarios, focusing largely on Gaussian data and
a squared di�erence similarity measure. In contrast to many suggested watermarking tech-
niques that view the original data as interference, we �nd that the capacity increases with
the uncertainty in the original data. Indeed, we �nd that out of all distributions with the
same variance, a Gaussian distribution on the original data results in the highest capacity.
Furthermore, for Gaussian data, the capacity increases with its variance.

One surprising result is that with Gaussian data the capacity does not increase if the
original data can be used to decode the watermark. This is reminiscent of a similar model,
Costa's \writing on dirty paper", in which the attacker simply adds independent Gaussian
noise. Unlike with a more sophisticated attacker, we show that the capacity does not change
for Costa's model if the original data is not Gaussian.

Thesis Supervisor: Amos Lapidoth
Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

Watermarking can model situations where source sequences need to be copyright-protected

before distribution to the public. The copyright needs to be embedded in the distributed

version so that no adversary with access to the distributed version will be able produce a

forgery that resembles the original source sequence and yet does not contain the embedded

message. The watermarking process should, of course, introduce limited distortion so as to

guarantee that the distributed sequence closely resembles the original source sequence. The

original source sequence can be any type of data such as still image, audio or video that

can be modi�ed slightly and still maintain its inherent qualities.

Watermarking research has exploded over the past several years. For example, see

[KP00b, LSL00, PAK99, SKT98] and their extensive references. This interest has stemmed

from the ease by which data can now be reproduced and transmitted around the world,

which has increased the demand for copyright protection. Furthermore, ordinary encryption

is not suÆcient since, in order to be enjoyed by the public, the data must be accessed at

some point. Thus, there is a need to embed information directly in the distributed data,

which is precisely what a watermarking system does. Much of the work on watermarking has

focused on designing ad-hoc systems and testing them in speci�c scenarios. Relatively little

work has been done in assessing the fundamental performance trade-o�s of watermarking

systems. In this thesis, we seek to describe these performance trade-o�s.

The main requirements for a watermarking system are transparency and robustness. For

copyright protection, transparency means that the distributed data should be \similar"

to the original data, while robustness means that the embedded information should be

13



recoverable from any forgery that is \similar" to the distributed data. Another way of

thinking about robustness is that only by destroying the data could a pirate remove the

copyright. We formalize these requirements by specifying a distortion measure and claiming

that two data sequences are \similar" if the distortion between them is less than some

threshold. The threshold for transparency is in general di�erent from the threshold for

robustness.

In this thesis, we view watermarking as a communication system and we seek to �nd

the trade-o� between transparency, robustness, and the amount of information that can

be successfully embedded. In particular, we �nd the information-theoretic capacity of a

watermarking system depending on the transparency and robustness thresholds and the

statistical properties of the data to be watermarked.

For a general watermarking system, the data distributed to the public and the data

that is used to recover the embedded information will be di�erent. This di�erence might be

caused by a variety of signal processing techniques, e.g., photocopying or cropping an image

and recording or �ltering an audio clip. Instead of making any assumptions on the type of

signal processing that will take place, we make the conservative assumption that there is

a malicious attacker whose sole intent is to disrupt the information ow. For example, a

pirate might wish to remove copyright information in order to make illegal copies. In order

to please his customers, this pirate would also want the illegal copies to be of the highest

quality possible. Conversely, the watermarking system wishes to ensure that the act of

removing the embedded information causes the data to be unusable to such a pirate. We

can thus think of watermarking as a game between two players: a communication system

(encoder and decoder) and an attacker. The players are trying to respectively maximize

and minimize the amount of information that can be embedded.

We assume throughout the thesis that the attacker can only use one watermarked version

of the original data sequence to create a forgery. That is, we assume one of following two

things about the system. The �rst possible assumption is that only one watermark will be

embedded in each original data sequence. Such an assumption is plausible if the watermark

only contains copyright information. The second possible assumption is that even though

many di�erent versions exist, an attacker can only access one of them. This assumption

is reasonable if the cost of obtaining multiple copies is prohibitively high. A system that

has to deal with attackers with di�erent watermarked copies is usually called a �ngerprint-

14



Encoder Attacker Decoder- -- -
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Figure 1-1: A diagram of watermarking. The dashed line is used in the private version, but
not in the public version.

ing system, although the terms \watermarking" and \�ngerprinting" are sometimes used

interchangeably. See Section 2.3.3 for more about �ngerprinting.

We consider two versions of watermarking. In the private version, the decoder can use

both the forgery and the original data sequence recover the embedded information. In the

public version, the decoder must recover the embedded information from the forgery alone.

The private version is sometimes called non-oblivious or non-blind watermarking and the

public version is sometimes called oblivious or blind watermarking. The private version is

easier to analyze and is applicable, for example, when a copyright system is centralized.

The public version is more diÆcult to analyze, but it is applicable in a much wider context.

Surprisingly, we �nd that when the original data is Gaussian, then the capacity is the same

for both versions. However, the capacity-achieving technique is more complex for the public

version.

Our model of the watermarking game is illustrated in Figure 1-1 and can be described

briey as follows. A more thorough mathematical model is given below in Section 2.1. The

�rst player consists of the encoder and decoder who share a secret key �1 that allows them

to implement a randomized strategy. The attacker is the second player and it is assumed

to have full knowledge of the �rst player's strategy. We now discuss the functions of each of

the encoder, the attacker and the decoder. The encoder takes the original data sequence U

(which we will call the \covertext") and the watermark W and produces the \stegotext" X

for distribution to the public. The encoder must ensure that the covertext and the stegotext

are similar according to the given distortion measure. The attacker produces a forgery Y

from the stegotext, and he must also ensure that the forgery and the stegotext are similar

according to the given distortion measure. Finally, the decoder uses the forgery (in the

15



public version) or both the forgery and the covertext (in the private version) in order to

produce an estimate of the watermark Ŵ . Although the encoder, attacker and decoder act

in that order, it is important to remember that the encoder and decoder are designed �rst

and then the attacker is designed with knowledge of how the encoder and decoder work,

but not with knowledge of the realizations of their inputs.

Although we have and will use copyright protection as the main watermarking applica-

tion, a modi�ed watermarking model can be used to describe several other scenarios. For

example, the covertext could be a signal from an existing transmission technique (e.g., FM

radio) and the watermark could be supplemental digital information [CS99]. The stego-

text produced by the encoder would be the signal that is actually transmitted. Since the

transmitted signal is required to be similar to the original signal, existing receivers will still

work while newer (i.e., more expensive) receivers will be able to decode the supplemental

information as well. For this example, instead of an active attacker that arbitrarily modi�es

the stegotext, it is more reasonable to say that the received signal is simply the transmitted

signal plus independent ambient noise. This modi�ed watermarking model can also be used

to analyze a broadcast channel (i.e., one transmitter, many receivers) [CS01]. In this case,

the transmitter can use its knowledge of the signal it is sending to one user to design the

signal it is simultaneously sending to another user. The modi�ed watermarking model with

Gaussian covertext and Gaussian ambient noise is also known as \writing on dirty paper"

[Cos83]; see Section 2.5.4 for more on this model including two extensions.

We conclude the introduction by considering an example watermarking system. Let's

say that the rock band The LIzarDS has created a new hit song (this corresponds to our

covertext U). Instead of directly releasing the song to the public, the band submits it to a

watermarking system. This system takes the original song and the watermark (e.g., song

title, artist's name, etc.) and produces a version that will be distributed to the public (this

is our stegotext X). To respect the band's artistic integrity, the distributed version should

be similar to the original version (hence, our transparency requirement). Whenever the song

is played on the radio, the watermarking system could decode the watermark and ensure

that the proper royalty is paid to the artist. The system could also block copying over

the Internet based on the contents of the watermark, as the music industry would like to

happen. Finally, the watermarking system would like to be able to recover the information

in the watermark even if the distributed song has been altered, but is still essentially the
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same (hence, our robustness requirement). Note that the watermarking system is primarily

interested in the information embedded in the watermark and is only indirectly interested

in the song itself through the transparency and robustness requirements. In other words,

the part of the watermarking system that listens to the song is only required to extract the

watermark and is not required to improve the quality of the song.

1.1 Outline of Thesis

This thesis is organized as follows. In Chapter 2, we give a precise de�nition of watermarking

and give our results on the capacity of a watermarking system for several scenarios. We also

compare our watermarking model to other watermarking research and to two well-studied

information theoretic problems { communication with side information and the arbitrarily

varying channel. We conclude this chapter with two extensions of a communication with side

information problem, Costa's writing on dirty paper, which is similar to our watermarking

model. In Chapter 3, we de�ne and solve two mutual information games which are related

to the private and public versions of watermarking. Chapters 4, 5 and 6 are devoted to

proving the main watermarking capacity results. In Chapter 7, we give some conclusions

and some directions for future work.

1.2 Notation

We use script letters, e.g., U and X , to denote sets. The n-th Cartesian product of a set

U (e.g., U � U � � � � � U) is written Un. Random variables and random vectors are written

in upper case, while their realizations are written in lower case. Unless otherwise stated,

the use of bold refers to a vector of length n, for example U = (U1; : : : ; Un) (random) or

u = (u1; : : : ; un) (deterministic).

For real vectors, we use k � k and h�; �i to denote the Euclidean norm and inner product,

respectively. That is, for any �; 2 R
n , h�; i = Pn

i=1 �i i, and k�k =
ph�;�i. If

h�; i = 0, then we say that � and  are orthogonal and write � ?  . We denote by  ?

the linear sub-space of all vectors that are orthogonal to  . If  6= 0, then �j denotes the
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projection of � onto  , i.e.,

�j =
h�; i
k k2  :

Similarly, �j ? denotes the projection of � onto the subspace orthogonal to  , i.e.,

�j ? = �� �j :

We use P to denote a generic probability measure on the appropriate Borel �-algebra.

For example, PU (�) is the distribution of U on the Borel �-algebra of subsets of Un. Simi-
larly, PXjU denotes the conditional distribution of X given U , and fXjU (xju) denotes the
conditional density, when it exists.
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Chapter 2

Watermarking Model and Results

This chapter is organized as follows. In Section 2.1, we give precise de�nitions of water-

marking and its information-theoretic capacity. In Section 2.2, we summarize our main

results on the watermarking capacity for six di�erent scenarios. In Section 2.3, we compare

our model and results to prior work that has been done on watermarking. In Section 2.4,

some of the assumptions we have made in our watermarking model are discussed, with

an emphasis on which assumptions can be dropped and which need improvement. In Sec-

tion 2.5, we show that watermarking can be thought of as a combination of two well-studied

information-theoretic problems: communication with side information and the arbitrarily

varying channel. In Section 2.5.4, we consider a speci�c communication with side informa-

tion model { Costa's writing on dirty paper { and describe two extensions to this model.

2.1 Precise De�nition of Watermarking

We now give a more detailed description of our watermarking model. Recall that this model

is illustrated in Figure 1-1 above.

Prior to the use of the watermarking system, a secret key (random variable) �1 is gener-

ated and revealed to the encoder and decoder. Independently of the secret key �1, a source

subsequently emits a blocklength-n covertext sequence U 2 Un according to the law PU ,

where fPUg is a collection of probability laws indexed by the blocklength n. Independently
of the covertext U and of the secret key �1, a copyright message W is drawn uniformly

over the set Wn = f1; : : : ; b2nRcg, where R is the rate of the system.

Using the secret key, the encoder maps the covertext and message to the stegotext X.
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For every blocklength n, the encoder thus consists of a measurable function fn that maps

realizations of the covertext u, the message w, and the secret key �1 into the set X n, i.e.,

fn : (u; w; �1) 7! x 2 X n:

The random vector X is the result of applying the encoder to the covertext U , the message

W , and the secret key �1, i.e.,X = fn(U ;W;�1). The distortion introduced by the encoder

is measured by

d1(u;x) =
1

n

nX
i=1

d1(ui; xi);

where d1 : U�X ! R
+ is a given nonnegative function. We require that the encoder satisfy

d1(U ;X) � D1; a.s.; (2.1)

where D1 > 0 is a given constant called the encoder distortion level, and a.s. stands for \al-

most surely", i.e., with probability 1. We will also consider an average distortion constraint

on the encoder; see Section 2.2.3.

Independently of the covertext U , the message W , and the secret key �1 the attacker

generates an attack key (random variable) �2. For every n > 0, the attacker consists of a

measurable function gn that maps realizations of the stegotext x and the attack key �2 into

the set Yn, i.e.,

gn : (x; �2) 7! y 2 Yn: (2.2)

The forgery Y is a random vector that is the result of applying the attacker to the stego-

text X and the attacker's source of randomness �2, i.e., Y = gn(X;�2). The distortion

introduced by the attacker is measured by

d2(x;y) =
1

n

nX
i=1

d2(xi; yi);
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where d2 : X �Y ! R
+ is a given nonnegative function. The attacker is required to satisfy

d2(X ;Y ) � D2; a.s.; (2.3)

where D2 > 0 is a given constant called the attacker distortion level. We will also consider

an average distortion constraint on the attacker; see Section 2.2.3.

In the public version of watermarking, the decoder attempts to recover the copyright

message based only on realizations of the secret key �1 and the forgery y. In this version

the decoder is a measurable mapping

�n : (y; �1) 7! ŵ 2 Wn (public version).

In the private version, however, the decoder also has access to the covertext. In this case

the decoder is a measurable mapping

�n : (y;u; �1) 7! ŵ 2 Wn (private version):

The estimate of the message Ŵ is a random variable that is the result of applying the

decoder to the forgery Y , the covertext U (in the private version), and the same source of

randomness used by the encoder �1. That is, Ŵ = �n(Y ;U ;�1) in the private version,

and Ŵ = �n(Y ;�1) in the public version.

The realizations of the covertext u, message w, and sources of randomness (�1; �2)

determine whether the decoder errs in decoding the copyright message, i.e., if the estimate

of the message ŵ di�ers from the original message w. We write this error indicator function

(for the private version) as

e(u; w; �1; �2; fn; gn; �n) =

8><
>:
1 if w 6= �n

�
gn
�
fn(u; w; �1); �2

�
;u; �1

�
0 otherwise

;

where the expression for the public version is the same, except that the decoder mapping

�n does not take the covertext u as an argument. We consider the probability of error

averaged over the covertext, message and both sources of randomness as a functional of the
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mappings fn, gn, and �n. This is written as

�Pe(fn; gn; �n) = EU ;W;�1;�2 [e(U ;W;�1;�2; fn; gn; �n)]

= Pr
�
Ŵ 6=W

�
;

where the subscripts on the right hand side (RHS) of the �rst equality indicate that the

expectation is taken with respect to the four random variables U , W , �1, and �2.

We adopt a conservative approach to watermarking and assume that once the water-

marking system is employed, its details | namely the encoder mapping fn, the distributions

(but not realizations) of the covertext U and of the secret key �1, and the decoder mapping

�n | are made public. The attacker can be malevolently designed accordingly. The wa-

termarking game is thus played so that the encoder and decoder are designed prior to the

design of the attacker. This, for example, precludes the decoder from using the maximum-

likelihood decoding rule, which requires knowledge of the law PY jW and thus, indirectly,

knowledge of the attack strategy.

We thus say that a rate R is achievable if there exists a sequence f(fn; �n)g of allowable
rate-R encoder and decoder pairs such that for any sequence fgng of allowable attackers

the average probability of error �Pe(fn; gn; �n) tends to zero as n tends to in�nity.

The coding capacity of watermarking is the supremum of all achievable rates. It depends

on �ve parameters: the encoder distortion function d1(�; �) and level D1, the attacker dis-

tortion function d2(�; �) and level D2, and the covertext distribution fPUg. The distortion
functions will be made obvious from context, and thus we write the generic coding capacity

of watermarking as Cpriv(D1;D2; fPUg) and Cpub(D1; D2; fPUg) for the private and public

version, respectively.

2.2 Capacity Results for Watermarking

In this section, we describe the capacity of watermarking under various assumptions on the

covertext distribution, distortion constraints, and attacker capabilities. We �nd the capacity

for the standard watermarking model of Section 2.1 when the covertext distribution is IID

scalar Gaussian (Section 2.2.1), IID vector Gaussian (Section 2.2.4) and IID Bernoulli(1=2)

(Section 2.2.6). We deviate from the standard model by considering an attacker that only
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has to meet the distortion constraint in expectation (Section 2.2.3) and an attacker that can

only inject additive noise (Section 2.2.2). Finally, we �nd a general formula for the capacity

when no covertext is present (Section 2.2.5). The detailed proofs of all of these results can

be found in later chapters; we present a proof sketch and a reference to the detailed proof

following each result.

2.2.1 Scalar Gaussian Watermarking Game

We now consider a watermarking system where all of the alphabets are the real line (i.e.,

U = X = Y = R) and where the distortion measures for both the encoder and attacker will

be squared error, i.e., d1(u; x) = (x � u)2 and d2(x; y) = (y � x)2. Of particular interest

is when the covertext U is a sequence of independent and identically distributed (IID)

random variables of law N (0; �2u), i.e., zero-mean Gaussian. We refer to the scalar Gaussian

watermarking (SGWM) game when the distortion constraints and covertext distribution are

as speci�ed above. Surprisingly, we �nd that the capacity of the SGWM game is the same

for the private and public versions. Furthermore, we show that for all stationary and ergodic

covertext distributions, the capacity of the watermarking game is upper bounded by the

capacity of the SGWM game.

To state our results on the capacity of the SGWM game we need to de�ne the interval

A(D1;D2; �
2
u) =

�
A : max

�
D2;

�
�u �

p
D1

�2� � A �
�
�u +

p
D1

�2�
; (2.4)

and the mappings

s(A;D1;D2; �
2
u) =

D1

D2

�
1� D2

A

��
1� (A� �2u �D1)

2

4D1�2u

�
; (2.5)

and1

C�(D1;D2; �
2
u)

=

8><
>:
maxA2A(D1;D2;�2u)

1
2 log

�
1 + s(A;D1;D2; �

2
u)
�

if A(D1;D2; �
2
u) 6= ;

0 otherwise

: (2.6)

1Unless otherwise speci�ed, all logarithms in this thesis are base-2 logarithms.
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Note that a closed-form solution for (2.6) can be found by setting the derivative with

respect to A to zero. This yields a cubic equation in A that can be solved analytically; see

Lemma A.1. Further note that C�(D1;D2; �
2
u) is zero only if D2 � �2u +D1 + 2�u

p
D1.

The following theorem demonstrates that if the covertext has power �2u, then the coding

capacity of the private and public watermarking games cannot exceed C�(D1; D2; �
2
u). Fur-

thermore, if the covertext U is an IID zero-mean Gaussian sequence with power �2u, then

the coding capacities of the private and public versions are equal, and they coincide with

this upper bound.

Theorem 2.1. For the watermarking game with real alphabets and squared error distortion

measures, if fPUg de�nes an ergodic covertext U such that E
�
U4
k

�
<1 and E

�
U2
k

� � �2u,

then

Cpub(D1;D2; fPUg) � Cpriv(D1; D2; fPUg) (2.7)

� C�(D1; D2; �
2
u): (2.8)

Equality is achieved in both (2.7) and (2.8) if U is an IID Gaussian sequence with mean

zero and variance �2u, i.e. if PU = (N (0; �2u))
n for all n.

This theorem shows that, of all ergodic covertexts with a given power, the IID zero-

mean Gaussian covertext has the largest watermarking capacity. Although the covertext

can be thought of as additive noise in a communication with side information situation (see

Section 2.5.2), this result di�ers from usual \Gaussian is the worst-case additive noise" idea,

see e.g., [CT91, Lap96]. The basic reason that a Gaussian covertext is the best case is that

the encoder is able to transmit the watermark using the uncertainty of the covertext, and a

Gaussian distribution has the most uncertainty (i.e., highest entropy) out of all distributions

with the same second moment.

As an example, consider an IID covertext in which each sample Uk is either ��u or +�u
with probability 1=2 each, so that E

�
U2
k

�
= �2u. If D1 = D2 � �2u, then C

�(D1;D2; �
2
u) �

1=2 bits/symbol, but a watermarking system could not reliably transmit at nearly this rate

with this covertext. To see this, let us further consider an attacker that creates the forgery

by quantizing each stegotext sample Xk to the nearest of ��u or +�u. Even in the private

version, the only way the encoder could send information is by changing Uk by at least �u,

and the encoder can do this for only a small percentage of the samples since D1 � �2u.
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Indeed, using the results of Section 2.2.6 on the binary watermarking game, we see that the

largest achievable rate for this �xed attacker is2 Hb

�
D1=�

2
u

�
bits/symbol, which is smaller

than 1=2 bits/symbol for D1=�
2
u < 0:11, i.e., the regime of interest. Note that the capacity

for this scenario is even smaller since we have only considered a known attacker.

We also �nd that the capacity of the SGWM game is increasing in �2u; see Figure 2-1.

Thus, again we see that the greater the uncertainty in the covertext the more bits the

watermarking system can hide in it.

Another interesting aspect of this theorem is that, as in the \writing on dirty paper"

model (see Section 2.5.4 below and [Cos83]), the capacity of the SGWM game is una�ected

by the presence or absence of side-information (covertext) at the receiver. See [Cov99] for

some comments on the role of receiver side-information, particularly in card games.

Moulin and O'Sullivan [MO99, MO00] give a capacity for the SGWM game that is

strictly smaller than C�(D1; D2; �
2
u). In particular, they claim that the capacity is given by

1
2 log(1+s(A;D1;D2; �

2
u)) when A is �xed to �2u+D1 instead of optimized over A(D1;D2; �

2
u)

as in (2.6), while the optimal A is strictly larger than �2u + D1; see Lemma A.1. This

di�erence is particularly noticeable when �2u + D1 < D2 < �2u + D1 + 2�u
p
D1, since

C�(D1;D2; �
2
u) > 0 in this range while the capacity given in [MO99, MO00] is zero. An

example of the two capacity expressions is plotted in Figure 2-1. Both capcity expressions

are bounded above by 1
2 log

�
1 + D1

D2

�
and approach this bound as �2u increases. Note that

the watermarking game here is de�ned di�erently than in [MO99, MO00], but we believe

that the capacity of the SGWM game should be the same for both models. Indeed, the

general capacity expression in [MO99, MO00] is similar to our mutual information game

(see Chapter 3), and we �nd that the value of the mutual information game for a Gaussian

covertext is also C�(D1;D2; �
2
u) (see Theorem 3.1).

Theorem 2.1 is proved in Chapter 4 in two steps: a proof of achievability for Gaussian

covertexts and a converse for general covertexts. Although achievability for the public

version implies achievability for the private version, we give separate proofs for the private

version (Section 4.2) and the public version (Section 4.3). We have chosen to include both

proofs because the coding technique for the private version has a far lower complexity (than

the coding technique for the public version) and may give some insight into the design of

practical watermarking systems for such scenarios. We now provide a sketch of the proof.

2We use Hb(�) to denote the binary entropy, i.e., Hb(p) = �p log p� (1 � p) log(1� p).
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Figure 2-1: Scalar Gaussian watermarking capacity versus �2u with D1 = 1 and D2 = 4.
The dashed line is the capacity expression from [MO99, MO00].

Achievability

We now argue that for a Gaussian covertext all rates less than C�(D1;D2; �
2
u) are achievable

in the public version; see Section 4.3 for a full proof. This will also demonstrate that all

such rates are achievable in the private version as well. The parameter A corresponds to

the desired power in the covertext, i.e., our coding strategy will have n�1kXk � A. We

now describe a coding strategy that depends on A (and the given parameters D1, D2 and

�2u) and can achieve all rates up to 1
2 log(1 + s(A;D1;D2; �

2
u)). Hence, all rates less than

C�(D1;D2; �
2
u) are achievable with the appropriate choice of A. The coding strategy is

motivated by the works of Marton [Mar79], Gel'fand and Pinsker [GP80], Heegard and

El Gamal [HEG83], and Costa [Cos83]. The encoder/decoder pair use their common source

of randomness to generate a codebook consisting of 2nR1 IID codewords that are partitioned

into 2nR bins of size 2nR0 each (hence, R = R1�R0). Each codeword is uniformly distributed

on an n-sphere with radius depending on A. Given the covertext u and the watermark w, the

encoder �nds the codeword in bin w that is closest (in Euclidean distance) to u. Let vw(u)

be the chosen codeword. The encoder then forms the stegotext as a linear combination of
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the chosen codeword and the covertext,

x = vw(u) + (1� �)u;

where � is a constant that depends on A. The distortion constraint will be met with high

probability if R0 is large enough. The decoder �nds the closest codeword (out of all 2nR1

codewords) to the forgery, and estimates the watermark as the bin of this closest codeword.

If R1 is small enough, then the probability of error can be made arbitrarily small. The two

constraints on R0 and R1 combine to give the desired bound on the overall rate R.

Converse

We now argue that no rates larger than C�(D1;D2; �
2
u) are achievable in the private version

for any ergodic covertext distribution with power at most �2u; see Section 4.5 for a full proof.

The main idea is to show using a Fano-type inequality that in order for the probability of

error to tend to zero, a mutual information term must be greater than the watermarking

rate. The mutual information term of interest is roughly I(X;Y jU ), which is related

to the capacity with side information at the encoder and decoder; see Section 2.5.2. A

consequence of this proof is that these rates are not achievable even if the decoder knew the

statistical properties of the attacker. The basic attacker that guarantees that the mutual

information will be small is based on the Gaussian rate distortion forward channel. That is,

such an attacker computes A (i.e., the power in the stegotext) and implements the channel

that minimizes the mutual information between the stegotext and the forgery subject to

a distortion constraint, assuming that the stegotext were an IID sequence of mean-zero

variance-A Gaussian random variables. The method that the attacker uses to compute A is

critical. If A is the average power of the stegotext (averaged over all sources of randomness),

then the mutual information will be small but the attacker's a.s. distortion constraint might

not be met. If A is the power of the realization of the stegotext, then the a.s. distortion

constraint will be met but the encoder could potentially use A to transmit extra information.

A strategy that avoids both of these problems is to compute A by quantizing the power

of the realization of the stegotext to one of �nitely many values. This attacker will both

meet the distortion constraint (if the quantization points are dense enough) and prevent

the encoder from transmitting extra information.
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2.2.2 Additive Attack Watermarking Game

In this section, we describe a variation of the watermarking game for real alphabets and

squared error distortions, which we call the additive attack watermarking game. (When it

is necessary to distinguish the two models, we will refer to the original model of Section 2.1

as the general watermarking game.) The study of this model will show that it is suboptimal

for the attacker to produce the forgery by combining the stegotext with a power-limited

jamming sequence generated independently of the stegotext. Similarly to Costa's writing

on dirty paper result (see Section 2.5.4 and [Cos83]), we will show that if the covertext U

is IID Gaussian then the capacities of the private and public versions are the same and are

given by 1
2 log(1 +

D1
D2
). This result can be thus viewed as an extension of Costa's result to

arbitrarily varying noises; see Section 2.5.4 for more discussion of this extension.

In the additive attack watermarking game the attacker is more restricted than in the

general game. Rather than allowing general attacks of the form (2.2), we restrict the

attacker to mappings that are of the form

gn(x; �2) = x+ ~gn(�2) (2.9)

for some mapping ~gn. In particular, the jamming sequence

~Y = ~gn(�2) (2.10)

is produced independently of the stegotext X, and must satisfy the distortion constraint

1

n

 ~Y 2 � D2; a.s.: (2.11)

The capacity of the additive attack watermarking game is de�ned similarly to the capacity

of the general game and is written as CAA
priv(D1;D2; fPUg) and CAA

pub(D1;D2; fPUg) for the
private and public versions, respectively. Our main result in this section is to describe these

capacities.
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Theorem 2.2. For any covertext distribution fPUg,

CAA
pub(D1;D2; fPUg) � CAA

priv(D1; D2; fPUg) (2.12)

=
1

2
log

�
1 +

D1

D2

�
: (2.13)

Equality is achieved in (2.12) if U is an IID Gaussian sequence.

We �rst sketch the converse for both versions. An IID mean-zero, variance-D2 Gaussian

sequence ~Y does not satisfy (2.11). However, for any Æ > 0, an IID mean-zero, variance-

(D2 � Æ) Gaussian sequence ~Y satis�es n�1k ~Y k � D2 with arbitrarily large probability for

suÆciently large blocklength n. Since the capacity here cannot exceed the capacity when

U is absent, the capacity results on an additive white noise Gaussian channel imply that

the capacity of either version is at most 1
2 log(1 +

D1
D2
).

We now argue that the capacity of the private version is as in the theorem. When the

sequence U is known to the decoder, then the results of [Lap96] can be used to show that all

rates less than 1
2 log(1+

D1
D2
) are achievable using Gaussian codebooks and nearest neighbor

decoding. This establishes the validity of (2.13).

To complete the proof of this theorem, we must show that 1
2 log(1+

D1
D2
) is achievable in

the public version of the game with IID Gaussian covertext. We present a coding strategy

and demonstrate that all such rates are achievable in Chapter 4.3.

Since any allowable additive attacker is also an allowable general attacker, the capacity

of the additive attack watermarking game provides an upper bound to the capacity of the

general watermarking game. However, comparing Theorems 2.1 and 2.2, we see that for an

IID Gaussian covertext this bound is loose. Thus, for such covertexts, it is suboptimal for

the attacker in the general watermarking game to take the form (2.9). See Section 2.5.4 for

more discussion on the additive attack watermarking game.

2.2.3 Average Distortion Constraints

In this section, we show that if the almost sure distortion constraints are replaced with

average distortion constraint, then the capacity is typically zero. That is, we replace the

a.s. constraints (2.1) and (2.3) on the encoder and attacker, respectively, with

E [d1(U ;X)] � D1; (2.14)
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and

E [d2(X;Y )] � D2; (2.15)

where the expectations are with respect to all relevant random quantities. In particular, we

have the following theorem.

Theorem 2.3. For the watermarking game with real alphabets and squared error distortion,

if the covertext U satis�es

lim inf
n!1

E

�
1

n
kUk2

�
<1; (2.16)

and if the average distortion constraints (2.14), (2.15) are in e�ect instead of the a.s.

distortion constraints (2.1), (2.3), then no rate is achievable in either version of the game.

This result is reminiscent of results from the theory of Gaussian arbitrarily varying

channels (AVCs) [HN87] and from the theory of general AVCs with constrained inputs and

states [CN88a], where under average power constraints no positive rates are achievable3.

The detailed proof of this theorem is given in Appendix B.1; the basic idea is as follows.

The average power of the covertext is bounded and hence the average power of the stegotext

is bounded as well. Thus, the attacker can set the forgery equal to the zero vector with

some �xed probability and still meet the average distortion constraint. For this attacker, the

probability of error is bounded away from zero for any positive rate. Hence, no positive rates

are achievable when the attacker is only required to meet an average distortion constraint.

2.2.4 Vector Gaussian Watermarking Game

We now consider a generalization of the SGWM game, where the covertext consists of an IID

sequence of zero-mean Gaussian vectors of a given covariance. This will be called the vector

Gaussian watermarking (VGWM) game. Here, the alphabets are all the m-dimensional

Euclidean space, i.e., U = X = Y = R
m , and the distortion measures are squared Euclidean

distance, i.e., d1(u;x) = kx� uk2 and d2(x;y) = ky � xk2. Furthermore, the covertext is
an IID sequence of m-vectors U = (U1; : : : ;Un), where each U i is a zero-mean Gaussian

random vector with a given m �m covariance matrix Su. Note that the vector size m is

3The �-capacity is, however, typically positive for � > 0
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�xed, while the blocklength n is allowed to be arbitrarily large. We use CVGWM
priv (D1;D2; Su)

and CVGWM
pub (D1;D2; Su) to denote the capacity of the VGWM game for the private and

public versions, respectively.

Theorem 2.4. For the vector Gaussian watermarking game,

CVGWM
pub (D1;D2; Su) = CVGWM

priv (D1; D2; Su) (2.17)

= max
D1�0 : etD1�D1

min
D2�0 : etD2�D2

mX
j=1

C�(D1j ;D2j ; �
2
j ); (2.18)

where C�(D1;D2; �
2) is de�ned in (2.6), (�21 ; : : : ; �

2
m) are the eigenvalues of Su and e is

the m-vector containing all 1's.

This theorem is proved in detail in Chapter 5, but we now briey describe the coding

strategy that achieves the desired rates for the public version. The covariance matrix Ku

can be diagonalized using an orthogonal transformation that does not a�ect the distortion.

Thus, we can assume that Ku is diagonal so that U consists of m components, each a

length-n sequence of IID zero-mean Gaussian random variables with respective variances

(�21 ; : : : ; �
2
m) = �2. After choosing m-dimensional vectors D1, ~D2 and A, the encoder

encodes component j using the scalar encoder for the SGWM game (see the discussion

after Theorem 2.1 and Chapter 4) based on A = Aj, D1 = D1j , D2 = ~D2j , and �
2
u = �2j .

Thus, the vector ~D2 acts as an estimate of the amount of distortion the attacker will place

in each component. Every attacker is associated with a feasible D2 (not necessarily equal

to ~D2), where D2j describes the amount of distortion the attacker inicts on component j.

However, for the optimal choice of ~D2 by the encoder, the attacker will choose D2 = ~D2

in order to minimize the achievable rates. This allows us to describe the achievable rates

using the simple form of (2.18).

We now discuss some aspects of this theorem, focusing on the di�erences and similarities

between SGWM and VGWM. One major similarity is that in both cases the public and

private versions have the same capacity. One major di�erence between the two games is

that in the vector version an attacker based on the Gaussian rate distortion solution is no

longer optimal, i.e., it does not necessarily prevent rates larger than capacity from being

achievable. A rate-distortion based attacker calculates the second order statistics of the

stegotext, and designs the attack to minimize (subject to an average distortion constraint)
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the mutual information between the stegotext and the forgery, assuming that the stegotext

was Gaussian. In the SGWM game, this attacker does not necessarily meet the almost sure

distortion constraint, but it does prevent rates higher than capacity from being achievable.

However, in the vector version, if such an attacker is used, then rates strictly larger than

capacity can be achieved. See Section 5.7 for more detail. The di�erence is that an optimal

attacker does not distribute his distortion to the di�erent components of the stegotext

using the familiar water�lling algorithm (see e.g., [CT91]). However, having chosen the

correct distortion distribution, a parallel concatenation of optimal attackers for the SGWM

game (and hence a parallel concatenation of scalar Gaussian rate distortion solutions) does

prevent rates larger than capacity from being achievable.

We also note that the order in which the watermarking game is played remains critical

in the vector version. In particular, the max and min in (2.18) cannot be switched. We

highlight the signi�cance of this observation by restricting the encoder and attacker to

parallel concatenations of optimal scalar strategies based on some vectors D1 and D2.

There is no single vector D2 that the attacker could pick to ensure that no rates higher

than the capacity are achieved. Instead, the attacker must use his advantage of playing

second (i.e., his knowledge of the encoder's strategy) in order to accomplish this goal. This

di�ers from the vector Gaussian arbitrarily varying channel [HN88] where the attacker (resp.

encoder) can choose a distortion distribution to ensure that no rates more than (resp. all

rates up to) the capacity can be achieved.

2.2.5 Discrete Alphabets, No Covertext

In this section, we examine an extreme watermarking scenario in which there is no covertext

to hide the message in. In this situation, the attacker can directly modify (subject to a

distortion constraint) the codeword produced by the encoder. This can be viewed as an

extension of [CN88a], which found the random coding capacity of an arbitrarily varying

channel (AVC) with constrained inputs and states (see Section 2.5.3 for more on the AVC).

The primary di�erence is that in [CN88a] the inputs and states are chosen independently

of each other, while here the states of the channel are chosen as a function of the input

sequence.

Before stating the main result of this section, we �rst give our assumptions and some

notation. We assume that the alphabets X and Y are �nite. Since there is no covertext,
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the distortion constraint (2.1) is replaced by n�1
Pn

i=1 d1(Xi) � D1 a.s. for some function

d1 : X 7! R+ . The distortion constraint (2.3) imposed on the attacker remains the same.

The lack of covertext also means that there is no distinction between the private and public

versions, and thus we write the capacity for this scenario as CNoCov(D1;D2). For any

distributions PX and PY jX , we write IPXPY jX (X;Y ) to be the mutual information between

random variables X and Y under joint distribution PXPY jX .

Theorem 2.5. When there is no covertext and discrete alphabets, the capacity of the wa-

termarking game is given by

CNoCov(D1; D2) = max
PX :EPX [d1(X)]�D1

min
PY jX :EPXPY jX

[d2(X;Y )]�D2

IPXPY jX (X;Y ): (2.19)

The proof of this Theorem can be found in Section 6.1; we now briey sketch the

arguments behind the proof.

Achievability

For a �xed n, the encoder chooses a distribution PX such that the constraint in (2.19) is

satis�ed and n � PX(x) is an integer for every x 2 X . The encoder then generates 2nR IID

codewords fX1; : : : ;X2nRg, with each codeword uniformly distributed over all n-sequences

whose empirical distribution is given by PX . Given the codebook and the watermark w, the

transmitted sequence is simply xw. Note that n�1d1(xw) = EPX [d1(X)] � D1, and thus

the distortion constraint is satis�ed. The decoder uses the maximum mutual information

(MMI) decoding rule. That is, the estimate of the watermark is given by

ŵ = argmax
1�w0�2nR

I(xw0 ^ y);

where I(x ^ y) is the mutual information between random variables X and Y when they

have the joint empirical distribution of x and y. The probability of error only depends on

the attacker through the conditional empirical distribution of y given x. Using techniques

from [CK81], we can show that the probability of error goes to zero as long as the rate

R is less than I(xw ^ y) for the correct watermark w. Finally, the conditional empirical

distribution of y given x must satisfy the constraint in (2.19) in order for the attacker to

meet his distortion constraint, and thus the encoder can guarantee that the score of the
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correct codeword I(xw^y) is arbitrarily close to CNoCov(D1;D2) by making the blocklength

n large enough.

