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Abstract. In this paper we present a new labelled sequent calculus for
modal logic. The proof method works with a more “liberal” modal lan-
guage which allows inferential steps where different formulas refer to
different labels without moving to a particular world and there comput-
ing if the consequence holds. World-paths can be composed, decomposed
and manipulated through unification algorithms and formulas in different
worlds can be compared even if they are sub-formulas which do not de-
pend directly on the main connective. Accordingly, such a sequent system
can provide a general definition of modal consequence relation. Finally,
we briefly sketch a proof of the soundness and completeness results.

1 Introduction

Gabbay [12] proposes a new methodology called Labelled Deductive Systems
(LDS ) to deal, uniformly, with logical systems. This approach, where formulas
are indexed with labels to bring meta-level features in the object language, is
very flexible: it enables us to work not only on the logical part, but also on the
labels (using an appropriate algebra), and both.

Gentzen systems are often used to define calculi as well as consequence rela-
tions. Nevertheless, such systems do not work so well when intensional operators
are involved. In order to generalise them to modal logic, the most direct course
is to try and devise rules for 2 of the same kind as those governing the classical
operators; in other words to force the classical pattern on the modal operator.
Moreover, there is no single interpretation of modality: each of them requires its
own consequence relation. This leads to the fact that modal sequents are far to
be uniform (see [15] for an overview of such systems). Labelled sequents seem to
offer an higher degree of uniformity, at least for classes of logics. Unfortunately
almost all recent works proposing labels in sequent systems suffer from the same
illness: they use labels properties (semantics) to reduce modal consequence to
classical one. So they fail to provide a general system for defining real notions
of modal deducibility.

In the spirit of LDS we present a general framework for modal sequent cal-
culi (LMS ) suitable for providing a notion of modal consequence. Basically, it
enjoys the following features:
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– There is only a rule for modality, and the rules for the boolean connectives
are generalized to the modal case.

– All the modal inferences are kept in the labels, no external constraints of
modal axioms are needed.

We use KEM label language (see [1, 16]) that simulates accessibility relation, and
an algorithm to determine the conditions under which two labels can be com-
pared. If so, we can apply inference rules on the related formulas. We have two
kinds of atomic labels constants — w1, w2, . . . — and variables — W1,W2, . . .
— that might be combined into path labels. Roughly a constant corresponds to
3 and a variable to 2. A path is a label with the following form (i, i′), where
i is an atomic label and i′ is either a path or a constant, in the same way an
atomic label corresponds to a single modality a path corresponds to a string
of modalities. It is worth noting that labels may be split so that the parts can
be considered separately. Another interesting feature of the present approach
is that boolean and modal combinations of labelled formulas are permitted; so,
if A,B are well formed formulas, and i, j, k are labels, then A : i, B : j and
(A : i → B : j) : k are expressions of our language. This fact forces us to recon-
sider the classical rules for propositional connectives. For example we have the
following instance of modal modus tollens: (A : i → B : j) : k and ¬2B : l imply
¬A : m, under the appropriate conditions on the labels. In particular l and k
should be comparable and j corresponds to 2.1

2 Labelled Modal Language

As we have already alluded to, we allow boolean and modal combination of
labelled formulas, so we first introduce the appropriate label formalism and then
we extend the language of modal logic to the labelled case.

2.1 Label Formalism

KEM has two basic kinds of atomic labels: variables and constants. The label
scheme arises from such a basic alphabet, so that a “world” label is either a
world-symbol or a “structured” sequence of world-symbols that we call a “world-
path”. Constant and variable world-symbols denote worlds and sets of worlds
respectively (in a Kripke model), while a world-path conveys information about
access between the worlds in it. KEM labels are built in a modular way and
so they can be easily composed and decomposed. Furthermore, we shall use
auxiliary “dummy” labels, that allow world-paths to be split into proper sub-
paths.

Definition 1. Let ΦA = {w0, w
′
0, . . . } be a not empty set of auxiliary or actual

world symbols; let ΦC = {w1, w2, . . . } be a not empty set of constant world
symbols (or simply constants); let ΦV = {W1,W2, . . . } be a not empty set of

1 See section 4.2 for the actual definition of the modal modus tollens.



variable world symbols (or simply variables). The set = of label is then defined
as follows

= =
⋃
1≤i

=i where =i :

=1 = ΦA;
=n+1 = (ΦC ∪ ΦV )×=n, (n ≥ 1).

According to the above definition a label is either (i) an element of the set ΦA,
or (ii) a path term (k′, k) where (iia) k′ ∈ ΦC ∪ΦV and (iib) k ∈ ΦC or k = (i′, i)
where (i′, i) is a label. From now on we shall use i, j, k, . . . to denote arbitrary
labels.

