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MODAL TABLEAUX FOR NONMONOTONIC REASONING

1 Introduction

Artosi and Governatori (1994) and Artosi, Cattabriga and Governatori (1994) pre-
sented a tableau-like proof system, called KEM , which has been proven to be able
to cope with a wide variety of (normal) modal logics. KEM is based on D’Agostino
and Mondadori’s (1994) classical proof system KE, a combination of tableau and
natural deduction inference rules which allows for a restricted (“analytic”) Use of
the cut rule. The key feature of KEM , besides its being based neither on resolution
nor on standard sequent/tableau inference techniques, is that it generates models
and checks them using a label scheme to bookkeep “world” paths. Governatori
(1995) and Artosi, Governatori and Sartor (1996) showed how this formalism can be
extended to handle various system of multimodal logic devised for dealing with non-
monotonic reasoning, by relying in particular on Meyer and van der Hoek’s (1992)
logic for actuality and preference. In this paper we shall be concerned with devel-
oping a similar extension this time by relying on Schwind and Siegel’s (1993, 1994)
system H, another multimodal logic devised for dealing with nonmonotonic infer-
ence. This logic will be introduced in Section 2. Section 3 will provide a description
of KEM method for dealing with H. Section 4 will present an example application.
Finally, the last section will provide concluding remarks.

2 The Modal Logic H

We assume a standard modal language consisting of: propositional variables; the
usual logical operators ¬,∧,∨,→,≡,2,3 for negation, conjunction, disjunction,
conditionality, biconditionality, necessity and possibility respectively. Formulas are
defined in the usual way. We shall use A,B, C, . . . to denote arbitrary formulas.
The modal logic H is obtained by enlarging the basic modal language with a modal
operator [H]. Thus the set of H-formulas includes all the formulas of the form [H]A.
A “hypothesis” operator H is then defined as the dual of [H]. HA means that A is
a hypothesis (accordingly [H]A means that ¬A is not a hypothesis). In addition to
the axioms of the standard T system we have the following axioms:

1. 2A → [H]A
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2. [H](A → B) → ([H]A → [H]B).

It turns out that this setting is that of a multimodal K/T system with 2 (and 3)
and [H] (and H) behaving as normal T and K modalities respectively. A model for
H is thus a structure

〈S, Rh, Rk, υ〉

where S is a (non empty) set of worlds; Rk ⊂ S × S is the standard T accessibility
relation on S; Rh ⊂ S × S is a K accessibility relation on S; Rh ⊂ Rk, and υ is as
usual with the following clauses for [H] and 2 respectively:

υ([H]A, u) = T ⇐⇒ ∀z ∈ W : uRhz, υ(A, z) = T,

υ(2A, u) = T ⇐⇒ ∀z ∈ W : uRkz, υ(A, z) = T.

2.1 Representing defaults in H

A hypothesis theory is a pair HT = (F,HY ) where F is a set of formulas and HY
is a set of hypotheses. Since H is monotonic, nonmonotonicity follows from defining
an extension of F in HY as a set ThH(F ∪ HY ′) where HY ′ is a subset of HY
such that F ∪HY ′ is maximal consistent according to HY (this means: if any other
hypothesis of HY is added the resulting theory is inconsistent). Let ∆ = (W,D) be
a (propositional) default theory. This can be translated to a hypothesis theory

(2W ∪2D,HY )

where

• 2W = {2A : A ∈ W};

• 2D = {2A ∧HB → 2C : A:B
C ∈ D}; and

• HY = {HB : B ∈ Just(D)},

where Just(D) is the set of justifications of the set of defaults D. Schwind and Siegel
(1994) showed the correspondance between default logic and hypothesis theory.

3 The system KEM

In this section we describe the modal proof system KEM . We first recall some basic
notions.



3.1 Preliminaries

As usual (see Smullyan 1968) by a signed formula (S-formula) we mean an expression
of the form SA where A is a formula and S ∈ {T, F}. Thus TA if υ(A, u) = T and
FA if υ(A, u) = F for some model 〈S, Rh, Rk, υ〉 and u ∈ S. We shall use X, Y, Z, . . .
to denote arbitrary S-formulas. For ease of exposition we shall use a generalized
“α, β, νx, πx” (x ∈ {h, k}) form of Smullyan-Fitting’s (Smullyan 1968, Fitting 1983)
“α, β, ν, π” unifying notation as exposed in the following tables

α α1 α2

TA ∧B TA TB

FA ∨B FA FB

FA → B TA FB

F¬A TA TA

β β1 β2

FA ∧B FA FB

TA ∨B TA TB

TA → B FA TB

T¬A FA FA

νh νk ν0

T [H]A T2A TA

FHA F3A FA

πh πk π0

F [H]A F2 FA

THA T3A TA

By the conjugate XC of a S-formula X we shall mean the result of changing S to
its opposite, with the exception of the S-formulas listed in the left column of the
following tables which have both the S-formulas listed in the other columns as their
conjugates.

