8 research outputs found

    Hierarchies of Inefficient Kernelizability

    Full text link
    The framework of Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam (STOC 2008) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, there are also some issues that are not addressed by this framework, including the existence of Turing kernels such as the "kernelization" of Leaf Out Branching(k) into a disjunction over n instances of size poly(k). Observing that Turing kernels are preserved by polynomial parametric transformations, we define a kernelization hardness hierarchy, akin to the M- and W-hierarchy of ordinary parameterized complexity, by the PPT-closure of problems that seem likely to be fundamentally hard for efficient Turing kernelization. We find that several previously considered problems are complete for our fundamental hardness class, including Min Ones d-SAT(k), Binary NDTM Halting(k), Connected Vertex Cover(k), and Clique(k log n), the clique problem parameterized by k log n

    Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels

    Get PDF
    We study two fundamental problems related to finding subgraphs: (1) given graphs G and H, Subgraph Test asks if H is isomorphic to a subgraph of G, (2) given graphs G, H, and an integer t, PACKING asks if G contains t vertex-disjoint subgraphs isomorphic to H. For every graph class F, let F-Subgraph Test and F-Packing be the special cases of the two problems where H is restricted to be in F. Our goal is to study which classes F make the two problems tractable in one of the following senses: - (randomized) polynomial-time solvable, - admits a polynomial (many-one) kernel (that is, has a polynomial-time preprocessing procedure that creates an equivalent instance whose size is polynomially bounded by the size of the solution), or - admits a polynomial Turing kernel (that is, has an adaptive polynomial-time procedure that reduces the problem to a polynomial number of instances, each of which has size bounded polynomially by the size of the solution). To obtain a more robust setting, we restrict our attention to hereditary classes F. It is known that if every component of every graph in F has at most two vertices, then F-Packing is polynomial-time solvable, and NP-hard otherwise. We identify a simple combinatorial property (every component of every graph in F either has bounded size or is a bipartite graph with one of the sides having bounded size) such that if a hereditary class F has this property, then F-Packing admits a polynomial kernel, and has no polynomial (many-one) kernel otherwise, unless the polynomial hierarchy collapses. Furthermore, if F does not have this property, then F-Packing is either WK[1]-hard, W[1]-hard, or Long Path-hard, giving evidence that it does not admit polynomial Turing kernels either. For F-Subgraph Test, we show that if every graph of a hereditary class F satisfies the property that it is possible to delete a bounded number of vertices such that every remaining component has size at most two, then F-Subgraph Test is solvable in randomized polynomial time and it is NP-hard otherwise. We introduce a combinatorial property called (a, b, c, d)-splittability and show that if every graph in a hereditary class F has this property, then F-Subgraph Test admits a polynomial Turing kernel and it is WK[1]-hard, W[1]-hard, or Long Path-hard otherwise. We do not give a complete characterization of the cases when F-Subgraph Test admits polynomial many-one kernels, but show examples that this question is much more fragile than the characterization for Turing kernels

    Kernelization of generic problems : upper and lower bounds

    Get PDF
    This thesis addresses the kernelization properties of generic problems, defined via syntactical restrictions or by a problem framework. Polynomial kernelization is a formalization of data reduction, aimed at combinatorially hard problems, which allows a rigorous study of this important and fundamental concept. The thesis is organized into two main parts. In the first part we prove that all problems from two syntactically defined classes of constant-factor approximable problems admit polynomial kernelizations. The problems must be expressible via optimization over first-order formulas with restricted quantification; when relaxing these restrictions we find problems that do not admit polynomial kernelizations. Next, we consider edge modification problems, and we show that they do not generally admit polynomial kernelizations. In the second part we consider three types of Boolean constraint satisfaction problems.We completely characterize whether these problems admit polynomial kernelizations, i.e.,given such a problem our results either provide a polynomial kernelization, or they show that the problem does not admit a polynomial kernelization. These dichotomies are characterized by properties of the permitted constraints.Diese Dissertation beschäftigt sich mit der Kernelisierbarkeit von generischen Problemen, definiert durch syntaktische Beschränkungen oder als Problemsystem. Polynomielle Kernelisierung ist eine Formalisierung des Konzepts der Datenreduktion für kombinatorisch schwierige Probleme. Sie erlaubt eine grüdliche Untersuchung dieses wichtigen und fundamentalen Begriffs. Die Dissertation gliedert sich in zwei Hauptteile. Im ersten Teil beweisen wir, dass alle Probleme aus zwei syntaktischen Teilklassen der Menge aller konstantfaktor-approximierbaren Probleme polynomielle Kernelisierungen haben. Die Probleme müssen durch Optimierung über Formeln in Prädikatenlogik erster Stufe mit beschränkter Quantifizierung beschreibbar sein. Eine Relaxierung dieser Beschränkungen gestattet bereits Probleme, die keine polynomielle Kernelisierung erlauben. Im Anschluss betrachten wir Kantenmodifizierungsprobleme und zeigen, dass diese im Allgemeinen keine polynomielle Kernelisierung haben. Im zweiten Teil betrachten wir drei Arten von booleschen Constraint-Satisfaction-Problemen. Wir charakterisieren vollständig welche dieser Probleme polynomielle Kernelisierungen erlauben. Für jedes gegebene Problem zeigen unsere Resultate entweder eine polynomielle Kernelisierung oder sie zeigen, dass das Problem keine polynomielle Kernelisierung hat. Die Dichotomien sind durch Eigenschaften der erlaubten Constraints charakterisiert

