128 research outputs found

    Labelled tableaux for nonmonotonic reasoning: Cumulative consequence relations

    Get PDF
    In this paper we present a labelled proof method for computing nonmonotonic consequence relations in a conditional logic setting. The method exploits the strong connection between these deductive relations and conditional logics, and it is based on the usual possible world semantics devised for the latter. The label formalism KEM, introduced to account for the semantics of normal modal logics, is easily adapted to the semantics of conditional logic by simply indexing labels with formulas. The basic inference rules are provided by the propositional system KE+ - a tableau-like analytic proof system devised to be used both as a refutation method and a direct method of proof - that is the classical core of KEM which is thus enlarged with suitable elimination rules for the conditional connective. The resulting algorithmic framework is able to compute cumulative consequence relations in so far as they can be expressed as conditional implications

    Modal tableaux for nonmonotonic reasoning

    Get PDF
    The tableau-like proof system KEM has been proven to be able to cope with a wide variety of (normal) modal logics. KEM is based on D'Agostino and Mondadori's (1994) classical proof system KE, a combination of tableau and natural deduction inference rules which allows for a restricted ("analytic") Use of the cut rule. The key feature of KEM, besides its being based neither on resolution nor on standard sequent/tableau inference techniques, is that it generates models and checks them using a label scheme to bookkeep "world" paths. This formalism can be extended to handle various system of multimodal logic devised for dealing with nonmonotonic reasoning, by relying in particular on Meyer and van der Hoek's (1992) logic for actuality and preference. In this paper we shall be concerned with developing a similar extension this time by relying on Schwind and Siegel's (1993,1994) system H, another multimodal logic devised for dealing with nonmonotonic inference

    Refutation Systems : An Overview and Some Applications to Philosophical Logics

    Get PDF
    Refutation systems are systems of formal, syntactic derivations, designed to derive the non-valid formulas or logical consequences of a given logic. Here we provide an overview with comprehensive references on the historical development of the theory of refutation systems and discuss some of their applications to philosophical logics

    Generic Modal Cut Elimination Applied to Conditional Logics

    Full text link
    We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional logics. For these, we obtain fully internalised calculi which are substantially simpler than those known in the literature, along with leaner proofs of cut elimination and complexity. In one case, conditional logic with modus ponens and conditional excluded middle, cut elimination and complexity were explicitly stated as open in the literature

    Labelled Modal Sequents

    Get PDF
    In this paper we present a new labelled sequent calculus for modal logic. The proof method works with a more ``liberal'' modal language which allows inferential steps where different formulas refer to different labels without moving to a particular world and there computing if the consequence holds. World-paths can be composed, decomposed and manipulated through unification algorithms and formulas in different worlds can be compared even if they are sub-formulas which do not depend directly on the main connective. Accordingly, such a sequent system can provide a general definition of modal consequence relation. Finally, we briefly sketch a proof of the soundness and completeness results

    Deductive Systems in Traditional and Modern Logic

    Get PDF
    The book provides a contemporary view on different aspects of the deductive systems in various types of logics including term logics, propositional logics, logics of refutation, non-Fregean logics, higher order logics and arithmetic

    Derivation methods for hybrid knowledge bases with rules and ontologies

    Get PDF
    Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia InformáticaFirst of all, I would like to thank my advisor, José Júlio Alferes, for his incredible support. Right from the start, during the first semester of this work, when we were 2700 km apart and meeting regularly via Skype, until the end of this dissertation, he was always committed and available for discussions, even when he had lots of other urgent things to do. A really special thanks to Terrance Swift, whom acted as an advisor, helping me a lot in the second implementation, and correcting all XSB’s and CDF’s bugs. This implementation wouldn’t surely have reached such a fruitful end without his support. I would also like to thank all my colleagues and friends at FCT for the great work environment and for not letting me take myself too serious. A special thanks to my colleagues from Dresden for encouraging me to work even when there were so many other interesting things to do as an Erasmus student. I’m indebted to Luís Leal, Bárbara Soares, Jorge Soares and Cecília Calado, who kindly accepted to read a preliminary version of this report and gave me their valuable comments. For giving me working conditions and a partial financial support, I acknowledge the Departamento de Informática of the Faculdade de Ciências e Tecnologias of Universidade Nova de Lisboa. Last, but definitely not least, I would like to thank my parents and all my family for their continuous encouragement and motivation. A special thanks to Bruno for his love, support and patience
    • …
    corecore