For any label i = (k′, k) we shall call k′ the head of i, k the body of i,
and denote them by h(i) and b(i) respectively. Notice that these notions are
recursive (they correspond to projection functions): if b(i) denotes the body of
i, then b(b(i)) will denote the body of b(i), b(b(b(i))) will denote the body of
b(b(i)); and so on. We call each of b(i), b(b(i)), etc., a segment of i. Let s(i)
denote any segment of i (obviously, by definition every segment s(i) of a label
i is a label); then h(s(i)) will denote the head of s(i). We shall call a label i
restricted if h(i) ∈ ΦC , otherwise unrestricted.

For any label i, we define the length of i, `(i), as the number of world-symbols
in i, i.e., `(i) = n ⇔ i ∈ =n. sn(i) will denote the segment of i of length n, i.e.,
sn(i) = s(i) such that `(s(i)) = n. We shall use hn(i) as an abbreviation for
h(sn(i)).

For any label i, `(i) > n, we define the countersegment-n of i, as follows:

cn(i) = h(i)× (· · · × (hk(i)× (· · · × (hn+1(i), j)))) (n < `(i))

where j is an auxiliary label. In other words the countersegment-n of a label i
is the label obtained from i by replacing sn(i) with an auxiliary world symbol.

There is a strict relationship between labels and possible world semantics.
The intuitive reading of a constant is a possible world in a Kripke models, while a
variable denotes a set of worlds. A path label moreover encodes the information
about the accessibility relation. Indeed a label such as (W1, (w1, w0)) represents
the set of worlds accessible from the world denoted by w1, which itself is acces-
sible from the actual world w0. An auxiliary world symbol stands for an actual
world.

In general a label corresponds to the model generated from a formula with
respect to the actual world: the actual world of the label. However, sometimes,
we want to change our point of view, so we move our actual world inside a path,
and to consider the truncated model. This effect is achieved by the notions of
segment and countersegment. We split a label into two parts: the segment is
the path which leads us to the current actual world from the previous one; the
countersegment then is the truncated model.



2.2 Labelled Well-formed Formulas

The standard modal language L is extended by attaching to each well-formed
formula of L (wff) a KEM label. So, the notion of label formula is defined as
follows:

Definition 2. – if A is a wff and i is a label, then A : i is a labelled formula
(lwff for short);

– if A : i is a lwff and j is a label, then A : i : j is a lwff;
– if A : i and B : j are lwff’s, # is a binary connective, and k is a label, then

(A : i#B : j) : k is a lwff.
– if A : i is a lwff and j is a label, then 2(A : i) : j, 3(A : i) : j and ¬(A : i) : j

are lwff’s.

Formulas without labels will be considered labelled with the auxiliary label w0;
so A will be regarded as A : w0.

According to Smullyan-Fitting [11] unifying notation that classifies formulas
we shall say that

Definition 3. Two wffs A, and B of type ν and π are complementary iff A0

and B0 are complementary.

In the previous section we have seen that the labels can be decomposed. Here
we show how labels can be composed. Given a lwff A : i : j we can compose i
and j in a label k which satisfies the following conditions:

i = c`(j)(k) j = s`(j)(k) (1)

2.3 From Labels to Modalities

In this section we shall examine the relationships between labels and modalities.
Our rules are designed in such a way that each modal step depends on the

properties of the labels involved, which are defined to simulate the syntactical
structure of modal formulas.

Why should we use then labels instead of modalities? The algebra of labels is
extremely flexible and allows easy manipulations of them. However, sometimes,
it may be useful to deal also with modalities mixed with labels, at least we want
to translate the final steps of proofs in a plain modal language. Another example
where we use mixed expressions is the generalization of classical principles such
as modus ponens, modus tollens to the modal case, where a part of the inference
pattern is expressed in label notation and the other uses modalities. To this end
we need a function which translates labels into modalities.

We shall use m, n, p, q, . . . for strings of positive modalities; let M be the
set of positive modalities, by definition of modality the empty string of positive
modalities is a modality, we use ] to denote it.