X XC

T2A F2A T3¬A

F3A T3A F2¬A

F2A T2A F3¬A

T3A F3A T2¬A

X XC

T [H]A F [H]A TH¬A

FHA THA F [H]¬A

F [H]A T [H]A FH¬A

THA FHA T [H]¬A

For example, T2A has both F2A and T3¬A as its conjugates. Two S-formulas
X, Z such that Z = XC , will be called complementary.

3.2 Informal explanation

As we have said KEM approach wants we work with “world” labels. A “world”
label is either a constant or a variable “world” symbol or a “structured” sequence
of world-symbols we shall call a “world-path”. Intuitively, constant and variable
world-symbols stand for worlds and sets of worlds respectively, while a world-path
conveys information about access between the worlds in it. We attach labels to S-
formulas to yield labelled signed formulas (LS-formulas), i.e., pairs of the form X, i
where X is a S-formula and i is a label. A LS-formula SA, i means, intuitively, that
A is true (false) at the (last) world (on the path represented by) i. In the course



of proof search, labels are manipulated in a way closely related to the semantics of
modal operators and “matched” using a (specialized, logic-dependent) unification
algorithm. That two world-paths i and k are unifiable means, intuitively, that they
virtually represent the same path, i.e., any world which you could get by the path
i could be reached by the path k and vice versa. LS-formulas whose labels are
unifiable turn out to be true (false) at the same world(s) relative to the accessibility
relation that holds in the appropriate class of models. In particular two LS-formulas
X, XC whose labels are unifiable stand for formulas which are contradictory “in the
same world”. These ideas are formalized as follows.

Remark 1 The idea of using a label scheme to bookkeep “world” paths in modal
theorem proving goes back at least to Fitch (1966). Similar, or related, ideas have
been proposed by Fitting (1972, 1983) Wrightson (1985) and, more recently, by
Catach (1991), Jackson and Reichgelt (1989), Tapscott (1987), Wallen (1990) and
also in the “translation” tradition of Auffray and Enjalbert (1992), Ohlbach (1991,
1993), and in Gabbay’s (1996) Discipline of Labelled Deductive Systems (see also
D’Agostino and Gabbay (1994) tableau extension with labels).

3.3 Label formalism

Let Φk
C = {w1, w2, · · · }, Φh

C = {h1, h2, · · · } and Φk
V = {W1,W2, · · · }, Φh

V =
{H1,H2, · · · } be (non empty) sets respectively of constant and variable world-
simbols. Let us define ΦC = Φk

C ∪ Φh
C and ΦV = Φk

V ∪ Φh
V . We can now define

the set = of labels as:

= =
⋃
1≤i

=i where =i is :

=1 = ΦC ∪ ΦV ;
=2 = =1 × ΦC ;
=n+1 = =1 ×=n, n > 1 .

That is a world-label is either (i) an element of the set ΦC , or (ii) an element of the
set ΦV , or (iii) a path term (k′, k) where (iiia) k′ ∈ ΦC ∪ ΦV and (iiib) k ∈ ΦC or
k = (m′,m) where (m′,m) is a label. According to the above informal explanation,
we may think of a label i ∈ ΦC as denoting a (given) world, and a label i ∈ ΦV

as denoting a set or worlds (any world) in some Kripke model. A label i = (k′, k)
may be viewed as representing a path from k to a (set of) world(s) k′ accessible
from k. For instance, (wx