Converse

The attacker �nds the minimizing PY jX in (2.19) for the empirical distribution of the trans-

mitted sequence x. He then implements a memoryless channel based on this PY jX . The

distortion constraint will be met with high probability as long as any ~D2 < D2 is used

instead of D2 in (2.19). A Fano-type inequality can be used to show that no rates higher

than CNoCov(D1; ~D2) are achievable for this attacker. The converse follows by continuity of

(2.19) in D2.

2.2.6 Binary Watermarking Game

In this section, we consider the watermarking game binary alphabets, i.e., U = X = Y =

f0; 1g. Further, we assume that the covertext U is an IID sequence of Bernoulli(1=2) random

variables, i.e., Pr(Ui = 0) = Pr(Ui = 1) = 1=2. We use Hamming distortion constraints for

both encoder and decoder, i.e., d1(u;x) = n�1wh(u�x) and d2(x;y) = n�1wh(x�y). We

write the capacity in this scenario as CBinWM
priv (D1;D2) and C

BinWM
pub (D1; D2) for the private

and public versions, respectively.

Theorem 2.6. For the binary watermarking game with 0 � D1 � 1=2 and 0 � D2 � 1=2,

CBinWM
priv (D1; D2) = Hb(D1 
D2)�Hb(D2); (2.20)

and

CBinWM
pub (D1;D2) = max

2D1�g�1
g

�
Hb

�
D1

g

�
�Hb(D2)

�
; (2.21)

where D1 
D2 = D1(1�D2) + (1 �D1)D2 and Hb(�) is the binary entropy, i.e., Hb(p) =

�p log p� (1� p) log(1� p).

See �gure 2-2 for an example plot of CBinWM
priv (D1; D2) and C

BinWM
pub (D1;D2). Note that

CBinWM
priv (D1;D2) > CBinWM

pub (D1;D2) for 0 < D1 < 1=2 and 0 < D2 < 1=2. Thus, unlike the

Gaussian watermarking games, the capacity of the private version can exceed the capacity
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Figure 2-2: Binary watermarking capacity (private and public versions) versus D1 with
D2 = 0:15.

of the public version. Also note that the maximizing g in (2.21) is given by

g� =

8><
>:

D1

1�2�Hb(D2)
if D1 < 1� 2�Hb(D2)

1 otherwise

; (2.22)

where 1� 2�Hb(D2) � 1=2 and thus g� � 2D1. Further, we can rewrite (2.21) as

CBinWM
pub (D1;D2) =

8><
>:
D1 �

�
Hb(1�2

�Hb(D2))�Hb(D2)

1�2�Hb(D2)

�
if D1 < 1� 2�Hb(D2);

Hb(D1)�Hb(D2) otherwise

: (2.23)

Note that Barron, Chen and Wornell [BCW00] found identical expressions for the capac-

ity when the attacker is �xed to be a binary symmetric channel with crossover probability

D2. Indeed, we prove the converse part of this theorem by �xing the attacker to be such a

channel and computing the resulting capacity using an extension (Lemma 2.1) of Gel'fand

and Pinsker's work [GP80] on channels with side information. The detailed proof of the

converse and the achievability parts of the theorem can be found in Section 6.2. We give a

brief sketch of the achievability proofs below.
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Achievability for Private Version

The encoder and the decoder can use their combined knowledge of the covertext U to

provide secrecy about a transmitted sequence chosen independently of U . To see this, let a

codeword ~X = fn(W;�1) be chosen independently of U (but depending on the watermark

W and the secret key �1). The encoder will form the stegotext as X = U � ~X, and thus

the distortion constraint on the encoder becomes n�1wh( ~X) � D1 a.s.. Furthermore, U is

an IID sequence of Bernoulli(1=2) random variables, and thus X and ~X are independent.

Thus, any rate achievable for the AVC with constrained inputs and states is achievable

here; see Section 2.5.3 and [CN88a]. In particular, all rates less than CBinWM
priv (D1; D2) are

achievable.

Achievability for Public Version

Let us �rst �x a parameter g as in (2.21). The encoder/decoder pair select ng indices

uniformly out of all subsets of f1; : : : ; ng of size ng. The encoder will use only these indices
of the covertext to encode the watermark. We use a codebook similar to that used for

the public version of the SGWM game. In particular, every watermark w 2 f1; : : : ; 2nRg
corresponds to a bin of 2nR0 codewords. Each codeword is a length-ng IID sequence of

Bernoulli(1=2) random variables. Given the watermark w and the covertext u, the encoder

�nds the codeword in bin w that agrees with the covertext at the selected indices as closely

as possible. The encoder then creates the stegotext by replacing the selected positions of

the covertext with the closest codeword. The distortion constraint will be satis�ed if

R0 > g �
�
1�Hb

�
D1

g

��
: (2.24)

The decoder �nds the codeword closest to the forgery at the selected indices, and estimates

the watermark as the bin of this codeword. Let ~y = y � x be the di�erence between the

forgery and the stegotext. The probability of error only depends on the attacker through

the Hamming weight of ~y, which can be at most nD2. With high probability, the Hamming

weight of ~y at the selected positions will not greatly exceed ngD2. This observation allows

us to show that the probability of error tends to zero as long as

R+R0 < g � (1�Hb(D2)) : (2.25)
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The combination of (2.24) and (2.25) completes the proof.

2.3 Prior Work on Watermarking

In this section, we discuss some of the related literature and compare it to the results

presented above. We �rst briey describe some techniques that have been proposed, and

we then give an overview of the information-theoretic work that has been done.

2.3.1 Practical Approaches to Watermarking

The simplest watermarking systems convey information by modifying the least signi�cant

parts of the covertext data, e.g., changing the low-order bits in a digital representation

of an image. These systems are transparent, but they are easily corrupted. For example,

lossy compression will remove the least signi�cant portions of the data or an attacker might

replace low-order bits with random bits without greatly a�ecting the quality of the data. It

was recognized [CKLS97] that in order to achieve robustness, information must be embedded

in signi�cant portions of the data. Thus, for a given desired watermarking rate, there is a

non-trivial trade-o� between robustness and transparency.

The most widely studied class of watermarking systems consist of \spread spectrum"

techniques, introduced in [CKLS97]. In these systems, a noise-like sequence is added to the

covertext at the encoder and a correlation detector is used at the decoder. The watermark

(i.e., the added sequence) is often scaled to achieve the desired robustness or transparency

requirement, but otherwise the watermark is independent of the covertext. The watermark

can be added either directly or in transform domains like Discrete Cosine Transform (DCT)

[CKLS97], Fourier-Mellon transform [ORP97] or wavelets [XA98]. One important feature

of such systems is that when the covertext is not available at the decoder (i.e., the public

version), then the covertext acts as interference in the decoding process. Thus, as the

variability in the original data increases, the amount of information that can be embedded

in this manner decreases. However, we have seen that the capacity for our watermarking

model can increase as the variability of the covertext increases, e.g., for the SGWM game.

Thus, forming the stegotext by linearly combining the covertext and a signal that only

depends on the watermark is suboptimal.

One new watermarking method that does not su�er from the problem of interference
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from the covertext is Quantization Index Modulation (QIM), introduced by Chen and Wor-

nell [Che00, CW01]. In QIM, a quantizer is used for the covertext depending on the value

of the watermark. By varying the number and coarseness of the quantizers, one can trade

o� between transparency, robustness and data rate. Some of the watermarking techniques

described in this thesis are similar to distortion compensated QIM, in which the stegotext

is a linear combination of the covertext and the quantized version of the covertext (where

again the quantizer depends on the value of the watermark). For example, in the public

version of the SGWM game, the stegotext is a linear combination of the covertext and a

codeword selected from the bin associated with the watermark; see the discussion after The-

orem 2.1 and Section 4.3. The process of selecting the codeword is similar to quantization

since the chosen codeword is the one closest to the covertext. In [Che00, CW01], it was

shown that distortion compensated QIM achieves the capacity for situations with a known

attacker. Here, we show that a similar technique also achieves the capacity for an unknown

and arbitrary attacker.

2.3.2 Information-Theoretic Watermarking

The basic information theoretic model of watermarking was introduced by O'Sullivan,

Moulin and Ettinger [MO99, MO00, OME98]. They investigated the capacity of a model

that is similar to that described above but with several important di�erences. First, they

assume a maximum likelihood decoder, which requires the decoder to be cognizant of the

attack strategy. In contrast, we require that one encoder/decoder pair be robust against

any potential attack. Second, they focus exclusively on average distortion constraints,

while we compare the average and almost sure constraints. In fact, we �nd that average

distortion constraints typically result in a capacity of zero. Finally, despite our stricter

requirements, we have seen that our capacity with a Gaussian covertext is larger than

that given in [MO99, MO00]; see Figure 2-1 for a comparison of the two capacities. Mit-

telhozer [Mit99] independently introduced a similar model for watermarking. Still others

[BBDRP99, BI99, LC01, LM00, RA98, SPR98, SC96] have investigated the capacity of

watermarking systems, but only for speci�c encoding schemes or types of attacks.

The most similar model to ours has been recently proposed by Somekh-Baruch and

Merhav [SBM01a, SBM01b]. In their model, the probability that the distortion introduced

by the encoder or the attacker is greater than some threshold must decay to zero exponen-
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tially, i.e., Pr fd2(X ;Y ) > D2jX = xg � e��n for some � and for all x 2 X n, and similarly

for the encoder. This type of constraint is equivalent to our a.s. constraints when � = 1.

In [SBM01a], they �nd a general expression (that does not depend on �) for the coding

capacity of the private version for �nite alphabets. This result supersedes our result of The-

orem 2.5 on the capacity of the watermarking game with no covertext and �nite alphabets.

Their capacity expression is similar to the mutual information game of [MO99, OME98].

We also see that for a scalar Gaussian covertext, the capacity is the same as the value of a

related mutual information game; compare Theorems 2.1 and 3.1.

Besides capacity, several other information theoretic quantities have begun to be ad-

dressed for watermarking. Merhav [Mer00] and Somekh-Baruch and Merhav [SBM01a,

SBM01b] have studied error exponents (i.e., how the probability of error decreases to zero

as the blocklength increases for rates less than capacity) for a similar watermarking model,

but with slightly di�erent distortion constraints; see above. Also, Steinberg and Merhav

[SM01] have investigated the identi�cation capacity of a watermarking system with a �xed

attack channel. In identi�cation, questions of the form \Was watermark w sent?" need to

be answered reliably instead of the usual \Which watermark was sent?". This more lenient

requirement results in a doubly exponential growth in the number of watermarks; see also

[AD89]. Furthermore, questions of this form might be what needs to be answered in some

copyright protection applications. Finally, Karakos and Papamarcou [KP00a] have studied

the trade-o� between quantization and watermarking rate for data that needs to be both

watermarked and compressed.

2.3.3 Similar Models: Steganography and Fingerprinting

In this section, we consider some models that are similar to watermarking and that have also

generated recent interest. In steganography, the objective is to embed information so that

an adversary cannot decide whether or not information has been embedded. This di�ers

from our watermarking model since we assume that the attacker knows that information

has been embedded, but has only limited means to remove it. For more on steganography

see e.g., [AP98, Cac98, KP00b]. In �ngerprinting, the embedded information is used to

identify one of many users as opposed to a single owner. That is, the same covertext

is given to di�erent users with di�erent watermarks. Thus, collusive attacks are possible

on a �ngerprinting system, while they are not possible on a watermarking system. In a
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collusive attack, many users contribute their distinct �ngerprinted copies in order to create

a better forgery. Several researchers [BBK01, BS98, CFNP00, CEZ00, SEG00] have studied

the number of �ngerprinted objects that a system can distribute under various conditions.

The research on �ngerprinting has focused largely on combinatorial lower bounds on the

number of possible �ngerprints, while there has been less work on information-theoretic

upper bounds.

2.3.4 Communication Games

We have seen that watermarking can be viewed as a communication game. At a low

level, the encoder and decoder are playing a game against the attacker in which they are

trying to communicate over a channel where the encoder's input sequence can be changed

arbitrarily (subject to a distortion constraint), while the attacker is trying to prevent such

reliable communication. This is similar to the arbitrarily varying channel (AVC), in which

the encoder and decoder have to be designed to reliably send a message over a channel

with many possible states, in which the channel state can change arbitrarily (as opposed

to stochastically). At a higher level, the encoder and decoder are trying to to maximize

the set of achievable rates while the attacker tries to minimize this set. This is similar to

many mutual information games, in which a communicator and a jammer try to maximize

and minimize, respectively, a mutual information expression. The solution to a mutual

information game can sometimes be used to describe the maximum achievable rate for a

communication system. The AVC and a mutual information game are discussed in more

detail in Section 2.5.3 and Chapter 3, respectively.

We now consider a sample of other communication games that have been investigated.

In one game [Ba�s83, BW85], a power-constrained transmitter tries to send a sequence of

Gaussian random variables to a receiver with minimum mean-squared error, while a jammer

(with some knowledge of the transmitter's input) attempts to maximize the error. In another

game [MSP00], a transmitter can choose which slots in a slotted communication channel

to transmit and the jammer can choose which slots to jam. Both transmitter and jammer

are constrained by a dissipative energy model so that if power Pn (which can be either zero

or some �xed value) is used in slot n, then
Pm�1

n=0 Æ
nPm�n � Pmax for all m where Æ and

Pmax are given constants. In a �nal game [GH99, SV00], a transmitter tries to use the

timing of packets to send information over a network (as in \Bits through Queues" [AV96]),
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while a jamming network provider attempts to minimize the information rate subject to a

constraint that he must deliver the packets in a timely fashion.

2.4 Assumptions in Watermarking Model

In this section, we review some of the assumptions made in the watermarking model. In

Section 2.4.1, we briey discuss if capacity is a good measure for a watermarking sys-

tem. We then discuss randomization, and in particular when it is not necessary, for the

encoder/decoder (Section 2.4.2) and for the attacker (Section 2.4.3). In Section 2.4.4, we dis-

cuss the distortion constraints that we impose in the watermarking model. In Section 2.4.5,

we discuss the covertext distributions that we have chosen to study.

2.4.1 Is Capacity Meaningful?

In Section 2.2, we described the watermarking capacity for many scenarios, but we have

not addressed whether the capacity of a watermarking system is a meaningful concept; we

now discuss this issue. In order for the asymptotic analysis in the de�nition of capacity to

be meaningful, there should be e�ectively limitless covertext data and unending watermark

information to embed. This might not always be the case for a copyright protection appli-

cation, since there would usually be a �xed length covertext and one of a �xed number of

messages to embed. However, in many instances the data to be watermarked is quite long

(e.g., a movie or an album), and the asymptotic regime can be safely assumed. Further-

more, there are other applications, such as hybrid digital/analog transmission and closed

captioning, in which the above assumptions are met more generally. In any case, we think

that the capacity achieving scheme should shed light on how to design a good watermarking

system even for a non-asymptotic situation.

2.4.2 Randomization for Encoder/Decoder

There is a di�erence between the randomized coding used here and Shannon's classical

random coding argument (see, for example, [CT91, Chap. 8.7]). In the latter, codebooks

are chosen from an ensemble according to some probability law, and it is shown that the

ensemble-averaged probability of error is small, thus demonstrating the existence of at least

one codebook from the ensemble for which the probability of error is small. For the water-
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marking game, on the other hand, randomization is not a proof technique that shows the

existence of a good codebook, but a de�ning feature of the encoding. For example, the ran-

domization at the encoder prevents the attacker from knowing the particular mapping used

for each message; the attacker only knows the strategy used for generating the codewords.

See [LN98] for more on this subject.

Nevertheless, in the private version of the watermarking game, common randomness is

typically not needed between the encoder and the decoder and deterministic codes suÆce.

For example, consider an IID Gaussian covertext. Part of the covertext to which both the

encoder and the decoder have access, can be used instead of the secret key �1. Indeed,

the encoder could set x1 = 0, and use the random variable U1 as the common random

experiment. The extra distortion incurred by this policy can be made arbitrarily small by

making n suÆciently large. Since U1 is a real-valued random variable with a density, it is

suÆcient to provide the necessary randomization.

Even if the covertext does not have a density, a similar technique can be used to show

that a secret key is not necessary in the private version, as long as the number of samples

from the covertext used for randomization does not asymptotically a�ect the distortion.

Indeed, Ahlswede [Ahl78] has shown that only4 O(n2) codebooks are necessary to achieve

randomization in many situations. Thus, only O(log n) random bits available to both the

encoder and decoder are needed to specify which codebook to use. Thus, if the covertext is

a discrete memoryless source, then O(log n) samples from the covertext (which is known to

both the encoder and decoder in the private version) can be used to specify the codebook.

In order to prevent the attacker from learning anything about the codebook, the encoder

should make the stegotext samples independent of the covertext samples that are used to

specify the codebook, which results in some extra distortion. However, if the distortion

constraint is bounded, then the extra distortion that is needed to implement this scheme is

O
�
log n
n

�
, which can be made negligible by making the blocklength n large enough.

2.4.3 Randomization for Attacker - Deterministic is SuÆcient

We allow the attacker to implement a randomized strategy. However, to prove achievability

in the watermarking game, we can without loss of generality limit the attacker to determin-

4For any two functions f(n) and g(n), f(n) = O(g(n)) if f(n)=g(n) is bounded for all n.
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istic attacks. That is, it is suÆcient to show that the average probability of error (averaged

over the side information, secret key and message) is small for all attacker mappings

y = gn(x) (2.26)

instead of the more general gn(x; �2). With an attacker of this form, the distortion constraint

(2.3) can be rewritten as d2(X ; gn(X)) � D2, almost surely.

Indeed, we can evaluate the average probability of error (averaged over everything in-

cluding the attack key �2) by �rst conditioning on the attack key �2. Thus, if the average

probability of error given every attacker mapping of the form (2.26) is small, then the aver-

age probability of error for any general attacker mapping of the form (2.2) is also small. This

idea is similar to the argument (which we outlined about in Section 2.4.2) that deterministic

codebooks are suÆcient for a �xed channel.

2.4.4 Distortion Constraints

Admittedly, the technique we have used to decide whether two data sequences are \similar"

has some aws. However, the simplicity of our technique allows us to derive closed form

solutions that hopefully will give some intuition for more realistic scenarios. To review, we

say that data sequences x and y are similar if n�1
P

i d(xi; yi) � D for some non-negative

function d(�; �) and some thresholdD. The �rst potential problem is that y could be a shifted

or rotated version of x and thus very \similar" to x. However, our distortion measure would

not recognize the similarity. This will a�ect our watermarking performance since we only

require decoding from forgeries that are similar according to our distortion measure. One

way to overcome this problem is to watermark in a domain (e.g., Fourier) that is relatively

robust to such transformations [LWB+01, ORP97]. Another way to overcome this problem is

for the encoder to use some its available distortion to introduce a synchronization signal that

the decoder can use to align the samples of the covertext and the forgery [PP99]. The second

potential problem is that there might not be a pointwise function d(�; �) so that our distortion
measure corresponds to perceptual distortion. Much work has been devoted to developing

models of human perception to design good data compression schemes; see e.g., [JJS93,

MS74] and references therein. It is clear that the squared di�erence distortion measure that

we have mainly used does not directly correspond to human perceptual distortion, but our
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distortion measure is tractable and provides a decent �rst approximation. We would like

to integrate some more knowledge of the human perceptual system into our watermarking

model in the future.

We require that the attacker satisfy a distortion constraint between the stegotext X

and the forgery Y . This is plausible because the attacker observes the stegotext and thus

he knows exactly what forgeries are allowed. Since one basic purpose of this constraint is to

ensure that the forgery is similar to the covertext U , some have suggested that the attacker's

constraint be between U and Y [Mou01]. However, with this alternative constraint, if the

amount of distortion the attacker can add is small (but non-zero), then the watermarking

system can send unlimited information, which seems unreasonable. On the other hand, for

the SGWM game (with our original constraint) we saw that the capacity is zero only if

D2 > �2u +D1 +
p
�2uD1, while if D2 > �2u, then the attacker could set the forgery to zero,

resulting in no positive achievable rates and a distortion between U and Y of approximately

�2u < D2. Thus, the capacity under our constraint is potentially too large for large attacker

distortion levels, while the capacity under the alternative constraint is potentially too large

for small attacker distortion levels.

2.4.5 Statistics of Covertext

In our study of watermarking, we have largely focused on Gaussian covertext distributions.

Such a distribution might arise in transform domains where each sample is a weighted aver-

age of many samples from the original domain, in which case one would expect the central

limit theorem to play a role. Indeed, some studies [BBPR98, JF95, M�ul93] have found that

the discrete cosine transform (DCT) coeÆcients for natural images are well modeled as gen-

eralized Gaussian random variables, which include the standard Gaussian distribution as a

special case5. While a Gaussian model is reasonable for many types of sources that might

need to be watermarked, there are other sources that require watermarking that cannot be

so modeled; examples include VLSI designs [Oli99] and road maps [KZ00].

A shortcoming of the Gaussian assumption is that the data we are interested in will be

stored on a computer, and hence the distribution could only be a quantized approximation

5The generalized Gaussian density is de�ned by fX(x) = ��(�)

2��(1=�)
exp(�(�(�)jx=�j)�), where �(�) =

p
�(3=�)=�(1=�), �(�) is the usual gamma function and � is the so-called shape parameter. The generalized

Gaussian is equivalent to the standard Gaussian when � = 2.
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of a Gaussian distribution. If the quantization is too coarse, then the Gaussian assumption

would not be reasonable. For example, one-bit quantization of every covertext sample would

lead to the binary watermarking game, which we have seen to have much smaller capacity

than the scalar Gaussian watermarking game. However, we are more likely to be interested

in high �delity storage of the data, and the Gaussian approximation is more reasonable in

this case.

2.5 Uncertainty in the Watermarking Model

In watermarking, an encoder/decoder pair has to deal with two sources of uncertainty, the

covertext and the attacker. In our model, the covertext is generated stochastically from

some known distribution while the attacker can take on any form subject to a distortion

constraint.

In Section 2.5.1, we formalize the di�erences between these two types of uncertainty

into stochastically generated states and arbitrarily generated states. We then consider two

models: one that contains only stochastically generated states (communication with side

information, Section 2.5.2) and one that contains only arbitrarily generated states (the

arbitrarily varying channel, Section 2.5.3). In Section 2.5.4, we consider an instance of

communication with side information, Costa's \writing on dirty paper" model [Cos83], and

describe two extensions to this model.

2.5.1 Types of State Generators

In order to discuss the types of state generators, we consider a communication channel that

has a transition probability that depends on a state s. That is, given the value of the

current state s and the current input x, the output of the channel is a random variable

Y with distribution PY jX;S(�jx; s), where we assume throughout that PY jX;S is known.

Furthermore, given the state sequence s and the input sequence x, the output sequence Y

is generated in a memoryless fashion, so that

P (Y jx; s) =
nY
i=1

PY jX;S(Yijxi; si): (2.27)
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Figure 2-3: Watermarking model with state sequences.

We would like to describe the coding capacity for such a channel. That is, we would like

to answer the usual question, \For rates R can we reliably communicate nR bits using the

channel n times?". In general, reliable communication means that the probability of error

can be as small as desired by making the blocklength n large enough. The de�nition of

probability of error that we use a�ects the capacity and depends on how the state sequence is

generated. Unless stated otherwise, we focus on probability of error averaged6 (as opposed

to maximized) over all possible bit sequences and sequence-wise probability of error (as

opposed to bit-wise). We will also assume that the encoder and decoder share a source of

randomness and that the probability of error is averaged over this source of randomness as

well.

We now consider two possible methods for generating the state sequence:

1. The state sequence S could be generated stochastically from some known distribution

PS (usually independently of the other sources of randomness). In this case, we will

be interested in the probability of error averaged over the possible values of the state

sequence.

2. The state sequence s could be generated arbitrarily, possibly subject to some con-

straint. In this case, we will want to insure that the probability of error can be made

small for every possible state sequence s.
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Restatement of Watermarking Model

We can think of our watermarking model as having two state sequences, one generated

stochastically and one generated arbitrarily. This idea is depicted in Figure 2-3 (for the

public version only). Here, the stochastically generated state U is the covertext and the

arbitrarily generated state7 S describes the mapping between the stegotext X and the

forgery Y . For example, ifX and Y are real random vectors, then S could be the di�erence

between Y and X and PY jX;S(�jx; s) is the unit mass on x+ s. This form is particularly

useful when the attacker's distortion function can be written d2(x; y) = d2(y � x). In this

case, the attacker's distortion constraint becomes a constraint solely on the sequence S.

Note that the attacker knows the stegotext X, and thus the arbitrary state sequence S is

actually a mapping from X n into Yn. Thus, the encoder/decoder pair wishes to make the

average probability of error small for every possible attacker mapping, where the probability

of error is averaged over all sources of randomness including the covertext. Both the encoder

and the arbitrary state sequence S are subject to distortion constraints. Thus, although

the stochastically generated state sequence U does not directly a�ect the channel, it does

indirectly a�ect the channel through the constraint on the encoder's output.

2.5.2 Communication with Side Information

We now consider a model with only stochastically generated states, like the covertext in the

watermarking game. When known at the encoder or decoder, the state sequence is called

side information and thus this model is referred to as communication with side information.

An example where the side information is known at the encoder only is depicted in Figure 2-

4. All of the models in this section assume that the stochastic state sequence is generated

in an IID manner according to a known distribution PU .

Shannon [Sha58] �rst studied this problem under the assumption that the encoder must

be causal with respect to the side information. That is, the ith channel input xi can be a

function of only the message and the channel states up to and including time i. Gel'fand and

Pinsker [GP80] later found the capacity assuming (as we do in the watermarking game) that

the encoder has non-causal access to the side information. That is, the channel input vector

6We make the usual assumption that all bit sequences are equally likely.
7This arbitrarily generated state is actually an arbitrary mapping s(X) that we write as the random

vector S.
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Figure 2-4: Communication with side information at the encoder.

x 2 X n can be a function of the message and the channel state vector u 2 Un. A causal

encoder makes practical sense in many real time applications, but a non-causal encoder also

makes sense in other situations, such as watermarking or storing information on a partially

defective hard drive. Heegard and El Gamal [HEG83] considered a generalization of [GP80]

where the state sequence can be described non-causally to both the encoder and decoder,

but only using rates Re and Rd, respectively.

Capacity Results

We now give the capacity of the channel with side information in two scenarios: when the

state sequence U is known non-causally to the encoder only, and when the state sequence U

is known to non-causally to both the encoder and decoder. As in the watermarking game,

we will refer to these scenarios as the public and private versions, respectively. Note that

these results are proved assuming that the sets X , U and Y are �nite.

For the private version with non-causal side information, the capacity is given by [Wol78,

HEG83]

CNCSI
priv = max

PXjU

I(X;Y jU); (2.28)

where the mutual information is evaluated with respect to the joint distribution PU;X;Y =

PUPXjUPY jX;U . Recall that PU and PY jX;U are given.

For the public version with non-causal side information, the capacity is given by [GP80,
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HEG83]

CNCSI
pub = max

PV jU ; f :V�U7!X
I(V ;Y )� I(V ;U); (2.29)

where V is an auxiliary random variable with alphabet jVj � jX j+ jUj � 1, and the mutual

informations are evaluated with respect to the joint distribution

PU;V;X;Y (u; v; x; y) =

8><
>:
PU (u)PV jU (vju)PY jX;U(yjx; u) if x = f(v; u)

0 otherwise

: (2.30)

The achievability of this capacity is proved using a random binning argument that we will

also use to prove the watermarking capacity result. Note that the capacity with causal side

information is similar [Sha58], except that PV jU is replaced by PV in (2.29) and (2.30). The

capacity with non-causal side information can be strictly greater than the capacity with

causal side information. Thus, we would not expect the results on watermarking to directly

carry over to a causal situation.

Fixed Attack Watermarking

One potential attack strategy in the watermarking game is a memoryless channel based on

some conditional distribution P attack
Y jX . Of course, the attacker should choose this distribution

so that the distortion constraint is met either with high probability or in expectation.

Assuming such an attack strategy is used and known to both the encoder and decoder, an

extension of (2.28) or (2.29) can be used to describe the achievable rates for this scenario.

In the following lemma, we describe the capacity of the public version with non-causal

side information when the encoder is required to meet a distortion constraint between the

side information and the channel input, which can be used to describe the watermarking

capacity with a �xed attack channel.

Lemma 2.1. For the communication with side information model with �nite alphabets, if

the side information is available non-causally to the encoder only and the encoder is required

to satisfy

1

n

nX
i=1

d1(ui; xi) � D1; a.s.; (2.31)

49



for some non-negative function d1(�; �). Then, the capacity is given by

CNCSI
pub (D1) = max

PV jU ; f :V�U7!X ;

E[d1(U;X)]�D1

I(V ;Y )� I(V ;U); (2.32)

where V is an auxiliary random variable with �nite alphabet, and the mutual informations

are evaluated with respect to the joint distribution (2.30).

The proof of this lemma can be found in Appendix B.2. The achievability part and

most of the converse part of the proof follow directly from the proof of Gel'fand and Pinsker

[GP80]. One tricky part involves showing that the conditional distribution PXjV;U is de-

terministic (i.e., only takes values of 0 and 1). We will use this lemma to simplify the

evaluation of the public version of the binary watermarking game; see Section 6.2.2.

An attacker in the watermarking game cannot implement a general channel based on

both the input and the state since the attacker does not directly know the state sequence U

(i.e., the covertext). However, this result can be used to analyze �xed attack watermarking

by substituting PY jX;U (yjx; u) = P attack
Y jX (yjx) for all u 2 U .

This analysis inspires the mutual information games that we will describe in Chapter 3.

In short, the mutual information game will further modify (2.32) and the analogous result for

the private version by adding a minimization over feasible attack \channels" P attack
Y jX , where

feasible means that the distortion constraint is met in expectation. It is not clear that the

solution to the mutual information game describes the capacity of the watermarking game.

This is partly because a decoder for communication with side information uses knowledge

about the channel's conditional distribution, while in the watermarking game, the attacker

can choose any feasible attack channel after the decoder has been deployed.

2.5.3 Arbitrarily Varying Channels

We now turn our attention to states that can be generated arbitrarily. That is, there is

no probability distribution on the state sequences, and any performance guarantees have

to be valid for any possible state sequence. In the watermarking game, the attacker (under

the a.s. distortion constraint) can produce an arbitrary sequence (subject to the distortion

constraint) in its attempt to confuse the encoder and decoder.

The basic arbitrarily varying channel (AVC) was introduced in [BBT60] and has a

single arbitrarily generated state sequence s that determines the conditional distribution
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Figure 2-5: Gaussian arbitrarily varying channel: U is an IID Gaussian sequence and s is
an arbitrary power constrained sequence.

of the channel as in (2.27). Unlike the usual communication scenario (e.g., a memoryless

channel), the capacity depends on whether average or maximum probability of error is

used and on whether there is a common source of randomness available to the encoder

and decoder. Many variations of the AVC have been studied, see e.g., [CK81, LN98] for

extensive references. Unlike the watermarking game, the state sequence and the input to the

channel are usually assumed to be chosen independently. However, see [Ahl86] for analysis

of the AVC when the state sequence is known to the encoder and [AW69] for analysis of

the AVC when the input sequence is known to the state selector. Csisz�ar and Narayan

[CN88a, CN88b] considered an instance of the AVC that has particular relevance to the

watermarking game in which the input sequence x and the state sequence s must satisfy

respective constraints. The capacity results depend on whether the constraints are enforced

almost surely or in expectation, as is also the case for the watermarking game (compare

Theorems 2.1 and 2.3).

The Gaussian Arbitrarily Varying Channel

The Gaussian arbitrarily varying channel (GAVC), introduced by Hughes and Narayan

[HN87], is a particular AVC with constrained inputs and states that is related to the Gaus-

sian watermarking game. In the GAVC (illustrated in Figure 2-5), the input and state

sequences must both satisfy power constraints, and the channel is given by Y =X+s+Z,

where Z is an IID sequence ofN (0; �2) random variables, s is an arbitrary sequence (subject

to n�1ksk2 � D2), and the input X is similarly power limited to D1.

Hughes and Narayan [HN87] found that the capacity of the GAVC (when a source of
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common randomness is available to the encoder and decoder) is given by

CGAVC(D1; D2; �
2) =

1

2
log

�
1 +

D1

D2 + �2

�
: (2.33)

Note that this is the same capacity that would result if s were replaced by an IID sequence of

N (0;D2) random variables. Further note that if the a.s. power constraints are replaced by

expected power constraints then the capacity of the GAVC is zero, although the �-capacity8

is positive and increasing with �.

Let us now consider an alternate description of the GAVC in order to highlight the

similarities with the watermarking game with an IID Gaussian covertext. The GAVC can

be obtained from the watermarking game by slightly modifying the capabilities of both

the encoder and the attacker, as we now outline. First, the encoder must be of the form

X = U + ~X, where ~X is independent of U (but not independent of the watermark W ).

Second, the attacker must form the attack sequence s independently ofX. Thus, the overall

channel is given by Y = ~X + s + U , where ~X is a power limited sequence depending on

the message, s is a power limited arbitrary sequence, and U is an IID sequence of Gaussian

random variables independent of ~X and s. Although both the encoder and attacker are

less powerful in the GAVC than in the watermarking game, the e�ect does not cancel out.

Indeed, the capacity of the GAVC decreases with the variance of U while the watermarking

capacity increases; compare (2.6) and (2.33).

Finally, note that the additive attack watermarking game of Section 2.2.2 with an IID

Gaussian covertext is a combination of the GAVC and the scalar Gaussian watermarking

game. In particular, this game uses the encoder from the watermarking game and the

attacker from the GAVC. In this compromise between the two models, the capacity does

not depend on the variance of U ; see Theorem 2.2.

2.5.4 Extended Writing on Dirty Paper

A special case of communication with side information (see Section 2.5.2) is Costa's writing

on dirty paper [Cos83], which is depicted in Figure 2-6. In this model, all of the the sets

X , Y, U and Z are the real line. Further, the encoder knows the state sequence U non-

causally and its output X = x(W;U ) must satisfy a power constraint, i.e., n�1kXk2 � D1

8The �-capacity is the supremum of all rates such that the probability of error is at most �.
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Figure 2-6: Writing on dirty paper. U and Z are independent IID Gaussian sequences.

a.s.. Finally, the output of the channel is given by

Y =X +U +Z (2.34)

where bothU andZ are independent IID sequences of zero-mean Gaussian random variables

of variances �2u and D2, respectively. We will call U the covertext and Z the jamming

sequence. Costa's main result is that the capacity is the same whether or not the covertext

U is known to the decoder. WhenU is known to the decoder, the channel e�ectively become

Y =X +Z, i.e. the classical power limited Gaussian channel. Thus, the capacity is given

by 1
2 log(1 +

D1
D2
), which does not depend on �2u. Others [Che00, YSJ+01] have extended

this result to when U and Z are independent non-white (i.e., colored) Gaussian processes.

In this section, we describe two further extensions of Costa's result. First, when U has any

(power limited) distribution and Z is an independent colored Gaussian process, we show

that the capacity with non-causal side information (the random vector U ) at the encoder is

the same as the capacity with side information at both the encoder and decoder. A similar

result was given simultaneously by Erez, Shamai, and Zamir [ESZ00]. Second, we show

that the additive attack watermarking game with Gaussian covertext (see Section 2.2.2) is

an extension of Costa's result to arbitrarily varying noise.

Extension 1 : Any Distribution on Covertext, Colored Gaussian Jamming Se-

quence

We �rst generalize Costa's result to where the side information U is an IID sequence of

random variables with some arbitrary (but known) distribution, while the noise sequence

Z is still an IID sequence of mean-zero, variance-D2 Gaussian random variables. We will
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then be able to further generalize to the above assumptions.

Recall that the maximum over I(V ;Y ) � I(U ;V ) (see (2.32)) is the capacity for a

channel with non-causal side information at the encoder only. Although this result was only

proved for �nite alphabets, it is straightforward to extend the achievability part to in�nite

alphabets, which is all that we will need. Indeed, we will specify the joint distribution

of an auxiliary random variable V , the input X and the side information U such that

I(V ;Y ) � I(U ;V ) equals the capacity when U is not present at all, which also acts as an

upper bound on the capacity for writing on dirty paper.

We now specify the necessary joint distribution. Let X be a zero-mean Gaussian random

variable of varianceD1, which is independent of U , which clearly satis�es E[X
2] � D1. Also,

let the auxiliary random variable V = �U +X, where � = D1
D1+D2

. (As in (2.32), we could

have �rst generated V conditioned on U and then generated X as a function of V and

U .) The preceding steps replicates Costa's original proof. At this point, he calculated

I(V ;Y )� I(U ;V ) to be 1
2 log

�
1 + D1

D2

�
, assuming that both U and Z are Gaussian random

variables. This is suÆcient to prove the original result since all rates less than this are

achievable and the capacity cannot exceed the capacity without U , which is also given by

this expression. We shall assume that only Z is Gaussian, but we shall obtain the same

result.

With our choice of the auxiliary random variable V ,

V � �(X + U + Z) = X � �(X + Z); (2.35)

and with our choice of � the random variables X � �(X + Z) and X + Z are uncorrelated

and hence, being zero-mean jointly Gaussian, also independent9. Furthermore, the random

variables X � �(X +Z) and X +U +Z are independent since U is independent of (X;Z).