Definition 4. Let φ+ be a map from = to M thus defined:

φ+(i) =


] i ∈ =1

2φ(b(i)) `(i) > 1 and h(i) ∈ ΦV

3φ(b(i)) `(i) > 1 and h(i) ∈ ΦC

(2)

Let φ− be a map from = to M thus defined:

φ−(i) =


] i ∈ =1

3φ(b(i)) `(i) > 1 and h(i) ∈ ΦV

2φ(b(i)) `(i) > 1 and h(i) ∈ ΦC

(3)

3 Unifications

The key feature of our approach is that in the course of proof labels are manipu-
lated in a way closely related to the semantics of modal operators and “matched”
using a specialized unification algorithm. That two labels i and k are unifiable
means, intuitively, that the sets of worlds they “denote” have a non-null inter-
section. The basic element of the unification is the substitution function which
maps each variable in label to a label, and each constant to itself. Formally

σ : ΦV 7→ ΦA ∪ ΦC ∪ ΦV

1ΦC∪ΦA

Applying the substitution recursively in a label we obtain the substitution of a
label

σ(i) =

{
σ(i) `(i) = 1
(σ(h(i)), σ(b(i))) otherwise

(4)

For two labels i and j, and a substitution σ, if σ is a unifier of i and j then
we shall say that i, j are σ-unifiable. We shall use (i, j)σ to denote both that i
and j are σ-unifiable and the result of their unification. In particular

∀i, j, k ∈ =, (i, j)σ = k iff ∃σ such that both σ(i) = σ(j) and σ(i) = k (5)

On this basis we may define several specialised, logic-dependent notions of σ-
unification characterizing various modal logics. First of all, we have to define
unifications (axiom unifications) corresponding to modal axioms. Then in the
same way a modal logic is obtained by combining several axioms we define,
using axiom unifications, combined unifications, that, when applied recursively,
produce logic unifications.

The general form of an axiom unification σA is:

(i, j)σA ⇐⇒ (fA(i), gA(j))σ and CA

where fA and gA are given logic-dependent functions from labels to labels and
CA is a set of constraints.



A combined unification σA1···An is generally defined as the combination of
the axiom unifications for the axioms characterizing the logic

(i, j)σA1···An ⇐⇒


(i, j)σA1 CA1

...
...

(i, j)σAn CAn

Applying recursively the above σA1···An unification we obtain the logic unifica-
tion σL.

(i, j)σL =

{
(i, j)σA1···An

(cn(i), cm(j))σA1···An

where w0 = (sn(i), sm(j))σL.
We have presented elsewhere unifications for a wide class of modal logics (see

[16, 1, 13]). By way of example, here we show how to build the logic unification
for S4. First of all, we have to define the axiom unification for 4 that mimics
transitivity:

(i, k)σ4 =


c`(i)(k) `(k) > `(i), h(i) ∈ ΦV and

w0 = (i, s`(i)(k))σ
c`(k)(i) `(i) > `(k), h(k) ∈ ΦV and

w0 = (s`(k)(i), k)σ

(σ4)

Take for example the labels i = (W3, (w2, w1)) and k = (w5, (w4, (w3, (W2, w1)))).
Here s`(i)(k) = (w3, (W2, w1)). Then i and k σ4-unify to (w5, (w4, (w3, (w2, w1))))
since (i, s`(i)(k))σ = ((W3, (w2, w1)), (w3, (W2, w1)))σ. This intuitively means
that all the worlds accessible from a sub-path s`(i)(k) of k are accessible from
any path i which leads to the same world(s) denoted by s`(i)(k).

Well, given the following combined unification:

(i, k)σDT4 =


(i, k)σD `(i) = `(k)
(i, k)σT `(i) < `(k), h(i) ∈ ΦC

(i, k)σ4 `(i) < `(k), h(i) ∈ ΦV

(σDT4)

such that
(i, k)σD = (i, k)σ (σD)

(i, k)σT =


(s`(k)(i), k)σ `(i) > `(k), and

∀n ≥ `(k), (hn(i), h(k))σ = (h(i), h(k))σ
(i, s`(i)(k))σ `(k) > `(i), and

∀n ≥ `(i), (h(i), hn(k))σ = (h(i), h(k))σ

(σT )

the logic unification for S4 is recursively defined as follows:

(i, k)σS4 =

{
(cn(i), cm(k))σDT4

(i, k)σDT4
(σS4)



As usual the meaning of an unification is that the denotations of the terms
have non-null intersection. However, in some cases, the information encoded in
the labels is not enough to determine whether two labels unify, and we need
information from other labels. For example let us assume a non serial modal
logic and the labels i = (W1, w0), j = (W2, w0), and k = (w1, w0). According to
the meaning of the labels, both i and j denote the set of world accessible from
the actual world w0, while k denotes a world accessible from it. Since our logic
is not serial the set of world accessible from w0 may be empty; however, this is
not the case since the non-emptiness of such a set is granted by k. This is the
reason for the next unification.2