2 , (W x
1 , wx

1 )), x ∈ {h, k} represents a path which takes us
to a world wi

2 accessible via any world accessible from wx
1 (i.e., accessible from the

subpath (W x
1 , wx

1 )) according to Rx.
A bit of terminology. For any label i = (k′, k) we call k′ the head of i, k the

body of i, and denote them by h(i) and b(i) respectively. Notice that these notions



are recursive: if b(i) denotes the body of i, then b(b(i)) will denote the body of
b(i), b(b(b(i))) will denote the body of b(b(i)); and so on. For example, if i is
(w4, (W3, (w3, (W2, w1)))), then b(i) = W3, (w3, (W2, w1))), b(b(i)) = (w3, (W2, w1)),
b(b(b(i))) = (W2, w1), b(b(b(b(i)))) = w1. We call each of b(i),b(b(i)), etc., a segment
of i. Let s(i) denote any segment of i (obviously, by definition every segment s(i) of
a label i is a label); then h(s(i)) will denote the head of s(i), b(s(i)) will denote the
body of s(i), and so on. For any label i, we define the length of i, l(i), as the number
of world-symbols in i, i.e., l(i) = n ⇔ i ∈ =n. sn(i) will denote the segment of i
of lenght n, i.e., sn(i) = s(i) such that l(s(i)) = n. The countersement-n of i, i.e.,
cn(i) identifies the sub-label obtained from i after have identified sn with a dummy
label w0. For example given the label i = (w4, (W3, (w3, (W2, w1)))), l(i) = 5; its
segment of length 3 is s3(i) = (w3, (W2, w1), and c3(i) = (w4, (W3, w0)), where
w0 = (w3, (W2, w1). We shall call a label i restricted if h(i) ∈ ΦC , otherwise we call
it unrestricted.

3.4 Unification scheme

We define a substitution in the usual way as a function

σ : Φk
V −→ =−

: Φh
V −→ Φh

C .

where =− = = − ΦV . For two labels i, k and a substitution σ, if σ is a unifier
of i and k then we shall say that i and k are σ-unifiable. We shall (somewhat
unconventionally) use (i, k)σ to denote both that i and k are σ-unifiable and the
result of their unification. On this basis we define several specialised, logic-dependent
notions of both σ “high” (σM ) and σ “low” (σL) unification. In general “high”
unifications are meant to mirror specific accessibility constraints. They are used to
build “low” unifications, which account for the full range of conditions governing the
appropriate accessibility relation. For example, in the case of a logic with multiple
independent but interacting modalities, the “high” unifications characterizing each
modality are combined into the “low”, overall unification which characterizes this
logic. In the present case, we need the following “high” unifications which account
for the modal operators [H] and 2 respectively.

(i, k)σH =(cl(b(i))(i), cl(b(k))(k))σ ⇐⇒
either h(i) or h(k) ∈ Φh

C , or

h(i), h(k) ∈ Φk
V

(σH)

where w0 = (b(i), b(k))σH.
Moreover we need another substitution σ2 isolating the behavior of the worlds

of type Φk:
σ2 = σ/Φk

V



σ2 is σ restricted to varaibles of type k.

(i, k)σT =


(sl(k)(i), k)σH l(i) > l(k), and

∀m ≥ l(k), (im, h(k))σ2 = (h(i), h(k))σ2

(i, sl(i)(k))σH l(k) > l(i), and
∀m ≥ l(i), (h(i), km)σ2 = (h(i), h(k))σ2

(σT )

We can now define an high unification correponding to the combination of the two
unifications for the modalities of H.

(i, k)σHT =

{
(i, k)σH

(i, k)σT
(σHT )

from which the low unification for H follows.

(i, k)σH =

{
(cn(i), cm(k))σHT

(i, k)σHT
(σH)

where w0 = (sn(i), sm(k))σH.

Examples and discussion about the above unifications have been provided by Gov-
ernatori (1997).

3.5 Inferences rules

Artosi and Governatori (1994) proved that the following rules give a sound and
complete system for a wide variety of normal modal logics.

Propositional rules

α, i

α1, i

α, i

α2, i
(α)

β, i
βC

1 , k

β2, (i, k)σH
[(i, k)σH]

β, i
βC

1 , k

β2, (i, k)σH
[(i, k)σH] (β)

Modal rules
νx, i

ν0, (m, i)
[m ∈ Φx

V and new, x ∈ {h, k}] (νn)

πx, i

π0, (m, i)
[m ∈ Φx

C and new, x ∈ {h, k}] (πn)



Structural rules

X, i XC , i
[i restricted] (PB)

X, i
XC , k

×(i, k)σH
[(i, k)σH] (PNC)