9Another way to view the choice of � is that �(X + Z) is the minimum mean squared error (MMSE)
estimate of X given X + Z.
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Consequently,

h(V jX + U + Z) = h
�
V � �(X + U + Z)jX + U + Z

�
= h

�
X � �(X + Z)

�
= h

�
X � �(X + Z)jX + Z

�
= h(XjX + Z); (2.36)

where all of the di�erential entropies exist since X and Z are independent Gaussian random

variables, and the second and third equalities follow by (2.35) and the above discussed

independence. Also, the independence of U and X implies that

h(V jU) = h(�U +XjU)
= h(XjU)
= h(X): (2.37)

We can now compute that

I(V ;X + U + Z)� I(V ;U) = h(V )� h(V jX + U + Z)� h(V ) + h(V jU)
= I(X;X + Z)

=
1

2
log

�
1 +

D1

D2

�
;

where the �rst equality follows by the de�nition of mutual information; the second equality

follows from (2.36) and (2.37); and the last equality because X and Z are independent

Gaussian random variables of variance D1 and D2, respectively.

Let us now consider general independent random processes U and Z as the known

and unknown, respectively, additive noise components in the writing on dirty paper model.

Also, let the random processX� have the capacity achieving distribution for a channel with

additive noise Z (i.e., PX� = argmaxPX I(X ;X + Z), where the maximum is over distri-

butions that satisfy any required constraints). The preceding arguments can be repeated

as long as there exists a linear10 function �(�) such that X���(X�+Z) is independent of

Z. (We also need U to be power limited so that all of the di�erential entropies are �nite.)

10The linearity of �(�) is needed in (2.35).
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That is, for this random process X� and this linear function �(�), if V = �(U ) +X�, then

I(V ;Y ) � I(U ;V ) = I(X�;X� + Z), which is the capacity without U by our choice of

X�.

We can thus show that for that Costa's result can be extended to any (power-limited)

distribution on U and a colored Gaussian distribution on Z. This follows since the capacity

achieving X� associated with Z is also Gaussian (with variances given by the water�lling

algorithm) [CT91]. Furthermore, for any two independent Gaussian (and hence jointly

Gaussian) processes, we can �nd a linear function �(�) that satis�es the above independence
property.

We can also use an interleaving argument to show that if Costa's result holds for any

power-limited IID law on U , then it should also hold for any power-limited ergodic law.

Furthermore, by diagonalizing the problem and reducing it to a set of parallel scalar channels

whose noise component (the component that is known to neither encoder nor decoder) is

IID [HM88, Lap96] it should be clear that it suÆces to prove (as we have done above) this

result for the case where Z is IID.

Extension 2 : IID Gaussian Covertext, Arbitrary Jamming Sequence

For the additive attack watermarking game with IID Gaussian covertext, we have shown

that the capacity is the same for both the private and public versions; see Section 2.2.2. This

provides an extension of Costa's writing on dirty paper result to when the jamming is an

arbitrarily varying power-limited sequence. Note that the stegotext X in the watermarking

game corresponds to U +X here.

When the covertext U is IID Gaussian, then the additive attack watermarking game

is similar to Costa's writing on dirty paper. In particular, the former model di�ers from

the latter only in two respects. First, the jamming sequence distribution is arbitrary (sub-

ject to (2.11)) instead of being an IID Gaussian sequence. Second, the jamming sequence

distribution is unknown to the encoder and decoder. Nevertheless, the two models give

the same capacity, thus demonstrating that the most malevolent additive attack for the

watermarking game is an IID Gaussian one.
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Chapter 3

Mutual Information Games

In this chapter, we consider two mutual information games that are motivated by the

capacity results of Wolfowitz [Wol78] and Gel'fand and Pinsker [GP80] on communication

with side information discussed in Section 2.5.2. We de�ne the private mutual information

game based on the capacity of a communication channel with side information non-causally

available to both the encoder and decoder; see (2.28). Similarly, we de�ne the public

mutual information game based on the capacity of a communication channel with side

information non-causally available to only the encoder; see (2.29). Mutual information

games have been considered in the context of watermarking previously by Moulin and

O'Sullivan [OME98, MO99, MO00]. We focus on squared error distortion and IID Gaussian

sources, and the resulting solution provides insight into how to approach the scalar Gaussian

watermarking (SGWM) game.

The remainder of this chapter is organized as follows. In Section 3.1, we precisely de�ne

our mutual information games and give our main result on the value of the games. In

Section 3.2, we sketch the proof of the main result using three main lemmas; the proofs

of these lemmas can be found in Appendix B. In Section 3.3, we give a game theoretic

interpretation of the mutual information games. In Section 3.4, we discuss some other

mutual information games that have been previously considered

3.1 De�nition and Main Result

Given a covertext distribution PU , a conditional law PXjU (\watermarking channel") and

a conditional law PY jX (\attack channel") we can compute the conditional mutual infor-
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mation

IPUPXjUPY jX
(X ;Y jU) = D(PU ;X;Y jjPUPXjUPY jU );

where D(�jj�) is the Kullback-Leibler distance, which is de�ned for any probability measures
P and Q as

D(P jjQ) =

8><
>:
R
log dP

dQdP if P � Q

1 otherwise

:

Here, dP
dQ is the Radon-Nikodym derivative of P with respect to Q, and P � Q means that

P is absolutely continuous with respect to Q. If P and Q have densities fP and fQ, then

D(P jjQ) = EP [log
fP
fQ
]. We can similarly compute other mutual information quantities.

Like the watermarking game, themutual information game is a game played between two

players in which the second player (attacker) has full knowledge of the strategy of the �rst

player (encoder). The main di�erence between the two games is that the strategies in the

mutual information game are conditional distributions instead of mappings, and the payo�

function is mutual information, which may or may not have an operational signi�cance in

terms of achievable rates.

We �rst describe the private mutual information game. For every n, the encoder chooses

a watermarking channel PXjU that satis�es the average distortion constraint (2.14), and the

attacker then chooses an attack channel PY jX that satis�es the average distortion constraint

(2.15). The quantity that the encoder wishes to maximize and that the attacker wishes to

minimize is

Ipriv(PU ; PX jU ; PY jX) =
1

n
IPUPXjUPY jX

(X ;Y jU); (3.1)

which is the mutual information term in (2.28). The value of the private mutual information

game is thus

CMI
priv(D1;D2; fPUg) =

lim inf
n!1

sup
PXjU2D1(D1;PU )

inf
PY jX2D2(D2;PU ;PXjU )

Ipriv(PU ; PX jU ; PY jX); (3.2)
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where

D1(D1; PU ) =
n
PXjU : EPUPXjU

[d1(U ;X)] � D1

o
; (3.3)

and

D2(D2; PU ; PXjU ) =
n
PY jX : EPUPXjUPY jX

[d2(X ;Y )] � D2

o
: (3.4)

Note that the choice of PXjU inuences the set of distributions from which PY jX can be

chosen. Thus, this is not a standard static zero-sum game; it is better described as a

dynamic two-stage zero-sum game of complete and perfect information.

We next describe the public mutual information game. We �rst de�ne an auxiliary

random vector V that depends on the random vectors U andX . The watermarking channel

is expanded to include not only the conditional distribution PXjU but also the conditional

distribution PV jU ;X . Given the random vector X, the random vector Y is independent of

both U and V , so that the joint distribution of the random vectors U , X, V and Y is

the product of the laws PU , PXjU , PV jU ;X , and PY jU ;X;V = PY jX . In the public version,

the mutual information term from (2.29) is n�1(I(V ;Y )� I(V ;U)), which is written more

explicitly as

Ipub(PU ; PXjU ; PV jU ;X ; PY jX) =

1

n

�
IPUPXjUPV jU;XPY jX

(V ;Y )� IPUPXjUPV jU;X
(V ;U )

�
; (3.5)

The value of the public mutual information game is thus

CMI
pub(D1;D2; fPUg) =

lim inf
n!1

sup
PXjU2D1(D1;PU )

PV jU;X

inf
PY jX2D2(D2;PU ;PXjU )

Ipub(PU ; PXjU ; PV jU ;X ; PY jX): (3.6)

Note that the supremum is over a slightly more general set than (2.32), since we have not

shown (as we did for �nite alphabets in Lemma 2.1) that the maximizing joint distribution

on the random vectors U , X and V makes X a deterministic function of U and V .

In the following theorem, which is proved in Section 3.2, we show that the capacity of
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the SGWM game C�(D1;D2; �
2
u) is an upper bound on the values of the mutual informa-

tion games for real alphabets and squared error distortions. Moreover, for IID Gaussian

covertexts, this upper bound is tight.

Theorem 3.1. For real alphabets and squared error distortions

CMI
pub(D1;D2; fPUg) � CMI

priv(D1; D2; fPUg) (3.7)

� C�(D1; D2; �
2
u); (3.8)

where �2u is de�ned by

�2u = lim inf
n!1

1

n

nX
i=1

EPU [U
2
i ] (3.9)

and is assumed �nite.

Equality is achieved in both (3.7) and (3.8) if the covertext is zero-mean IID Gaussian.

Recall the de�nition of C�(D1; D2; �
2
u) given in (2.6). This de�nition and some other

relevant de�nitions used in this chapter are summarized in Appendix A.

3.2 Proof of Mutual Information Game Result

In this section, we sketch a proof of Theorem 3.1. The upper bound on the values of the

games is based on a family of attack channels that will be described in Section 3.2.1. The

equality for IID zero-mean Gaussian covertexts is based on the watermarking channels that

will be described in Section 3.2.2. In Section 3.2.3, we will show that the proposed attack

channels prove the upper bound (3.8) and that for IID zero-mean Gaussian covertexts, the

proposed watermarking channels guarantee the claimed equality.

3.2.1 Optimal Attack Channel

The attack channel we propose does not depend on the version of the game, and is described

next. Since the attacker is assumed to be cognizant of the covertext distribution PU and of

the watermarking channel PXjU , it can compute

An =
1

n
EPUPXjU

[kXk2]: (3.10)
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It then bases its attack channel on An and on its allowed distortion D2 as follows.

If An � D2 then the attacker can guarantee zero mutual information by setting the

forgery Y deterministically to zero without violating the distortion constraint. We shall

thus focus on the case An > D2.

For this case the proposed attack channel is memoryless, and we proceed to describe its

marginal. For any A > D2, let the conditional distribution P
A
Y jX have the density1

fAY jX(yjx) = N �y ; c(A;D2) � x ; c(A;D2) �D2

�
;

where c(A;D2) = 1 � D2
A (also de�ned in (A.4)). Equivalently, under PA

Y jX the random

variable Y is distributed as c(A;D2)X + S2, where S2 is a zero-mean variance-c(A;D2)D2

Gaussian random variable independent of X. The conditional distribution PA
Y jX is thus

equivalent to the Gaussian rate distortion forward channel [CT91] for a variance-A Gaussian

source and an allowable distortion D2.

For blocklength n and An > D2, the proposed attacker PY jX is

PY jX =
�
PAn
Y jX

�n
;

that is, PY jX has a product form with marginal PAn
Y jX , where An is given in (3.10).

Notice that by (3.10) and the structure of the attack channel

E
PUPXjU (P

An
Y jX

)n

�
1

n
kY �Xk2

�
=
�
c(An;D2)� 1

�2
An + c(An;D2)D2

= D2:

Thus the attack channel (PAn
Y jX)

n satis�es the distortion constraint. Compare this attack

channel with the attacker (de�ned in Section 4.5.1) used in the proof of the converse of the

SGWM game.

3.2.2 Optimal Watermarking Channel

In this section we focus on IID zero-mean variance-�2u Gaussian covertexts and describe

watermarking channels that will demonstrate that for such covertexts (3.7) and (3.8) both

1We use N (x;�; �2) to denote the density at x of a Gaussian distribution of mean � and variance �2.
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hold with equality. The watermarking channels are memoryless, and it thus suÆces to

describe their marginals. The proposed watermarking channels depend on the version of

the game, on (�2u, D1, D2), and on a parameter A 2 A(D1; D2; �
2
u), where A(D1;D2; �

2
u) is

de�ned in (A.7). The choice of A is at the watermarker's discretion. Later, of course, we

shall optimize over this choice.

Private Version: For any A 2 A(D1;D2; �
2
u), let the conditional distribution P

A
XjU be

Gaussian with mean b1(A;D1; �
2
u)U and variance b2(A;D1; �

2
u), i.e., have the density

fAXjU(xju) = N (x; b1(A;D1; �
2
u)u; b2(A;D1; �

2
u));

where b1(A;D1; �
2
u) = A+�2u�D1

2�2u
and b2(A;D1; �

2
u) = D1 � (A��2u�D1)2

4�2u
(also de�ned in

(A.2) and (A.3)). Equivalently, under PA
XjU the random variable X is distributed as

b1(A;D1; �
2
u)U +S1, where S1 is a zero-mean variance-b2(A;D1; �

2
u) Gaussian random vari-

able that is independent of U .

For IID zero-mean variance-�2u Gaussian covertexts we have

EPU (P
A
XjU

)n

�
1

n
kX �Uk2

�
=
�
b1(A;D1; �

2
u)� 1

�2
�2u + b2(A;D1; �

2
u)

= D1:

Thus for this covertext distribution (and, in fact, for any covertext distribution with variance

�2u), the watermarking channel (P
A
XjU )

n satis�es the distortion constraint. Furthermore,

EPU (PAXjU
)n

�
1

n
kXk2

�
= A;

which gives an interpretation of the parameter A as the power in the stegotext induced by

the covertext and the watermarking channel. Compare this watermarking channel with the

achievability scheme for the private SGWM game given in Section 4.2.1.

Public Version: For the public game, the conditional distribution of the random vector

V given the random vectors U and X is also needed. The optimal such distribution turns

out to be deterministic and memoryless. In particular, for A as above, let the distribution
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PA
V jU;X be described by

V =
�
�(A;D1;D2; �

2
u)� 1

�
U +X;

where �(A;D1;D2; �
2
u) = 1� b1(A;D1;�2u)

1+s(A;D1;D2;�2u)
and s(A;D1;D2; �

2
u) =

c(A;D2)b2(A;D1;�2u)
D2

(also

de�ned in (A.6) and (A.5)). Finally, let

PA
V jU ;X = (PA

V jU;X)
n:

Compare this expanded watermarking channel with the achievability scheme for the public

SGWM game given in Section 4.3.1.

3.2.3 Analysis

In this section, we state three lemmas, which together prove Theorem 2.4. Lemma 3.1

(proved in Appendix B.3) demonstrates the intuitive fact that the value of the public version

of the mutual information game cannot exceed the value of the private version. Lemma 3.2

(proved in Appendix B.4) shows that, by using the attack channel proposed in Section 3.2.1,

the attacker can guarantee that the value of the private mutual information game not exceed

C�(D1;D2; �
2
u), where �

2
u is de�ned in (3.9). Lemma 3.3 (proved in Appendix B.5) shows

that by watermarking an IID zero-mean variance-�2u Gaussian source using the channel

proposed in Section 3.2.2 with the appropriate choice of A, the encoder can guarantee a

value for the public mutual information game of at least C�(D1; D2; �
2
u).

Lemma 3.1. For any n > 0 and any covertext distribution PU ,

sup
PXjU2D1(D1;PU )

PV jU ;X

inf
PY jX2D2(D2;PU ;PXjU )

Ipub(PU ; PX jU ; PV jU ;X ; PY jX) �

sup
PXjU2D1(D1;PU )

inf
PY jX2D2(D2;PU ;PXjU )

Ipriv(PU ; PX jU ; PY jX):

Since this lemma holds for every n, it implies (3.7).

Lemma 3.2. For any n > 0, any covertext distribution PU , any watermarking channel
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PXjU , and any �xed distortion D2 > An

Ipriv

�
PU ; PX jU ; (P

An
Y jX)

n
�

� Ipriv

�
(PG

U )
n; (PAn

XjU )
n; (PAn

Y jX)
n
�

=
1

2
log
�
1 + s(An;D1;n;D2; �

2
u;n)
�
; (3.11)

where

�2u;n = EPU

�
n�1kUk2� ; (3.12)

D1;n = EPUPXjU
[n�1kX �Uk2]; (3.13)

An = EPUPXjU

�
n�1kXk2� ; (3.14)

PG
U denotes a zero-mean Gaussian distribution of variance �2u;n; P

An
XjU is the watermarking

channel described in Section 3.2.2 for the parameters �2u;n, D1;n and An; and P
An
Y jX is the

attack channel described in Section 3.2.1 for the parameters D2 and An.

This lemma proves (3.8). To see this note that for any � > 0 and any integer n0 there

exists some n > n0 such that

�2u;n < �2u + �; (3.15)

where �2u is de�ned in (3.9) and �2u;n is de�ned in (3.12). Also, since the watermarking

channel must satisfy the distortion constraint (i.e. PXjU 2 D1(D1; PU )),

D1;n � D1; (3.16)

where D1;n is de�ned in (3.13).

If An de�ned in (3.14) is less than D2, then the attack channel that sets the forgery

deterministically to zero is allowable and the resulting mutual information is zero. Thus,

(3.8) is satis�ed in this case. We thus focus on the case when An > D2. We also note that

�
�2u;n �

p
D1;n

�2 � An �
�
�2u;n +

p
D1;n

�2

by the triangle inequality so that An 2 A(D1;n; D2; �
2
u;n). By the de�nition of C�(�; �; �)

(A.8), it follows that the right hand side (RHS) of (3.11) is at most C�(D1;n;D2; �
2
u;n).
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This in turn is upper bounded by C�(D1;D2; �
2
u + �) in view of (3.15) and (3.16), because

C�(D1;D2; �
2
u) is non-decreasing in D1 and �2u (see Appendix A). Finally, since � > 0 is

arbitrary and C�(�; �; �) is continuous in its arguments, it follows that the attacker PAn
Y jX

guarantees that CMI
priv(D1;D2; fPUg) is upper bounded by C�(D1;D2; �

2
u).

This lemma also shows that for an IID Gaussian covertext, if the memoryless attack

channel (PA
Y jX)

n is used, then, of all watermarking channels that satisfy E
�
n�1kXk2� = A,

mutual information is maximized by the memoryless watermarking channel (PA
XjU )

n of

Section 3.2.2.

Lemma 3.3. Consider an IID zero-mean variance-�2u Gaussian covertext (denoted (PG
U )

n)

and �xed distortions D1 and D2. If the attack channel PY jX satis�es

E(PGU PA
XjU

)nPY jX

�
n�1kY �Xk� � D2;

then for all A 2 A(D1;D2; �
2
u),

Ipub

�
(PG

U )
n; (PA

XjU )
n; (PA

V jU;X)
n; PY jX

�
� Ipub

�
(PG

U )
n; (PA

XjU )
n; (PA

V jU;X)
n; (PA

Y jX)
n
�

=
1

2
log
�
1 + s(A;D1;D2; �

2
u)
�
:

Here, PA
XjU and PA

V jU;X are the watermarking channels described in Section 3.2.2 for the

parameters �2u, D1 and A and PA
Y jX is the attack channel described in Section 3.2.1 for the

parameters D2 and A.

This lemma implies that for a zero-mean variance-�2u IID Gaussian covertext, the value

of the public mutual information game is lower bounded by C�(D1;D2; �
2
u). Indeed, the

encoder can use the watermarking channels de�ned by (PA�

XjU )
n and (PA�

V jU;X)
n where A�

achieves the maximum in the de�nition of C�. Since for any covertext distribution (and in

particular for an IID Gaussian covertext) the value of the private version is at least as high

as the value of the public version (Lemma 3.1), it follows from the above that, for an IID

Gaussian covertext, C� is also a lower bound on the value of the private Gaussian mutual

information game.

The combination of Lemmas 3.1, 3.2 and 3.3 shows that for a zero-mean IID Gaus-

sian covertext of variance �2u, the value of both the private and public Gaussian mutual

information games is exactly C�(D1;D2; �
2
u).
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Lemma 3.3 also shows that when the covertext is zero-mean IID Gaussian and the

memoryless watermarking channels (PA
XjU )

n and (PA
V jU;X)

n are used, then to minimize the

mutual information the attacker should use the memoryless attack channel (PA
Y jX)

n.

3.3 Game Theoretic Interpretation

In this section, we look at the the private mutual information game, de�ned in (3.2), with

IID zero-mean variance-�2u Gaussian covertext from game theoretic perspective. Recall that

the encoder is trying to maximize Ipriv and the attacker is trying to minimize Ipriv. In game

theoretic terminology (see e.g. [Gib92]), this is a zero-sum game with Ipriv as the pay-

o� to the �rst player (encoder) and �Ipriv as the pay-o� to the second player (attacker).

Speci�cally, this mutual information game is a dynamic zero-sum game of complete and

perfect information. In particular, the game is not static, and thus we need to consider

an attacker strategy of lists of responses to every possible watermarking channel. We will

show that a subgame-perfect Nash equilibrium gives the value of the game, where we use

the term \value of the game" to denote the highest possible pay-o� to the �rst player. We

will also illustrate a mistake that could be made when computing the value of the game.

We �rst rederive the value of the game using this game theoretic interpretation. For

a dynamic game, a strategy space for each player is speci�ed by listing a feasible action

for each possible contingency in the game. Since the encoder plays �rst, his strategy space

is simply the set of feasible watermarking channels, i.e., D1

�
D1; (P

G
U )

n
�
de�ned in (3.3).

However, the attacker plays second and thus his strategy space consists of all mappings of

the form

 : PXjU 7! PY jX 2 D2

�
D2; (P

G
U )

n; PXjU
�
; 8PXjU 2 D1

�
D1; (P

G
U )

n
�
; (3.17)

where D2

�
D2; (P

G
U )

n; PXjU
�
is de�ned in (3.4). That is, for every possible strategy PXjU

the encoder might use, the attacker must choose a feasible response  (PX jU ).

An encoder strategy P �XjU and an attacker strategy  �(�) form a Nash equilibrium if

Ipriv
�
(PG

U )
n; PXjU ;  

�(PXjU )
� � Ipriv

�
(PG

U )
n; P �XjU ;  

�(P �XjU )
�
; (3.18)
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for every PXjU 2 D1(D1; (P
G
U )

n), and

Ipriv

�
(PG

U )
n; P �X jU ;  

�(P �XjU )
�
� Ipriv

�
(PG

U )
n; P �X jU ;  (P

�
X jU )

�
; (3.19)

for every mapping  (�) of the form (3.17). That is, given that the attacker will use  �(�),
the encoder maximizes its pay-o� by using P �

XjU . Conversely, given that the encoder will

use P �XjU , the attacker maximizes its pay-o� (minimizes the encoder's pay-o�) by using

 �(�).

An encoder strategy P �XjU and an attacker strategy  �(�) form a subgame-perfect Nash

equilibrium if they form a Nash equilibrium and if additionally

Ipriv
�
(PG

U )
n; PXjU ;  

�(PXjU )
� � Ipriv

�
(PG

U )
n; PXjU ; PY jX

�

for all PXjU 2 D1(D1; (P
G
U )

n) and for all PY jX 2 D2(D2; (P
G
U )

n; PXjU ). That is, the at-

tacker must choose the best response to any possible encoder strategy, and not just one

encoder strategy as in the regular Nash equilibrium. The value of the game is given by eval-

uating the mutual information at any subgame-perfect Nash equilibrium (there is not neces-

sarily a unique equilibrium). The value of the game is thus Ipriv

�
(PG

U )
n; P �

XjU ;  
�(P �

XjU )
�
.

Using this terminology we see that Lemma 3.2 and Lemma 3.3 imply that there exists

a subgame-perfect Nash equilibrium of the form

��
PA�

XjU

�n
;  �(�)

�

where PA
XjU is de�ned above in Section 3.2.2, A� achieves the maximum in (A.8), and

 �
�
(PA

XjU )
n
�
= (PA

Y jX)
n for every A 2 A(D1; D2; �

2
u), where P

A
Y jX is de�ned in Section 3.2.1.

The value of the game is thus C�(D1;D2; �
2
u).

Using the above concepts, we now discuss the value of this game that was given in

[MO99, MO00]. For A0 = �2u +D1,

Ipriv

�
(PG

U )
n; PX jU ; (P

A0

Y jX)
n
�
� Ipriv

�
(PG

U )
n; (PA0

XjU )
n; (PA0

Y jX)
n
�
; (3.20)
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for every PXjU 2 D1(D1; (P
G
U )

n), and

Ipriv

�
(PG

U )
n; (PA0

XjU )
n; (PA0

Y jX)
n
�
� Ipriv

�
(PG

U )
n; (PA0

XjU )
n; PY jX

�
; (3.21)

for every PY jX 2 D2

�
D2; (P

G
U )

n; (PA0

XjU )
n
�
. Thus, it would seem that if  0(PX jU ) = (PA0

Y jX)
n

for all PXjU , then the pair
�
(PA0

XjU )
n;  0(�)

�
form a Nash equilibrium according to the de�-

nitions (3.18) and (3.19). The value of the game given in [MO99, MO00] is the mutual

information evaluated with this pair. However, this attack strategy is not valid since

(PA0

Y jX
)n =2 D2(D2; (P

G
U )

n; PXjU ) for some PXjU , and in particular for any PXjU with

n�1E
�kXk2� > A0. Indeed, the optimal encoder strategy (PA�

XjU )
n has n�1E

�kXk2� = A�

and A� > A0 (see Lemma A.1). Thus, the expression on the RHS of (3.20) is strictly less

than C�(D1;D2; �
2
u); see Figure 2-1 for a comparison of the two expressions.

3.4 Other Mutual Information Games

Zero-sum games in which one player tries to maximize some mutual information expression

while the other player tries to minimize the same mutual information have also been inves-

tigated in [BMM85, SM88, Yan93]. As in the watermarking game, typically the �rst player

is a communicator and the second player is a jammer. Assuming maximum-likelihood de-

coding, the mutual information between the input and output of a channel gives the rate

at which reliable communication can take place. However, the decoder in the watermark-

ing game is not necessarily performing maximum-likelihood decoding, and thus the mutual

information games do not necessarily describe the capacity.

Most of the research in this area has focused on the channel Y = X + Z, where X is

the input speci�ed by the �rst player, Z is the noise speci�ed by the second player, and

X and Z are independent. For this game, the mutual information expression of interest

is I(X;Y ). If X and Z are both power-constrained in expectation (i.e., E[X2] � P and

E[Z2] � N), then zero-mean Gaussian distributions for both X and Z form a saddlepoint

in mutual information [Bla57]. That is, if X� � N (0; P ) and Z� � N (0; N), then

I(X;X + Z�) � I(X�;X� + Z�) � I(X�;X� + Z); (3.22)

for any feasible random variables X and Z. In our mutual information game with Gaussian
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covertext and power-constraints, the optimal strategies are also (conditionally) Gaussian.

However, the one-dimensional solution to our mutual information game does not form a

saddlepoint. Another result that is reected in our mutual information game is that even

if a player is allowed to choose random vectors instead of random variables, then he will

choose the random vector to consist of independent and identically distributed (IID) random

variables [SM88]. Thus, it is suÆcient to consider the one-dimensional mutual information

game for the additive channel discussed above.
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Chapter 4

The Scalar Gaussian

Watermarking Game

This chapter is devoted to proving Theorem 2.1, which describes the capacity of the scalar

Gaussian watermarking (SGWM) game and gives an upper bound on the capacity for

a general ergodic covertext. In the SGWM game, the covertext is an IID sequence of

zero-mean variance-�2u random variables and the distortion is measured using the squared

di�erence. The proof of this theorem is divided into two main parts, achievability and

converse.

The achievability part of the proof (Sections 4.2 and 4.3) consists of showing that all

rates less than C�(D1;D2; �
2
u) are achievable for the SGWM game for the private and public

versions, respectively. In Section 4.3, we also show that all rates less than 1
2 log

�
1 + D1

D2

�
are

achievable for the public version of the additive attack watermarking game with Gaussian

covertext, which completes the proof of Theorem 2.2. To assist in these arguments, we

describe the allowable attacks in Section 4.1. We also show in Section 4.4 that it is suÆcient

to consider covertexts that are uniformly distribution on the n-sphere Sn(0;pn�2u).

In the converse part in Section 4.5, we show that no rates higher than C�(D1;D2; �
2
u)

are achievable in the SGWM game. In fact, we show that no such rates are achievable for

any ergodic covertext distribution with second moment at most �2u.

In this chapter, we will use uniform distributions on the n-dimensional sphere as an ap-

proximation for an IID Gaussian distribution. We denote the n-dimensional sphere centered
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at � 2 Rn with radius r � 0 by Sn(�; r), i.e.,

Sn(�; r) = f� 2 Rn : k� � �k = rg:

For any vector � 2 Sn(0; 1) and any angle 0 � � � �, we let C(�; �) � Sn(0; 1) denote the
spherical cap centered at � with half-angle �,

C(�; �) = f� 2 Sn(0; 1) : h�; �i > cos �g:

The surface area of this spherical cap in Rn depends only on the angle �, and is denoted by

Cn(�). Note that Cn(�) is the surface area of the unit n-sphere.

Note that many of the other de�nitions used in this chapter are summarized in Ap-

pendix A. Most importantly, recall that if A(D1; D2; �
2
u) is non-empty, then

C�(D1;D2; �
2
u) = max

A2A(D1 ;D2;�2u)

1

2
log
�
1 + s(A;D1; D2; �

2
u)
�
; (4.1)

where A(D1;D2; �
2
u) and s(A;D1;D2; �

2
u) are de�ned in Appendix A.

4.1 Deterministic Attacks

In Section 2.4.3, we argued that deterministic attacks are suÆcient to analyze achievability

for the watermarking game. In this section, we describe in more detail a deterministic

additive attack (Section 4.1.1) and a deterministic general attack (Section 4.1.2).

4.1.1 Deterministic Additive Attack

For the additive attack watermarking game with real alphabets and squared error distortion,

a deterministic attacker takes on a particularly simple form. Indeed, combining the forms

(2.26) and (2.9), we see that the attacker can be written as

gn(x) = x+ ~y (4.2)
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for some sequence ~y that satis�es

1

n
k~yk2 � D2: (4.3)

4.1.2 Deterministic General Attack

For the general watermarking game with real alphabets and squared error distortions, a

deterministic attack gn(x) can be decomposed into its projection onto the stegotext x and

its projection onto x?. That is, we can write

gn(x) = 1(x)x+ 2(x); (4.4)

for some 1 : R
n 7! R and some 2 : R

n 7! R
n , where h2(x);xi = 0.

De�ning

3(x) = n�1k2(x)k2; (4.5)

we can rewrite the attacker's distortion constraint (2.3) in terms of 1(X), X , and 3(X)

as

�
1(X)� 1

�2
n�1kXk2 + 3(X) � D2; a.s.;

and consequently,

3(x)

21(x)
� D2

c(n�1kxk2;D2)
; (4.6)

for almost all x such that n�1kxk2 > D2, where c(A;D2) = 1 � D2=A (also de�ned in

(A.4)).

4.2 Achievability for Private Version

In this section, we show that for the private version of the watermarking game all rates

up to C�(D1;D2; �
2
u) are achievable when the covertext U is uniformly distributed on the

n-sphere Sn(0;pn�2u). This result is extended to IID Gaussian covertexts in Section 4.4.
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4.2.1 Coding Strategy

The coding strategy for the private version of the watermarking game is motivated by the

solution to the corresponding mutual information game; see Theorem 3.1 and its proof in

Section 3.2.

Constants

The encoder and decoder choose some Æ > 0 and a value of A 2 A(D1;D2; �
2
u), where the

interval A(D1;D2; �
2
u) is de�ned in (A.7). We assume throughout that the above interval

is non-empty, because otherwise the claimed coding capacity is zero, and there is no need

for a coding theorem.

Let the rate R of the coding strategy be

R =
1

2
log
�
1 + s(A;D1; D2; �

2
u)
�� Æ; (4.7)

where s(A;D1; D2; �
2
u) is de�ned in (A.5). Note that if the chosen A achieves the maximum

in (4.1), then the RHS of (4.7) is R = C�(D1; D2; �
2
u) � Æ; we show in Lemma A.1 that

such an A can be chosen. We will show that for any Æ > 0, and for U that is uniformly

distributed over the n-sphere Sn(0;pn�2u), the rate R is achievable.

The encoder and decoder also compute the constants � = �(A;D1; �
2
u), b1 = b1(A;D1; �

2
u)

and b2(A;D1; �
2
u), which are all de�ned in Appendix A. Recall that � = (A � �2u �D1)=2,

b1 = 1 + �=�2u and b2 = D1 � �2=�2u.

Encoder and Decoder

The encoder and decoder use their common randomness �1 to generate 2nR independent

random vectors fC1; : : : ;C2nRg, where each random vector Ci is uniformly distributed on

the n-sphere Sn(0; 1).
Given a covertext U = u, a message W = w, and the vector Cw = cw, let cw(u) be the

projection of cw onto the subspace orthogonal to u, but scaled so that

n�1kcw(u)k2 = b2: (4.8)
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That is,

cw(u) =
p
nb2

cwju?cwju? : (4.9)

Note that

hcw(u);ui = 0: (4.10)

Encoder: Using the covertext u, the message w, and the source of common randomness

�1 the encoder creates the stegotext x as

x = fn(u; w; �1) = b1u+ cw(u): (4.11)

By (4.10) and the de�nitions of the constants b1 and b2 (A.2), (A.3), it follows that

n�1kx� uk2 = (b1 � 1)2�2u + b2 = D1;

thus demonstrating that the encoder satis�es the distortion constraint (2.1). We can further

calculate that

n�1kxk2 = A; (4.12)

which demonstrates the operational signi�cance of the constant A as the power of the

stegotext.

Decoder: The decoder uses a modi�ed nearest-neighbor decoding rule. It projects the

forgery y onto u? to create yju? and produces the message ŵ that, among all messages ~w,

minimizes the distance between yju? and c ~w(u). The decoder's output ŵ = �n(y;u; �1) is

thus given as

ŵ = �n(y;u; �1) = argmin
1� ~w�2nR

yju? � c ~w(u)2 (4.13)

= argmax
1� ~w�2nR

hyju? ; c ~w(u)i; (4.14)

where the last equality follows by noting that n�1kc ~w(u)k2 = b2 irrespective of ~w; see (4.8).
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If more than one message achieves the minimum in (4.13), then an error is declared. Note

that ŵ of (4.13) is with probability one unique.

4.2.2 Analysis of Probability of Error

We now proceed to analyze our proposed encoding and decoding scheme. To this end we

shall �nd it convenient to de�ne the random variables,

Z1 =
1

n

Y jU?

2; (4.15)

Z2 =
1

n



Y jU?;CW (U)

�
; (4.16)

and the mapping

�1(z1; z2) =
z2p
b2z1

;

which will be shown to capture the e�ect of the attacker on the decoder's performance. Note

that j�1(Z1; Z2)j � 1, which follows from (4.8), (4.15), and (4.16) using the Cauchy-Schwarz

inequality.

By the de�nition of the decoder (4.14) and of the random variable Z2 (4.16) it follows

that a decoding error occurs if, and only if, there exists a message w0 6=W such that

1

n



Y jU?;Cw0(U )

� � 1

n



Y jU? ;CW (U )

�
= Z2:

Equivalently, an error occurs if, and only if, there exists some w0 6=W such that

�
Y jU?p
nZ1

;
Cw0(U )p

nb2

�
� Z2p

b2Z1
(4.17)

= �1(Z1; Z2):

If a random vector S is uniformly distributed on an n-dimensional sphere, and if another

vector T is independent of it and also takes value in that n-sphere, then, by symmetry, the

inner product hS;T i has a distribution that does not depend on the distribution of T . We
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next use this observation to analyze the left hand side (LHS) of (4.17).

Conditional on the covertext U = u and for any message w0 6= W , the random vector

Cw0(u)=
p
nb2 is uniformly distributed over Sn(0; 1) \ u? (i.e., all unit vectors that are

orthogonal to u) and is independent of the random vector Y ju?=
p
nZ1, which also takes

value on Sn(0; 1) \ u?. Since Sn(0; 1) \ u? is isometric to Sn�1(0; 1),1 it follows from the

above observation that the distribution of the random variable on the LHS of (4.17) does

not depend on the distribution of Y ju?=
p
nZ1. Consequently, for any w

0 6=W ,

Pr

��
Y jU?p
nZ1

;
Cw0(U)p

nb2

�
� �1(z1; z2)

���Z1 = z1; Z2 = z2;U = u

�
=

Cn�1
�
arccos �1(z1; z2)

�
Cn�1(�)

; (4.18)

where recall that Cn�1(�) is the surface area of a spherical cap of half-angle � on an (n�1)-

dimensional unit sphere.

To continue the analysis of the probability of a decoding error, we note that conditional

on U = u, the random vectors fCw0(u) : w
0 6= Wg are independent of each other. Thus,

the probability of correct decoding is given by the product of the probabilities that each

of these 2nR � 1 vectors did not cause an error. Since the probability of error for each

individual vector is given in (4.18), we can write the conditional probability of error for this

coding strategy as

Pr(errorjZ1 = z1; Z2 = z2;U = u) = Pr(errorjZ1 = z1; Z2 = z2) =

1�
 
1� Cn�1

�
arccos �1(z1; z2

�
Cn�1(�)

!2nR�1

: (4.19)

We now �nd an upper bound on the average of the RHS of (4.19) over the random variables

Z1 and Z2. The function Pr(errorjZ1 = z1; Z2 = z2) is a monotonically non-increasing

function of �1(z1; z2) and is upper bounded by one. Consequently, for any real number �

we have

Pr(error) � Pr(errorj�1(Z1; Z2) = �) + Pr
�
�1(Z1; Z2) < �

�
: (4.20)

1To see this, it is suÆcient to consider u = (1; 0; : : : ; 0). In this case, u0 2 Sn(0; 1) \ u? if u01 = 0 andPn
i=2 u

0
i = 1.

77



We will show that the RHS of (4.20) is small when � = ��1 � �1, where

��1 =

r
cb2

cb2 +D2
; (4.21)

c = c(A;D2) = 1 � D2
A (see (A.4)) and �1 is a small positive number to be speci�ed later.