Definition 5. Let L be a set of labels. Then (i, j)σLL iff

1. (i, j)σL or
2. ∃k ∈ L,∃n, m ∈ N such that

– (sn(i), k)σLL = (sm(j), k)σLL and
– (cn(i), cm(j))σLL where w0 = (sn(i), k)σLL

Traditionally formulas in sequents are evaluated as true if they occur in the
antecedent, otherwise as false. When we move formulas from one side to the
other we have to change their signs, but their contents are left unchanged. Since
we use labelled formulas we have to move formulas as well as their labels. In
section 2.3 we defined two translation functions from labels to modalities: each
one is the opposite (dual) of the other. As we shall see, the first translation
function is applied to labels occurring in the antecedent and the latter for labels
in the consequent. So when a label moves from the antecedent to the consequent
(or the other way around) it changes its sign; where the sign of a label is defined
as follows:

Definition 6. For any label i the specular image of i, denoted by ı̄ is defined
as follows:

ı̄ =


i i ∈ ΦA

ı̄ i ∈ ΦC ∪ ΦV

(h(i), b(i)) otherwise

Furthermore the specular image of a label i satisfies the following properties:

1. If i is a label so is ı̄, similarly for i ∈ ΦC and i ∈ ΦV ;
2. ¯̄ı = i;

2 It is not the aim of this paper to give a computational characterization of label
unifications. However, we believe that KEM label unification provides a good starting
point. In fact it is not hard to show that the basic unification always terminates and
is decidable in linear time, and so are the logic unifications for some of the standard
modal logics. On the other hand, we argue that any other (string/label) unification
would be suitable for the present approach if (1) it corresponds to the intended
semantics, and (2) it modular in the sense that it is possible to split labels in several
parts and compute independently their unifications.



3. φ+(̄ı) = φ−(i),
φ−(̄ı) = φ+(i);

We further assume that a constant and its specular image unify, and the result
of their unification is the specular image if the result occurs in the consequent
of a sequent, otherwise it is the label itself.

For specular images we can prove

Lemma 1. 1. For all i, j ∈ =, (̄ı, j)σL = (i, ̄)σL;
2. for all i, j ∈ =, (i, j)σLL iff (̄ı, j)σLL.

Proof. By case inspection.

4 Modal Sequents

A drawback of standard modal sequents is that they define consequence rela-
tions for set of modal formulas, but they do not provide a true notion of modal
consequence. Moreover such a consequence is defined for an (the) actual world.
Labels give a first partial relief to this problem insofar as they define a modal
consequence with respect to an (the) actual world. However this solution is not
general enough. Semantically we can jump from a world to another and set the
latter as the current actual world, establish a modal consequence relation with
respect to the world, using it to draw inferences, and then we can carry the
information thus obtained to another world or back to the original actual world.
Composing and decomposing labels corresponds to this mechanism, and KEM
labels are very well-suited to this task (see [13, 14]). However, this is just the
first step in order to define a general modal consequence relation: what we need
is to introduce connectives/operators wherever in the formula, not only as main
ones. In the next section we show how to achieve this result.

4.1 Inference Rules

The heart of LMS is constituted by the following sequent rules which are
designed to work both as inference rules (to make deductions from both the
declarative and the labelled part of wff formulas), and as ways of manipulating
labels during proofs.

Axiom
A ` A

Negation

Γ,A : i ` ∆

Γ ` ¬A : ı̄, ∆
` ¬ Γ ` A : i, ∆

Γ,¬A : ı̄ ` ∆
¬ `



Conjunction

Γ,A : i, B : j ` ∆

Γ, (A : cn(i) ∧B : cn(j)) : sn(i) ` ∆
∧ `

where sn(i) is a segment shared by i and j.

Γ ` A : i,∆ Γ ′ ` B : j, ∆′

Γ, Γ ′ ` (A : cn(i) ∧B : cm(j)) : (sn(i), sm(j))σLL ,∆,∆′ ` ∧

Cut
Γ ` A : i,∆ Γ ′, B : j ` ∆′

Γ, Γ ′ ` ∆, ∆′

if (sn(i), sm(j))σLL and φ−(cn(i))A = φ+(cm(j))B. Moreover all the constants
occurring in cn(i) and cm(j) do not occur in Γ, Γ ′,∆,∆′.

Contraction

Γ,A : i, B : j ` ∆

Γ,A : i ` ∆

Γ ` A : i, B : j, ∆

Γ ` A : i, ∆

if `(i) > `(j) and ∃n such that φ(cn(i))A = φ(cn(j))B and sn(i) = sn(j).

Weakening

Γ ` A : i,∆

Γ ` A : i, B : j, ∆

Γ,A : i ` ∆

Γ,A : i, B : j ` ∆

Given a set of lwff Γ we shall use ΓL to denote the set of labels occurring in Γ .