Here the α-rules are just the familiar linear branch-expansion rules of the tableau
method, while the β-rules correspond to such common natural inference patterns
as modus ponens, modus tollens, etc. (i, k,m stand for arbitrary labels). The rules
for the modal operators are as usual. “m new” in the proviso for the νx- and
πx-rule means: m must not have occurred in any label yet used. Notice that in
all inferences via an α-rule the label of the premise carries over unchanged to the
conclusion, and in all inferences via a β-rule the labels of the premises must be
σH-unifiable, so that the conclusion inherits their unification. PB (the “Principle
of Bivalence”) represents the (LS-version of the) semantic counterpart of the cut
rule of the sequent calculus (intuitive meaning: a formula A is either true or false
in any given world, whence the requirement that i should be restricted). PNC (the
“Principle of Non-Contradiction”) corresponds to the familiar branch-closure rule
of the tableau method, saying that from the occurrence of a pair of LS-formulas
X, i, XC , k such that (i, k)σH (let us call them σH-complementary) on a branch
we may infer the closure (“×”) of the branch. The (i, k)σH in the “conclusion”
of PNC means that the contradiction holds “in the same world”. Soundness and
completeness for the modal logic H follow by an obvious modification of the proofs
given by Governatori (1995).

3.6 Proof search

Let Γ = {X1, . . . , Xm} be a set of S-formulas. Then T is a KEM-tree for Γ if there
exists a finite sequence (T1, T2, . . . , Tn) such that (i) T1 is a 1-branch tree consisting
of {X1, i . . . ,Xm, i}, where i is an arbitrary constant label; (ii) Tn = T , and (iii) for
each i < n, Ti+1 results from Ti by an application of a rule of KEM . A branch τ of
a KEM -tree T of LS-formulas is said to be σH-closed if it ends with an application
of PNC, open otherwise. As usual with tableau methods, a set Γ of formulas is
checked for consistency by constructing a KEM -tree for Γ. It is worth noting that
each KEM -tree is a (class of) Hintikka’s model(s) where the labels denote worlds
(i.e., Hintikka’s modal sets), and the unifications behave according to the conditions
placed on the appropriate accessibility relations. Moreover we say that a formula A
is a KEM-consequence of a set of formulas Γ if A occurs in all the open branches
of a KEM -tree for Γ. We now describe a sistematic procedure for KEM . First we
define the following notions.



Given a branch τ of a KEM -tree, we shall call an LS-formula X, i E-analysed
in τ if either (i) X is of type α and both α1, i and α2, i occur in τ ; or (ii) X is of
type β and one of the following conditions is satisfied: (a) if βC

1 , k occurs in τ and
(i, k)σH, then also β2, (i, k)σH occurs in τ , (b) if βC

2 , k occurs in τ and (i, k)σH, then
also β1, (i, k)σH occurs in τ ; or (iii) X is of type νx and ν0, (m, i) occurs in τ for
some m ∈ ΦV not previously occurring in τ , or (iv) X is of type πx and π0, (m, i)
occurs in τ for some m ∈ ΦC not previously occurring in τ .

We shall call a branch τ of a KEM -tree E-completed if every LS-formula in
it is E-analysed and it contains no complementary formulas which are not σH-
complementary. We shall say a branch τ of a KEM -tree completed if it is E-
completed and all the LS-formulas of type β in it either are analysed or cannot be
analysed. We shall call a KEM -tree completed if every branch is completed.

The following procedure starts from the 1-branch, 1-node tree consisting of
{X1, i . . . ,Xm, i} and applies the rules of KEM until the resulting KEM -tree is
either closed or completed.

At each stage of proof search (i) we choose an open non completed branch τ .
If τ is not E-completed, then (ii) we apply the 1-premise rules until τ becomes
E-completed. If the resulting branch τ ′ is neither closed nor completed, then (iii)
we apply the 2-premise rules until τ becomes E-completed. If the resulting branch
τ ′ is neither closed nor completed, then (iv) we choose an LS-formula of type β
which is not yet analysed in the branch and apply PB so that the resulting LS-
formulas are β1, i

′ and βC
1 , i′ (or, equivalently β2, i

′ and βC
2 , i′), where i = i′ if i is

restricted (and already occurring when h(i) ∈ Φh
C), otherwise i′ is obtained from i by

instantiating h(i) to a constant not occurring in i; (v) (“Modal PB”) if the branch is
not E-completed nor closed, because of complementary formulas which are not σH-
complementary, then we have to see whether a restricted label unifying with both
the labels of the complementary formulas occurs previously in the branch; if such a
label exists, or can be built using already existing labels and the unification rules,
then the branch is closed, (vi) we repeat the procedure in each branch generated by
PB.