We analyze the �rst term on the RHS of (4.20) in Lemma 4.2 and the second term in

Lemma 4.3. In order to do so, we recall that Shannon [Sha59] derived bounds on the ratio

of the surface areas of spherical caps that asymptotically yield

lim
n!1

1

n
log

Cn(arccos �)

Cn(�)
= log

�
sin(arccos �)

�
= log(1� �2); (4.22)

for every 0 < � < 1; see also [Wyn67]. We shall also need the following lemma.

Lemma 4.1. Let f : R 7! (0; 1] be such that the limit

��1 = lim
t!1

1

t
log f(t) (4.23)

exists and is negative so that �1 > 0. Then

lim
t!1

�
1� f(t)

�2t�2
=

8><
>:
1 if �1 > �2

0 if �1 < �2

:

Proof. First, recall the well known fact that

lim
t!1

�
1� 2�t�1

�2t�2
=

8>>>>><
>>>>>:

1 if �1 > �2

e�1 if �1 = �2

0 if �1 < �2

: (4.24)

Fix � > 0. Let us consider the case where �1 > �2. There exists a t1 such that

t�1 log(f(t))� (��1) > �2��1
2 for all t > t1 since �1 > �2 and by (4.23). There also exists a

t2 such that

�
1� 2�t(�1+�2)=2

�2t�2
> 1� �
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for all t > t2 since (�1+�2)=2 > �2 and by (4.24). Thus, we can write that (1�f(t))2t�2 > 1��
for all t > maxft1; t2g. The claim follows in this case since (1� f(t))2

t�2 � 1.

The claim follows in the case �1 < �2 by similar logic.

Lemma 4.2. For any � > 0, there exists some �1 > 0 and some integer n1 > 0, such that

for all n > n1

1�
 
1� Cn�1

�
arccos(��1 � �1)

�
Cn�1(�)

!2nR�1

< �:

Proof. With the de�nitions of ��1 (4.21) and R (4.7) we have

1

2
log

�
1

1� (��1)
2

�
= R+ Æ;

and consequently there must exist some �1 > 0 such that

R <
1

2
log

�
1

1� (��1 � �1)2

�
: (4.25)

By the result on the asymptotic area of spherical caps (4.22) and by the inequality

(4.25), it follows from Lemma 4.1 that there exists a positive integer n1 such that for all

n > n1

 
1� Cn�1

�
arccos(��1 � �1)

�
Cn�1(�)

!2nR

> 1� �;

and the claim follows by noting that the LHS cannot decrease when the exponent 2nR is

replaced by 2nR � 1.

Our achievability proof will thus be complete once we demonstrate that the second term

on the RHS of (4.20) converges to zero for � = ��1��1. This is demonstrated in the following
lemma, which is proved in Appendix B.6 and which concludes the achievability proof for

the private version of the SGWM game.

Lemma 4.3. For any � > 0 and �1 > 0, there exists an integer n2 > 0 such that for all
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n > n2

Pr
�
�1(Z1; Z2) < ��1 � �1

�
< �:

4.3 Achievability for Public Version

In this section, we show that all rates up to C�(D1;D2; �
2
u) and

1
2 log(1+

D1
D2
) are achievable

for the public version of the general watermarking game and for the additive attack water-

marking game, respectively, when the covertext U is uniformly distributed on the n-sphere

Sn(0;pn�2u). We extend these results to IID Gaussian covertexts in Section 4.4.

4.3.1 Coding Strategy

The coding strategies for the public versions of both the additive attack and the general

watermarking games are motivated by the works of Marton [Mar79], Gel'fand and Pinsker

[GP80], Heegard and El Gamal [HEG83], and Costa [Cos83].

For both models, we �x a Æ > 0. In the following subsections, we de�ne the set of con-

stants f�; �2v ; R0; R1; Rg separately for each model. Using these constants we then describe

the encoder and decoder used for both models. Thus, while the constants have di�erent

values for the two models, in terms of these constants the proposed coding schemes are

identical.

Constants for the Additive Attack Watermarking Game

For the additive attack watermarking game, we de�ne the set of constants as

� =
D1

D1 +D2
; (4.26)

�2v = D1 + �2�2u; (4.27)

R0 =
1

2
log

�
1 +

D1�
2
u

(D1 +D2)2

�
+ Æ; (4.28)

R1 =
1

2
log

�
1 +

D1

D2
+

D1�
2
u

D2(D1 +D2)

�
� Æ; (4.29)
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and

R = R1 �R0 =
1

2
log

�
1 +

D1

D2

�
� 2Æ: (4.30)

Constants for the General Watermarking Game

The choice of the constants for the general watermarking game is inspired by the solution

to the public Gaussian mutual information game; see Theorem 3.1 and its derivation in

Section 3.2. The encoder and decoder choose a free parameter A 2 A(D1;D2; �
2
u), where

the intervalA(D1;D2; �
2
u) is de�ned in (A.7). We assume throughout that the above interval

is non-empty, because otherwise the coding capacity is zero, and there is no need for a coding

theorem.

First, let � = �(A;D1; �
2
u), b1 = b1(A;D1; �

2
u), b2 = b2(A;D1; �

2
u), c = c(A;D2) and

� = �(A;D1; D2; �
2
u) as de�ned in Appendix A. In particular, recall that � = 1 � b1D2

D2+cb2
.

We can then de�ne the other constants as

�2v = �2�2u + 2��+D1; (4.31)

R0 =
1

2
log

�
1 +

(��2u + �)2

D1�2u � �2

�
+ Æ; (4.32)

R1 =
1

2
log

�
1 +

Acb2
D2(D2 + cb2)

�
� Æ; (4.33)

and

R = R1 �R0 =
1

2
log
�
1 + s(A;D1;D2; �

2
u)
�� 2Æ; (4.34)

where s(A;D1;D2; �
2
u) is de�ned in (A.5). If A is chosen to maximize (4.34) as in (4.1),

then R = C�(D1;D2; �
2
u)� 2Æ; we show in Lemma A.1 that such an A can be chosen.

Encoder and Decoder

The encoder and decoder use their source of common randomness �1 to create a codebook of

auxiliary codewords as follows. They generate 2nR1 = 2n(R+R0) IID random vectors fV j;kg,
where 1 � j � 2nR, 1 � k � 2nR0 , and each random vector V j;k is uniformly distributed on

the n-sphere Sn(0;
p
n�2v). Thus, the codebook consists of 2nR bins (indexed by j), each

containing 2nR0 auxiliary codewords. In Figure 4-1, we give an example codebook with
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?
v1;4

6
v1;2

Figure 4-1: Example codebook for public version. Dashed vectors are in bin 1 and dotted
vectors are in bin 2.

n = 2, R0 = 1 and R = 1=2. Instead of being selected randomly, the codewords in this

example have been placed regularly in the 2-sphere (i.e., circle).

Encoder: Given the message w and the covertext u, the encoder looks in bin w and chooses

the auxiliary codeword closest (in Euclidean distance) to the covertext. The output of the

encoder x is then created as a linear combination of the covertext and the chosen auxiliary

codeword.

Mathematically, the encoder behaves as follows. Given the message w, the covertext u,

and the codebook fvj;kg, let the chosen index for message w be

k�(u; w) = argmax
1�k�2nR0

hu;vw;ki; (4.35)

which is unique with probability one. Further, let the chosen auxiliary codeword for message

w be

vw(u) = vw;k�(u;w): (4.36)

The encoder creates its output x as

x = vw(u) + (1� �)u: (4.37)

The example of Figure 4-1 is continued in Figure 4-2, where the encoding procedure is

illustrated.

Decoder: The decoder �nds the auxiliary codeword that, among all the 2nR1 sequences in
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Figure 4-2: Example encoding for public version with w = 1 (bin with dashed vectors).
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Figure 4-3: Example decoding for public version.

the codebook, is closest to the received sequence y. He then declares the estimate of the

message to be the bin to which this auxiliary codeword belongs. Mathematically, given the

received sequence y and the codebook fvj;kg, the estimate is given by

ŵ = argmin
1� ~w�2nR

�
min

1�k�2nR0
ky � v ~w;kk2

�
(4.38)

= argmax
1� ~w�2nR

�
max

1�k�2nR0
hy;v ~w;ki

�
; (4.39)

where the last equality follows by noting that n�1kv ~w;kk2 = �2v irrespective of ~w and k. Note

that ŵ of (4.38) is with probability one unique. The example is completed in Figure 4-3 with

an illustration of the decoding process. In this example, the decoder successfully recovered

the value of the watermark.
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4.3.2 Probability of Error

In this section, we derive the conditional probability of error in the above coding strategy.

We �rst de�ne the random variables on which we will condition. Let the random variable

Z be the maximum (normalized) inner product achieved in (4.35),

Z =
1

n
hU ;V W (U )i: (4.40)

Next, let the random variable Z3 be the normalized power in the sequence Y ,

Z3 =
1

n
kY k2: (4.41)

Next, let the random variable Z4 be the normalized inner product between the sequence ~Y ,

which is de�ned by

~Y = Y �X; (4.42)

and the auxiliary codeword V W (U ),

Z4 =
1

n
h ~Y ;V W (U )i: (4.43)

Finally, let us de�ne a mapping �2(z; z3; z4) as

�2(z; z3; z4) =
�2v + (1� �)z + z4p

z3�2v
: (4.44)

By the de�nition of the decoder (4.39), it follows that a decoding error occurs if, and

only if, there exists a message w0 6=W and an index k0 such that

1

n
hY ;V w0;k0i � 1

n
hY ;V W (U)i

=
1

n
hX;V W (U )i+ 1

n
h ~Y ;V W (U)i

= �2v + (1� �)Z + Z4;

where the �rst equality follows by the de�nition of ~Y (4.42) and the second equality follows

by the de�nitions of the encoder (4.37) and the random variables Z and Z4. Note that we
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do not need to consider the case where the decoder makes a mistake in the same bin since

this does not result in an error. Equivalently, an error occurs if, and only if, there exists a

message w0 6=W and an index k0 such that

*
Yp
nZ3

;
V w0;k0p
n�2v

+
� �2v + (1� �)Z + Z4p

Z3�2v
(4.45)

= �2(Z;Z3; Z4):

The random vector V w0;k0=
p
n�2v is uniformly distributed on the unit n-sphere Sn(0; 1)

and is independent of Y , Z, Z3, and Z4. Indeed, the encoder does not examine the auxiliary

codewords in bins other than in the one corresponding to the message W . The random

vector Y =
p
nZ3 also takes value on the unit n-sphere Sn(0; 1), and thus, by symmetry (see

Section 4.2.2), the distribution of the LHS of (4.45) does not depend on the distribution of

Y . In particular, for any w0 6=W ,

Pr

 *
Yp
nz3

;
V w0;k0p
n�2v

+
� �2(z; z3; z4)

���Z = z; Z3 = z3; Z4 = z4

!
=

Cn
�
arccos �2(z; z3; z4)

�
Cn(�)

: (4.46)

Furthermore, the random vectors fV w0;k0 : w
0 6= W; 1 � k0 � 2nR0g are independent of

each other. Thus, the probability that there was not an error is given by the product of

the probabilities that each of these 2nR1 � 2nR0 vectors did not cause an error. Since the

probability of error for each individual vector is given in (4.46), we can write the conditional

probability of error for this coding strategy as

Pr(errorjZ = z; Z3 = z3; Z4 = z4) = 1�
 
1� Cn

�
arccos �2(z; z3; z4)

�
Cn(�)

!2nR1�2nR0

: (4.47)

The expression Pr(errorjZ = z; Z3 = z3; Z4 = z4) is a monotonically non-increasing function

of �2(z; z3; z4) and is upper-bounded by 1. Consequently, as in Section 4.2.2,

Pr(error) � Pr
�
errorj�2(Z;Z3; Z4) = �

�
+ Pr

�
�2(Z;Z3; Z4) < �

�
; (4.48)

for any real number �. For both games under consideration, we will show that, by choosing

a suÆciently large blocklength n, the RHS of (4.48) can be made arbitrarily small when
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� = ��(R1 + Æ) � �2. Here

��(R1 + Æ) =
�
1� 2�2(R1+Æ)

�1=2
; (4.49)

�2 is a small number to be speci�ed later, and the constant R1 is de�ned in (4.29) and (4.33)

for the additive attack and general watermarking games, respectively.

We now analyze the �rst term on the RHS of (4.48) for both games simultaneously. The

analysis of the second term is performed separately for the additive attack watermarking

game in Lemma 4.8 and for the general watermarking game in Lemma 4.10.

Lemma 4.4. For any � > 0, there exists some �2 > 0 and some integer n1 > 0 such that

for all n > n1

1�
0
@1� Cn

�
arccos

�
��(R1 + Æ)� �2

��
Cn(�)

1
A

2nR1�2nR0

< �;

where R1 is de�ned according to either (4.29) or (4.33).

Proof. Rewriting (4.49) as

1

2
log

 
1

1� ���(R1 + Æ)
�2
!
= R1 + Æ;

demonstrates the existence of some �2 > 0 such that

1

2
log

 
1

1� ���(R1 + Æ)� �2
�2
!
> R1; (4.50)

because in both (4.29) and (4.33) the rate R1 satis�es 0 < ��(R1 + Æ) < 1. By the result

on the asymptotic area of spherical caps (4.22) and by the inequality (4.50), it follows by

Lemma 4.1 that there exists a positive integer n1 such that for all n > n1

0
@1� Cn

�
arccos

�
��(R1 + Æ)� �2

��
Cn(�)

1
A

2nR1

> 1� �;

and the claim follows by noting that the LHS cannot decrease when the exponent 2nR1 is

replaced by 2nR1 � 2nR0 .
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4.3.3 Distribution of Chosen Auxiliary Codeword

To continue with the performance analysis, we shall need the distribution of the chosen

auxiliary codeword V W (U ) (de�ned in (4.36)), both unconditionally and conditioned on

the random vectorX and the random variable Z (de�ned in (4.37) and (4.40), respectively).

Lemma 4.5. The random vector V W (U ) de�ned in (4.36) is uniformly distributed over

the n-sphere Sn(0;pn�2v).

Proof. By the symmetry of the encoding process it is apparent that V W (U) is independent

of the message W . Assume then without loss of generality that W = 1.

Since all the auxiliary random vectors fV 1;kg in bin 1 take value in the n-sphere

Sn(0;pn�2v), it follows that the chosen auxiliary codeword must take value in the same

n-sphere.

Finally, since the joint distribution of fV 1;kg is invariant under any unitary transfor-

mation as is the distribution of U , and since U and fV 1;kg are independent, it follows that
the unconditional distribution of V W (U) is as stated above. In other words, the fact that

V W (U ) achieves the maximum inner product with U does not tell us anything about the

direction of V W (U).

Lemma 4.6. Given X = x and Z = z, the random vector V W (U) is uniformly distributed

over the set

V(x; z) =
n
a1x+ v : v 2 Sn(0;pna2) \ x?

o
; (4.51)

where

a1 =
�2v + (1� �)z

n�1kxk2 ;

and

a2 =
(1� �)2(�2u�

2
v � z2)

n�1kxk2 : (4.52)

The proof of this lemma can be found in Appendix B.7.
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4.3.4 Analysis for Additive Attack Watermarking Game

Using the encoder and decoder described above, we now show that for any positive Æ the

rate R de�ned in (4.30) is achievable for the additive attack watermarking game (when the

covertext U is uniformly distributed on the n-sphere Sn(0;pn�2u)). That is, the proba-

bilities that the encoder does not meet the distortion constraint and that a decoding error

occur can both be made arbitrarily small by choosing some �nite blocklength n. In order

to prove these facts, we �rst show in the following subsection that the random variable Z

takes value close to ��2u with high probability.

A Law of Large Numbers for Z

In this section, we state and prove a claim that describes the behavior of the random

variable Z de�ned in (4.40). This claim will be used to show that encoder and decoder

behave properly (i.e., meeting the distortion constraint and recovering the correct message)

with arbitrarily high probability.

Lemma 4.7. If the constants de�ned for the additive attack watermarking game are used

to design the sequence of encoders of Section 4.3.1, then

lim
n!1

Pr
�
Z � ��2u) = 1:

Proof. Let V be uniformly distributed on Sn(0;pn�2v) independent of U . Then

Pr(Z � ��2u) = 1� Pr

�
max

1�k�2nR0
n�1hU ;V W;ki < ��2u

�

= 1�
�
1� Pr

�
n�1hU ;V i � ��2u

��2nR0
; (4.53)

where the �rst equality follows by the de�nition of Z (4.40) and of V W;k, and the second

equality follows because fV W;kg2nR0k=1 are IID and also independent of U . The RHS of (4.53)

can be further simpli�ed using

Pr

�
1

n
hU ;V i � ��2u

�
= Pr

 *
Up
n�2u

;
Vp
n�2v

+
� ��u

�v

!

=
Cn

�
arccos

�
��u
�v

��
Cn(�)

; (4.54)
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which follows since both normalized random vectors are uniformly distributed on Sn(0; 1)
and they are independent of each other. By (4.22) we obtain

lim
n!1

1

n
log

Cn

�
arccos

�
��u
�v

��
Cn(�)

=
1

2
log

�
1� �2�2u

�2v

�
(4.55)

= �(R0 � Æ); (4.56)

where the second equality follows by the de�nitions of � (4.26), �2v (4.27), and R0 (4.28).

Combining Lemma 4.1 with (4.53), (4.54), and (4.56) concludes the proof.

The Encoding Distortion Constraint

We now show that the encoder's distortion constraint is met with arbitrarily high proba-

bility. By Lemma 4.7, it is suÆcient to show that Z � ��2u implies n�1kX � Uk2 � D1,

which we proceed to prove. By the de�nitions of X and Z (see (4.37) and (4.40)),

n�1kX �Uk2 = �2v � 2�Z + �2�2u: (4.57)

Since � is positive (4.26), the RHS of (4.57) is decreasing in Z. Consequently, the condition

Z � ��2u implies

n�1kX �Uk2 � �2v � �2�2u

= D1;

where the last equality follows from (4.27).

The Decoding Error

We now show that the second term on the RHS of (4.48) is vanishing in n when � =

��(R1 + Æ)� �2. Here R1 and �
�(R1 + Æ) are de�ned in (4.29) and (4.49) respectively, and

�2 > 0 is speci�ed in Lemma 4.4. The combination of this fact with Lemma 4.4 will show

that, as the blocklength n tends to in�nity, the probability of decoding error approaches

zero. The following lemma is proved in Appendix B.8.

Lemma 4.8. If the constants de�ned for the additive attack watermarking game are used

to design the sequence of encoders of Section 4.3.1, then for any � > 0 and �2 > 0, there
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exists an integer n2 > 0 such that for all n > n2 and for all the deterministic attacks of

Section 4.1.1

Pr
�
�2(Z;Z3; Z4) < ��(R1 + Æ)� �2

�
< �:

4.3.5 Analysis for General Watermarking Game

We return to the public version of the general watermarking game to demonstrate that

the encoder and decoder for the general watermarking game (de�ned in Section 4.3.1)

guarantee that the rate R of (4.34) is achievable, for any Æ > 0. That is, we show that both

the probability that the encoding distortion constraint is not met and the probability of a

decoding error are vanishing in the blocklength n. We �rst show in the following subsection

that the random variable Z concentrates around ��2u + �.

A Law of Large Numbers for Z

In this section, we prove a law of large numbers for the random variable Z = 1
nhU ;V W (U)i,

which is de�ned in (4.40), and which corresponds to the normalized inner product between

the source sequence U and the chosen auxiliary codeword V W (U). This law will be useful

for the later analysis of the probability of exceeding the allowed encoder distortion and the

probability of a decoding error.

Lemma 4.9. For every Æ > 0 used to de�ne the encoder for the general watermarking game

(see equations (4.32), (4.33), (4.34) and Section 4.3.1), there exists �(Æ) > 0 such that

lim
n!1

Pr
�
��2u + � � Z � ��2u + �+ �(Æ)

�
= 1;

and

lim
Æ#0

�(Æ) = 0:

Proof. The proof that Pr(Z � ��2u + �)! 1 is almost identical to the proof of Lemma 4.7.

One need only replace ��2u with ��2u + � and use the de�nitions of the constants that are

for the general watermarking game as opposed to the constants for the additive attack

watermarking game; see Section 4.3.1.
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To complete the proof of the present claim, we now choose �(Æ) > 0 such that

log

 
1�

�
��2u + �+ �(Æ)

�u�v

�2
!
< �R0: (4.58)

This can be done because the LHS of (4.58) equates to �(R0+Æ) when �(Æ) is set to zero (in

analogy to the equality between (4.55) and (4.56)), and because log(1 � x2) is continuous

and decreasing in x, for 0 < x < 1. Using Lemma 4.1, we see that Pr(Z > ��2u+ �(Æ))! 0.

Finally, we can choose �(Æ)! 0 as Æ ! 0 by the continuity of log(1� x2).

The Encoding Distortion Constraint

We now show that for an appropriate choice of n and Æ, the distortion constraint is met

with arbitrarily high probability. As in Section 4.3.4, if � � 0, then (4.57) demonstrates

that whenever Z � ��2u+� holds we also have n
�1kX�Uk2 � D1. Thus, our claim follows

from Lemma 4.9 if � � 0.

However, contrary to the additive attack game, in the general watermarking game the

constant � need not be non-negative. To address this case we note that for � < 0, whenever

the inequality ��2u+� � Z � ��2u+�+�(Æ) holds we also have n
�1kX�Uk2 � D1�2��(Æ).

Thus, if we design our system for some ~D1 < D1 instead of D1 as the encoder's distortion

constraint, then by choosing Æ suÆciently enough and n suÆciently large, Lemma 4.9 will

guarantee that the encoder will meet the D1 distortion constraint with arbitrarily high

probability. The desired achievability result can be demonstrated by letting ~D1 approach

D1, because C
�(D1;D2; �

2
u) is continuous in D1.

The Decoding Error

In this section, we show that the second term on the RHS of (4.48) is vanishing in n when

� = ��(R1 + Æ) � �2. Here R1 and ��(R1 + Æ) are de�ned in (4.33) and (4.49) and �2 is

speci�ed in Lemma 4.4. The combination of this fact with Lemma 4.4 will show that the

probability of decoding error approaches zero, as the blocklength n tends to in�nity. We

state the desired result in the following lemma, which is proved in Appendix B.9.

Lemma 4.10. If the constants de�ned for the general watermarking game are used to de-

sign the sequence of encoders of Section 4.3.1, then for any � > 0 and �2 > 0, there exists
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an integer n2 > 0 such that for all n > n2 and for all attackers of Section 4.1.2

Pr
�
�2(Z;Z3; Z4) < ��(R1 + Æ)� �2

�
< �:

4.4 Spherically Uniform Covertext is SuÆcient

We have shown in the early sections of this chapter that if the covertext U is uniformly

distributed on the n-sphere Sn(0;pn�2u), then the coding capacity of both the private and

public versions of the watermarking games are lower bounded by C�(D1;D2; �
2
u). We have

also shown that for such covertexts, the coding capacity of the additive attack watermarking

game is at least 1
2 log(1+

D1
D2
). In this section, we extend these results to zero-mean variance-

�2u IID Gaussian covertexts.

We �rst transform the IID Gaussian sequence U into a random vector U 0 that is uni-

formly distributed on the n-sphere Sn(0;pn�2u). To this end we set

SU = n�1kUk2;

which converges to �2u in probability, and let

U 0 =

s
�2u
SU

U ;

which is well de�ned with probability 1, and which is uniformly distributed on Sn(0;pn�2u).

We will consider all the models simultaneously, but we will state our assumptions on

the rate of each of the models separately:

General watermarking Assume that 0 < R < C�(D1;D2; �
2
u). By the de�nition of C�

(2.6), there exists some A0 2 A(D1; D2; �
2
u) such that R < 1

2 log(1+s(A
0;D1;D2; �

2
u)).

Since s(A0;D1;D2; �
2
u) is continuous in D1, there exists some D0

1 < D1 such that

R < 1
2 log(1 + s(A0;D0

1; D2; �
2
u)).

Additive attack watermarking Assume that 0 < R < 1
2 log(1+

D1
D2
). Then, there exists

a D0
1 < D1 such that R < 1

2 log(1 +
D0
1

D2
).

LetX 0 be the output of the encoders as designed for the covertext U 0 and the parameters

A0 and D0
1 in Sections 4.2.1 and 4.3.1. Let �0 be the corresponding decoder. Consider now
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an encoder for the covertext U that produces the stegotext X according to the rule

x =

8><
>:
x0 if n�1kx0 � uk2 � D1

u otherwise

:

With this choice of x, the distortion between u and x is less than D1 almost surely, so that

the encoding distortion constraint (2.1) is met.

We next claim that for a suÆciently large blocklength, X = X 0 with arbitrarily high

probability. Indeed, the distortion between the random vectors X 0 and U is given by

1

n
kX 0 �Uk2 = 1

n
kX 0 �U 0 +U 0 �Uk2

� 1

n
kX 0 �U 0k2 + 1

n
kU 0 �Uk2 + 2

n
kX 0 �U 0k � kU 0 �Uk

� D0
1 +

1

n
kU 0 �Uk2 +

q
D0
1

2

n
kU 0 �Uk;

and

1

n
kU 0 �Uk2 =

�p
SU �

p
�2u

�2

approaches, by the weak law of large numbers, zero in probability. In the above, the

�rst inequality follows from the triangle inequality, and the second because the encoders

of Sections 4.2.1 and 4.3.1 satisfy the encoder distortion constraint n�1kX 0 � U 0k2 � D0
1

almost surely. Since D0
1 < D1, our claim that

lim
n!1

Pr(X =X 0) = 1 (4.59)

is proved.

Let Ŵ be the output of the decoder �0, and consider now any �xed deterministic attack.

The probability of error can be written as

Pr(Ŵ 6=W ) = Pr(Ŵ 6=W;X =X 0) + Pr(Ŵ 6=W;X 6=X 0)

� Pr(Ŵ 6=W;X =X 0) + Pr(X 6=X 0);

where the second term on the RHS of the above converges to zero (uniformly over all the
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deterministic attackers) by (4.59), and the �rst term approaches zero by the achievability

results for covertexts that are uniformly distributed over the n-sphere.

To clarify the latter argument consider, for example, the public watermarking game

with an additive attacker as in (4.2). We would then argue that

Pr(Ŵ 6=W;X =X 0) = Pr
�
�0(X + ~y;�1) 6=W;X =X 0

�
= Pr

�
�0(X 0 + ~y;�1) 6=W;X =X 0

�
� Pr

�
�0(X 0 + ~y;�1) 6=W

�
;

which converges to zero by the achievability result on covertexts that are uniformly dis-

tributed on the n-sphere.

4.5 Converse for Squared Error Distortion

In this section, we prove the converse part of Theorem 2.1 for the watermarking game

with real alphabets and squared error distortions. That is, we show that if the covertext

distribution fPUg is ergodic with �nite fourth moment and E
�
U2
k

� � �2u, then the capacity

of the private version of the watermarking game is at most C�(D1;D2; �
2
u). In particular,

for any �xed R > C�(D1;D2; �
2
u) and any sequence of rate-R encoders that satisfy the

distortion constraint (2.1), we will propose a sequence of attackers fgng that satisfy the

distortion constraint (2.3) and that guarantee that, irrespective of the decoding rule, the

probability of error will be bounded away from zero. Thus, even if the sequence of decoders

were designed with full knowledge of this sequence of attackers, no rate above C�(D1;D2; �
2
u)

would be achievable.

The remainder of this section is organized as follows. In Section 4.5.1, we describe the

proposed sequence of attackers. In Section 4.5.2, we study the distortion they introduce, and

in Section 4.5.3 we show that, for the appropriate rates, these attack strategies guarantee a

probability of error that is bounded away from zero. We conclude with a discussion of the

necessity of the ergodicity assumption in Section 4.5.4.
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4.5.1 Attacker

Intuitive De�nition

We seek to provide some motivation for the proposed attack strategy by �rst describing

two simple attacks that fail to give the desired converse. We then combine aspects of these

simple strategies to form the attack strategy that we will use to prove the converse.

The upcoming discussion will utilize the correspondence between the encoder and at-

tacker (mappings) (fn, gn) and the watermarking and attack channels (conditional laws)

(PXjU , PY jX) that they induce for given �xed laws on W , fPUg, �1, and �2. One way to

prove the converse is to show using a Fano-type inequality that in order for the probability

of error to tend to zero, a mutual information term similar to Ipriv of (3.1) | evaluated with

respect to the induced channels | must be greater than the watermarking rate. Thus, one

would expect that the optimal attack channels of Section 3.2.1 for the mutual information

games could be used to design good attacker mappings for the watermarking game.

The �rst simple attack strategy corresponds to the optimal attack channel (PA
Y jX)

n of

Section 3.2.1, where A is the average power in the stegotext based on the encoder, i.e.,

A = E
�
n�1kXk2�. Since the encoder must satisfy the distortion constraint (2.1) (and

thus the corresponding watermarking channel PXjU must be in D1(D1; PU )), the results

of Section 3.2.3 show that this attacker guarantees that the mutual information is at most

C�(D1;D2; �
2
u). The problem with this attack strategy is that since it is based on the average

power in the stegotext, there is no guarantee that the attacker's distortion constraint (2.3)

will be met with probability one.

The second simple attack strategy corresponds to the optimal attack channel (P a
Y jX)

n,

where a is the power in the realization (sample-path) of the stegotext, i.e., a = n�1kxk2. The
results of Section 3.2.3 again give the appropriate upper bound on the mutual information

conditioned on the value of a. Furthermore, if a distortion level ~D2 slightly smaller than the

actual distortion level D2 is used to design this attacker, then the distortion constraint will

be met with high probability. The problem with this attack strategy is that the decoder can

fairly accurately determine the value of a from the forgery. Thus, the encoder and decoder

could potentially use the power of the stegotext to send extra information, so that the total

rate might be higher than C�(D1;D2; �
2
u).

The attack strategy that we use to prove the converse combines aspects of the two
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simple strategies described above. To form this attacker, we partition the possible values of

a = n�1kxk2 into a �nite number of intervals, A1; : : : ;Am, and compute the average power

in the stegotext conditioned on each interval, i.e., ak = E
�
n�1kXk2 ��n�1kXk2 2 Ak

�
. We

then use the optimal attack channel (P ak
Y jX)

n whenever the actual power of the stegotext

lies in the interval Ak. Unlike the �rst simple strategy, the distortion constraint can be

guaranteed by making the intervals small enough. Unlike the second simple strategy, the

encoder and decoder cannot use the power of the stegotext to transmit extra information

because there are only �nitely many intervals. These arguments will be made more precise

in the upcoming sections.

Precise De�nition

Let R be a �xed rate that is strictly larger than C�(D1;D2; �
2
u). For any rate-R sequence

of encoders and decoders, the attacker described below will guarantee some non-vanishing

probability of error.

By the continuity of C�(D1;D2; �
2
u) in D2, it follows that there exists some 0 < ~Æ < D2

such that R > C�(D1;D2 � ~Æ; �2u). Let

~D2 = D2 � ~Æ; (4.60)

for some such ~Æ. The attacker partitions the interval
�
~D2; (2�u +

p
D1)

2
�
suÆciently �nely

into m sub-intervals A1; : : : ;Am, so that for each sub-interval Ak,

~D2

 
1 +

~D2

A

�
A0

A
� 1

�!
< ~D2 +

~Æ

2
; 8A;A0 2 Ak: (4.61)

Such a partition exists because this interval is �nite, it does not include zero ( ~D2 > 0), and

because the constant ~Æ is positive.

We de�ne the mapping k from R
n to f0; : : : ;mg as

k(x) =

8><
>:
l if n�1kxk2 2 Al

0 if no such l exists

: (4.62)

This mapping will determine how the stegotext x will be attacked. Notice that it takes on
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a �nite number of values. We also de�ne the random variable

K = k(X):

Using his knowledge of the distribution of the covertext and the encoder mapping, the

attacker computes

ak = E

�
1

n
kXk2

���K = k

�
; 8 0 � k � m: (4.63)

Note that ak 2 Ak for k 6= 0 since Ak is an interval (and hence convex) and since the event

K = k corresponds to the event n�1kXk2 2 Ak. The attacker also computes

�k = E

�
1

n
kUk2

���K = k

�
; 8 0 � k � m: (4.64)

Using only the source of randomness �2, the attacker generates a random vector V

as a sequence of IID zero-mean variance- ~D2 Gaussian random variables. Recall that we

assume that the random variable �2 and the random vector X are independent, and thus

the random vectors V and X are also independent.

We now describe an attacker g�n that does not necessarily meet the distortion constraint.

For this attacker, the stegotext is computed as

g�n(x; �2) =

8><
>:
c(ak(x); ~D2)x+ c1=2(ak(x); ~D2)v(�2) if k(x) > 0�p

nD2 �
p
n ~D2

�
v(�2)=kv(�2)k otherwise

; (4.65)

where c(A;D2) = 1 �D2=A (also see (A.4)). Conditionally on X = x satisfying k(x) � 1,

the random vector Y = g�n(x;�2) under this attacker is thus distributed as c(ak(x); ~D2)x+

c1=2(ak(x); ~D2)V . Note that if K = k > 0, the resulting conditional distribution PY jX is

the same as the optimal attack channel of the mutual information game corresponding to

ak and ~D2; see Section 3.2.1.

Finally, our proposed attacker uses g�n if the distortion constraint is met and sets y = x
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if the distortion constraint is not met. That is,

gn(x; �2) =

8><
>:
g�n(x; �2) if n�1kg�n(x; �2)� xk2 � D2

x otherwise

: (4.66)

The attacker gn thus satis�es the distortion constraint with probability one. Note that

if instead of ak being calculated as in (4.66) it was chosen arbitrarily from Ak, then the

upcoming proof would still be valid (provided that each Ak is small enough). The resulting

attacker is independent of the encoder and decoder and guarantees that no rates greater

than C�(D1;D2; �
2
u) are achievable.

4.5.2 Analysis of Distortion

The attackers fg�ng do not, in general, satisfy the distortion constraint (2.3). But in this

section we show that, as the blocklength tends to in�nity, the probability that the distortion

they introduce exceeds D2 tends to zero. In the terminology of (4.66) we shall thus show

that

lim
n!1

Pr
�
gn(X ;�2) = g�n(X ;�2)

�
= 1: (4.67)

Once this is shown, for the purposes of proving the converse, it will suÆce to show

that, for the appropriate rates, the attackers fg�ng guarantee a non-vanishing probability

of error. To see this, �x any R > C�(D1;D2; �
2
u) and �x some encoder sequence ffng

and a corresponding decoder sequence f�ng. Let ~D2 be chosen as in (4.60) so that R >

C�(D1; ~D2; �
2
u) and consider the attacker (4.65). Assume that we have managed to prove

that the attackers fg�ng of (4.65) guarantees a non-vanishing probability of error. In this

case (4.67) will guarantee that the probability of error must also be bounded away from

zero in the presence of the attacker gn. Since fgng do satisfy the distortion constraint, this

will conclude the proof of the converse.

We now turn to the proof of (4.67). In order to summarize the distortion introduced by

the attacker, we de�ne the following random variables,

�1(k) = c(ak; ~D2)
�
n�1kV k2 � ~D2

�
; k = 1; : : : ;m; (4.68)
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and

�2(k) =
�
c(ak; ~D2)� 1

�
c1=2(ak; ~D2)n

�1hX;V i; k = 1; : : : ;m: (4.69)

Note that for any 1 � k � m, the random variables �1(k) and �2(k) converge to zero in

probability, because V is a sequence of IID N (0; ~D2) random variables independent of X,

and because 0 < c(ak; ~D2) < 1 for all 1 � k � m.

The probability of exceeding the allowed distortion can be written as

Pr

�
1

n
kg�n(X ;�2)�Xk2 > D2

�
=

mX
l=0

Pr

�
1

n
kg�n(X ;�2)�Xk2 > D2;K = l

�
:

We shall next show that each of the terms in the above sum converges to zero in probability.

We begin with the �rst term, namely l = 0. The event K = 0 corresponds to either

n�1kXk2 � ~D2 or n
�1kXk2 > (2�u +

p
D1)

2. In the former case,

1

n
kY �Xk2 =

1

n


�p

nD2 �
q
n ~D2

�
V =kV k �X


2

�
�p

D2 �
q

~D2

�2

+ 2

�p
D2 �

q
~D2

�q
~D2 + ~D2

= D2;

where the inequality follows by the triangle inequality and since n�1kXk2 � ~D2 here. Thus,

Pr

�
1

n
kg�n(X ;�2)�Xk2 > D2;K = 0

�
= Pr

�
n�1kXk2 > (2�u +

p
D1)

2
�

� Pr
�
n�1kUk2 > 4�2u

�
;

which converges to zero by the ergodicity of the covertext.

To study the limiting behavior of the rest of the terms, �x some 1 � l � m. If k(x) = l

then

1

n
kg�n(x; �2)� xk2 =

1

n

�c(al; ~D2)� 1
�
x+ c1=2(al; ~D2)V

2
= ~D2

 
1 +

~D2

al

�
n�1kxk2

al
� 1

�!
+�1(l) + �2(l)

� D2 �
~Æ

2
+�1(l) + �2(l);
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where the second equality follows by the de�nitions of c, �1(l), and �2(l) (see (A.4), (4.68)

and (4.69)), and the inequality follows by (4.61) since both n�1kxk2 and al are in the set

Al. Thus,

Pr

�
1

n
kg�n(X ;�2)�Xk2 > D2; K = l

�
� Pr

�
�1(l) + �2(l) � ~Æ=2; K = l

�
� Pr

�
�1(l) + �2(l) � ~Æ=2

�
;

which converges to zero because both �1(l) and �2(l) converge to zero in probability.