Modal rule

Γ,A1 : j1, . . . , An : jn ` B : j0,∆

Γ,A1 : j1 : i1, . . . , An : jn : in ` B : j0 : k0,∆
RM

if

1. j0 : k0 = (p̂, q̂)σLL , 0 ≤ p, q ≤ n; or
2. ∀p̂, q̂((p̂, j0 : k0)σLL , (q̂, j0 : k0)σLL)σLL

where L =
⋃

1≤p≤n jp : ip ∪ ΓL ∪∆L and p̂ = jp : ip or p̂ = j0 : k0.

The first condition allows us to introduce two unifiable labels in the antecedent
and their unification in the consequent, while the second permits the introduc-
tion in the consequent of a label that unify uniformly with the relevant labels
introduced in the antecedent. Thus, according to the basic unifications the fol-
lowing rules are respectively instances of RM with the first condition

A : w0, B : w0 ` A ∧B : w0

A : (W2, (w1, w0)), B : (w2, (W1, w0)) ` A ∧B : (w2, (w1, w0))



and with the second condition

A : w0, B : w0 ` A ∧B : w0

A : (W2, (w1, w0)), B : (w2, (W1, w0)) ` A ∧B : (W4, (W3, w0))

Notice that in both rules the labels unify according to the basic unification
defined in (5).

4.2 Derived Rules

Introduction of disjunction and implication The rules

Γ,A : i ` ∆ Γ ′, B : j ` ∆′

Γ, Γ ′, (A : cn(i) ∨B : cm(j)) : (sn(i), sm(j))σLL ` ∆, ∆′ ` ∨

Γ ` A : i, B : j, ∆

Γ ` (A : cn(i) ∨B : cn(j)) : sn(i),∆
∨ `

where sn(i) is a segment shared by i and j; and

Γ,A : i ` B : j,∆

Γ ` (A : cn(̄ı) → B : cn(j)) : sn(j),∆
`→

where sn(j) is a segment shared by i and j

Γ ` A : i,∆ Γ ′, B : j ` ∆′

Γ, Γ ′, (A : cn(̄ı) → B : cm(j)) : (sn(̄ı), sm(j))σLL ` ∆, ∆′ →`

are derived rules. Here we prove only ∨ `, the others are proofs are similar.

Γ,A : i ` ∆

Γ ` ¬A : ı̄, ∆
` ¬

Γ ′, B : j ` ∆′

Γ ′ ` ¬B : ̄, ∆′ ` ¬

Γ, Γ ′ ` (¬A : cn(̄ı) ∧ ¬B : cm(̄)) : (sn(̄ı), sm(̄))σLL ,∆,∆′ ` ∧

Γ, Γ ′,¬(¬A : cn (̄̄ı) ∧ ¬B : cm(¯̄)) : (sn(̄ı), sm(̄))σLL ` ∆, ∆′
¬ `

Γ, Γ ′, (A : cn(i) ∨B : cm(j)) : (sn(i), sm(j))σLL ` ∆, ∆′ RM and cut

Another bunch of derived rules is the set of the “semantic” version of the α-rules.
For example the following rule

Γ,A : i, B : j ` ∆

Γ, (A : cn(i) ∧B : cm(j)) : (sn(i), sm(j))σLL ` ∆
∧σLL

`

can be derived by using cut and modal rule. Similarly for the other α-rules, i.e.,
`→σLL

and ` ∨σLL
.



Modus Ponens The modus ponens

` A → B ` A
` B

is just an instance of the generalized modal version

Γ,` (A : i → B : j) : k,∆ Γ ′ ` C : l,∆′

Γ, Γ ′ ` B : j : cn(k) : (sn(k), sm(l))σLL ,∆,∆′ MP

where φ+(i : cn(k))A = φ+(cm(l))C e (sn(k), sm(l))σLL
On the contrary modus tollens can be derived without limitation only in its

propositional version, whereas modal version requires some complex conditions.
This is due to the directionality of modalities and negation.

Modus tollens
` (A : i → B : j) : k, ` C : l

` ¬A : i : k̄

if ∃k̂ ∈ =,∃m, p ∈ N such that (k, k̂)σLL = k′ and (sm(j : k̂), sp(l))σLL , where
φ+(cm(j : k̄))B, and φ+(cp(l))C are complementary.

Introduction of modalities The rules for introducing modalities

Γ,A : i ` ∆

Γ, φ+(cn(i))A : sn(i) ` ∆
φ ` Γ ` A : i,∆

Γ ` φ−(cn(i))A : sn(i),∆
` φ

where the constants occurring in φ+(cn(i)) and φ−(cn(i)) do not occur elsewhere,
are derived rules.