The above procedure is based on on a (deterministic) procedure working for
canonical KEM -tree. A KEM -tree is said to be canonical if it is generated by
applying the rules of KEM in the following fixed order: first the α-, νx- and πx-
rule, then the β-rule and PNC, and finally PB. Two interesting properties of
canonical KEM -trees are (i) that a canonical KEM -tree always terminates, since
for each formula there are a finite number of subformulas and the number of labels
which can occur in the KEM -tree for a formula A (of H) is limited by the number
of modal operators belonging to A, and (ii) that for each closed KEM -tree a closed
canonical KEM -tree exists. Proofs of termination and completeness for canonical
KEM -trees have been given by Artosi and Governatori (1994) and Governatori
(1995).



4 An Example

In what follows we assume a straightforward modal extension of the propositional
fragment of Reiter’s default logic. Let us consider the following default theory{

p,
p : 3q

r
,
p : 3s

¬r

}
According to the translation from default logic to hypothesis theory (see Section
2.1) this is translated into

({2p, 2p ∧H3q → 2r, 2p ∧H3s → 2¬r}, {H3q, H3s}).

This theory has the following two alternative extensions:

ThH({2p, 2p ∧H3q → 2r, 2p ∧H3s → 2¬r} ∪Hq)

and
ThH({2p, 2p ∧H3q → 2r, 2p ∧H3s → 2¬r} ∪Hs),

the first containing 2r and the second containing 2¬r. We provide a KEM -
computation of the first extension.

1. T2p w1

2. THq w1

3. T2p ∧H3q → 2r w1

4. Tp (W1, w1)
5. T q (h1, w1)

6. T2p ∧H3q w1

8. TH3q w1

9. T2r w1

10. T3q (h2, w1)
11. T q (w2, (h2, w1))
12. T r (W2, w1)

7. F2p ∧H3q w1

13. FH3q w1

14. F3q (H1, w1)
15. F q (W3, (H1, w1))
16. ×

Notice that the left branch is open, and thus all the formulas in it (in particular 2r)
are consequences of the extension. Moreover this branch displays the model where
such an extension holds. The right branch is σH-closed because (5) and (15) are
σH-complementary. The argument for the other extension is similar.

5 Final Remarks

It was not the objective of this paper to develop a theory of defeasible reasoning. Our
motivation was rather practical. We sought for computationally tractable and easily



implementable theorem proving techniques suitable for dealing with nonmonotonic
forms of inference in a modal setting. The discussion in Section 4 was thus mainly
aimed at showing the potential scope of application of the method. In effect, we
believe that the method for computing extensions outlined in this section nicely
exploits the computational and proof-theoretical advantages offerred by the modal
theorem proving system KEM . As we have argued elsewere (see Artosi, Cattabriga
and Governatori 1994, Artosi and Governatori 1994), this system enjoy most of the
features a suitable proof search system for modal (and in general non-classical) log-
ics should have. In contrast with both resolution and translation-based methods it
works for the full modal language (thus avoiding any preprocessing of the input for-
mulas, such as transforming either in clausal form or in some “intermediate” logic);
it provides a uniform treatment of a wide variety of modal logics, and it is flexible
enough to be extended to cover almost any setting having a Kripke-model based
semantics (this is clearly shown by our treatment of a multimodal system arising
from the combination of Meyer and van der Hoek’s (1992) modal default logic with a
deontic logic of the Jones and I. Pörn (1985) type given by Artosi, Governatori and
Sartor (1996)). From this perspective it is similar to sequent or tableau proof meth-
ods (e.g., Fitting 1983, Catach 1991). Nevertheless, it has several advantages over
most tableau/sequent based theorem proving methods: being based on D’Agostino
an Mondadori’s (1994) classical KE, it eliminates the typical redundancy of the stan-
dard cut-free methods, which makes them unsuitable for computational treatment,
and, thanks to its label unification scheme, it offers a simple and efficient solution to
the permutation problem which arises at the level of the usual tableau-sequent rules
for the modal operators. However, unlike e.g., Wallen’s (1990) connection method,
it uses a natural and easily implementable style of proof construction, and so it
appears to provide an adequate basis for combining both efficiency and naturalness.
(As to the implementation the reader is referred to Artosi, Cattabriga and Governa-
tori (1994), where a Prolog implementation is provided, and to Artosi, Cattabriga
and Governatori (1995) where some related issues are discussed).
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