4.5.3 Analysis of Probability of Error

In this section, we show that whenever the watermarking rate R exceeds C�(D1;D2; �
2
u),

the sequence of attackers fg�ng de�ned in (4.65) prevents the probability of error from

decaying to zero. In the previous section, we have shown that for blocklength n large

enough gn(X;�2) = g�n(X;�2) with arbitrarily high probability. The combination of these

two facts will show that the probability of error is also prevented from decaying to zero by

the sequence of attackers fgng de�ned in (4.66).

This analysis is carried out in a series of claims. In Lemma 4.11 we use a Fano-type

inequality to show that an achievable rate cannot exceed some limit of mutual informa-

tions. In Lemma 4.12, we upper bound these mutual informations by simpler expectations,

and in Lemma 4.13 we �nally show that, in the limit, these expectations do not exceed

C�(D1;D2; �
2
u).

Lemma 4.11. For any sequence of encoders, attackers, and decoders f(fn; gn; �n)g with

corresponding sequence of conditional distributions f(PXjU ;�1
; PY jX)g, if �Pe(fn; gn; �n)! 0

as n!1, then

R � lim inf
n!1

1

n
IPUP�1PXjU ;�1

PY jX
(X ;Y jU ;�1): (4.70)

Proof. Utilizing Fano's inequality and the data processing theorem,

nR = H(W j U ;�1)

= H(W j U ;�1;Y ) + I(W ;Y j U ;�1)

� 1 + nR �Pe(fn; gn; �n) + I(X ;Y j U ;�1);
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where the �rst equality follows sinceW is independent of (U ;�1) and uniformly distributed

over f1; : : : ; 2nRg, and the inequality follows by the data processing theorem and by Fano's

inequality. Dividing by n and taking the lim inf, yields the desired result.

The mutual information term in the RHS of (4.70) is a little cumbersome to manipulate,

and we next exploit the fact that K takes on at most m + 1 possible values to prove that

n�1I(X ;Y jU ;�1) has the same limiting behavior as n
�1I(X ;Y jK;U ;�1), i.e., that

lim
n!1

1

n

�
I(X ;Y jU ;�1)� I(X;Y jK;U ;�1)

�
= 0: (4.71)

To prove (4.71) write

I(X;Y jK;U ;�1) = h(Y jK;U ;�1)� h(Y jX ;K;U ;�1)

= h(Y jK;U ;�1)� h(Y jX ;U ;�1)

= I(X ;Y jU ;�1)� I(K;Y jU ;�1);

where all di�erential entropies exist for the attacker g�n, and the second equality follows

since K is a function of X (4.62). Thus, the mutual information on the RHS of (4.70) can

be written as

I(X ;Y jU ;�1) = I(X ;Y jK;U ;�1) + I(K;Y jU ;�1): (4.72)

Since K takes on at most m+ 1 di�erent values, it follows that

0 � I(K;Y jU ;�1) � H(K) � log(m+ 1);

and thus, since m is �xed and does not grow with the blocklength,

lim
n!1

1

n
I(K;Y jU ;�1) = 0: (4.73)

Equation (4.71) now follows from (4.73) and (4.72).

It now follows from Lemma 4.11 and from (4.71) that in order to prove that the rate R
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is not achievable, it suÆces to show that

R > lim inf
n!1

1

n
I(X;Y jK;U ;�1):

We upper bound in the following Lemma, which is proved in Appendix B.10.

Lemma 4.12. For any encoder with corresponding watermarking channel PXjU satisfying

(2.1), if the attacker g�n of (4.65) with corresponding attack channel P �Y jX is used, then

1

n
IPUP�1PXjU ;�1

P �
Y jX

(X ;Y jK;U ;�1) �
mX
k=1

Pr(K = k) � 1
2
log
�
1 + s(ak;D1; ~D2; �k)

�
� EK

h
C�(D1; ~D2; �K)

i
: (4.74)

To proceed with the proof of the converse we would now like to upper bound the RHS

of (4.74). Since the function C�(D1; D2; �
2
u) is not necessarily concave in �

2
u, we cannot use

Jensen's inequality. However, C�(D1;D2; �
2
u) is increasing in �

2
u and is upper bounded by

1=2 log(1+D1=D2) for all �
2
u. Thus, we will complete the proof by showing in the following

lemma that if �k is larger than �2u, albeit by a small constant, then Pr(K = k) must be

vanishing. The proof of this lemma can be found in Appendix B.11.

Lemma 4.13. For any ergodic covertext distribution PU with E
�
U4
k

�
< 1 and E

�
U2
k

� �
�2u, there exists mappings Æ(�; n) and n0(�) such that both the properties P1 and P2 stated

below hold, where

P1. For every � > 0, limn!1 Æ(�; n) = 0.

P2. For every � > 0, n > n0(�), and event E, if E �n�1kUk2jE� > �2u + 5�, then Pr(E) <
Æ(�; n).

With the aid of Lemma 4.13 we can now upper bound the RHS of (4.74). Speci�cally,

we next show that for any ergodic stegotext fPUg of �nite fourth moment and of second

moment �2u, if R > C�(D1; ~D2; �
2
u) and the attacker g�n of (4.65) is used, then

lim sup
n!1

EK

h
C�(D1; ~D2; �K)

i
� C�(D1; ~D2; �

2
u): (4.75)

To see this, let Æ(�; n) and n0(�) be the mappings of Lemma 4.13 corresponding to the
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stegotext fPUg. For any � > 0, let us de�ne the set

K�(�) = fk : �k > �2u + 5�g:

By the de�nition of �k (4.64), it is clear that E
�
n�1kUk2jK 2 K�(�)� > �2u + 5�. Thus,

by the Lemma 4.13, Pr(K 2 K�(�)) < Æ(�; n). Since C�(D1; D2; �
2
u) is non-decreasing in �

2
u

and is upper bounded by 1
2 log(1 +

D1
D2
),

EK

h
C�(D1; ~D2; �K)

i
= Pr (K =2 K�(�))E �C�K��K =2 K�(�)�+ Pr (K 2 K�(�))E �C�K��K 2 K�(�)�
� C�(D1; ~D2; �

2
u + 5�) + Æ(�; n) � 1

2
log

�
1 +

D1

~D2

�
;

where C�K = C�(D1; ~D2; �K). Since this is true for every suÆciently large n and since Æ(�; n)

approaches zero as n tends to in�nity,

lim sup
n!1

EK

h
C�(D1; ~D2; �K)

i
� C�(D1; ~D2; �

2
u + 5�):

Furthermore, since this is true for every � > 0 and since C�(D1;D2; �
2
u) is continuous in �

2
u,

(4.75) follows.

We now have all of the necessary ingredients to prove that if the rate R exceeds

C�(D1;D2; �
2
u), then the sequence of attackers fg�ng prevents the probability of error from

decaying to zero. Indeed, let ~D2 be chosen as in (4.60) so that R > C�(D1; ~D2; �
2
u) and

consider the attacker g�n of (4.65). Then

R > C�(D1; ~D2; �
2
u)

� lim sup
n!1

EK

h
C�(D1; ~D2; �K)

i
� lim sup

n!1

1

n
I(X ;Y jK;U ;�1)

= lim sup
n!1

1

n
I(X ;Y jU ;�1);

and the probability of error must be bounded away from zero by Lemma 4.11. Here the

�rst inequality is justi�ed by the choice of ~D2 (4.60), the second inequality by (4.75), the

third inequality by (4.74), and the �nal equality by (4.71).

103



4.5.4 Discussion: The Ergodicity Assumption

We have proved that the IID zero-mean Gaussian covertext is easiest to watermark among all

ergodic covertexts of �nite fourth moment and of a given second moment. That is, we have

shown that for any covertext satisfying these conditions, no rate above C�
�
D1;D2; E

�
U2
i

��
is achievable.

An inspection of the proof, however, reveals that full ergodicity is not required, and it

suÆces that the covertext law fPUg be stationary and satisfy a second-moment ergodicity

assumption, i.e., that the variance of n�1
Pn

i=1 U
2
i approach zero, as n tends to in�nity; see

Appendix B.11.

This condition can sometimes be further relaxed if the process has an ergodic decompo-

sition (see e.g. [Gra88]). We illustrate this point with a simple example of a covertext that

has two ergodic modes.

Let Z take on the values zero and one equiprobably, and assume that conditional on

Z the covertext fUig is IID zero-mean Gaussian with variance �2u;0, if Z = 0, and with

variance �2u;1, if Z = 1. Assume that �2u;0 < �2u;1. The covertext is thus not ergodic, but it

is stationary with E
�
U2
k

�
= (�2u;0 + �2u;1)=2.

Even though the covertext described here is non-ergodic, it is still true that no rate above

C�
�
D1; D2; E

�
U2
i

��
is achievable. In fact, no rate above C�(D1;D2; �

2
u;0) can be achieved,

as an attacker of the form (4.66) designed for the parameters (D1;D2; �
2
u;0) demonstrates.

This type of argument naturally extends to any covertext with a �nite number of ergodic

modes, and in fact, with the proper modi�cations, to more general covertexts too.
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Chapter 5

The Vector Gaussian

Watermarking Game

In this chapter, we prove Theorem 2.4 on the capacity of the vector Gaussian watermarking

(VGWM) game. Recall that in the VGWM game, the covertext is a sequence of IID

Gaussian random vectors with common m � m covariance matrix Su. Both distortion

measures are squared Euclidean distance so that the distortion between the m�ncovertext
matrix u and the m� n stegotext matrix x is given by

d1(u;x) =
1

n

nX
i=1

mX
j=1

(xji � uji)
2;

and similarly for the distortion between the stegotext and the forgery.

The remainder of the chapter is organized as follows. In Section 5.1, we show that it

is suÆcient to consider covariance matrices that are diagonal. In Section 5.2, we introduce

some notation used throughout the rest of the chapter. In Section 5.3, we outline the proof

of the theorem using several main lemmas. Sections 5.4-5.6 are devoted to proving these

lemmas. Finally, in Section 5.7, we compare the optimal attack to optimal lossy compression

of the stegotext.

5.1 Diagonal Covariance is SuÆcient

Let us consider the eigenvalue-eigenvector decomposition of the m �m covariance matrix

Su, which can be a general non-negative de�nite symmetric matrix. We can write this
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matrix as

Su = ���t; (5.1)

where � is diagonal with the eigenvalues �2 = (�21 ; : : : ; �
2
m) on the diagonal and � is a

orthogonal matrix (i.e., ��t = I) comprised of normalized eigenvectors. We will see that

the capacity of the watermarking game depends only on the eigenvalues �2, and thus we

will make the simplifying assumption that Su is diagonal.

Given am�n covertext matrix u, let u0 = �u and let x0 be a stegotext that satis�es the

distortion constraint (2.1) with respect to u0. Then, since � is an orthogonal transformation,

x = �tx0 satis�es the distortion constraint with respect to u. Similarly, if y satis�es the

distortion constraint (2.3) with respect to x, then y0 = �y satis�es the distortion constraint

with respect to x0. Thus, a codebook for a general covariance covertext can be created from

a codebook for a diagonal covariance covertext while retaining the same probability of error.

Thus, it is suÆcient to consider diagonal covariance covertexts.

Let U 0 = �U = (�U1; : : : ;�Un). While the columns of U are independent N (0; Su)

random vectors, the rows of U 0 are independent with row j containing a sequence of IID

N (0; �2j ) random variables.

Throughout the sequel we will assume that the covariance matrix Su is diagonal with

diagonal elements �2. Furthermore, we will write the covertext as a n�m random matrix

U = (U 1; : : : ;Um); (5.2)

where the columns U1; : : : ;Um are independent and column j contains a length-n IID

sequence of N (0; �2j ) random variables. We will also write the stegotext x and the forgery

y as n �m matrices. We will refer to the columns of U , X and Y as the components of

the covertext, stegotext and forgery, respectively.

5.2 De�nitions

In this section, we give some de�nitions that will be used throughout the rest of the chapter.

Also see Appendix A where many de�nitions used here and other chapters are summarized.

In order to di�erentiate between distortion in a component and total distortion, we will
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use �1 and �2 for the total allowed distortion for the encoder and attacker, respectively.

We use vectors D1 and D2 to describe the amount of distortion placed in each component

by the encoder and attacker respectively. In order for encoder and attacker to meet their

respective distortion constraints, D1 2 Dm(�1) and D2 2 Dm(�2), where

Dm(�) =

8<
:D 2 Rm+ :

mX
j=1

Dj � �

9=
; : (5.3)

We also use a vector A to describe the variance of each stegotext component. Given the

vector of stegotext variances �2 and the vector of encoder distortion levels D1, the vector

A must belong to (by the triangle inequality)

A(D1;�) =
n
A : (�j �

p
D1j)

2 � Aj � (�j +
p
D1j)

2; 1 � j � m
o
: (5.4)

Conversely, given A and �, the vector D1 must belong to

D(A;�) =
n
D1 : (�j �

p
Aj)

2 � D1j � (�j +
p
Aj)

2; 1 � j � m
o
: (5.5)

Given �, D1 2 Dm(�1), D2 2 Dm(�2), and A 2 A(D1;�), let us de�ne

r(A;D1;D2;�) =

mX
j=1

1

2
log
�
1 +

��s(Aj ;D1j ;D2j ; �
2
j )
��+� ; (5.6)

where s(A;D1; D2; �
2) is de�ned in (A.5). For the scalar Gaussian watermarking (SGWM),

we proved in Chapter 4 that 1
2 log(1+ s(A;D1; D2; �

2)) is the maximum guaranteed achiev-

able rate when the distortion levels are D1 and D2 and the covertext and stegotext variance

are �2 and A, respectively. We will see here that r(A;D1;D2;�) describes the maximum

guaranteed achievable rate for VGWM when the distortion levels in the components are

D1 and D2 and the variances of the covertext and stegotext components are �2 and A,

respectively.

The de�nitions we have introduced so far are suÆcient to analyze the private version of

the VGWM game. However, the public version requires some additional de�nitions since we

will describe an encoder that explicitly estimates the amount of distortion that the attacker

will use in each component. We will denote this estimate by the non-negative m-vector ~D2.
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Let us further de�ne

v(A;D1; ~D2; �
2) = �2(A;D1; ~D2; �

2)�2 + 2�(A;D1; ~D2; �
2)�(A;D1; �

2) +D1; (5.7)

where � and � are de�ned in Appendix A. The function v will be used to describe the

variances of entries in the codebook; compare v with �2v of (4.31). Let us next de�ne

r0(A;D1; ~D2;�) =
mX
j=1

1

2
log

 
v(Aj ; D1j ; ~D2j ; �

2
j )

b2(Aj ;D1j ; �
2
j )

!
; (5.8)

where b2(�; �; �) is de�ned in (A.3) and each summand is non-negative as long as 0 � ~D2j �
Aj . Next, let

r1(A;D1; ~D2;D2;�) =

mX
j=1

1

2
log+

 
Aj + ( ~D2j)

2G(Aj ; D1j ; �
2
j )

D2j + ( ~D2j)2G(Aj ;D1j ; �
2
j )

!
; (5.9)

where

G(A;D1; �
2) =

1

b2(A;D1; �2)
� 1

A
: (5.10)

Here, 2nr0 will represent the minimum number of codewords needed in each bin and 2nr1 will

represent the maximum number of total codewords; compare to R0 and R1 of Section 4.3.

The �nal de�nition necessary for the public version is

~r(A;D1; ~D2;D2;�) = r1(A;D1; ~D2;D2;�)� r0(A;D1; ~D2;�); (5.11)

which will describe the maximum guaranteed achievable rate when the component variances

and distortions are given by the arguments of ~r.

If ~D2 =D2 < A, then we can relate (5.6) and (5.11) by

~r(A;D1;D2;D2;�) = r(A;D1;D2;�): (5.12)

Thus, if the encoder's estimate of the attacker's distortion distribution is accurate, then the

achievable rates should be the same for both private and public versions. Indeed, we will

see that this is the case.
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5.3 Outline of Proof

We recall that our objective in this chapter is to show that the capacity for both versions

of the VGWM game is given by

max
D12Dm(�1)

min
D22Dm(�2)

mX
j=1

C�(D1j ;D2j ; �
2
j ); (5.13)

where C�(D1;D2; �
2), de�ned in (A.8), is the capacity of both versions of the SGWM game.

We show that (5.13) is the capacity for the VGWM game in the following steps. We give

lower and upper bounds on the capacity for the private version in Lemmas 5.1 and 5.2,

respectively. We then show that these bounds coincide and are equal to the right hand

side (RHS) of (5.13) in Lemma 5.3. Finally, in Lemma 5.4, we give a lower bound on

the capacity for the public version that is also an upper bound on the capacity of the for

the private version. Since the capacity of the public version cannot exceed the capacity of

the private version, this line of argument completes the proof of Theorem 2.4. Several of

the proof techniques are borrowed from [HN88] on the vector Gaussian arbitrarily varying

channel, which is to the Gaussian arbitrarily varying channel (see Section 2.5.3) what the

VGWM game is to the SGWM game.

Lemma 5.1.

CVGWM
priv (�1;�2;�) � max

A
max

D12Dm(�1)\D(A;�)
min

D22Dm(�2)
r(A;D1;D2;�): (5.14)

We prove this lemma in Section 5.4. The basic idea is that given any feasible A and

D1, an encoder/decoder pair can be designed so that the message can be reliably recovered

regardless of the attacker strategy (which can be described by some feasible D2) for any

rate less than minD22Dm(�2) r(A;D1;D2;�). The encoder/decoder pair that we use is

essentially a parallel concatenation of encoder/decoder pairs for the private version of the

SGWM game. Note that the choice of A is constrained in that Dm(�1)\D(A;�) must be
non-empty.

Our second lemma of this section gives an upper bound on the capacity of the private

version.
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Lemma 5.2.

CVGWM
priv (�1;�2;�) � max

A
min

D22Dm(�2)
max

D12Dm(�1)\D(A;�)
r(A;D1;D2;�): (5.15)

In order to prove this lemma, we consider an attacker that chooses its distortion distri-

bution D2 based on the empirical variances of the stegotext components A. This choice

of D2 will correspond to the minimum (as a function of A and �1) on the RHS of (5.15).

Note that although the attacker knows the total distortion �1 that the encoder can use,

the attacker cannot calculate the distortion distributionD1 that has been used to produce

the stegotext. The attacker implements an optimal attack for the SGWM game for each

component based on the vector D2. Thus, even if the encoder knows how the attacker will

choose D2 based on A, the maximum achievable rate is described by the RHS of (5.15). A

more detailed proof of this lemma is similar to the lengthy converse of the SGWM game in

Section 4.5 and is omitted.

Our next lemma shows that the lower and upper bounds of Lemma 5.1 and Lemma 5.2

coincide and are equal to the proposed capacity.

Lemma 5.3. The following expressions are equal:

1. (5.13)

2. The RHS of (5.14)

3. The RHS of (5.15)

We prove this lemma in Section 5.6. The key steps in proving the equality of the three

expressions are two applications of the Sion-Kakutani Minimax theorem. The combination

of these three lemmas implies that the capacity of the private version is given by any of the

three expressions, and in particular (5.13).

Our �nal lemma gives a lower bound on the capacity for the public version that is in

turn an upper bound on the capacity of the private version.

Lemma 5.4.

CVGWM
pub (�1;�2;�)

� max
A

max
D12Dm(�1)\D(A;�)

max
0� ~D2�A

min
D22Dm(�2)

~r(A;D1; ~D2;D2;�) (5.16)

� CVGWM
priv (�1;�2;�): (5.17)
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We prove (5.16) in Section 5.5 and (5.17) in Section 5.6.2. We now briey discuss the

proof of the two inequalities. To prove the �rst inequality, an encoder/decoder pair is de-

signed using any feasible D1, A and ~D2 so that the message can be reliably recovered

regardless of the attacker strategy (which can be described by some feasible D2) for any

rate less that minD22Dm(�2) ~r(A;D1; ~D2;D2;�). As in the proof of Lemma 5.1, we essen-

tially use a parallel concatenation of encoder/decoder pairs from the SGWM game. The

encoder for each component is designed using an estimate of the attacker's distortion in

that component. The vector ~D2 contains these estimates for all of the components. This

estimate is necessary because although the encoder knows the total distortion allowed to

the attacker, the encoder does not know how the attacker will distribute that distortion to

the components. In order to prove the second inequality (5.17), we choose ~D2 depending

on A, D1 and � to be the minimizing D2 on the RHS of (5.14). The resulting minimizing

D2 in (5.17) is equal to our ~D2, and we can use (5.12) to prove the desired inequality.

Since the capacity of the public version cannot exceed the capacity of the private version,

this lemma implies that the capacities of the two versions are equal, and, combined with

the earlier lemmas, completes the proof of Theorem 2.4.

5.4 Achievability for the Private Version

In this section, we will prove Lemma 5.1. That is, we will show that any rate less the RHS

of (5.14) is achievable in the private version of the vector Gaussian watermarking game.

Codebook generation: The encoder and decoder �rst choose a vector of stegotext powers

A. Second, they choose a distortion distribution vector D1 that is in the interior1 of

Dm(�1) \ D(A;�) so that
Pm

j=1D1j < �1. They then choose a rate R and a positive

constant �. They next use their shared secret key �1 to generate an IID sequence of

codewords (S(1); : : : ;S(2nR)), where for each w, S(w) is a n � m random matrix with

independent elements so that Sij(w) is a zero-mean variance-b2j Gaussian random variable,

where b2j = b2(Aj ;D1j ; �
2
j ) as de�ned in (A.3).

1The interior of a set S is the union of all open sets contained in S and will be denoted by Int(S).
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Encoding: Given the covertext u, the message w, and the codebook, the encoder creates

the stegotext x as

xj(w) = b1juj + sj(w); (5.18)

for all 1 � j � m, where b1j = b1(Aj ;D1j ; �
2
j ) as de�ned in (A.2). This is essentially

a parallel concatenation of the encoders for the scalar Gaussian watermarking game. We

show below that this encoder yields a small probability of error. Furthermore, the expected

distortion induced by this encoding rule is given by
Pm

j=1D1j , and we have chosen D1

so that this quantity is strictly less than �1. Thus, by choosing the blocklength n large

enough, we can make the probability of excess distortion as small as desired. Thus, since

we will show below that this encoder yields a small probability of error, we can create a

modi�ed encoder that both meets the almost sure distortion constraint (2.1) and ensures

reliable decoding of the message.

Decoding: The decoder uses the scoring function

�(u;x;y;D2) = r(A;D1;D2;�) +
1

n

nX
i=1

X
j:Aj>D2j

�
(yij � cjb1juij)

2

2cj(cjb2j +D2j)
� (yij � cjxij)

2

2cjD2j

�
;

(5.19)

where cj = c(Aj ;D2j) as de�ned in (A.4), and only considers attacker distortion vectors

D2 in the set

D(n)
m (�2) =

8<
:D2 2 Rm :D2 > 0;

mX
j=1

D2j < �2

�
1 +

m

n

�
;
nD2

�2
2 Zm

9=
; : (5.20)

Note that the cardinality of D(n)
m (�2) is at most (n + m)m. Given the covertext u, the

forgery y, and the codebook, the decoder declares message w was sent if

�(u;x(w);y;D2) > r(A;D1;D2;�)� �; for some D2 2 D(n)
m (�2): (5.21)

If no w or more than one w satis�es (5.21), then an error is declared.

Probability of error: Let E1 be the event that some incorrect w0 satis�es (5.21), and

let E2 be the event where the correct w does not satisfy (5.21). An error occurs if and
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only if E1 [ E2 occurs, and thus the overall probability of error is at most the sum of the

probabilities of the events E1 and E2. We analyze these probabilities using the following

series of lemmas.

In the following lemma, we establish an upper bound on the rate R such that Pr(E1)
can be made as small as desired with a proper choice of � and the blocklength n.

Lemma 5.5. For any n � m matrices u and y and length-m vector D2 > 0, if Xj =

b1juj + Sj(w), for all j and any w, then Pr (�(u;X ;y;D2) > �) � 2�n�.

Proof. The proof follows as in [HN88]. For simplicity, we assume that all logarithms and

exponentials are with respect to e. Let �ij = yij � cjb1juij . We shall need the following

expectation,

E

�
exp

�
�(Sij � �ij=cj)

2

2D2j=cj

��
=

1p
1 + b2jcj=D2j

exp

��(cj=2Dj)(�ij=cj)
2

1 + b2jcj=D2j

�

=
1q

1 + s(Aj;D1j ;D2j ; �2j )
exp

 
��2ij

2cj(cjb2j +D2j)

!
;

which follows since if Z is a Gaussian with mean � and variance �2, then

E[exp(�Z2)] =
exp
�
��2=(1� 2��2)

�
p
1� 2��2

; (5.22)

for � < (2�2)�1. Thus,

Pr
�
�(u;X;y;D2) > �

�
� E [exp (n(�(u;X ;y;D2)� �))]

= e(n(r(A;D1;D2;�)��))
nY
i=1

Y
j:Aj>D2j

E

"
exp

 
�2ij

2cj(cjb2j +D2j)
� (Sij � �ij=cj)

2

2D2j=cj

!#

= e(n(r(A;D1;D2;�)��))
nY
i=1

Y
j:Aj>D2j

1q
1 + s(Aj;D1j ;D2j ; �2j )

= e�n�;

where the inequality follows since the exponential is at least one when the condition is true

and at least zero when the condition is false. The equalities follow by the above computation

and by the de�nition of r(A;D1;D2;�); see (5.6).
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We can now upper bound the probability of the �rst error event. To do so, let B1 be a

m�m diagonal matrix with jth diagonal element equal to b1j . Then,

Pr(E1) �
X
w0 6=W

X
D22D

(n)
m (�2)

Pr
�
�
�
U ;UB1 + S(w

0);Y ;D2

�
> r(A;D1;D2;�)� �

	

� (n+m)m exp

 
n

 
R� min

D22D
(n)
m (�2)

r(A;D1;D2;�)� �

!!
:

Here, the �rst inequality follows by the de�nition of the decoder and by the union of events

bound. The second inequality follows by Lemma 5.5 since for any incorrect message w0,

the codeword S(w0) is independent of the covertext U and the forgery Y . Also, recall that

D(n)
m (�2) has at most (n+m)m elements and that there are 2nR total messages. Since � can

be chosen arbitrarily by the encoder, the probability the some incorrect w0 satis�es (5.21)

can be made to tend to zero as long as

R < lim sup
n!1

min
D22D

(n)
m (�2)

r(A;D1;D2;�) (5.23)

= min
D22Dm(�2)

r(A;D1;D2;�): (5.24)

To prove the equality, let the right-hand side (RHS) of (5.24) be denoted by �r(�2), which

is continuous in �2. First, the RHS of (5.23) is at most lim supn!1 �r(�2(n+m)=n), which

equals �r(�2) by the continuity of �r. Second, let D�
2 2 Dm(�2) denote the minimizing

vector in (5.24), i.e. r(A;D1;D
�
2;�) = �r(�2). There exists a sequence of vectors D2;1; : : :

such that D2;n 2 D(n)
m (�2) and D2;n ! D�

2 pointwise. The RHS of (5.23) is at least

lim supn!1 r(A;D1;D2;n;�), which also equals �r(�2) by the continuity of r in D2.

We now show that the probability of the second error event, Pr(E2), tends to zero as the
blocklength n tends to in�nity regardless of the choice of � and R. To do so, we establish

conditions under which the scoring function is high (Lemma 5.6) and then show that these

conditions are met with high probability (Lemmas 5.7 and 5.8). Lemmas 5.6 is proved in

Appendix B.12, while we give a short proofs of Lemmas 5.7 and 5.8 below.

Lemma 5.6. There exists a positive function f(A;D1; �
2) such that if the n-vectors u, x,
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and y, and the scalars D2 and Æ satisfy

��n�1kuk2 � �2
�� < Æ; (5.25)��n�1hu;x� b1ui
�� < Æ; (5.26)��n�1kx� b1uk2 � b2
�� < Æ (5.27)��n�1hu;y � yjxi�� < Æ; (5.28)

n�1ky � xk2 � D2 < A; (5.29)

Æ <
A

2(1 + b1)2
; (5.30)

then

n�1ky � cb1uk2
2c(cb2 +D2)

� n�1ky � cxk2
2cD2

> �Æf(A;D1; �
2); (5.31)

where b1 = b1(A;D1; �
2), b2 = b2(A;D1; �

2) and c = c(A;D2).

Lemma 5.7. The random variables n�1hU j;Y j � Y j jXj
i converge to zero in probability

as n tends to in�nity, for all 1 � j � m.

Proof. The jth component of the covertext U j is an IID sequence of mean-zero variance-�2j

Gaussian random variables. The jth component of the stegotext is generated from the

covertext as

Xj = b1jU j + Sj;

where Sj is an IID sequence of mean-zero variance-b2j Gaussian random variables that is

further independent of U j. Since Xj and U j are jointly Gaussian random vectors, we can

also write their relationship as

U j =
b1j�

2
j

Aj
Xj + T j ;

where T j is an IID sequence of mean-zero variance-b2j�
2
j=Aj Gaussian random variables

that is further independent of Xj. The random vector T j is also independent of Y j since

U ��Æ X ��Æ Y . For every realization of xj and yj , the vectors yj � yj jxj and xj are
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perpendicular. Thus, in distribution,

n�1hU j ;Y j � Y jjXj i = n�1hT j ;Y j � Y jjXj i:

The proof is completed by recalling that T j is independent of Xj and Y j and from the fact

that Y j � Y jjXj
has bounded norm.

Lemma 5.8. If n�m matrices x and y satisfy

mX
j=1

1

n
kyj � xjk2 � �2;

then there exists a D0
2 2 D(n)

m (�2) such that for all 1 � j � m,

1

n
kyj � xjk2 � D0

2j : (5.32)

Proof. For every j, let D0
2j be the smallest positive integer multiple of �2=n that is at least

n�1kyj�xjk2. ThisD0
2 satis�es (5.32), and thus we only have to show thatD0

2 2 D(n)
m (�2),

which is de�ned in (5.20). Our choice of D0
2 is positive and satis�es nD0

2=�2 2 Z
m.

Furthermore, it satis�es D0
2j ��2=n � n�1kyj � xjk2, and thus

mX
j=1

D0
2j � m�2

n
+

mX
j=1

1

n
kyj � xjk2

� �2

�
1 +

m

n

�
:

Thus, D0
2 2 D(n)

m (�2).

The above lemmas allow us to analyze Pr(E2). To do so, let

Æj =
�

mf(Aj;D1j ; �2j )
; (5.33)

where f(�; �; �) is the function de�ned in Lemma 5.6. Given the covertext U = u and the

forgery Y = y, the correct message w will be selected by the decoder if (but not only if) there

exists a D0
2 2 D(n)

m (�2) such that uj, xj(w) and yj satisfy the requirements of Lemma 5.6

with D2 = D0
2j and Æ = Æj (along with A = Aj, D1 = D1j and �

2 = �2j ) for every j such

that D0
2j < Aj . This follows since in this case, �(u;x(w);y;D0

2) > r(A;D1;D
0
2;�) � �;

116



compare (5.19), (5.31) and (5.33).

We now show that the above claim holds with probability tending to one as the block-

length n tends to in�nity. We �rst note that by the de�nition of the encoder, all of

(5.25), (5.26) and (5.27) will be satis�ed with high probability for each component. Next,

Lemma 5.7 demonstrates that (5.28) is also satis�ed with high probability for each com-

ponent. Finally, Lemma 5.8 shows that if the attacker satis�es the distortion constraint

(2.3), which it is required to do with probability one, then there exists a D0
2 2 D(n)

m (�2)

that satis�es either (5.29) or D0
2j > Aj for every component. Since the above condition

is suÆcient for reliable recovery of the message, we have shown that Pr(E2) can be made

arbitrarily small for any positive R and �.

Combining the analysis of E1 and E2, we see that the probability of error can be made

arbitrarily small as long as

R < max
A

sup
D12Int(Dm(�1)\D(A;�))

min
D22Dm(�2)

r(A;D1;D2;�): (5.34)

This follows from (5.24) since we can choose any A and any D1 2 Int(Dm(�1) \D(A;�))
to design the encoder and decoder. The proof of Lemma 5.1 is completed by noting that

the RHS of (5.24) is continuous in D1.

5.5 Achievability for the Public Version

In this section, we will prove the �rst inequality (5.16) of Lemma 5.4. That is, we will show

that any rate less than the RHS of (5.16) is achievable in the public version of the vector

Gaussian watermarking game. This proof parallels the proof in Section 5.4 for the private

version. We denote with a tilde (~) many of the quantities used here that are di�erent from

the private version but play an analogous role.

5.5.1 Codebook Generation

The encoder and decoder jointly choose the parameters they will use. Namely, they choose

a vector of stegotext powers A, a distortion distribution vector D1, an estimate of the

attacker's distortion distribution ~D2, two rates R and R0, and two positive constants �

and �0. They next generate 2n(R+R0) independent random matrices as follows. For every
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message w 2 f1; : : : ; 2nRg and every index w0 2 f1; : : : ; 2nR0g, they generate a n�m random

matrix S(w;w0) with independent elements such that Sij(w;w0) is a mean-zero variance-vj

Gaussian random variable, where vj = v(Aj ; D1j ; ~D2j ; �
2
j ); see (5.7). We can think of the

codebook of consisting of 2nR bins (indexed by w), where each bin contains 2nR0 codewords

(indexed by w0).

5.5.2 Encoding

Given the covertext u, the message w, and the codebook, the encoder searches for a code-

word in bin w that is \jointly typical" with u. That is, the encoder �nds a w0 such that

��n�1ksj(w;w0)k2 � vj
�� < �0; (5.35)

and

��n�1hsj(w;w0);uji � (�j � 1 + b1j)�
2
j

�� < �0; (5.36)

for all 1 � j � m, where �j = �(Aj ;D1j ; ~D2j ; �
2
j ) and b1j = b1(Aj ;D1j ; �

2
j ); see (A.6) and

(A.3). If no such w0 is found, then an encoding failure is declared. If there was not an

encoding failure, then the encoder creates the stegotext as

xj = sj(w;w0) + (1� �j)uj; (5.37)

for all 1 � j � m. If there was an encoding failure, then the encoder simply sets the

stegotext equal to the covertext. Let us further require that

��n�1kujk2 � �2j
�� < �0; (5.38)

for all 1 � j � m, which occurs with arbitrarily high probability for blocklength n large

enough. Then, all of

��n�1kxj � ujk2 �D1j

�� < �0(1 + j�jj)2; (5.39)��n�1kxjk2 �Aj

�� < �0(2� �j)
2; (5.40)
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and

��n�1hsj(w;w0);xi � (�j � 1)b1j�
2
j �Aj

�� < �0(2� �j) (5.41)

are true for all 1 � j � m. Thus, from (5.39), we see that for any D1 that lies in the

interior of Dm(�1), there exists an �0 > 0 such that encoding success implies that the

distortion constraint (2.1) is met. Also, (5.40) demonstrates that A describes the power of

the covertext components.

5.5.3 Decoding

In order to describe the decoding procedure, we �rst de�ne

�1(A;D1; ~D2; D2; �
2) =

A�D2q
v(A;D1; ~D2; �2)

�
A+ ~D2

2G(A;D1; �2)
� ; (5.42)

and

�2(A;D1; ~D2;D2; �
2) = (A�D2)

D2 + ~D2
2G(A;D1; �

2)

A+ ~D2
2G(A;D1; �2)

; (5.43)

where v and G are de�ned in (5.7) and (5.10), respectively.

Given the forgery y, the decoder evaluates a codeword matrix s and an attacker distor-

tion distribution D2 using the scoring function

~�(s;y;D2) = r1(A;D1; ~D2;D2;�) +
1

n

nX
i=1

X
j:Aj>D2j

 
y2ij

2(Aj �D2j)
� (yij � �1jsij)

2

2�2j

!
;

(5.44)

where �1j = �1(Aj ;D1j ; ~D2j ;D2j ; �
2
j ), �2j = �2(Aj ; D1j ; ~D2j ; D2j ; �

2
j ), and r1 is de�ned in

(5.9). Given the forgery y and the codebook, the decoder declares message w was sent if

~�
�
s(w;w0);y;D2

�
> r1(A;D1; ~D2;D2;�)� �;

for some D2 2 D(n)
m (�2) and w0 2 f1; : : : ; 2nR0g; (5.45)

where D(n)
m (�2) is de�ned in (5.20). If no w or more than one w satis�es (5.45), then a

decoding failure is declared.
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5.5.4 Probability of Error

Let Ee be the event that an encoding failure occurs. Let Ed0 be the event that a decoding

failure occurs because no w satis�es (5.45). Let Ed2 be the event that a decoding failure

occurs because two or more w satisfy (5.45). The overall probability of error is at most the

sum of the probabilities of these three events. We show below that the probability of each

of these error events can be made to vanish as long as the rate R does not exceed the RHS

of (5.16).

Error Ee : Encoding Failure

We now establish a lower bound on R0 such that a proper choice of �0 ensures that Pr(Ee)
tends to zero as the blocklength n tends to in�nity.

