32,380 research outputs found

    Computational Methods and Results for Structured Multiscale Models of Tumor Invasion

    Full text link
    We present multiscale models of cancer tumor invasion with components at the molecular, cellular, and tissue levels. We provide biological justifications for the model components, present computational results from the model, and discuss the scientific-computing methodology used to solve the model equations. The models and methodology presented in this paper form the basis for developing and treating increasingly complex, mechanistic models of tumor invasion that will be more predictive and less phenomenological. Because many of the features of the cancer models, such as taxis, aging and growth, are seen in other biological systems, the models and methods discussed here also provide a template for handling a broader range of biological problems

    Modeling the Role of the Cell Cycle in Regulating Proteus mirabilis Swarm-Colony Development

    Full text link
    We present models and computational results which indicate that the spatial and temporal regularity seen in Proteus mirabilis swarm-colony development is largely an expression of a sharp age of dedifferentiation in the cell cycle from motile swarmer cells to immotile dividing cells (also called swimmer or vegetative cells.) This contrasts strongly with reaction-diffusion models of Proteus behavior that ignore or average out the age structure of the cell population and instead use only density-dependent mechanisms. We argue the necessity of retaining the explicit age structure, and suggest experiments that may help determine the underlying mechanisms empirically. Consequently, we advocate Proteus as a model organism for a multiscale understanding of how and to what extent the life cycle of individual cells affects the macroscopic behavior of a biological system

    A Multiscale Model of Biofilm as a Senescence-Structured Fluid

    Full text link
    We derive a physiologically structured multiscale model for biofilm development. The model has components on two spatial scales, which induce different time scales into the problem. The macroscopic behavior of the system is modeled using growth-induced flow in a domain with a moving boundary. Cell-level processes are incorporated into the model using a so-called physiologically structured variable to represent cell senescence, which in turn affects cell division and mortality. We present computational results for our models which shed light on modeling the combined role senescence and the biofilm state play in the defense strategy of bacteria
    corecore