652 research outputs found

    Portable random number generators

    Get PDF
    Computers are deterministic devices, and a computer-generated random number is a contradiction in terms. As a result, computer-generated pseudorandom numbers are fraught with peril for the unwary. We summarize much that is known about the most well-known pseudorandom number generators: congruential generators. We also provide machine-independent programs to implement the generators in any language that has 32-bit signed integers-for example C, C++, and FORTRAN. Based on an extensive search, we provide parameter values better than those previously available.Programming (Mathematics) ; Computers

    Pseudo-random number generators for Monte Carlo simulations on Graphics Processing Units

    Full text link
    Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed-up factor is hundreds of times in comparison with CPU. RANLUX generator is found to be the most appropriate for using on GPU in Monte Carlo simulations. The brief review of the pseudo-random number generators used in modern software packages for Monte Carlo simulations in high-energy physics is present.Comment: 31 pages, 9 figures, 3 table

    A Comparative Study of Some Pseudorandom Number Generators

    Full text link
    We present results of an extensive test program of a group of pseudorandom number generators which are commonly used in the applications of physics, in particular in Monte Carlo simulations. The generators include public domain programs, manufacturer installed routines and a random number sequence produced from physical noise. We start by traditional statistical tests, followed by detailed bit level and visual tests. The computational speed of various algorithms is also scrutinized. Our results allow direct comparisons between the properties of different generators, as well as an assessment of the efficiency of the various test methods. This information provides the best available criterion to choose the best possible generator for a given problem. However, in light of recent problems reported with some of these generators, we also discuss the importance of developing more refined physical tests to find possible correlations not revealed by the present test methods.Comment: University of Helsinki preprint HU-TFT-93-22 (minor changes in Tables 2 and 7, and in the text, correspondingly

    Hurst's Rescaled Range Statistical Analysis for Pseudorandom Number Generators used in Physical Simulations

    Full text link
    The rescaled range statistical analysis (R/S) is proposed as a new method to detect correlations in pseudorandom number generators used in Monte Carlo simulations. In an extensive test it is demonstrated that the RS analysis provides a very sensitive method to reveal hidden long run and short run correlations. Several widely used and also some recently proposed pseudorandom number generators are subjected to this test. In many generators correlations are detected and quantified.Comment: 12 pages, 12 figures, 6 tables. Replaces previous version to correct citation [19

    Generation of pseudo-random numbers

    Get PDF
    Practical methods for generating acceptable random numbers from a variety of probability distributions which are frequently encountered in engineering applications are described. The speed, accuracy, and guarantee of statistical randomness of the various methods are discussed
    • 

    corecore