Let A
(n)
�0 be the set of all (s;u) pairs of n�m matrices that satisfy (5.35), (5.36) and

(5.38) for all j, i.e., A
(n)
�0 are the jointly typical pairs. Using the continuous joint AEP (see

e.g. [CT91, Thms 8.6.1 & 9.2.2]), we can upper bound (for any w and w0)

Pr
n�
S(w;w0);U

� 2 A(n)
�0

o
� (1� �0) exp

�
�n�r0(A;D1; ~D2;�)� 3�0

��
; (5.46)

where r0 is de�ned in (5.8). This follows since if Sij and Uij are zero-mean Gaussian random

variables with variances vj and �
2
j , respectively, and with covariance (�j � 1 + b1j)�

2
j , then

I(Si1; : : : ; Sim;Ui1; : : : ; Uim) = r0(A;D1; ~D2;�)

for all i. For any message w, the probability of an encoding failure can now be bounded as

Pr(Ee) = Pr
��
S(w;w0);U

�
=2 A(n)

�0 ; for all w0 2 f1; : : : ; exp(nR0)g
�

�
�
1� (1� �0) exp

�
�n�r0(A;D1; ~D2;�)� 3�0

���exp(nR0)

;

where the inequality follows by (5.46). By choosing �0 small enough, the encoder can make

the probability of an encoding failure as small as desired as long as

R0 > r0(A;D1; ~D2;�): (5.47)
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Error Ed2 : Incorrect Message Satisfying (5.45)

Using a similar argument to Lemma 5.5, we establish an upper bound on R+R0 such that

a proper choice of � ensures that Pr(Ed2) tends to zero as the blocklength n tends to in�nity.

Lemma 5.9. For any n �m matrix y, any m-vector D2 > 0, any message w, and any

index w0,

Pr
�
~�
�
S(w;w0);y;D2

�
> �
	 � 2�n�: (5.48)

Proof. The proof follows as in Lemma 5.5, and is thus omitted.

We can now upper bound the probability of Ed2.

Pr(Ed2) �
X
w0 6=W

X
w0

X
D22D

(n)
m (�2)

Pr
n
~�
�
S(w0; w0);Y ;D2

�
> r1(A;D1; ~D2;D2;�)� �

o

� (n+m)m exp

 
n

 
R+R0 � min

D22D
(n)
m (�2)

r1(A;D1; ~D2;D2;�)� �

!!
;

where the two inequalities follow by a similar argument to the one following the inequalities

after Lemma 5.5. Since � can be chosen arbitrarily by the encoder, the probability of the

error event Ed2 can be made to tend to zero as long as

R+R0 < lim sup
n!1

min
D22D

(n)
m (�2)

r1(A;D1; ~D2;D2;�)

= min
D22Dm(�2)

r1(A;D1; ~D2;D2;�); (5.49)

where the equality follows by a similar argument to the one following (5.24).

Error Ed0 : Correct Message not Satisfying (5.45)

Using similar arguments to Lemmas 5.6 and 5.7, we show that the correct message will

satisfy (5.45) with arbitrarily high probability as the blocklength tends to in�nity. The

following lemma is proved in Appendix B.13.

Lemma 5.10. There exists a positive function ~f(A;D1; ~D2; �
2) such that if the n-vectors
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s, x, and y, and the scalars D2 and Æ satisfy

��n�1ksk2 � v
�� < Æ; (5.50)��n�1kxk2 �A
�� < Æ; (5.51)��n�1hs;xi � (�� 1)b1�

2 �A
�� < Æ; (5.52)��n�1hs;y � yjxi�� < Æ; (5.53)

n�1ky � xk2 � D2 < A; (5.54)

Æ <
A

2
; (5.55)

then

n�1kyk2
2(A�D2)

� n�1ky � �1sk2
2�2

> �Æ ~f(A;D1; ~D2; �
2); (5.56)

where all of the parameters are computed with respect to A, D1, ~D2, D2 and �2, i.e.,

� = �(A;D1; ~D2; �
2), b1 = b1(A;D1; �

2), v = v(A;D1; ~D2; �
2), �1 = �1(A;D1; ~D2;D2; �

2),

and �2 = �2(A;D1; ~D2;D2; �
2).

The above lemma allows us to analyze Pr(Ed0). To do so, let

~Æj =
�

m ~f(Aj ;D1j ; ~D2j ; �2j )
; (5.57)

where ~f(�; �; �; �) is the function de�ned in Lemma 5.10.

Given the forgery Y = y, the correct message w will be selected by the decoder if there

exists a D0
2 2 D(n)

m (�2), an index w0, and a n �m matrix x such that sj(w;w0), xj , and

yj satisfy the requirements of Lemma 5.10 for all j (such that Aj > D2j) with D2 = D0
2j

and Æ = ~Æj (along with A = Aj , D1 = D1j , ~D2 = ~D2j and �
2 = �2j ). This follows since in

this case ~�(s(w;w0);y;D
0
2) > r1(A;D1; ~D2;D

0
2;�)� �; compare (5.44), (5.56) and (5.57).

We now show that the above claim (with the actual stegotext x and the actual index

w0) holds with probability tending to one as the blocklength n tends to in�nity. We �rst

note that if there was not an encoding failure, then all of (5.50), (5.51) and (5.52) will be

satis�ed for all j for small enough �0; see (5.35), (5.39) and (5.41). Next, an analogous result

to Lemma 5.7 (which we do not prove here) demonstrates that (5.53) is satis�ed with high

probability. Finally, Lemma 5.8 shows that if the attacker satis�es the distortion constraint
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(2.3), which it is required to do with probability one, then there exists a D0
2 2 D(n)

m (�2)

that satis�es either (5.54) or D0
2j > Aj for every component. Since the above condition

is suÆcient for reliable recovery of the message, we have shown that Pr(E2) can be made

arbitrarily small for any positive R, R0 and � and small enough �0.

Overall Rate Restriction

We thus �nd that a rate is achievable if

R < min
0�D2�A : etD2�D2

r1(A;D1; ~D2;D2;�)� r0(A;D1; ~D2;�) (5.58)

= min
0�D2�A : etD2�D2

~r(A;D1; ~D2;D2;�); (5.59)

where the inequality follows by (5.47) and (5.49) and the equality follows by the de�nition

of ~r (5.11). Thus, the following rates are achievable,

R < max
A

sup
D12Int(Dm(�1)\D(A;�))

max
0� ~D2�A

min
D22Dm(�2)

~r(A;D1; ~D2;D2;�); (5.60)

since the encoder is free to choose any feasible A, D1 and ~D2. The proof of (5.16) is

completed by noting that the RHS of (5.60) after the supremum is continuous in D1.

5.6 Optimization Results

In this section, we will prove Lemma 5.3 and the second inequality (5.17) of Lemma 5.4.

5.6.1 Proof of Lemma 5.3

In this section, we will use the Sion-Kakutani Minimax Theorem (see e.g. [SW70, Theorem

6.3.7]) to show the equivalence of (5.13) and the RHSs of (5.14) and (5.15). Recall that the

Minimax Theorem states that if S1 and S2 are compact convex sets and � : S1�S2 7! R is

a continuous function such that �(x1; x2) is concave in x1 (for x2 �xed) and convex in x2

(for x1 �xed), then

max
x12S1

min
x22S2

�(x1; x2) = min
x22S2

max
x12S1

�(x1; x2)

The equivalence of the RHSs of (5.14) and (5.15) follows directly from the Minimax
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Theorem sinceDm(�1)\D(A;�) and Dm(�2) are compact convex sets and r(A;D1;D2;�)

is concave in D1 and convex in D2. The fact that r(A;D1;D2;�) is concave in D1 relies

critically on the fact that D1 2 D(A;�) since in this set 1
2 log(1 + s(Aj ;D1j ;D2j ; �

2
j )) is

concave for every j.

We now show the equality of (5.13) and the RHS of (5.14). By the de�nitions of C�

(A.8) and r (5.6), we can rewrite (5.13) as

max
D12Dm(�1)

min
D22Dm(�2)

max
A2A(D1;�)

r(A;D1;D2;�): (5.61)

We can also trivially rewrite the RHS of (5.14) as

max
D12Dm(�1)

max
A2A(D1;�)

min
D22Dm(�2)

r(A;D1;D2;�): (5.62)

Note that we cannot directly apply the Minimax Theorem to show the equivalence of (5.61)

and (5.62) since r(A;D1;D2;�) is not concave in A. (It is not even quasi-concave in A

despite being quasi-concave in each Aj .) We require some manipulations before we can

apply the Minimax Theorem. We can replace A(D1;�) in both (5.61) and (5.62) with

A0(D1;�), where

A0(D1;�) =
n
A : �2j +D1j � Aj � (�j +

p
D1j)

2; 1 � j � m
o
;

compare with (5.4). See the proof of Lemma A.1 for why this is true. Thus, the following

lemma demonstrates that (5.13) and the RHS of (5.14) are equal.

Lemma 5.11.

min
D22Dm(�2)

max
A2A0(D1;�)

r(A;D1;D2;�) = max
A2A0(D1;�)

min
D22Dm(�2)

r(A;D1;D2;�): (5.63)

Proof. Clearly, the left hand side (LHS) of (5.63) is at least as large as the RHS of (5.63).

Thus, we only need to show the opposite inequality. To do so, let us de�ne

r0(A;D1;D2;�) =
mX
j=1

1

2
log
�
1 + s(Aj ;D1j ; D2j ; �

2
j )
�
; (5.64)

which di�ers from the de�nition of r(A;D1;D2;�) (see (5.6)) only in that the positive part
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of s is not taken here. Note that r0(A;D1;D2;�) is well-de�ned since s(A;D1;D2; �
2) > �1

for �2 + D1 � A � (� +
p
D1)

2. Also note that, unlike r(A;D1;D2;�), the function

r0(A;D1;D2;�) is concave in A. We can thus compute that

min
D22Dm(�2)

max
A2A0(D1;�)

r(A;D1;D2;�)

= min
D22Dm(�2)

max
A2A0(D1;�)

r0(A;D1;D2;�) (5.65)

= max
A2A0(D1;�)

min
D22Dm(�2)

r0(A;D1;D2;�) (5.66)

� max
A2A0(D1;�)

min
D22Dm(�2)

r(A;D1;D2;�): (5.67)

Here, (5.65) follows since each Aj is maximized separately and the contribution from com-

ponent j to r is at least as great as the contribution to r0 with equality if the contributions

are positive; (5.66) follows from the Minimax Theorem since A0(D1;�) and Dm(�2) are

compact convex sets and r0(A;D1;D2;�) is a continuous function that is concave in A and

convex inD1; and (5.67) follows since r
0 � r, compare (5.6) and (5.64). This completes the

proof of the Lemma.

5.6.2 Proof of (5.17)

In this section, we prove the second inequality (5.17) of Lemma 5.4. To do so, we specify a

~D2 so that, with this choice of ~D2, the RHS of (5.16) equals the RHS of (5.14), which by

Lemma 5.3 is the capacity of the private version. Since we are maximizing over ~D2 on the

RHS of (5.16), this demonstrates the desired inequality.

The following lemma, describes the vector D2 that achieves the minimum on the RHS

of (5.14).

Lemma 5.12. For �xed �, A > 0 and D1 2 D(A;�),

min
D22Dm(�2)

r(A;D1;D2;�) = r(A;D1;D
�
2;�); (5.68)

where if �2 <
P

j Aj, then

D�
2j =

8><
>:
�(Gj ; �) if �(Gj ; �) < Aj

Aj otherwise

; (5.69)
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where

�(G;�) =
�1 +

q
1 + 4G

�

2G
; (5.70)

and Gj = G(Aj ;D1j ; �
2
j ); see (5.10). Furthermore, � > 0 is chosen such that

P
j D

�
2j = �2.

If �2 �
P

j Aj, then D
�
2 = A and the minimum in (5.68) is zero.

Proof. The case where �2 �
P

j Aj is straightforward and thus we assume that �2 <P
j Aj. We can further restrict D2 � A (pointwise) since the contribution to r from

component j is zero if D2j � Aj . With this further restriction, the LHS of (5.68) is a

convex program with di�erentiable objective function and constraints. Furthermore, the

Slater constraint quali�cation is met, i.e., there exists a D2 such that 0 < D2 < A andPm
j=1D2j < �2. Thus, the Kuhn-Tucker conditions are both necessary and suÆcient for a

vector to achieve the minimum (see e.g. [SW70, Theorem 6.6.5]). To that end, let

L(D2; �0;�1;�2) =
2r(A;D1;D2;�)

log e
+ �0(e

tD2 ��2) + �
t
1(D2 �A)� �t2D2; (5.71)

where e = (1; : : : ; 1). We will show that there exists a ��1 � 0 with ��1j > 0 only if D�
2j = Aj

such that

@

@D2j
L(D�

2; �;�
�
1; 0) = 0; (5.72)

for 1 � j � m. Since the Lagrange multipliers are positive only for the tight constraints, the

Kuhn-Tucker conditions are satis�ed andD�
2 is the unique minimum. Indeed, for D2j � Aj ,

@

@D2j
L(D2; �0;�1;�2) =

@
@D2j

s(Aj;D1j ; D2j ; �
2
j )

1 + s(Aj ;D1j ; D2j ; �2j )
+ �0 + �1j � �2j

=
� b2j
D2
2j

1 +
cjb2j
D2j

+ �0 + �1j � �2j

=
�1

D2
2jGj +D2j

+ �0 + �1j � �2j : (5.73)

Observe that (�(Gj ; �))
2Gj + �(Gj ; �) = 1=�. Thus, when �(Gj ; �) < Aj , setting �

�
1j = 0
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satis�es (5.72). Further, if �(Gj ; �) > Aj, set

��1j =
1

A2
jGj +Aj

� � > 0; (5.74)

which satis�es (5.72) (the inequality follows since the �rst term in (5.73) is decreasing in

D2j). We have thus veri�ed (5.72), which completes the proof of the lemma.

Our next lemma, shows that if ~D2 is chosen to be D�
2 of the previous lemma, then the

minimizing D2 on the RHS of (5.17) is also D�
2.

Lemma 5.13. For �xed �, A > 0 and D1 2 D(A;�), let the vector D�
2 be as described in

Lemma 5.12. Then,

min
D22Dm(�2)

~r(A;D1;D
�
2;D2;�) = ~r(A;D1;D

�
2;D

�
2;�): (5.75)

Proof. The case where �2 �
P

j Aj is straightforward and thus we assume that �2 <P
j Aj. As in Lemma 5.12, this is a convex program where the Kuhn-Tucker conditions are

both necessary and suÆcient. Thus, let

~L(D2; �0;�1;�2; ~D2) =
2~r(A;D1; ~D2;D2;�)

log e
+ �0(e

tD2 ��2) + �
t
1(D2 �A)� �t2D2:

(5.76)

We will show that for the � > 0 and ��1 � 0 speci�ed in Lemma 5.12,

@

@D2j

~L(D�
2; �;�

�
1; 0;D

�
2) = 0; (5.77)

for all 1 � j � m. This will complete the proof of the current lemma. Indeed, if D2j � Aj ,

then

@

@D2j

~L(D2; �0;�1;�2; ~D2) =
�1

~D2
2jGj +D2j

+ �0 + �1j � �2j; (5.78)

where Gj = G(Aj ;D1j ; �
2
j ) de�ned in (5.10). Compare (5.78) with (5.73). By substituting

D2 = ~D2 =D
�
2, �0 = �, �1 = �

�
1, and �2 = 0 into (5.78) we verify that (5.77) is true.
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The combination of these lemmas completes the proof of (5.17) as follows,

max
A

max
D12Dm(�1)\D(A;�)

max
0� ~D2�A

min
D22Dm(�2)

~r(A;D1; ~D2;D2;�)

� max
A

max
D12Dm(�1)\D(A;�)

min
D22Dm(�2)

~r(A;D1;D
�
2;D2;�) (5.79)

= max
A

max
D12Dm(�1)\D(A;�)

~r(A;D1;D
�
2;D

�
2;�) (5.80)

= max
A

max
D12Dm(�1)\D(A;�)

r(A;D1;D
�
2;�) (5.81)

= CVGWM
priv (�1;�2;�): (5.82)

Here, (5.79) follows since we are using a particular choice of ~D2 (namely,D
�
2), (5.80) follows

by Lemma 5.13, (5.81) follows by (5.12), and (5.82) follows by Lemmas 5.12 and 5.3.

5.7 The Optimal Attack and Lossy Compression

In this section, we compare the optimal attacker for the VGWM game to an attacker who

implements optimal lossy compression based only on the statistics of the stegotext2. This

comparison is of interest for two reasons. First, in the SGWM game (see Chapter 4.5), we

found the two attackers to be essentially the same. Second, many watermarking systems

are designed to be robust against compression attacks [FKK01]. Thus, we would like to see

if our intuition for the SGWM game carries over to the VGWM game and if watermarking

systems designed in the above manner are the best possible. We �nd that the answer to

both of these questions is no.

5.7.1 Compression Attack

Optimal lossy compression with allowed distortion �2 of a vector Gaussian stegotext with

component variances given by A can be described as follows (see also [CT91]). The distor-

tion is distributed to the components using the reverse water�lling vector Dwf, where

Dwf
j =

8><
>:
�0 if �0 < Aj

Aj otherwise

; (5.83)

2For the purposes of this discussion, we assume that the statistics of the stegotext are Gaussian, which
is approximately true for the optimal encoders described in Sections 5.5 and 5.4.
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and where �0 is chosen such that
P

j D
wf
j = �2. Then, optimal lossy compression is

performed on each of the components using distortion Dwf
j for component j. We will

optimal lossy compression of the stegotext the compression attack.

Similarly to the compression attack, the optimal attack in the VGWM game chooses a

distortion distribution vector D2 and uses the optimal attack for the SGWM game on com-

ponent j with distortion D2j . Since the optimal attack for the SGWM game is essentially

optimal lossy compression, the di�erence between the optimal attack and the compression

attack lies in their distribution of their allowable distortion, i.e., D�
2 of (5.69) versus D

wf

of (5.83). We see that the vector are di�erent for an arbitrary choice of A and D1 by

the encoder. In fact, the following example will demonstrate that D�
2 6= Dwf even for the

optimal choice of A and D1.

We now consider an example where m = 5, �2 = [10 8 6 4 2], �1 = 5 and �2 = 40.

For these parameters, the vectors for the optimal encoder and attack (i.e., the ones that

solve the RHS of (5.14)) are given by

D�
1 � [1:50 1:38 1:03 0:70 0:39];

A� � [15:50 13:27 10:29 7:09 3:89];

D�
2 � [11:44 10:36 8:48 6:11 3:61]:

For this example the capacity of the VGWM game, CVGWM(�1;�2;�) = r(A�;D�
1;D

�
2;�),

is approximately 0:048 bits/vector. We see that

Dwf(A�) � [9:673 9:673 9:673 7:09 3:89] 6=D�
2;

and indeed the compression attack is not the same as the optimal attack. The maximum

achievable rate for the encoder de�ned by D�
1 and A

� and the corresponding compression

attack de�ned by Dwf is given by r(A�;D�
1;D

wf;�) � 0:051 bits/vector. Given that the

encoder also has to be robust against a general attack, the e�ect of using the suboptimal

compression attack is signi�cant, but not very large. However, we will see in the next section

that if the watermarking system is designed for the compression attack, then the gain in

achievable rate is quite large.
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5.7.2 Designing for a Compression Attack

Since the compression attack is not optimal, the watermarking system can send more bits

if it knows it only has to protect against such an attack. In fact, when a system is only

required to be robust to compression, it can send many more bits using a qualitatively

di�erent strategy. Before we return to the example of the previous section, note that all

rates less than

max
D12Dm(�1)

max
A2A(D1;�)

r(A;D1;D
wf(A);�) (5.84)

are achievable against a compression attack. This follows since such an attack uses distortion

Dwf
j in component j and the encoder can thus reliably send at rates less than 1

2 log(1 +

s(Aj ;D1j ;D
wf
j ; �

2
j )) in component j alone. We denote the maximizing vectors in (5.84) by

D��
1 and A��. For the example in the previous section

D��
1 � [3:395 0:035 0:32 0:83 0:42];

A�� � [17:28 9:09 9:09 8:47 4:25];

and the corresponding water�lling vector is given by

Dwf � [9:10 9:09 9:09 8:47 4:25]:

The maximum achievable rate in this scenario, (5.84), is approximately 0:105 bits/vector,

which is more than double the capacity of the VGWM game. In Figure 5-1, we compare

the parameters for the optimal attack and for the compression attack.

We now consider some of the qualitative di�erences between the two attacks. For the

optimal attack, the encoder uses all of the components to transmit information, although

the number of bits in a component is correlated with the variance of the components. The

encoder that is designed for the compression attack is very di�erent. This encoder places

some distortion in components 2{5, but only to boost the variance of the stegotext and not

to send any information. The water�lling attacker is wasting distortion on these components

(in fact, almost 80%), and thus this attacker is far from optimal for this particular encoder.

Furthermore, the encoder designed for the compression attack only transmits information
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Figure 5-1: Comparison of watermarking system parameters for the optimal attack and the
compression attack.

in the component with the highest variance, but it is able to send at a relatively high rate in

this component since it devotes most of its power to this component and the attacker does

not have much distortion left for this component. A more clever attacker would put all of

its distortion into component 1, and no positive rates would be achievable. This example

is somewhat extreme in that the ratio of �2 to �1 is quite high. However, in almost

all regimes, the encoder designed for the compression attack will use some components as

decoys and the rest for actually transmitting information.
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Chapter 6

Watermarking with Discrete

Alphabets

In this chapter, we consider two examples of the watermarking game when the alphabets

(i.e., the sets U , X and Y) are �nite. This contrasts with most of the rest of the thesis,

where we have been assuming that all the alphabets are the real line. With �nite alphabets,

we are able to use combinatorial techniques that are not applicable in our other scenarios.

In Section 6.1, we consider a general watermarking game with the major exception that

there is no covertext in which to hide the message. In Section 6.2, we assume that all of the

alphabets are binary and that the covertext is an IID sequence of Bernoulli(1=2) random

variables. These simple examples should provide some insight into how to approach a more

general watermarking model with discrete alphabets.

Note that Somekh-Baruch and Merhav [SBM01a] have recently described the capacity

of the private version of the watermarking game for �nite alphabets and a general discrete

memoryless source, which is more general than our proof in Section 6.1 on watermarking

with no covertext. Also, Barron, Chen and Wornell [BCW00] have recently shown that

our proposed capacity expressions for the binary watermarking game are also the capacity

expressions for related �xed attack binary watermarking problems, which we could use as

a converse in Section 6.2. Nevertheless, we are including the full proofs of our results due

to their simplicity and their illustrative nature.
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6.1 No Covertext

In this section, we give a proof of Theorem 2.5. Recall that this theorem states that the

capacity of the watermarking game when there is no covertext is given by CNoCov(D1;D2),

which is de�ned in (2.19) and recalled below in (6.1). Further, recall that since there is no

covertext, the distortion constraint on the encoder (2.1) is replaced by n�1
Pn

i=1 d1(Xi) �
D1 a.s. for some function d1 : X 7! R+ . Other than this exception, the watermarking game

with no covertext is exactly as described in Section 2.1. The remainder of this section is

organized as follows. We �rst provide some relevant de�nitions in Section 6.1.1. We then

show achievability in Section 6.1.2 and �nally show a converse in Section 6.1.3.

6.1.1 De�nitions

Let P(X ) andW(YjX ) denote the set of all distributions on X and the set of all conditional

distributions on Y given X . For particular P 2 P(X ) and W 2 W(YjX ), let PW 2 P(Y)
denote the resulting marginal distribution on Y and let P ÆW denote the joint distribution1.

We write I(P;W ) to denote the mutual information between random variables X and Y

when they have joint distribution P ÆW . Similarly, we write H(P ), H(PW ) and (W jP )
to denote the entropy of X, the entropy of Y , and the conditional entropy of Y given

X, respectively. Thus, we can simplify the mutual information as I(P;W ) = H(PW ) �
H(W jP ).

Let Pn(X ) � P(X ) denote the set of all distributions on X such that nP (a) is an

integer for all P 2 Pn(X ) and a 2 X . A distribution P 2 Pn(X ) is also referred to as

a type of length n. For any x 2 X n, let Px 2 Pn(X ) denote the empirical distribution

of x, i.e., Px(a) = N(ajx) for all a 2 X . Similarly, for x 2 X n and y 2 Yn, let Pyjx

denote the empirical conditional distribution of y given x. For a distribution P 2 Pn(X),

the set of sequences of type P is written TP = fx : Px = Pg. Similarly, for x 2 X n and

W 2 W(YjX ), the W -shell of x is written TW (x) = fy : Pyjx =Wg. The empirical mutual
information between two sequences x 2 X n and y 2 Yn is the mutual information given by

their empirical distributions. That is, I(x ^ y) = I(Px; Pyjx) = I(Py; Pxjy).

1In this section, we use W to denote a conditional distribution instead of the message, as we do in the
rest of the thesis. Furthermore, we use M to denote the watermark message.
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Finally, we slightly rewrite the de�nition (2.19) as

CNoCov(D1;D2) = max
P2P(X ):EP [d1(X)]�D1

min
W2W(YjX ):EPÆW [d2(X;Y )]�D2

I(P;W ): (6.1)

6.1.2 Achievability

We now show that all rates less than CNoCov(D1;D2) are achievable. To do so, we use

a codebook of IID vectors with each vector chosen uniformly over a type along with a

maximum mutual information (MMI) decoder to yield the desired result.

First, �x n and choose a Qn 2 Pn(X ) and Æ > 0. Let

R = I
�
Qn;W

�(Qn;D2)
�� Æ; (6.2)

where

W �(P;D2) = argmin
W2W(YjX ):EPÆW [d2(X;Y )]�D2

I(P;W ): (6.3)

The codebook consists of 2nR length-n IID vectors fX1; : : : ;X2nRg, where each Xj is

uniformly distributed on TQn . Note that Xm 2 TQn and hence d1(Xm) = EQn [d1(X)]

almost surely for all m.

Given the codebook and the forgery y, an estimate of the message is found using an

MMI decoder. That is,

m̂ = argmax
1�m0�2nR

I(xm0 ^ y);

with ties decided arbitrarily. Without loss of generality, we assume that the correct message

M = 1. Thus, an error occurs only if there exists a m 6= 1 such that I(xm^y) � I(x1 ^y).

Given the stegotext x1, the attacker can choose as a forgery any y such that d2(x1;y) �
D2. Note that I(x1 ^ y) = I(Qn; Pyjx1) � I(Qn;W

�(Qn; D2)) since Pyjx1 must satisfy the

condition in (6.3). Further note that it is suÆcient to choose a deterministic attacker to

prove the achievability of the proposed rate; see Section 2.4.3.

Given the stegotext x1 and the forgery y, let E(x1;y) be the set of all x 2 TQn that
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could cause an error. That is,

E(x1;y) = fx 2 TQn : I(x ^ y) � I(x1 ^ y)g
=

[
V 2W(XjY):

TQn\TV (y)6=;;H(V jPy)�H(Px1jyjPy)

TV (y); (6.4)

where the inequality in the union follows since if TQn \ TV (y) 6= ; implies that PyV = Qn

and I(x^y) = H(PyV )�H(V jPy) for x 2 TV (y). There are at most (n+1)jX jjYj elements

in the above union and jTV (y)j � 2nH(V jPy) for every such V ; see e.g. [CK81]. Thus,

jE(x1;y)j � (n+ 1)jX jjYj2nH(Px1jyjPy)

= (n+ 1)jX jjYj2n
�
H(Qn)�I(Qn;Pyjx1)

�
; (6.5)

where the inequality follows by the above reasoning and (6.4) and the equality follows by

the de�nition of mutual information since Px1 = Qn.

Since each Xm for m 6= 1 is uniformly distributed on TQn (and independent of X1 and

Y ), the probability of error can be upper bounded using the union bound as

Pr(errorjX1 = x1;Y = y)

� 2nR
jE(x1;y)j
jTQn j

� 2nR
(n+ 1)jX jjYj2n

�
H(Qn)�I(Qn;Pyjx1 )

�
(n+ 1)�jX j2nH(Qn)

= (n+ 1)jX j(jYj+1)2n
�
R�I(Qn;Pyjx1 )

�
� (n+ 1)jX j(jYj+1)2�nÆ; (6.6)

where the second inequality follows by (6.5) and since TQ is non-empty then jTQj �
(n+ 1)�12nH(Q) [CK81, Lemma 1.2.3], and the last inequality follows since I(Qn; Pyjx1) �
I(Qn;W

�(Qn;D2)) and by (6.2). Note that this bound does not depend on x1 or y, and

thus the overall probability of error can also be bounded by the right hand side (RHS) of

(6.6), which tends to zero.
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The above reasoning demonstrates that if

R < lim sup
n!1

max
Qn2Pn(X ):EQn [d1(X)]�D1

min
W2W(YjX ):EQnÆW [d2(X;Y )]�D2

I(Qn;W ); (6.7)

then a sequence of allowable encoder/decoder pairs can be constructed such that the proba-

bility of error goes to zero for all sequences of allowable attackers. The proof of achievability

will be complete once we demonstrate that the RHS of (6.7) is at least CNoCov(D1;D2);

see (6.1). To see that this is true, note that any distribution P 2 P(X ) can be approached

uniformly by a sequence of types, fQn 2 Pn(X )g.

6.1.3 Converse

We now show that no rates larger than CNoCov(D1; D2) are achievable for discrete alphabets

when there is no covertext. To do so, we describe an attacker that satis�es this requirement,

even if the encoder and decoder are designed with full knowledge of this attacker.

The attacker's basic strategy can be described as follows. He �rst chooses a constant

~D2 < D2. Given the stegotext x, the attacker computes the best response W �(Px; ~D2),

where W � is de�ned in (6.3).

The attacker then creates the forgery by using the stegotext as an input to a memoryless

channel with the conditional distribution W �(Px; ~D2). If the attacker does not satisfy

the distortion constraint (i.e., n�1d2(x;y) > D2) after the application of this memoryless

channel, then the attacker arbitrarily changes some components of the forgery so that the

distortion constraint is satis�ed.

We �rst note that the probability that the attacker must change the forgery tends to

zero as the blocklength n tends to in�nity. This follows since given the stegotext x, the

expected normalized distortion between the stegotext and the covertext Y is at most ~D2

that is in turn smaller than D2. We will thus analyze the probability assuming that that

the attacker never needs to change the forgery.

We now show that for constant composition codebooks the probability of error cannot

tend to zero unless the rate R is at most CNoCov(D1; ~D2), where a constant composition

codebook is one in which all of the codewords are of the same type. It is well known that

if there are 2nR codewords of type P and a memoryless channel W , then the probability

of error is bounded away from zero for R > I(P;W ). The type P of the codewords must
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satisfy EP [d1(X)] � D1, and thus

I
�
P;W �(P; ~D2)

� � C(D1; ~D2);

compare (6.3) and (6.1). Combining these two facts yields the preliminary result.

We can extend the above result on constant composition codebooks to general code-

books. To do so, we break up the codebook of 2nR codewords into types that are repre-

sented by fewer than (n+ 1)�2jX j2nR codewords and types that are represented by at least

(n + 1)�2jX j2nR codewords. For codewords in the former category, we can trivially lower

bound the probability of error by zero. Since there are at most (n+1)jX j types of length n,

the fraction of codewords in this category is at most (n+ 1)�jX j, which tends to zero. For

codewords in the latter category we will use the result on constant composition codebooks

to analyze the probability of error. In each of the constant composition sub-codebooks

under consideration, the number of codewords is at least

(n+ 1)�2jX j2nR = 2
n
�
R� 2jXj log(n+1)

n

�
:

Since the exponent on the RHS is asymptotically equal to R, even a decoder that knows the

type of the codeword will not be able to reliably decode the message if R > CNoCov(D1; ~D2).

Finally, the fraction of codewords for which the probability of error is bounded away from

zero approaches one, and thus the average probability of error is also bounded away from

zero.

We �nally note that CNoCov(�; �) is continuous in its arguments. Thus, since ~D2 < D2 is

chosen arbitrarily, no rate higher than C(D1; D2) is achievable.

6.2 Binary Covertext

In this section, we give a proof of Theorem 2.6. That is, we will describe the capacity for

the watermarking game when all of the alphabets are binary and the covertext is an IID

sequence of Bernoulli(1=2) random variables and the distortion is measured using Hamming

distance.
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6.2.1 Private Version

We �rst show that all rates less than Hb(D1 
D2)�Hb(D2) are achievable in the private

version. To do so, we show that any rate that is achievable using random coding for the

AVC with constrained inputs and states (see [CN88a] and Section 2.5.3) is also achievable

here. The fact that the covertext U is known to both the encoder and the decoder provides

perfect secrecy about the transmitted sequence. To see this, let the encoder generate a

\codeword" ~X = fn(W;�1) independently of U (but depending on the watermark W and

the secret key �1), where the codeword must satisfy n�1wh( ~X) � D1 a.s.
2. The encoder

forms the stegotext as X = ~X �U , which is independent of the codeword ~X, due to the

distribution of U . Since the forgery Y depends only on the stegotext, it follows that the

sequence ~Y =X �Y (which must satisfy n�1wh( ~Y ) � D2 a.s.) is also independent of the

codeword ~X. The decoder knows the covertext, and thus he can base his estimate of the

watermark on Y �U = ~X� ~Y , where again ~X and ~Y are independent. As in Section 2.4.3,

it is suÆcient to show that the probability of error tends to zero for every deterministic

sequence ~y such that n�1wh(~y) � D2. That is, it is suÆcient to �nd a sequence of feasible

rate-R encoders ffng and decoders f�ng such that

�Pe(~y) = Pr
�
�n
�
fn(W;�1)� ~y

� 6=W
�

(6.8)

vanishes for every feasible ~y. Here, feasible means that n�1wh(fn(W;�1)) � D1 a.s. and

n�1wh(~y) � D2. This is an instance of randomized coding on an AVC with constrained

inputs and states [CN88a, CN88b]. In [CN88b, Sect. IV], it was shown that this capacity

is given by Hb(D1 
D2)�Hb(D2).

We now show the converse for the private version, i.e., that no rates higher thanHb(D1

D2)�Hb(D2) are achievable. Let us �x the attacker to be a binary symmetric channel with

crossover probability ~D2 < D2. By the weak law of large numbers, n�1wh(X � Y ) will be

smaller than D2 with arbitrarily high probability for blocklength n large enough, and thus

a trivial modi�cation of this attacker will satisfy the distortion constraint. With this �xed

attack channel, it is straightforward to show that the capacity is given by Hb(D1 
 ~D2)�
Hb( ~D2). The converse follows since this expression is continuous in ~D2 and since we can

2Recall that the Hamming weight of a vector x 2 f0; 1gn is the number of ones contained in x and is
written wh(x).
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make ~D2 arbitrarily close to D2.

6.2.2 Public Version

In this section, we show that the capacity of the public version of the binary watermarking

game is given by

CBinWM
pub (D1;D2) = max

2D1�g�1
g �
�
Hb

�
D1

g

�
�Hb(D2)

�
:

Achievability

We now prove that all rates less than CBinWM
pub (D1;D2) are achievable. To do so, we describe

a randomized encoding and decoding strategy. We then show that this strategy satis�es

the distortion constraint. We �nally show that the probability of error tends to zero for any

attacker.

To describe the encoder and decoder, we �x 2D1 � g � 1 and � > 0, and let

R0 = g �
�
1�Hb

�
D1

g

�
+ �

�
; (6.9)

and

R = g �
�
Hb

�
D1

g

�
�Hb (D2)� 2�

�
: (6.10)

The encoder/decoder pair generates 2n(R+R0) IID vectors, each a length-ng IID sequence of

Bernoulli(1=2) random variables. This codebook thus consists of 2n(R+R0) random vectors

fV (w; k); 1 � w � 2nR; 1 � k � 2nR0g: The encoder/decoder pair also selects ng indices

uniformly out of all subsets of f1; : : : ; ng of size ng, say P = fP (1); : : : ; P (ng)g. For a

length-n vector u and a size-ng position set p, we write ujp to mean the length-ng vector

at the points p, i.e., ujp = (up(1); : : : ; up(ng)). Given the covertext u, the watermark w, the

codebook fvg and the indices p, the encoder selects the value

k� = argmin
1�k�2nR0

wh (ujp � v(w; k)) : (6.11)
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The encoder then creates the stegotext as

xi =

8><
>:
vj(w; k

�) if i 2 p and i = p(j)

ui otherwise

: (6.12)

In other words, the encoder �nds the codeword that best matches the covertext at the

selected points and then replaces the covertext with the codeword at those points. At the

other end, the decoder �nds the codeword closest to the forgery y at the selected points.

That is, he estimates the watermark as

ŵ = argmin
1�w0�2nR

min
1�k�2nR0

wh
�
yjp � v(w0; k)

�
: (6.13)

The main fact that we will use for the remainder of the proof is the following. For 2mR0

IID random vectors fX 0
1; : : : ;X

0
2mR0

g where eachX 0
i is an IID sequence ofm Bernoulli(1=2)

random variables, let

P bin(m;D;R0) = Pr

�
min

1�i�2mR0
m�1wh(X

0
i) � D

�
: (6.14)

Then, for any 0 � D � 1=2,

lim
m!1

P bin(m;D;R0) =

8><
>:
1 if R0 > 1�Hb(D)

0 if R0 < 1�Hb(D)

: (6.15)

To show that the encoder satis�es n�1wh(U�X) � D1 with arbitrarily high probability,

we apply (6.15) with m = ng, D = D1=g, and R
0 = R0=g. To see this, note that wh(U �

X) = wh (U jP � V (W;k)) since U and X can only di�er at points in P . We can now

write that

Pr

�
min

1�k�2nR0
n�1wh (U jP � V (W;k)) � D1

�

= Pr

�
min

1�k�2ng(R0=g)
(ng)�1wh (V (W;k)) � D1

g

�
= P bin(ng;D1=g;R0=g); (6.16)

where the �rst equality follows since U jP � V (W;k) is independent of U and thus the
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distribution of the Hamming weight of U jP � V (W;k) does not depend on the realization

of u (in particular, it is the same when u = 0). Finally, the RHS of (6.16) goes to zero by

the de�nition R0 (6.9) and by (6.15).