(1)φ−(cn(i))A ` φ−(cn(i))A
(2)φ−(cn(i))A : j ` φ−(cn(i))A : sn(i) (3)Γ ` A : i,∆

(4)Γ ` φ−(cn(i))A : sn(i),∆

The relevant step is step 2, which has obtained from 1 by an application of the
modal rule. Notice that we introduce on the antecedent a label j that unifies
with sn(i). At this point we can apply the cut rule to obtain the desired result.

Elimination of modalities The rules for eliminating the modalities

Γ ` mA : i,∆

Γ ` (nA : j) : k : i,∆

Γ, mA : i ` ∆

(Γ, nA : j) : k : i ` ∆

where mA = φ(k)nφ(j)A and the constants occurring in j and k do not occur
elsewhere, are derived rules;

Γ ` mA : i

A ` A
A : j∗ ` A : j

Modal Rule

nA : j∗ ` nA : j
Introduction of n

(nA : j∗) : k∗ ` (nA : j) : k
Modal Rule

(nA : j∗) : k∗ : i∗ ` (nA : j) : k : i
Modal Rule

Γ ` (nA : j) : k : i
cut



It is worth noting that these rules allow a general treatment of modalities. In
particular, given a formula such as 323A : i in the consequent of a sequent,
we are able to translate each modality even if it is not the main (most external)
operator of the formula. Suppose we want to translate just 2. In this case the
elimination of this operator produces the following results

3((3A) : (w2, w0)) : i

Necessitation The necessitation rule

` A

` 2A

is also a derived rule. In fact it can be derived as follows:

` A : i
` A : i : (w1, w0)

Modal Rule

` 2(A : i) ` 2

Notice that we have applied the modal rule only with respect to the most exter-
nal label (w1, w0), for which ((w1, w0), (w1, w0))σLL = (w1, w0) holds; namely it
satisfies the first condition for the applicability of the modal rule. We show now
that the application of the modal rule only with respect to the most external
label is safe.

` A : i
` φ−(i)A

` φ−(i)

` φ−(i)A : (w1, w0)
Modal Rule

` 2φ−(i)A
` 2

` 2(A : i)
Elimination of φ−(i)

5 Examples

In the previous section we have shown how LMS works by proving some derived
rules. In addition, here we provide a couple of proofs which use the unification
for S4 presented in section 3.

A ` A
A : (w1, (W1, w0)) ` A : (W2, (w2, (w1, (W1, w0))))

Modal Rule

A : (w1, (W1, w0)) ` 23A : (w1, (W1, w0))
` φ

` (A → 23A) : (w1, (W1, w0))
`→

` 32(A → 23A)
` φ

We apply the Modal Rule to the axiom A ` A introducing the labels i =
(w1, (W1, w0)) and j = (W2, (w2, (w1, (W1, w0)))). The labels i and j σLS4-unify
in so far as c2(i) = (w1, w

′
0) and c4(j) = (W2, w

′
0) σD, once w′

0 has been identified
with the σLS4-unification of s2(i) = (W1, w0) and s4(j) = (w2, (w1, (W1, w0))); it



is immediate to see that s2(i) and s4(j) σLS4-unify, since they σ4- and therefore
σDT4-unify.

We translate part of the label of the formula occurring on the right in a
modality as follows: φ−((W2, (w3, w

′
0))A) = 23A.

At this point we introduce → on the right using i as the common shared
label. To finish the proof we have to transform the label into a modality; namely:
φ−((w1, (W1, w0))B) = 32B.

A ` A
A : (W1, w0) ` A : (w1, w0)

Modal Rule

A : (W1, w0) ` 2A
` φ

C ` C

A : (W1, w0),2A → C ` C
→`

A : (W1, w0) : (w2, w
′
0), (2A → C) : (W2, w

′
0) ` C : (w3, (w2, w

′
0))

Modal Rule

2A : (w2, w
′
0),2(2A → C) ` 2C : (w2, w

′
0)

φ ` φ

2(2A → C) ` (2A → 2C) : (w2, w
′
0)

`→

2(2A → C) ` 2(2A → 2C)
` φ

` 2(2A → C) → 2(2A → 2C) `→

The only step of the above proof deserving a clarification is the second applica-
tion of the modal rule. Here we introduce three labels: i = (W1, w0) : (w2, w

′
0),

which corresponds to (W1, (w2, w
′
0)); j = (W2, w

′
0); and k = (w3, (w2, w1)). It is

immediate to see that (i, k)σLL = k, (j, k)σLL = k, and (k, k)σLL = k; therefore
the labels satisfy the second condition of the modal rule.