    Tight parameterized preprocessing bounds:sparsification via low-degree polynomials

    Get PDF

    Backdoors for linear temporal logic

    Get PDF
    In the present paper, we introduce the backdoor set approach into the field of temporal logic for the global fragment of linear temporal logic. We study the parameterized complexity of the satisfiability problem parameterized by the size of the backdoor. We distinguish between backdoor detection and evaluation of backdoors into the fragments of Horn and Krom formulas. Here we classify the operator fragments of globally-operators for past/future/always, and the combination of them. Detection is shown to be fixed-parameter tractable (FPT) whereas the complexity of evaluation behaves differently. We show that for Krom formulas the problem is paraNP-complete. For Horn formulas, the complexity is shown to be either fixed parameter tractable or paraNP-complete depending on the considered operator fragment.DFG/ME 4279/1-

    Resolving the Complexity of Some Fundamental Problems in Computational Social Choice

    Get PDF
    This thesis is in the area called computational social choice which is an intersection area of algorithms and social choice theory.Comment: Ph.D. Thesi

    Elements of dynamic and 2-SAT programming: paths, trees, and cuts

    Get PDF
    This thesis presents faster (in terms of worst-case running times) exact algorithms for special cases of graph problems through dynamic programming and 2-SAT programming. Dynamic programming describes the procedure of breaking down a problem recursively into overlapping subproblems, that is, subproblems with common subsubproblems. Given optimal solutions to these subproblems, the dynamic program then combines them into an optimal solution for the original problem. 2-SAT programming refers to the procedure of reducing a problem to a set of 2-SAT formulas, that is, boolean formulas in conjunctive normal form in which each clause contains at most two literals. Computing whether such a formula is satisfiable (and computing a satisfying truth assignment, if one exists) takes linear time in the formula length. Hence, when satisfying truth assignments to some 2-SAT formulas correspond to a solution of the original problem and all formulas can be computed efficiently, that is, in polynomial time in the input size of the original problem, then the original problem can be solved in polynomial time. We next describe our main results. Diameter asks for the maximal distance between any two vertices in a given undirected graph. It is arguably among the most fundamental graph parameters. We provide both positive and negative parameterized results for distance-from-triviality-type parameters and parameter combinations that were observed to be small in real-world applications. In Length-Bounded Cut, we search for a bounded-size set of edges that intersects all paths between two given vertices of at most some given length. We confirm a conjecture from the literature by providing a polynomial-time algorithm for proper interval graphs which is based on dynamic programming. k-Disjoint Shortest Paths is the problem of finding (vertex-)disjoint paths between given vertex terminals such that each of these paths is a shortest path between the respective terminals. Its complexity for constant k > 2 has been an open problem for over 20 years. Using dynamic programming, we show that k-Disjoint Shortest Paths can be solved in polynomial time for each constant k. The problem Tree Containment asks whether a phylogenetic tree T is contained in a phylogenetic network N. A phylogenetic network (or tree) is a leaf-labeled single-source directed acyclic graph (or tree) in which each vertex has in-degree at most one or out-degree at most one. The problem stems from computational biology in the context of the tree of life (the history of speciation). We introduce a particular variant that resembles certain types of uncertainty in the input. We show that if each leaf label occurs at most twice in a phylogenetic tree N, then the problem can be solved in polynomial time and if labels can occur up to three times, then the problem becomes NP-hard. Lastly, Reachable Object is the problem of deciding whether there is a sequence of rational trades of objects among agents such that a given agent can obtain a certain object. A rational trade is a swap of objects between two agents where both agents profit from the swap, that is, they receive objects they prefer over the objects they trade away. This problem can be seen as a natural generalization of the well-known and well-studied Housing Market problem where the agents are arranged in a graph and only neighboring agents can trade objects. We prove a dichotomy result that states that the problem is polynomial-time solvable if each agent prefers at most two objects over its initially held object and it is NP-hard if each agent prefers at most three objects over its initially held object. We also provide a polynomial-time 2-SAT program for the case where the graph of agents is a cycle
    corecore