To analyze the probability of an incorrect decision being made by the decoder, we �rst

note that the probability of error depends on the attack only in the amount of distortion

that is introduced. This follows from the randomized construction of the encoder and

decoder. Thus, it is suÆcient to analyze the probability of error caused by an attacker

of the form Y = X � ~y for some deterministic sequence ~y with wh(~y) = bnD2c. For

example, we could let ~yi be 1 for 1 � i � bnD2c and 0 otherwise. Thus, we can claim that

Pr
�
n�1wh(Y jP � V (W;k�)) � g(D2 + Æ)

	
tends to one for any Æ > 0 and for the correct

watermark W . Conditioning on this event, the probability that an incorrect watermark will

be selected by the decoder is given by P bin(ng;D2 + Æ; (R + R0)=g), which tends to zero

for Æ suÆciently small by the de�nitions of R0 (6.9) and R (6.10) and by (6.15). Thus,

the overall probability of error can be made as small as desired by choosing a large enough

blocklength.

To conclude the achievability proof, we note that 2D1 � g � 1 and � > 0 can be

arbitrarily chosen. Thus, any R < CBinWM
pub (D1;D2) is achievable.

Converse

In this section, we prove that no rates higher than CBinWM
pub (D1;D2) are achievable for the

binary watermarking game. We do so, as in the private version, by �xing the attacker to

be a binary symmetric channel with crossover probability ~D2 < D2. For this attacker, the

distortion constraint will be met with arbitrarily high probability for blocklength n large

enough. We will further show, using the results of Lemma 2.29, that the capacity with this

�xed attacker is given by CBinWM
pub (D1; ~D2). The converse is completed by noting that this

expression is continuous in ~D2.

The remainder of this section will be devoted to evaluating the capacity of the follow-

ing channel with side information. The side information vector U is a sequence of IID

Bernoulli(1=2) random variables. The channel is given by

PY jX;U (yjx; u) =

8><
>:
1� ~D2 if y = x

~D2 if y 6= x

:
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Note that the channel does not depend on the side information. Instead, the side information

restricts the possible inputs since the input sequence must be within distance D1 of the side

information, i.e., n�1wh(U ;x(W;U )) � D1 a.s.. We have shown in Lemma 2.29 that the

capacity of this channel is given by

C(D1) = max
PV jU ; f :V�U7!X ;

E[wh(U;X)]�D1

I(V ;Y )� I(V ;U); (6.17)

where V is an auxiliary random variable with �nite alphabet, and the mutual informations

are evaluated with respect to the joint distribution

PU;V;X;Y (u; v; x; y) =

8><
>:
PU (u)PV jU (vju)PY jX;U (yjx; u) if x = f(v; u)

0 otherwise

:

In order to evaluate (6.17), let us set V = fv0; v1; v2g, which we will see to be suÆcient.

Recall that U = X = Y = f0; 1g. Without loss of generality, we can �x the function f to be

f(v; u) =

8>>>>><
>>>>>:

0 if v = v0

1 if v = v1

u if v = v2

:

The only other possibility for f would be to set f(v; u) = u� 1 for some v, which turns out

to be suboptimal. We now only need to optimize over PV jU in order to evaluate C(D1).

The distortion constraint requires that (PV jU (v0j1) + PV jU(v1j0))=2 = D1, since these are

the only cases where u and x = f(u; v) di�er. In order to simplify the optimization, we

also require that PV (v2) = 1 � g for some 2D1 � g � 1. We later choose the best g as in

the de�nition of CBinWM
pub (D1;D2). We now claim that under these constraints, the optimal

distribution is given by

P �V jU (vju) =

8>>>>><
>>>>>:

D1 if (u; v) = (0; v1) or (1; v0)

g �D1 if (u; v) = (0; v0) or (1; v1)

1� g if v = v2

:
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Under this distribution, I(V ;Y )� I(V ;U) = g � (Hb(D1=g)�Hb( ~D2)). Thus, the establish-

ment of this claim will complete the proof of the converse.

In order to bound I(V ;Y ) � I(V ;U) for a generic distribution that satis�es the above

constraints, we will use the following calculation

PV (v0)H(U jV = v0) + PV (v1)H(U jV = v1)

= g

�
PV (v0)

g
Hb

�
PU jV (1jv0)

�
+
PV (v1)

g
Hb

�
PU jV (0jv1)

��

� gHb

�
PV (v0)PU jV (1jv0) + PV (v1)PU jV (0jv1)

g

�

= gHb

�
D1

g

�
; (6.18)

where recall that g = PV (v0)+PV (v1) and the inequality follows by the concavity of entropy.

We can thus bound

I(U ;V ) = H(U)�H(U jV )
� 1� gHb

�
D1

g

�
� (1� g)Hb(�); (6.19)

where � = PU jV (0jv2) and the inequality follows by (6.18). We can also bound

I(V ;Y ) = H(Y )�H(Y jV )
� 1� gHb(D2)� (1� g)Hb

�
1�D2 + �(2D2 � 1)

�
; (6.20)

where the inequality follows since Y is a binary random variable. Combining (6.19) and

(6.20), we see that

I(V ;Y )� I(U ;V )

� g �
�
Hb

�
D1

g

�
�Hb (D2)

�
+ (1� g) �

�
Hb(�)�Hb

�
1�D2 + �(2D2 � 1)

��

� g �
�
Hb

�
D1

g

�
�Hb (D2)

�
; (6.21)

where the second inequality follows by maximizing over � (the maximum is achieved at

� = 1=2). The bound (6.21) is achieved with equality when P �V jU is used. This establishes

that C(D1) = CBinWM
pub (D1; ~D2), which completes the proof of the converse.
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Chapter 7

Conclusions

In this thesis, we have de�ned the information theoretic capacity of a watermarking system,

and we have found this capacity in many scenarios. We now comment on some of their

interesting aspects of these �ndings. We conclude in Section 7.1.1 with some ideas for

future research.

We have formalized a watermarking model in which a malicious attacker attempts to

prevent reliable transmission of the watermark. We assume that this attacker knows the

workings of both the encoder and decoder (but not a secret key shared by the encoder and

decoder). We also assume that any forgery created by the attacker is only useful to him if

the distortion between the forgery and stegotext is less than some threshold. Thus, we only

consider attackers that meet this distortion constraint with probability one; we show that

the capacity is zero when the constraint is enforced in expectation (see Section 2.2.3). These

assumptions require the watermarking system (both encoder and decoder) to be designed

�rst so that they are robust against any feasible attacker.

When the covertext has a Gaussian distribution, we have shown that the capacity is the

same in the private and public versions; see Theorems 2.1 and 2.4. This surprising result

demonstrates that the capacity does not increase if the decoder can use the covertext.

Costa's \writing on dirty paper" [Cos83] has this same feature; we gave two extensions of

his result in Section 2.5.4. Although the capacity is the same for both versions, the capacity

achieving coding scheme for the public version is much more complex than the scheme for

the private version; compare Sections 4.2 and 4.3 for the SGWM game and Sections 5.4

and 5.5 for the VGWM game. As one might expect, the two versions of watermarking
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do not always yield the same capacity. For example, in the binary watermarking game of

Section 2.2.6, there is a di�erence between the two versions.

When the covertext is an IID sequence of Gaussian random variables, we have shown

that an optimal lossy compression attack prevents rates greater than capacity from being

achievable. This property would allow designers to test the robustness of their watermarking

systems against existing technology. Unfortunately, this property does not hold in general.

Indeed, for an IID vector Gaussian, the compression attack is not optimal, and designing

for robustness against such an attack yields a qualitatively di�erent watermarking system;

see Section 5.7 for more discussion.

We have seen that the watermarking capacity increases with the uncertainty in the

covertext. Indeed, for the SGWM game, the capacity is increasing in the variance of the

covertext; see Figure 2-1. Furthermore, with squared error distortion measures and a �xed

covertext variance, the covertext distribution with the largest capacity is the Gaussian

distribution, which also yields the highest entropy for out of all distributions with the same

variance. Intuitively, if the uncertainty in the covertext is large, then the encoder can hide

more information in the stegotext since the attacker learns little about the covertext from

observing the stegotext. If the attacker does not take advantage of its knowledge of the

stegotext, then this property is not as strong. For example, if the attacker can only add

an arbitrary sequence (see Section 2.2.2 on the additive attack watermarking game) or an

independent random sequence (see Section 2.5.4 on extended writing on dirty paper), then

the amount of uncertainty in the covertext has little bearing on the capacity. In all cases,

the watermarking system's knowledge of the covertext should be used to its advantage. It

is suboptimal to ignore the encoder's knowledge of the covertext, as some systems do by

forming the stegotext by adding the covertext and a sequence that depends only on the

watermark.

One technical result that might be of general interest is Lemma B.7. There, we con-

sider the mutual information between a Gaussian random variable and some other random

variable, with the second order moments �xed. We show that this mutual information is

maximized if the other random variable is jointly Gaussian with the �rst one.
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7.1 Future Research

In this section, we o�er some directions for future research that expand on the themes we

have presented in the thesis.

7.1.1 Gaussian Sources with Memory

We would like to �nd the capacity of the watermarking game for squared error distortion

and a stationary Gaussian covertext. That is, let us assume that the covertext U is a

stationary Gaussian process with covariance E[UjUk] = tjj�kj. We also assume that the

covertext has a �nite memory m0 so that tm = 0 for m > m0.

We believe that we can use the results on the vector Gaussian watermarking game (see

Section 2.2.4) to describe the capacity for this covertext distribution. Indeed, for any m,

the vectors U 0
j = (Uj(m+m0)+1; : : : ; Uj(m+m0)+m), for j = 0; 1; : : : form an IID sequence of

Gaussian random vectors with covariance matrix T (m). Here, T (m) is the m �m matrix

with T
(m)
jk = tjj�kj. We will write the set of eigenvalues of T (m) as f�(m)

k ; 1 � k � mg.
The encoder/decoder could use the coding strategy for the vector Gaussian source with the

additional restriction of making the stegotext independent of the covertext at the indices

not used in forming fU 0g. For example, the encoder could set xj(m+m0)+k = 0 for m <

k � m+m0. This restriction is needed so that the attacker cannot gain any knowledge of

the covertext samples used for encoding the watermark. This restriction uses some of the

encoder's available distortion, but this extra distortion can be made negligible by taking

m large enough. Thus, we conjecture that any rate less than the following limit should be

achievable:

lim
m!1

max
D12Dm(m�1)

min
D22Dm(m�2)

C�
�
D1k;D2k; �

(m)
k

�
; (7.1)

where the term inside the limit is the normalized capacity of the vector Gaussian water-

marking game with covariance T (m), encoder distortion level mD1 and attacker distortion

level mD2. Furthermore, we believe that there exist attackers that guarantee that no rates

larger than (7.1) are achievable. Such an attacker would assume that the covertext is a

blockwise IID sequence of Gaussian random vectors.

We would also like to simplify the limit (7.1) into a more meaningful expression. We

can use the fact that the covariance matrices T (m) are Toeplitz matrices, and thus we can
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describe the limiting behavior of their eigenvalues (see e.g., [Gra00, GS58]). This is similar

to the approach that Gallager [Gal68, Sec. 8.5] takes in describing the capacity of an additive

Gaussian noise channel.

7.1.2 Discrete Memoryless Covertext

We would like to study the capacity of the public version of a watermarking game with a

general discrete memoryless covertext and general distortion constraints. One conjecture is

that the general capacity is given by the related mutual information games. In the private

version, this is the solution that Moulin and O'Sullivan [MO99, OME98] derive with a

maximum-likelihood decoder and average distortion constraints. Furthermore, Somekh-

Baruch and Merhav [SBM01a] have recently shown that for the private version with �nite

alphabets, the private mutual information game also gives the capacity for a �xed decoder

and almost sure distortion constraints. In the public version, all of the watermarking

capacities that we described in Section 2.2 have coincided with values of the related mutual

information games. However, no one has yet given a proof for the general public version.

7.1.3 Deterministic Code Capacity for Public Version

We would like to �nd the capacity when no secret key is available to the encoder and

decoder. We have addressed this for the private version (see Sections 2.4.2 and 6.2), where

we have found that the capacity without a secret key is typically the same as with a secret

key. However, this result hinges on the fact that the encoder and decoder both have access

to the covertext and they essentially use part its randomness as a secret key. Thus, these

arguments do not work in the public version, i.e., when the decoder does not know the

covertext. We call the capacity when no secret key is available | and thus the attacker

knows the exact encoding and decoding mappings | the deterministic code capacity.

We �rst show that the deterministic code capacity is in general smaller than the random

code capacity. For squared error distortion, if D2 > 4D1, then the attacker can make the

forgery into any possible output from the encoder. This implies that the attacker can make

the decoder have any possible output as well. Thus, no positive rate is achievable in this

regime. Recall, however, that the the capacity of the Gaussian watermarking game with

randomized codes is positive in this regime for �2u large enough. Thus, the deterministic

code capacity does not equal the randomized code capacity for the public version.
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Additive Attack Watermarking

We now discuss the deterministic code capacity for the additive attack watermarking game

with IID Gaussian covertext and squared error distortions. This scenario is similar to

the Gaussian arbitrarily varying channel (GAVC), except here the encoder can base his

transmitted sequence on the entire Gaussian noise sequence. See Section 2.5.3 for more

on the GAVC. Csisz�ar and Narayan [CN91] studied the deterministic code capacity of the

GAVC and found that it is given by

CDetGAVC(D1;D2; �
2) =

8><
>:

1
2 log

�
1 + D1

D2+�2

�
if D1 > D2

0 otherwise

: (7.2)

In other words, the capacity is either the random code capacity or zero, depending on the

allowed distortion levels. In particular, the capacity is not continuous in the parameters.

We believe that, unlike the GAVC, the deterministic code capacity for the additive attack

watermarking game is continuous in the parameters. Further, we believe that there exists

values of the parameters such that the deterministic code capacity is non-zero yet strictly

less than the random code capacity. While this is not possible for AVCs without constraints,

Csisz�ar and Narayan [CN88b] showed that this is possible for AVCs with input and state

constraints.

Our argument for the above claims is briey as follows. For D2 small enough, we believe

that we can construct deterministic codes which achieve the random code capacity for the

additive attack watermarking game, namely 1
2 log

�
1 + D1

D2

�
. Such a code would be similar

to the random code of Section 4.3.1, and could be analyzed using techniques from [CN91].

One di�erence from [CN91] is that we would have to guarantee that each bin has a codeword

that has a small inner product with the covertext. For any coding strategy of this form, the

critical distortion level D2 will be determined by the energy in the covertext which is in the

direction of the correct codeword. We believe that by increasing the number of codewords

in each bin, we can increase this energy at the expense of overall rate. Thus, the achievable

rates for this coding strategy should continuously decrease to zero as D2 increases instead

of a non-continuously as in the GAVC. Besides analyzing such a coding strategy, we also

need a converse to show that no higher rates are achievable.
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7.1.4 Multiple Rate Requirements

We now consider a watermarking model where the amount of information that can be

recovered depends on the distortion introduced by the attacker. For example, let there be

two independent watermarks Wh of Rh bits and Wl of Rl bits and two attacker distortion

levels D2;h > D2;l. The encoder will produce the stegotext as a function of the covertext

and both watermarks such that the distortion between the stegotext and covertext is less

than D1. If the distortion between the forgery and stegotext is D2;h, then the decoder

should be able to recover Wh. However, if the distortion between the forgery and stegotext

is D2;l, then the decoder should be able to recover both Wh and Wl. The main question

is what rates pairs are achievable for given values of D2;h and D2;l. (Or conversely, what

distortion pairs are allowable for given values of Rh and Rl.) This problem can be thought

of as a broadcast channel with degraded message set, see e.g., [Cov75, KM77]. However,

the broadcast channel is arbitrarily varying as in [Jah81].

Let us consider this example for an IID Gaussian covertext (zero-mean, variance-�2) and

squared error distortion. Using the results of Theorem 2.1, we can say that both (Rh; Rl) =

(C�(D1;D2;h; �
2); 0) and (Rh; Rl) = (0; C�(D1;D2;l; �

2)) are achievable. However, it is not

immediately clear that any linear combination of these rate pairs are achievable using the

usual time-sharing argument. Indeed, it seems that in order to e�ectively time-share against

the attacker, both codes will have to use the same stegotext power (i.e., the same value of

A). The optimal value of A depends on the attacker's distortion level and hence for any

common value of A that the two codes choose, at least one of the codes will be transmitting

below capacity. On the positive side, for any value of A and any 0 � � � 1, the following

rate pairs are achievable

(Rh; Rl) =

�
� � 1

2
log(1 + s(A;D1;D2;h; �

2)); (1 � �) � 1
2
log(1 + s(A;D1; D2;l; �

2))

�
:

(7.3)

This follows since the encoder and decoder can randomly decide on �n locations for the

high distortion code, with the remaining positions for the low distortion code. Since the

two codes are using the same stegotext power, the attacker cannot focus his distortion on

either code. The question remains as to how much better, if any, can we do than this simple

time sharing strategy.
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Appendix A

De�nitions for Gaussian covertext

In this section, we present many of the de�nitions that are used with Gaussian covertexts

(i.e., Chapters 3, 4, and 5). We also discuss some of the basic properties of some of the

mappings.

We now summarize the de�nitions that are used for all of the chapters with Gaussian

covertexts. Recall that

�(A;D1; �
2) =

1

2
(A� �2 �D1); (A.1)

b1(A;D1; �
2) = 1 +

�(A;D1; �
2)

�2
; (A.2)

b2 = b2(A;D1; �
2) = D1 � �2(A;D1; �

2)

�2
; (A.3)

c(A;D2) = 1� D2

A
; (A.4)

s(A;D1;D2; �
2) =

c(A;D2)b2(A;D1; �
2)

D2
; (A.5)

�(A;D1;D2; �
2) = 1� b1(A;D1; �

2)

1 + s(A;D1;D2; �2)
; (A.6)

A(D1;D2; �
2) =

�
A : max

�
D2;

�
� �

p
D1

�2� � A �
�
� +

p
D1

�2�
; (A.7)

and, �nally,

C�(D1;D2; �
2)

=

8><
>:
maxA2A(D1;D2;�2)

1
2 log

�
1 + s(A;D1; D2; �

2)
�

if A(D1; D2; �
2) 6= ;

0 otherwise

: (A.8)
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Figure A-1: Example plots of C�(D1;D2; �
2) and A�(D1;D2; �

2) for di�erent parameter
values.

The function C�(D1;D2; �
2) is the capacity of the scalar Gaussian watermarking game

(Theorem 2.1) and the value of the Gaussian mutual information game (Theorem 3.1);

it also plays a critical role in the capacity of the vector Gaussian watermarking game

(Theorem 2.4). In Figure A-1, we have plotted C�(D1;D2; �
2) against each of its three

arguments. We have also plotted the maximizing A in (A.8) along with the lower and upper

limits in the de�nition of A(D1;D2; �
2). We see that C�(D1;D2; �

2) is non-decreasing in

D1 and �
2 and non-increasing in D2. Further, note that C

�(D1;D2; �
2) is neither convex

nor concave in D1 and �
2 (there are points of inection at D1 � 8:2 and �2 � 6:9 in the

�rst and third plots of Figure A-1). However, C�(D1; D2; �
2) is convex in D2 (this follows

since 1
2 log(1 + s(A;D1;D2; �

2)) is convex in D2).

In the following lemma, we describe the A� that achieves the maximum in the de�nition
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of C�(D1;D2; �
2).

Lemma A.1. If A(D1;D2; �
2) is non-empty, then the maximizing A in (A.8) is achieved

by the unique maxf�2+D1;D2g < A� <
�
� +

p
D1

�2
such that p(A�;D1;D2; �

2) = 0, where

p(A;D1;D2; �
2) = A3 �

�
D1 + �2 +

D2

2

�
A2 +

D2

2
(�2 �D1)

2:

Proof. First note that, independent of D2, it is suÆcient to consider only A such that

�2 +D1 � A � �� +p
D1

�2
. This follows since for any

�
� �p

D1

�2 � A � �2 +D1, there

exists a �2 +D1 � A0 � �� +p
D1

�2
such that

��s(A0;D1; D2; �
2)
��+ � ��s(A;D1;D2; �

2)
��+,

independently of D2. Namely, let A
0 = 2(�2 +D1)�A.

Since log(x) is monotonically increasing in x, the maximizing A in (A.8) is also the

A 2 A(D1;D2; �
2) that maximizes the product c(A;D2)b2(A;D1; �

2). We can calculate

that

@

@A
c(A;D2)b2(A;D1; �

2) =
�p(A;D1;D2; �

2)

2A2�2
;

and

@2

@A2
c(A;D2)b2(A;D1; �

2) =
�1
2�2

�
1� D2(�

2 �D1)
2

A3

�
: (A.9)

Since A � D2 and A � �2 + D1 >
pj�2 �D1j, the RHS of (A.9) is negative and hence

c(A;D2)b2(A;D1; �
2) is strictly concave in A. Thus, there can be at most one local ex-

tremum in A(D1;D2; �
2), which would also be the maximizing value. There is exactly one

local extremum since there exists an A� 2 A(D1;D2; �
2) such that p(A�;D1; D2; �

2) = 0.

This follows since p(A;D1;D2; �
2) is continuous in A; since

p(�2 +D1;D1;D2; �
2) = �2D1D2�

2 < 0;

since if �2 +D1 < D2 <
�
� +

p
D1

�2
, then

p(D2;D1; D2; �
2) =

D2

2

��
D2 � (�2 +D1)

�2 � 4�2D1

�
< 0;
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where the inequality follows by the above assumption; and since if D2 < (� +
p
D1)

2, then

p

��
� +

p
D1

�2
;D1;D2; �

2

�
= 2

p
�2D1

��
� +

p
D1

�4 � D2

2

�
�2 +D1 + 4

p
�2D1

��

>
p
�2D1

�
� +

p
D1

�2 �
� �

p
D1

�2
> 0;

where the �rst inequality follows from the above assumption.
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Appendix B

Technical Proofs

In this appendix, we prove many of the technical claims that have been given throughout

the thesis. In each section, we repeat the statement of the theorem or lemma to be proved

followed by the proof. A reference to the theorem or lemma being proved is given in the

title of each section as well as in parenthesis at the beginning of each restatement.

B.1 Proof of Theorem 2.3

Theorem B.1 (2.3). For the watermarking game with real alphabets and squared error

distortion, if the covertext U satis�es lim infn!1E
�
1
nkUk2

�
< 1, and if the average dis-

tortion constraints (2.14), (2.15) are in e�ect instead of the a.s. distortion constraints (2.1),

(2.3), then no rate is achievable in either version of the game.

Proof. For a given covertext fUg and for a given encoder sequence ffng, let the average
power in the stegotext be given by

~an = E
�kXk2� =n = E

�kfn(U ;W;�1)k2
�
=n: (B.1)

Note that the encoder average distortion constraint E
�
n�1kX �Uk2� � D1 and the tri-

angle inequality kXk � kX � Uk + kUk guarantee that ~an � (
p
D1 +

p
E [kUk2] =n)2.

Consequently, it follows by (2.16) that for any � > 0 and any integer n0 > 0 there exists

some n� > n0 such that

~an� � Amax; (B.2)
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where Amax = (� + �+
p
D1)

2: Let the attack key �2 take on the value 0 with probability

p, and take on the value 1 with probability 1� p, where

p = min

�
D2

Amax
; 1

�
: (B.3)

For the blocklength n� consider now the attacker

~gn�(x; �2) = �2x (B.4)

that with probability p produces the all-zero forgery, and with probability (1� p) does not

alter the stegotext at all. Irrespective of the rate (as long as b2nRc > 1) and of the version of

the game, this attacker guarantees a probability of error of at least p=2. It remains to check

that ~gn�(x; �2) satis�es the average distortion constraint. Indeed, the average distortion

introduced by ~gn� is given by

1

n�
E
�kX � ~gn�(X;�2)k2

�
= p � 1

n�
E
�kXk2�

� p � Amax

� D2;

where the equality follows from (B.4), the subsequent inequality by (B.1) and (B.2), and

the last inequality by (B.3).

B.2 Proof of Lemma 2.1

Lemma B.1 (2.1). For the communication with side information model with �nite alpha-

bets, if the side information is available non-causally to the encoder only and the encoder

is required to satisfy 1
n

Pn
i=1 d1(ui; xi) � D1, a.s., for some non-negative function d1(�; �).

Then, the capacity is given by

CNCSI
pub (D1) = max

PV jU ; f :V�U7!X ;

E[d1(U;X)]�D1

I(V ;Y )� I(V ;U); (B.5)

where V is an auxiliary random variable with �nite alphabet, and the mutual informations

are evaluated with respect to the joint distribution (2.30).
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Proof. The achievability part follows directly from the proof of Gel'fand and Pinsker [GP80].

We simply choose a PV jU and a function f : V �U 7! X such that E[d1(U;X)] � ~D1 < D1.

We then use the same coding strategy as in [GP80]. The distortion between the side

information and the transmitted sequence will be approximately ~D1. By choosing n large

enough, we can ensure that this distortion exceed D1 with arbitrarily small probability. The

achievability proof is completed by noting that CNCSI
pub (D1) is continuous inD1. Furthermore,

it is non-decreasing and convex in D1; see [BCW00]. Combining the converse of Gel'fand

and Pinsker [GP80] with the usual converse for channels with input constraints (see e.g.,

[CT91][Sect. 10.2]), we can show that no rates greater than

max
PV jU ; PXjV;U

E[d1(U;X)]�D1

I(V ;Y )� I(V ;U) (B.6)

are achievable. Thus, we only need to show that (B.6) is equal to the RHS of (B.5), the

proposed capacity expression. Gel'fand and Pinsker [GP80] showed this equivalence without

the distortion constraint. However, their proof does not carry through to this case. Their

basic idea is that I(V ;Y ) � I(V ;U) is convex in PXjV;U for all other distributions �xed.

Thus, a general PXjV;U , which can be written as a convex combination of deterministic

PXjV;U 's, will always be dominated by a deterministic PXjV;U . However, a general PXjV;U

that satis�es the distortion constraint might not be a convex combination of deterministic

PXjV;U 's that also satisfy the distortion constraint.

We now prove that (B.6) is equal to the RHS of (B.5). We make the assumption that

X , U and Y are �nite. We also assume that V is �nite, which Gel'fand and Pinsker show

to be suÆcient (this does not change with the distortion constraint).

Without loss of generality, there exists v0 2 V such that 0 < PXjV;U(xjv0; u) < 1 for

some x and s. If no such v0 existed, then there would be nothing to prove. Let us choose

functions f1; : : : ; fn : U 7! X and positive constants c1; � � � ; cn with
P

i ci = 1 such that

PXjV;U (xjv0; u) =
nX
i=1

ci1fx=fi(u)g; 8x 2 X ; s 2 U : (B.7)

Let V 0 = fv01; : : : ; v0ng and ~V = V 0 [ Vnfv0g. Let the random variable ~V take values in ~V
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and have joint distributions

PXj ~V ;U (xj~v; u) =

8><
>:
PXjV;U (xj~v; u) if ~v 2 Vnfv0g

1fx=fi(u)g if ~v = v0i 2 V 0
; (B.8)

and

P ~V jU (~vju) =

8><
>:
PV jU (~vju) if ~v 2 Vnfv0g

ciPV jU(v0ju) if ~v = v0i 2 V 0
: (B.9)

We now compare the original joint distribution between V , U , X and Y with the new joint

distribution ~V , U , X and Y . We claim that I( ~V ;Y ) � I( ~V ;U) � I(V ;Y ) � I(V ;U) and

the expected distortion is the same under both distributions, which will complete the proof

of the claim. This follows since we can repeat this process until there is no such v0.

We �rst note that the joint distribution on U , X, and Y is the same under both distri-

butions. That is,

X
~v2~V

PY jX;U (yjx; u)PXj ~V ;U(xj~v; u)P ~V jU (~vju)PU (u)

=
X
v2V

PY jX;U (yjx; u)PXjV;U (xjv; u)PV jU(vju)PU (u):

In particular, both H(Y ) and E[d(U;X)] are una�ected by the change in distribution.

Second, we consider a joint distribution between V , ~V and U de�ned by

P ~V jV;U(~vjv; u) =

8><
>:
1f~v=vg if ~v 2 Vnfv0g

ci1fv=v0g if ~v = v0i 2 V 0
;

which is consistent with both joint distributions. Under this distribution, the random

variables U , V and ~V form a Markov chain. Thus, by the data processing inequality,

I(V ;U) � I( ~V ;U). We �nally note that

PY jV (yjv0) =
nX
i=1

ciPY j ~V (yjv0i);

which follows by the de�nitions (B.7), (B.8) and (B.9). We can thus show, using the
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concavity of entropy, that H(Y j ~V ) � H(Y jV ) and thus I( ~V ;Y ) � I(V ;Y ) (since H(Y ) is

the same for both distributions). These three observations �nish the proof of the claim.

B.3 Proof of Lemma 3.1

Lemma B.2 (3.1). For any n > 0 and any covertext distribution PU ,

sup
PXjU2D1(D1;PU )

PV jU ;X

inf
PY jX2D2(D2;PU ;PXjU )

Ipub(PU ; PX jU ; PV jU ;X ; PY jX) �

sup
PXjU2D1(D1;PU )

inf
PY jX2D2(D2;PU ;PXjU )

Ipriv(PU ; PX jU ; PY jX):

Proof. We �rst show following Chen [Che00] that for arbitrary distributions PU , PXjU ,

PV jU ;X , and PY jX the mutual information terms satisfy Ipriv � Ipub. All of the below

mutual information terms are evaluated in terms of these distributions. We will assume

that Ipriv is �nite, since otherwise the claim is trivial. We can write that

Ipriv(PU ; PXjU ; PY jX) = n�1I(X;Y jU )

� n�1I(V ;Y jU) (B.10)

= n�1
�
I(V ;U ;Y )� I(V ;U )

�
(B.11)

� n�1
�
I(V ;Y )� I(V ;U )

�
= Ipub(PU ; PXjU ; PV jU ;X ; PY jX)

where (B.10) follows by the data processing inequality (see e.g. [CT91]) because V and Y

are conditionally independent given (X;U ); and where (B.11) follows by the chain rule for

mutual informations.

We next show that the values of the mutual information games also behave as desired.

Fix n and � > 0 and let P �XjU and P �V jU ;X be distributions that are within � of the supremum
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in (3.6). Thus,

sup
PXjU

inf
PY jX

Ipriv(PU ; PX jU ; PY jX) � inf
PY jX

Ipriv(PU ; P
�
XjU ; PY jX)

� inf
PY jX

Ipub(PU ; P
�
XjU ; P

�
V jU ;X ; PY jX)

� sup
PXjU ;PV jU;X

inf
PY jX

Ipub(PU ; PXjU ; PV jU ;X ; PY jX)� �;

where the second inequality follows by the preceding paragraph and the �nal inequality

follows by our choice of P �
X jU and P �

V jU ;X . The lemma follows since � > 0 can be chosen

as small as desired.

B.4 Proof of Lemma 3.2

Lemma B.3 (3.2). For any n > 0, any covertext distribution PU , any watermarking chan-

nel PXjU , and any �xed distortion D2 > An

Ipriv

�
PU ; PX jU ; (P

An
Y jX)

n
�

� Ipriv

�
(PG

U )
n; (PAn

XjU )
n; (PAn

Y jX)
n
�

=
1

2
log
�
1 + s(An;D1;n;D2; �

2
u;n)
�
;

where �2u;n = EPU

�
n�1kUk2�; D1;n = EPUPXjU

[n�1kX�Uk2]; An = EPUPXjU

�
n�1kXk2�;

PG
U denotes a zero-mean Gaussian distribution of variance �2u;n; P

An
XjU is the watermarking

channel described in Section 3.2.2 for the parameters �2u;n, D1;n and An; and P
An
Y jX is the

attack channel described in Section 3.2.1 for the parameters D2 and An.

Proof. The proof is organized as follows. In Lemma B.4, we show that a Gaussian covertext

distribution and a jointly Gaussian watermarking channel maximize the mutual information

term of interest. Using this result and some basic mutual information manipulations, we

then complete the proof.

Lemma B.4. Let PU;X be an arbitrary distribution with covariance matrix KUX , and let

P �U;X be a jointly Gaussian distribution of covariance matrix K�
UX = KUX . Then,

Ipriv(PU ; PXjU ; P
A
Y jX) � Ipriv(P

�
U ; P

�
XjU ; P

A
Y jX);

where PA
Y jX is de�ned in Section 3.2.1 and A > D2 is arbitrary.
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Proof. Recall that under the attack channel PA
Y jX , the random variables Y andX are related

by Y = cX + S2, where c = c(A;D2) (de�ned in (A.4)) and S2 is mean-zero variance-cD2

Gaussian random variable independent of X. Thus,

hPUPXjUP
A
Y jX

(Y jX) = h(S2) = hP �
UP

�
XjU

PA
Y jX

(Y jX); (B.12)

where these and the below di�erential entropies exist by the structure of the attack channel

under consideration. Let �U be the linear minimum mean squared-error estimator of Y

given U . Note that � depends on second-order statistics only, so that its value under P �U;X

is the same as under PU;X . Thus,

hPUPXjUP
A
Y jX

(Y jU) = hPUPXjUP
A
Y jX

(Y � �U jU)
� hPUPXjUP

A
Y jX

(Y � �U)

� 1

2
log
�
2�eEPUPXjUP

A
Y jX

�
(Y � �U)2

��
=

1

2
log
�
2�eEP �

UP
�
XjU

PA
Y jX

�
(Y � �U)2

��
= hP �

UP
�
XjU

PA
Y jX

(Y jU); (B.13)

where the �rst inequality follows since conditioning reduces entropy, the second inequality

follows since a Gaussian distribution maximizes entropy subject to a second moment con-

straint, and (B.13) follows since under P �U , P
�
XjU and PA

Y jX the random variables U and Y

are jointly Gaussian and hence Y � �U is Gaussian and independent of U .

Combining (B.12) and (B.13) with the de�nition of Ipriv (see (3.1)) completes the proof

of Lemma B.4.

To continue with the proof of Lemma 3.2, if under P �U and P �XjU the random variables

U and X are zero-mean and jointly Gaussian, then

Ipriv(P
�
U ; P

�
XjU ; P

A
Y jX) =

1

2
log

 
1 +

c(A;D2) b2
�
E
�
X2
�
;E
�
(X � U)2

�
; E
�
U2
��

D2

!
;

(B.14)

where b2(�; �; �) is de�ned in (A.3) and A > D2. Note that b2 and hence the whole expres-

sion (B.14) is concave in the triple (E
�
U2
�
; E
�
(X � U)2

�
; E
�
X2
�
), as can be veri�ed by
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checking that the Hessian is non-negative de�nite. We can now compute that

Ipriv

�
PU ; PX jU ; (P

An
Y jX)

n
�

� 1

n

nX
i=1

Ipriv

�
PUi ; PXijUi ; P

An
Y jX

�

� 1

n

nX
i=1

1

2
log

 
1 +

c(An;D2) b2
�
E
�
X2
i

�
;E
�
(Xi � Ui)

2
�
; E
�
U2
i

��
D2

!

� 1

2
log

 
1 +

c(An;D2) b2
�
An;D1;n; �

2
u;n

�
D2

!

=
1

2
log
�
1 + s(An;D1;n;D2; �

2
u;n)
�
;

where the �rst inequality follows by the chain rule and since conditioning reduces entropy,

the second inequality follows by Lemma B.4 and by (B.14), the third inequality follows by

the above discussed concavity of (B.14), and the �nal equality follows by the de�nition of

s(�; �; �; �) (A.5). We obtain equality in each of the above inequalities when PU = (PG
U )

n and

PXjU = (PAn
XjU )

n. This completes the proof of Lemma 3.2.

B.5 Proof of Lemma 3.3

Lemma B.5 (3.3). Consider an IID zero-mean variance-�2u Gaussian covertext (denoted

(PG
U )

n) and �xed distortions D1 and D2. If PY jX satis�es E(PGU PA
XjU

)nPY jX

�
n�1kY �Xk� �

D2, then for all A 2 A(D1;D2; �
2
u),

Ipub

�
(PG

U )
n; (PA

XjU )
n; (PA

V jU;X)
n; PY jX

�
� Ipub

�
(PG

U )
n; (PA

XjU )
n; (PA

V jU;X)
n; (PA

Y jX)
n
�

=
1

2
log
�
1 + s(A;D1;D2; �

2
u)
�
: (B.15)

Here, PA
XjU and PA

V jU;X are the watermarking channels described in Section 3.2.2 for the

parameters �2u, D1 and A and PA
Y jX is the attack channel described in Section 3.2.1 for the

parameters D2 and A.

Proof. For every A 2 A(D1; D2; �
2
u), consider the one-dimensional optimization based on
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the watermarking channel described in Section 3.2.2

M(D2; A) = inf
PY jX2D2(D2;PGU ;PA

XjU
)
Ipub

�
PG
U ; P

A
XjU ; P

A
V jU;X ; PY jX

�
: (B.16)

In Lemma B.6, we derive some properties of M(D2; A), which we subsequently use to show

that M(D2; A) is a lower bound on the LHS of (B.15). In Lemma B.7, we show that

when computingM(D2; A) we only need to consider attack channels that make the random

variables Y and V jointly Gaussian. We �nally use this claim to compute M(D2; A).

Lemma B.6. For a �xed A, the function M(D2; A) de�ned in (B.16) is convex and non-

increasing in D2.

Proof. The functionM(D2; A) is non-increasing in D2 since increasing D2 only enlarges the

feasible set D2(D2; P
G
U ; P

A
XjU ).

To show that M(�; A) is convex in D2, we �rst note that

Ipub
�
PU ; PXjU ; PV jU;X ; PY jX

�
= I(V ;Y )� I(V ;U)

is convex in PY jX . Indeed, I(V ;U) does not depend on PY jX and I(V ;Y ) is convex in PY jV

and hence also convex in PY jX since the random variables V , X and Y form a Markov

chain.