It is worth noting that we have to defer the translation of A : (W1, w0), until
the second application of the modal rule; otherwise it would not be possible to
apply such a rule with the appropriate labels.

Notice also that it is possible to generalise the rules for introducing modali-
ties: every label attached to a sub-formula can be transform in a modality, and
not only the label of a formula. In this way, we can postpone the translation of
labels until the last steps of proofs.

6 Soundness and Completeness

In this section we briefly sketch how to prove soundness and completeness results
for LMS . Basically, we have to show that (1) the rules and the axioms corre-
sponding to a given Hilbert system L for modal logic are respectively derived
rules and theorems in LMS , and (2) the rules of LMS are sound with respect
to the semantic conditions for L. In what follows we assume that the Hilbert
system L is complete with respect to the appropriate Kripke models.

Theorem 1. If `L A then `LMS A.



Proof. In Section 4.2 we have already seen how to prove modus ponens and
necessitation. Modal axioms are derivable as follows:

A ` A
A : i ` A : j

Modal rule

` A : ı̄ → A : j
`→

` φ−(̄ı)A → φ−(j)A
` φ

where (i, j)σLL . This proof relies on the fact that each σA-unification corresponds
to a generalization including necessitation and self recursion of the modal axiom
A, and the various σLL are built upon the σA of the axioms characterizing the
logic L (see [16, 1]).

Let us first define some functions which map labels into elements of Kripke
models. Given a model M = 〈W,R, v〉, such functions translate labels into ele-
ments of M according to the structure of the labels.

Let g be a function from = to ℘(W) thus defined:

g(i) =

{
h(i) = {h(i)} if h(i) ∈ ΦC

h(i) = {wi ∈ W : g(b(i))Rwi} if h(i) ∈ ΦV

The above function is not defined for composed labels, i.e., labels of the form
i : j. However it can be extended to them by stipulating that g(s1(i)) = g(h(j));
see [14] for a full account of the combination of labels.

Let r be a function from = to R thus defined:

r(i) =

{
∅ if l(i) = 1
g(i1)Rg(i2), . . . , g(in−1)Rg(h(i)) if l(i) = n > 1

Let f be a function from lwff’s to v thus defined:

f(A : i) =def v(A,wj) = T

for all wj ∈ g(i).
As second step, we need the following lemma.

Lemma 2. For any i, k ∈ = if (i, k)σL then g(i) ∩ g(k) 6= ∅.

Proof. See [1, 16]

This lemma shows that if two labels unify, then the result of their σL-unification
corresponds to an element of the appropriate model. In this way, we are able to
build the Kripke model for the labels involved in a LMS proof, and so we can
check every rule of LMS in a standard semantic setting:

Theorem 2. `LMS (L) A ⇒ |=L A.

Theorem 3. |=L A ⇐⇒ `L A.

From theorems 1, 2, and 3 we obtain:

Theorem 4. `LMS A ⇐⇒ |=L A.



7 Discussion and Future Work

In this paper we have just presented a new sequent system for modal logic. The
main interest in such a system is that it can provide a general definition of the
notion of modal consequence relation. Accordingly, we propose a more “liberal”
modal language which allows to draw inferences with respect to a given world wi

and then move to another world wj where new inferences can be drawn taking
into account the semantical conditions corresponding to the previous inferential
steps. Furthermore, world-paths can be composed or decomposed so that new
paths are manipulated through unification algorithms.

A possible objection to the above claim is that even LMS reduces modal
inferences to inferences for classical connectives with respect to comparable labels
(sets of worlds) involved in the process. As a matter of fact, this argument
holds to some extent for all (labelled) sequent systems for modal logic. However,
our system allows to do something more. LMS can handle modal operators
wherever in a given formula. For example, under appropriate conditions sub-
formulas which do not depend directly on the main connective can be involved
during the proofs. A consequence of this fact is that we can provide new and more
general definitions of substitution for modal equivalents and of distributivity of
modal operators with respect to the boolean ones.

This is not a trivial result. On the contrary it seems to be a key feature for
representing a general notion of modal deducibility. In fact, an LMS proof can
be structured in such a way that different formulas can be compared in the same
time even if they hold in distinct worlds and are not immediate sub-formulas.
We believe this is a good starting point to devise a modal inference not just as
a classical inference with respect to a particular world. On the other side, to
achieve fully this goal it is necessary to prove soundness and completeness for
Hilbert-style modal consequence and not only for theoremhood. This is a matter
of future work.

Furthermore, we think that a more extensive investigation on LMS could
point out some meta-theoric properties.