Given the parameters A, Dr, Ds, and � > 0, let the watermarking channels P r
Y jX 2

D2(Dr; P
G
U ; P

A
XjU ) and P

s
Y jX 2 D2(Ds; P

G
U ; P

A
XjU ) be such that

Ipub

�
PG
U ; P

A
XjU ; P

A
V jU;X ; P

r
Y jX

�
�M(Dr; A) + �; (B.17)

and

Ipub

�
PG
U ; P

A
XjU ; P

A
V jU;X ; P

s
Y jX

�
�M(Ds; A) + �: (B.18)

For any 0 � � � 1, let P �
Y jX = �P r

Y jX + ��P s
Y jX , where

�� = (1� �). We complete the proof
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with

M(�Dr + ��Ds; A) � Ipub

�
PG
U ; P

A
XjU ; P

A
V jU;X ; P

�
Y jX

�
� �Ipub

�
PG
U ; P

A
XjU ; P

A
V jU;X ; P

r
Y jX

�
+ ��Ipub

�
PG
U ; P

A
XjU ; P

A
V jU;X ; P

s
Y jX

�
� �M(Dr; A) + ��M(Ds; A) + �;

where the �rst inequality follows since EPUP
A
XjU

P�
Y jX

[(X � Y )2] � �Dr + ��Ds, the second

inequality follows by the convexity of Ipub(PU ; PXjU ; PV jU;X ; �), and the �nal inequality

follows by (B.17) and (B.18). The claim follows since � is an arbitrary positive number.

We continue with the proof of Lemma 3.3 by demonstrating that M(D2; A) is a lower

bound on the LHS of (B.15). Indeed, if

PY jX 2 D2(D2; (P
G
U )

n; (PA
XjU )

n); (B.19)

then

Ipub

�
(PG

U )
n; (PA

XjU )
n; (PA

V jU;X)
n; PY jX

�
� 1

n

nX
i=1

Ipub

�
PG
U ; P

A
XjU ; P

A
V jU;X ; PYijXi

�

� 1

n

nX
i=1

M
�
EPGU PA

XjU
PYijXi

�
(Yi �Xi)

2
�
; A
�

� M
�
E(PGU PA

XjU
)nPY jX

�
n�1kY �Xk2� ; A�

� M(D2; A);

where the �rst inequality follows since the watermarking channel is memoryless, by the

chain rule, and by the fact that conditioning reduces entropy; the second inequality follows

by the de�nition of M(�; �); and the �nal two inequalities follow by Lemma B.6 and by

(B.19) so that the expected distortion is less than D2.

To complete the proof of Lemma 3.3, we show that a minimum in the de�nition of

M(D2; A) is achieved by the distribution PA
Y jX of Section 3.2.1. To do so, we �rst show in

Lemma B.7 that we only need to consider conditional distributions PY jX under which V

and Y are jointly Gaussian. A similar lemma was given in a preliminary version of [SVZ98]

and in [MS01], but neither proof is as general as the one below.

Lemma B.7. Let V and Z be jointly Gaussian random variables with covariance matrix
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KV Z . Let Y be another (not necessarily Gaussian) random variable related to V via the

covariance matrix KV Y . If KV Y = KV Z , then I(V ;Y ) � I(V ;Z).

Proof. It suÆces to prove the claim when all random variables are zero mean. If I(V ;Y ) is

in�nite then there is nothing to prove. Thus, we only consider the case where

I(V ;Y ) <1: (B.20)

For the �xed covariance matrix K = KV Y = KV Z , let the linear minimum mean squared-

error estimator of V given Y be �Y . Note that the constant � is determined uniquely

by the correlation matrix K and thus �Z is also the linear minimum mean squared-error

estimator of V given Z. Since the random variables V and Z are jointly Gaussian, this is

also the minimum mean squared-error estimator, and furthermore V � �Z is independent

of Z. If the conditional density fV jY exists, then

I(V ;Y ) = h(V )� h(V jY ) (B.21)

� h(V )� h(V � �Y ) (B.22)

� h(V )� 1

2
log 2�eE[(V � �Y )2] (B.23)

= h(V )� 1

2
log 2�eE[(V � �Z)2] (B.24)

= I(V ;Z) (B.25)

=
1

2
log

�
E[V 2]E[Z2]

jKV Z j
�

(B.26)

and the claim is proved. Here, (B.21) follows since we have assumed that a conditional

density exists; (B.22) follows since conditioning reduces entropy; (B.23) follows since a

Gaussian maximizes di�erential entropy subject to a second moment constraint; (B.24)

follows since KV Y = KV Z and hence all second order moments are the same; (B.25) follows

since V ��Z is both Gaussian and independent of Z; and (B.26) follows since V and Z are

zero-mean jointly Gaussian random variables.

By (B.20) the conditional density fV jY exists if Y takes on a countable number of values.

This follows since (B.20) implies PV;Y � PV PY , i.e., the joint distribution is absolutely

continuous with respect to the product of the marginals. In particular, PV jY (�jy)� PV for

every y such that PY (y) > 0. Furthermore, V is Gaussian and hence PV � �, where � is
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the Lebesgue measure. Thus, PV jY (�jy)� � for every y such that PY (y) > 0 and hence the

conditional density exists.

To conclude the poof of the claim, we now consider the case where Y does not neces-

sarily take on a countable number of values and I(V ;Y ) < 1. This case follows using an

approximation argument. For any � > 0, let q� : R 7! f: : : ;�2�;��; 0;�; 2�; : : : g be a
uniform quantizer with cell size �, i.e., q�(x) maps x to the closest integer multiple of �.

Let Y� = q�(Y ). By the data processing inequality,

I(V ;Y ) � I(V ;Y�): (B.27)

The random variable Y� takes on a countable number of values and by (B.20) and (B.27),

I(V ;Y�) <1. Thus, the conditional density fV jY� exists and

I(V ;Y�) � 1

2
log

�
E[V 2]E[Y 2

�]

jKV Y� j
�
: (B.28)

Since jY �Y�j � �=2, it follows that E[Y 2
�]! E[Y 2] and jKV Y� j ! jKV Y j as � # 0. Since

(B.27) and (B.28) hold for all � > 0, the claim follows by letting � approach zero.

To continue with the evaluation ofM(D2; A), we note that since under the distributions

PG
U , P

A
XjU , and P

A
V jU;X , the random variable V has a Gaussian distribution, the above claim

allows us to assume throughout the rest of the proof that the attack channel PY jX makes

the random variables V and Y jointly Gaussian. Recall that the random variables V , X,

and Y form a Markov chain. Thus, if we let Y = c1X + S1, where S1 is Gaussian random

variable independent of X with variance c2 � 0, then we can generate all possible correlation

matrices KV Y by varying the parameters c1 and c2. Since the mutual information I(V ;Y )

only depends on the correlation matrix KV Y , we can compute the quantity M(D2; A) by

only considering such attack channels.

Let P c1;c2
Y jX be the attack channel such that the random variable Y is distributed as

c1X+S1, where S1 is a random variable independent of X, which is Gaussian of zero mean

and variance c2. Under this distribution,

EPUP
A
XjU

P
c1;c2
Y jX

[(X � Y )2] = (1� c1)
2A+ c2:
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We require that P c1;c2
Y jX 2 D2(D2; P

G
U ; P

A
XjU ), and thus

c2
c21
� D2

c(A;D2)
; (B.29)

where equality is achieved by c1 = c(A;D2) and c2 = c(A;D2)D2, and where c(�; �) is

de�ned in (A.4). Thus, if � = �(A;D1;D2; �
2
u), � = �(A;D1; �

2
u) and b1 = b1(A;D1; �

2
u)

(see Appendix A), then

Ipub

�
PG
U ; P

A
XjU ; P

A
V jU;X ; P

c1;c2
Y jX

�

=
1

2
log

 
�2�2u + 2��+D1 � (�+ b1 � 1)2�2u

�2�2u + 2��+D1 � ((�� 1)b1�2u +A)2=(A + c2
c21
)

!

� 1

2
log
�
1 + s(A;D1;D2; �

2
u)
�
;

where the equality follows by evaluating Ipub with the given distributions and the inequality

follows by the relevant de�nitions and by (B.29). Equality is achieved when c1 = c(A;D2)

and c2 = c(A;D2)D2.

The combination of all of the above arguments shows that Lemma 3.3 is valid. Indeed,

the choice of the memoryless watermarking channels (PA
XjU )

n and (PA
V jU;X)

n guarantees a

mutual information of at least 1
2 log(1 + s(A;D1; D2; �

2
u)). Furthermore, when these water-

marking channels are used, the memoryless attack channel (PA
Y jX)

n is optimal.

B.6 Proof of Lemma 4.3

Lemma B.8 (4.3). For any � > 0 and �1 > 0, there exists an integer n2 > 0 such that for

all n > n2, Pr
�
�1(Z1; Z2) < ��1 � �1

�
< �.

Proof. Recall that the attacker has the form given in Section 4.1.2 and that the random
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variables Z1 and Z2 are de�ned in (4.15) and (4.16). Thus,

Z1 =
1

n

Y jU?

2
=

1

n

�1(X)X + 2(X)
���
U?

2
=

1

n

1(X)CW (U) + 2(X)jU?

2
� 21(X)b2 + 3(X) + 21(X)n�1



2(X)jU?;CW (U )

�
= 21(X)b2 + 3(X) + 21(X)n�1



2(X);CW (U )

�
; (B.30)

where the �rst equality follows from the de�nition of Z1 (4.15); the second equality from

the representation of the forgery as in (4.4); the third equality from the structure of the

encoder (4.11); the subsequent inequality from (4.8), the bound
2(X)jU?

2 � 2(X)
2

and (4.5); and the �nal equality because CW (U ) 2 U? (4.9).

Similarly, we can show that

Z2 = 1(X)b2 + n�1h2(X);CW (U )i: (B.31)

We now argue that the sequence of random variables n�1h2(X);CW (U)i approaches,
as n tends to in�nity, zero in probability uniformly over all attackers. First, note that given

the stegotext X = x, the random vector CW (U ) is distributed like b2x=A + C, where

C is uniformly distributed on Sn(0;
p
nb3) and b3 = b2(A � b2)=A. Consequently, for any

0 < � <
p
D2b3,

Pr
���n�1 h2(X);CW (U )i�� > �

��X = x
�

= Pr
����D2(x)=pn3(x);C=

p
nb3

E��� > �=
p
3(x)b3

�
� Pr

����D2(x)=pn3(x);C=
p
nb3

E��� > �=
p
D2b3

�
=

2Cn�1
�
arccos

�
�=
p
D2b3

��
Cn�1(�)

:

Here the �rst equality follows by the conditional distribution of CW (U) and the fact that

h2(x);xi = 0, the subsequent inequality follows from 3(x) � D2 (see (4.5)), and the

�nal equality follows since C=
p
nb3 is uniformly distributed on Sn(0; 1) \ x? and since

2(x)=
p
n3(x) also takes value in this set. Since the resulting upper bound, which tends
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to zero, does not depend on x, it must also hold for the unconditional probability.

Combining this fact with (B.30) and (B.31), we see that for any �2 > 0 there exists some

n2 such that

Pr
�
Z1 � 21(X)b2 + 3(X) + �2 and Z2 � 1(X)b2 � �2

� � 1� � (B.32)

for all n > n2.

Since �1(z1; z2) is non-increasing in z1 and non-decreasing in z2, it follows that (B.32)

implies

Pr

 
�1(Z1; Z2) � 1(X)b2 � �2p

b2(21(X)b2 + 3(X) + �2)

!
� 1� � (B.33)

for all n > n2. Since n
�1kXk2 = A (4.12), it follows from (4.6) that with probability one

3(X)=21(X) � D2=c so that

1(X)b2p
b2(

2
1(X)b2 + 3(X))

=

s
b2

b2 + 3(X)=21(X)
� ��1 : (B.34)

Thus, we can choose �2 small enough (and the corresponding n2 large enough) so that (B.32)

will imply via (B.33) and (B.34) that Pr (�1(Z1; Z2) � ��1 � �1) � 1� �, for all n > n2.

B.7 Proof of Lemma 4.6

Lemma B.9 (4.6). Given X = x and Z = z, the random vector V W (U ) is uniformly

distributed over the set V(x; z) = �a1x+ v : v 2 Sn(0;pna2) \ x?	, where a1 = �2v+(1��)z
n�1kxk2 ,

and a2 =
(1��)2(�2u�

2
v�z

2)
n�1kxk2 .

Proof. Conditional on the covertext U = u and on Z = z, the auxiliary codeword V W (U )

is uniformly distributed over the set

V 0(u; z) = �v : n�1kvk2 = �2v and n
�1hv;ui = z

	
;

as follows by the de�nition of Z (4.40) and the distribution of the codebook fV j;kg. Using
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the deterministic relation (4.37) we can now relate the appropriate conditional densities as

fVW (U)jX;Z(vjX = x; Z = z) = fVW (U)jU ;Z

�
v
���U =

x� v
1� �

;Z = z

�
:

The proof will be concluded once we demonstrate that irrespective of z, it holds that

v 2 V(x; z) if, and only if, v 2 V 0�(x� v)=(1� �); z
�
.

Indeed, if v 2 V(x; z), then we can calculate that n�1kvk2 = a21n
�1kxk2+a2 = �2v using

the fact that

n�1kxk2 = �2v + 2(1 � �)z + (1� �)2�2u: (B.35)

Furthermore,

1

n

�
v;
x� v
1� �

�
=
�2v + (1� �)z � �2v

1� �
= z;

and thus v 2 V 0�(x� v)=(1 � �); z
�
.

Conversely, if v 2 V 0�(x� v)=(1 � �); z
�
, then

1

n

�
v;
x� v
1� �

�
=
n�1hv;xi � �2v

1� �
= z;

and hence vjx = a1x. Furthermore,

1

n

vjx?2 = 1

n
kvk2 � 1

n

vjx2 = �2v �
a21kxk2
n

= a2;

where we have again used (B.35), and thus v 2 V(x; z).

B.8 Proof of Lemma 4.8

Lemma B.10 (4.8). If the constants de�ned for the additive attack watermarking game

are used to design the sequence of encoders of Section 4.3.1, then for any � > 0 and �2 > 0,

there exists an integer n2 > 0 such that for all n > n2 and for all the deterministic attacks

of Section 4.1.1, Pr
�
�2(Z;Z3; Z4) < ��(R1 + Æ)� �2

�
< �.

Proof. Recall that a deterministic attacker of Section 4.1.1 is speci�ed by a vector ~y satis-
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fying (4.3). Fix some �3 > 0 (to be chosen later) and choose n2 large enough to ensure

Pr(E1 \ E2 \ E3) � 1� �; 8n > n2; (B.36)

where the events E1, E2, and E3 are de�ned by

E1 =
���2n�1hX; ~yi�� � �3

	
;

E2 =
���n�1hV W (U); ~yi�� � �3

	
;

and

E3 = fZ � ��2ug:

Note that whenever �3 > 0, such an n2 can always be found by the union of events bound,

because the probability of the complement of each of the events is vanishing uniformly

in ~y, for all ~y satisfying (4.3). Indeed, Ec1 and Ec2 have vanishing probabilities because

both U and V W (U ) are uniformly distributed on n-spheres (see Lemma 4.5) and since

X = V + (1� �)U , and Ec3 has vanishing probability by Lemma 4.7.

Event E1 guarantees that

Z3 =
1

n
kXk2 + 2

n
hX ; ~yi+ 1

n
k~yk2

� �2v + 2(1 � �)Z + (1� �)2�2u + �3 +D2; (B.37)

where the equality follows by the de�nition of Z3 (4.41) and the form of the attacker given in

Section 4.1.1, and where the inequality follows by (B.35), (4.3), and the inequality de�ning

E1.

From the de�nition of Z4 (4.43) it follows that E2 guarantees that Z4 � ��3. Conse-

quently, the intersection E1 \ E2 guarantees that

�2(Z;Z3; Z4) � �2v + (1� �)Z � �3p
�2v + 2(1� �)Z + (1� �)2�2u + �3 +D2

: (B.38)

For any �3 > 0, the RHS of (B.38) is monotonically increasing in Z, so that the inter-
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section E1 \ E2 \ E3 implies

�2(Z;Z3; Z4) � �2v + (1� �)��2u � �3p
�2v + 2(1 � �)��2u + (1� �)2�2u + �3 +D2

: (B.39)

Recalling the de�nitions in Section 4.3.1 and the de�nition of ��(R1 + Æ) (4.49), one can

show using some algebra that for �3 = 0, the RHS of (B.39) equals ��(R1 + Æ). Since

the RHS of (B.39) is continuous in �3, we can choose some �3 > 0 small enough (and the

resulting n2 large enough) so that the intersection E1 \ E2 \ E3 will guarantee that

�2(Z;Z3; Z4) � ��(R1 + Æ) � �2:

The claim thus follows from (B.36).

B.9 Proof of Lemma 4.10

Lemma B.11 (4.10). If the constants de�ned for the general watermarking game are used

to design the sequence of encoders of Section 4.3.1, then for any � > 0 and �2 > 0, there

exists an integer n2 > 0 such that for all n > n2 and for all attackers of Section 4.1.2,

Pr
�
�2(Z;Z3; Z4) < ��(R1 + Æ)� �2

�
< �.

Proof. In order to prove the desired result, we need the following technical claim.

Lemma B.12. As n tends to in�nity, the sequence of random variables n�1h2(X);V W (U )i
approaches zero in probability uniformly over all the attackers of Section 4.1.2.

Proof. Conditional on X = x and Z = z, the random vector V W (U) is by Lemma 4.6

distributed like a1x + V , where V is uniformly distributed on Sn(0;pna2) \ x?, and a2
de�ned in (4.52) depends on z. Consequently for any 0 < � <

p
D2�2v ,

Pr
���n�1 h2(X);V W (U)i�� > �

��X = x; Z = z
�

= Pr
����D2(x)=pn3(x);V =

p
na2

E��� > �=
p
3(x)a2

�
� Pr

����D2(x)=pn3(x);V =
p
na2

E��� > �=
p
D2�2v

�

=
2Cn�1

�
arccos

�
�=
p
D2�2v

��
Cn�1(�)

:
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Here, the �rst equality follows by Lemma 4.6 and the fact that 2(x) 2 x?, the subsequent
inequality follows from 3(x) � D2 and a2 � �2v (see (4.5) and (4.52)), and the �nal equality

follows since V =
p
na2 is uniformly distributed on Sn(0; 1) \ x? and since 2(x)=

p
n3(x)

also takes value in this set. Since the resulting upper bound, which tends to zero, does not

depend on x or z, it must also hold for the unconditional probability.

We now proceed to prove Lemma 4.10. Choose n2 large enough to ensure that

Pr(E4 \ E5) � 1� �; 8n > n2;

where E4 = fZ � ��2u + �g and E5 =
n
n�1h2(X);V W (U )i � ��2�v

�p
A�pD2

�o
. Such

an n2 can be found by the union of events bound since both Ec4 and Ec5 have vanishing

probabilities by Lemmas 4.9 and B.12, respectively.

For the deterministic attacker of Section 4.1.2, we can express the random variables Z3

and Z4 of (4.41) and (4.43) as

Z3 = 21(X)n�1kXk2 + 3(X);

and

Z4 = (1(X)� 1)(�2v + (1� �)Z) + n�1h2(X);V W (U )i:

Substituting these expressions in �2(Z;Z3; Z4) of (4.44) yields

�2(Z;Z3; Z4)

=
�2v + (1� �)Z + (1(X)� 1)(�2v + (1� �)Z) + n�1h2(X);V W (U)ip

(21n
�1kXk2 + 3(X))�2v

=
�2v + (1� �)Zq�

n�1kXk2 + 3(X)=21 (X)
�
�2v

+
n�1h2(X);V W (U)ip

Z3�2v
: (B.40)

We conclude the proof by showing that the intersection E4 \ E5 implies that (B.40) exceeds
��(R1 + Æ)� �2.

We �rst focus on the second term on the RHS of (B.40). Using the expression (B.35)

and the de�nitions of Section 4.3.1, we see that event E4 implies that n�1kXk2 is at least
A. When this is true, then the distortion constraint (2.3) and the triangle inequality imply
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that Z3 is at least (
p
A�pD2)

2. Thus, the intersection E4 \E5 guarantees that the second
term of (B.40) is at least ��2.

We now turn to the �rst term on the RHS of (B.40), which using (B.35) can be rewritten

as

�2v + (1� �)Zq�
�2v + 2(1� �)Z + (1� �)2�2u + 3(X)=21(X)

�
�2v

;

and which, using (4.6) and the fact that E4 implies n�1kXk2 is at least A, can be lower

bounded by

�2v + (1� �)Zq�
�2v + 2(1� �)Z + (1� �)2�2u +

D2
c

�
�2v

:

Since � < 1 (see (A.6)), the above term is increasing in Z. Substituting Z = ��2u + � into

this term yields ��(R1 + Æ), as can be veri�ed using the de�nitions of R1 (4.33) and �
�(�)

(4.49), which yield

��(R1 + Æ) =
�
�2v + (1� �)(��2u + �)

�r c

A�2v
:

The event E4 thus implies that the �rst term on the RHS of (B.40) is at least ��(R1+Æ).

B.10 Proof of Lemma 4.12

Lemma B.13 (4.12). For any encoder with corresponding watermarking channel PXjU

satisfying (2.1), if the attacker g�n of (4.65) with corresponding attack channel P �
Y jX is

used, then

1

n
IPUP�1PXjU ;�1

P �
Y jX

(X ;Y jK;U ;�1)

�
mX
k=1

Pr(K = k) � 1
2
log
�
1 + s(ak;D1; ~D2; �k)

�
(B.41)

� EK

h
C�(D1; ~D2; �K)

i
: (B.42)
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Proof. To simplify the proof of this lemma, we will use the following notation:

c(k) = c(ak; ~D2); (B.43)

b
(k)
1 = b1(ak;D1; �k); (B.44)

and

b
(k)
2 = b2(ak;D1; �k); (B.45)

where the functions c(�; �), b1(�; �; �), and b2(�; �; �) are de�ned in Appendix A. We shall need

the following technical claim.

Lemma B.14. If the encoder satis�es the a.s. distortion constraint (2.1), then

E

�
1

n

g�n(X ;�2)� b
(k)
1 c(k)U

2 ����K = k

�
� c(k)

�
c(k)b

(k)
2 + ~D2

�
;

for all k � 1 such that Pr(K = k) > 0.

Proof. Recall that the attacker g�n de�ned in (4.65) produces an IID sequence of N (0; ~D2)

random variables V that is independent of (X ;U). Furthermore, since K is a function of

X, the random vector V is also independent of X and U given K. Thus, for all k � 1 with

Pr(K = k) > 0,

E

�
n�1

g�n(X ;�2)� b
(k)
1 c(k)U

2 ���K = k

�

= E

�
n�1

c(k) �X � b
(k)
1 U

�
+
p
c(k)V

2 ���K = k

�

= (c(k))2E

�
n�1

X � b
(k)
1 U

2 ���K = k

�
+ c(k)E

h
n�1 kV k2 ��K = k

i
= (c(k))2E

h
n�1

�
kXk2 � b

(k)
1 2hX ;Ui+ (b

(k)
1 )2kUk2

� ���K = k
i
+ c(k) ~D2

= (c(k))2
�
ak � b

(k)
1 E

�
2n�1hX ;UijK = k

�
+ (b

(k)
1 )2�k

�
+ c(k) ~D2;

where the �nal equality follows by the de�nitions of ak and �k (see (4.63) and (4.64)). The

proof will be concluded once we show

n�1E [hX;U i j K = k] � 1

2
(ak + �k �D1); (B.46)
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because

ak � b
(k)
1 (ak + �k �D1) + (b

(k)
1 )2�k = b

(k)
2 ;

by (B.44) and (B.45).

We verify (B.46) by noting that for every k � 1 such that Pr(K = k) > 0,

D1 � E
�
n�1kX �Uk2��K = k

�
= E

�
n�1kXk2 � 2n�1hX;U i+ n�1kUk2��K = k

�
= ak �E

�
2n�1hX ;Ui��K = k

�
+ �k;

where the inequality follows since n�1kX�Uk2 � D1 almost-surely so that the expectation

given any event with positive probability must also be at most D1.

We can now write the mutual information term of interest as

I(X ;Y jK;U ;�1)

=

mX
k=0

Pr(K = k) � I(X ;Y jK = k;U ;�1)

=
mX
k=1

Pr(K = k) � �h(Y jK = k;U ;�1)� h(Y jX;K = k;U ;�1)
�
; (B.47)

since by the structure of the attack channel all of the above di�erential entropies exist for

all k � 1, and since when k = 0 the above mutual information is zero.

To prove (B.41) we shall next verify that

I(X ;Y jK = k;U ;�1) = h(Y jK = k;U ;�1)� h(Y jX ;K = k;U ;�1) (B.48)

is upper bounded by 1
2 log(1 + s(ak;D1; ~D2; �k)), for all k � 1 satisfying Pr(K = k) > 0.
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We can upper bound the �rst term on the RHS of (B.48) as

h(Y jK = k;U ;�1) = h
�
g�n(X;�2)

��K = k;U ;�1

�
= h

�
g�n(X ;�2)� c(k)b

(k)
1 U

��K = k;U ;�1

�
� h

�
g�n(X ;�2)� c(k)b

(k)
1 U

��K = k
�

� n

2
log

�
2�eE

�
1

n

g�n(X ;�2)� c(k)b
(k)
1 U

2 ���K = k

��

� n

2
log
�
2�e

�
(c(k))2b

(k)
2 + c(k) ~D2

��
; (B.49)

where the �rst inequality follows since conditioning reduces entropy, the second inequality

follows since a Gaussian has the highest entropy subject to a second moment constraint,

and (B.49) follows by Lemma B.14.

We can write the second term on the RHS of (B.48) as

h(Y jX ;K = k;U ;�1) = h
�p

c(k)V
��K�

=
n

2
log
�
2�ec(k) ~D2

�
; (B.50)

for all k � 1, where (B.50) follows since V is an IID sequence of N (0; ~D2) random variables

independent of (X; U;�1) and hence independent of K.

Combining (B.47), (B.49), and (B.50) and observing that s(ak;D1; ~D2; �k) = c(k)b
(k)
2 = ~D2,

proves (B.41). Finally, (B.42) follows from (B.41) by the de�nition of C�(D1;D2; �
2
u)

(A.8).

B.11 Proof of Lemma 4.13

Lemma B.15 (4.13). For any ergodic covertext distribution PU with E
�
U4
k

�
< 1 and

E
�
U2
k

� � �2u, there exists mappings Æ(�; n) and n0(�) such that both the properties P1 and

P2 stated below hold, where P1 is \For every � > 0, limn!1 Æ(�; n) = 0." and P2 is \For

every � > 0, n > n0(�), and event E, if E �n�1kUk2jE� > �2u + 5�, then Pr(E) < Æ(�; n)."

Proof. First, note that the contrapositive (and hence equivalent) statement of property P2

is:

P2a. For every � > 0, n > n0(�), and event E , if Pr(E) � Æ(�; n), then E
�
n�1kUk2jE� �
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�2u + 5�.

Let us de�ne

SU2;n =
1

n

nX
i=1

U2
i ; (B.51)

and

mU2 = E
�
U2
i

�
:

Since U is stationary, mU2 does not depend on i and E
�
SU2;n

�
= mU2 for all n. Further

recall the assumption that mU2 � �2u.

We �rst prove the claim assuming that SU2;n has a density for all n, and return later to

the case when it does not. Fix � > 0, and choose n0(�) such that

Var(SU2;n) � �2=2; 8n > n0(�): (B.52)

This can be done sinceU is ergodic with �nite fourth moment, and hence SU2;n is converging

in mean square to mU2 . Next, choose fsng such that for all n > n0(�)

Pr(SU2;n � sn) =
Var(SU2;n)

�2
; (B.53)

and

mU2 � � � sn � mU2 + �: (B.54)

Such an sn exists for all appropriate n by the intermediate value theorem of calculus because

our assumption that SU2;n has a density guarantees that Pr(SU2;n � �) is continuous in �,

and because

Pr
�
SU2;n � mU2 + �

� � Var(SU2;n)

�2
;

and

Pr
�
SU2;n � mU2 � �

� � 1� Var(SU2;n)

�2

� Var(SU2;n)

�2
;
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which follow from Chebyshev's inequality and (B.52).

From (B.53) it follows that the choice

Æ(�; n) = Pr(SU2;n � sn); (B.55)

guarantees Property P1, because Var(SU2;n) approaches zero.

We now show that with this choice of Æ(�; n), Property P2a is also satis�ed. Let the

event E satisfy Pr(E) � Æ(�; n) so that by (B.55),

Pr(E) � Pr(SU2;n � sn) (B.56)

Then,

E
�
SU2;njE

�
=

Z 1

0
Pr(SU2;n � tjE) dt

=
1

Pr(E)
�Z sn

0
Pr(SU2;n � t; E) dt+

Z 1

sn

Pr(SU2;n � t; E) dt
�

� 1

Pr(E)
�Z sn

0
Pr(E) dt+

Z 1

sn

Pr(SU2;n � t) dt

�

� sn +
1

Pr(SU2;n � sn)

Z 1

sn

Pr(SU2;n � t) dt;

where the �rst equality follows since SU2;n is a non-negative random variable and the �nal

inequality follows by (B.56). Furthermore, for n > n0(�),

Z 1

sn

Pr(SU2;n � t) dt =

Z sn+2�

sn

Pr(SU2;n � t) dt+

Z 1

sn+2�
Pr(SU2;n � t) dt

� 2�Pr(SU2;n � sn) +

Z 1

sn+2�

Var(SU2;n)

(t�mU2)2
dt

= 2�Pr(SU2;n � sn) +
Var(SU2;n)

sn + 2��mU2

� 2�Pr(SU2;n � sn) +
Var(SU2;n)

�
;

where the �rst inequality follows since Pr(SU2;n � t) is non-increasing in t and by Cheby-

shev's inequality, and the �nal inequality is valid by (B.54). Therefore,

E
�
SU2;njE

� � sn + 2�+
Var(SU2;n)

�Pr(SU2;n � sn)
� mU2 + 4�;
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where the �nal inequality follows by (B.53) and (B.54). This concludes the proof in the

case where SU2;n has a density.

We now return to the case when SU2;n does not necessarily have a density. Fix � > 0,

and let Zk = U2
k + �k, for all k � 1, where �1;�2; : : : is an IID sequence of exponential

random variables with mean � independent of U . Since U is ergodic, Z is also ergodic.

Furthermore, SZ;n = n�1
Pn

k=1 Zk has a density, and thus the above results hold for SZ;n.

In particular, we can choose fsng and n0(�) such that Pr(SZ;n � sn) ! 0 and such that

Pr(E) � Pr(SZ;n � sn) and n > n0(�) imply that

E [SZ;njE ] � mZ + 4�

= mU2 + 5�:

We complete the proof by noting that SU2;n � SZ;n a.s. and thus E
�
SU2;njE

� � E [SZ;njE ]
for any event E with non-zero probability.

B.12 Proof of Lemma 5.6

Lemma B.16 (5.6). There exists a positive function f(A;D1; �
2) such that if the n-vectors

u, x, and y, and the scalars D2 and Æ satisfy
��n�1kuk2 � �2

�� < Æ,
��n�1hu;x� b1ui

�� < Æ,��n�1kx� b1uk2 � b2
�� < Æ,

��n�1hu;y � yjxi�� < Æ, n�1ky�xk2 � D2 < A, and Æ < A
2(1+b1)2

,

then

n�1ky � cb1uk2
2c(cb2 +D2)

� n�1ky � cxk2
2cD2

> �Æf(A;D1; �
2);

where b1 = b1(A;D1; �
2), b2 = b2(A;D1; �

2) and c = c(A;D2).

Proof. Consider the following chain of equalities and inequalities.

2(cb2 +D2)

�
n�1ky � cb1uk2
2c(cb2 +D2)

� n�1ky � cxk2
2cD2

�

= � b2
D2

n�1kyk2 � c

�
1 +

cb2
D2

�
n�1kxk2 + cb21n

�1kuk2 + 2n�1
�
y;

�
1 +

cb2
D2

�
x� b1u

�

= � b2
D2

n�1kyk2 � c

�
1 +

cb2
D2

�
n�1kxk2 + cb21n

�1kuk2

+ 2

�
1 +

cb2
D2

� b1n
�1hu;xi

n�1kxk2
�
n�1hy;xi � 2b1n

�1hyjx?;ui
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=

�
b2(1 + c)

A
� c

�
n�1kxk2 + cb21n

�1kuk2 + 2

�
1� b2

A
� b1n

�1hu;xi
n�1kxk2

�
n�1hy;xi

� b2n
�1ky � xk2
D2

� 2b1n
�1hyjx?;ui

> �Æ
�����b2(1 + c)

A
� c

���� (1 + b1)
2 + cb21 + 2b1

�
+ 2

�
1� b2

A
� b1n

�1hu;xi
n�1kxk2

�
n�1hy;xi

> �Æ
 ����b2(1 + c)

A
� c

���� (1 + b1)
2 + cb21 + 2b1

+
2
�
(1� b2=A)(1 + b1)

2 + b1(1 + b1 + b21)
�

A� Æ(1 + b1)2
n�1hy;xi

!
;

and thus,

n�1ky � cb1uk2
2c(cb2 +D2)

� n�1ky � cxk2
2cD2

> �Æ
��

1

A
� 1

2b2

�
(1 + b1)

2 +
b21 + 2b1
2b2

+
6

b2

��
1� b2

A

�
(1 + b1)

2 + b1(1 + b1 + b21)

��
:

The �rst equality is simply an expansion of the terms of interest. The second equality

uses the relations y = yjx + yjx? and yjx = (hu;xi=kxk2)x. The third equality uses the

de�nition c = 1 � D2=A and the relation hx;yi = (kxk2 + kyk2 � kx � yk2)=2. The �rst

inequality uses (5.29), (5.28), (5.25), the fact that

jn�1kxk2 �Aj < Æ(1 + b1)
2 (B.57)

(derived from (5.25), (5.26) and (5.27)), and the relation

�
b2(1 + c)

A
� c

�
A+ cb21�

2 � b2 = 0:

The second inequality uses (B.57), the fact that jn�1hu;xi�(A+�2�D1)=2j < Æ(1+b1+b
2
1)

(derived from (5.25), (5.26) and (5.27)), and the relation

1� b2
A
� b1(A+ �2 �D1)

2A
= 0:

The �nal inequality uses (5.30), the fact that jn�1hx;yij < 3A (derived from (5.29), (5.30),

(B.57) using Cauchy-Schwartz), and the facts that c � 1 and cb2 +D2 � b2.
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B.13 Proof of Lemma 5.10

Lemma B.17 (5.10). There exists a positive function ~f(A;D1; ~D2; �
2) such that if the n-

vectors s, x, and y, and the scalars D2 and Æ satisfy
��n�1ksk2 � v

�� < Æ,
��n�1kxk2 �A

�� < Æ,��n�1hs;xi � (�� 1)b1�
2 �A

�� < Æ,
��n�1hs;y � yjxi�� < Æ, n�1ky � xk2 � D2 < A, and

Æ < A
2 , then

n�1kyk2
2(A�D2)

� n�1ky � �1sk2
2�2

> �Æ ~f(A;D1; ~D2; �
2);

where all of the parameters are computed with respect to A, D1, ~D2, D2 and �2, i.e.,

� = �(A;D1; ~D2; �
2), b1 = b1(A;D1; �

2), v = v(A;D1; ~D2; �
2), �1 = �1(A;D1; ~D2;D2; �

2),

and �2 = �2(A;D1; ~D2;D2; �
2).

Proof. First, we compute that

n�1kyk2 = n�1kx� yk2 � n�1kxk2 + 2n�1hx;yi
< D2 �A+ ÆA+ 2n�1hx;yi; (B.58)

which follows by (5.54) and (5.51). Second, we compute that

n�1hy; si = n�1hyjx; si+ n�1hyjx? ; si
>

n�1hx; si
n�1kxk2 n

�1hx;yi � Æ; (B.59)

which follows by (5.53). Next, we compute that

n�1hx;yi
�
(A�D2)

n�1hx; si
n�1kxk2 � �1v

�
> n�1hx;yi

�
�1v

�
A

n�1kxk2 � 1

�
� Æ

A�D2

n�1kxk2
�

> �Æn�1hx;yi
�
2(�1v +A�D2)

A

�
(B.60)

> �6Æ(�1v +A�D2); (B.61)

where the �rst inequality follows by (5.52) and the relevant de�nitions; the second inequality

follows by (5.51) and (5.55); and the �nal inequality follows since n�1hx;yi < 3A using
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Cauchy-Schwartz along with (5.54), (5.51) and (5.55). Thus,

2(A�D2)�2

�
n�1kyk2
2(A�D2)

� n�1ky � �1sk2
2�2

�

= ��21vn�1kyk2 + 2�1(A�D2)n
�1hy; si � �21(A�D2)n

�1ksk2

> ��21v
�
D2 �A+ ÆA + 2n�1hx;yi�+ 2�1(A�D2)

�
n�1hx; si
n�1kxk2 n

�1hx;yi � Æ

�

� �21(A�D2) (v + Æ)

= 2�1n
�1hx;yi

�
(A�D2)

n�1hx; si
n�1kxk2 � �1v

�
� Æ

�
�21vA+ 2�1(A�D2) + �21(A�D2)

�
> �Æ �12�1(�1v +A�D2) + �21vA+ 2�1(A�D2) + �21(A�D2)

	
; (B.62)

where the �rst inequality follows by (5.50), (B.58) and (B.59) and the second inequality

follows by (B.61). Dividing (B.62) by 2(A�D2)�2 gives the desired result since �1 and �2

essentially only depend on D2 through a A�D2 term; see (5.42) and (5.43).
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