At first sight Došen’s principle (cf. [26]) seems to be violated since the rules
for logical operators involve more than the immediate sub-formulas where logical
forms and structures (labels) are mixed. However, the format of the rules is just
the modal generalization of standard ones, and the case of a “pure” operator
is nothing else than a special case of the rule. Moreover the rules and the set
of rules are unchanged in passing from a logic to another. All modifications are
only over the unification procedure.

Secondly, thanks to the above features our method can easily cover other
intensional logics such as conditional logics. In this case, since > can be regarded
as a necessity operator relative to its antecedent, KEM label language is extended
by formula-indexed labels so that new specific unifications can be defined (see
[2, 3]). Thus a similar definition of substitution for modal equivalents could offer
an elegant and powerful method for composing proofs in a sequent setting and
for establishing when two formulas are equivalent with respect to >.



A final point can be remarked as a matter for future works. It is well-known
that for every tableaux proof for a formula A it is possible to build a correspond-
ing (reverse) sequent proof for it. The label formalism we have presented was
originally designed for a tableau-like system for modal logics called KEM (see
[1, 16]), where the cut can be restricted to an analytic version; moreover KEM
can be extended with the modal generalization of the rules we have proposed
for LMS , so it is a suitable tool for such a transformation. Finally our proof
method enjoys an interesting property: since the order in which modal principles
are applied in the proof is stored in the unifications, it is not hard to reconstruct
a Hilbert style proof for A from the order of unifications (see [24, 19]). This is
important because in this way we can produce constructive proofs without ref-
erences to non-constructive (semantic) methods or to external resources such as
labels or other devices.

8 Related Works

Although it is not the aim of the present work to compare LMS with other
proof systems for modal logic, in this section we expose briefly the main dif-
ferences. Several proposal have been put forth to find a general framework for
modal deduction. As a consequence a plethora of formalisms and proof systems
have been developed (for more exhaustive overviews and trends in this field see
[15, 25]); however, a common feature can be identified: adding “structures” to
deductive systems. These structures are meant to capture – in a proof-theoretic
environment and in a more appropriate way – the intensional nature of modal
logic. Mainly two strategies has been devised for this non easy task: explicit
vs. implicit structures.

It is well-known that Gentzen sequent calculi are the archetype of proof sys-
tems with structures; so, methods adopting the first strategy add more structures
to standard classical sequents; on the other hand labels or indices are used to
represent semantic structures in the language and in the calculi.

We refer, in particular, to hypersequents [4], multidimensional sequents [10,
8, 20], and display modal logic [26, 18]. All these approaches define the notion of
modal derivability in terms of a relativized classical consequence relation and are
mainly concerned with the eliminability of cut. In our opinion they fail to provide
a genuine and comprehensive modal consequence relation for the following two
reasons: 1) the modal and boolean components are kept separate; 2) they do not
perform modal operations across structures, i.e., modal operations are defined
over the same main (more external) structure.

Here a more fine grained division is needed; so we classify labelled systems
for modal logic in two classes: 1) semantic based translation methods, and 2)
label propagation methods.

In the first class it is worth mentioning, among others, the works by Ohlbach
[22], Russo [23], Basin, Matthews and Viganò [6]. The principal feature of these
systems is that they translate the modal formula into first-order expression, or



use a first-order condition as a parameter for inference rule involving modal
operators.

It is clear that the first-order translation methods cannot be used in relation
to logics whose semantics is not first-order based. For example they cannot deal
with modal logics that can be represented in terms of neighbourhood models
such as classical, regular, monotonic modal logics. However, in [17] KEM has
been used for such classes of logics with minimal (modular) modifications on
the substitution function. Another drawback is that translation methods can be
used as effective decision methods only in case of definite subsets of first-order
logic, which in general is semi-decidable. So, in general, they are not able to
define actual inference rules for modalities.3

In the second class we mention the works by Fitting [11], Massacci [21], and
Baldoni, Giordano and Martelli [5]. Basically, in this kind of system it is not
possible to define uniform procedures independent from the order of application
of the rules, therefore for each procedure pathological formulas can be found
(here with pathological formulas we mean formulas requiring a great deal of
useless information to the essential proof) (cf. [9]). In this category we include
also the work by Beckert and Goré [7]. Here, similarly to what we have done,
the label propagation is presented by means of variables, but, on the contrary,
the rules governing the expansion of variables are given in term of first-order
conditions; so, they overcome the drawback of uniform procedures but they
suffer from the problem of the translation methods.

KEM label formalism, in general, is free from the above shortcomings. On the
positive side KEM label formalism is strictly connected with Gabbay’s fibring
methodology; therefore, the same basic strategy can be used on various kinds
of combinations of modal logics, given a KEM label algebra for the component
logics (on this points see [14]).
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