
Characterizing the easy-to-find subgraphs from the viewpoint of
polynomial-time algorithms, kernels, and Turing kernels ∗

Bart M. P. Jansen† Dániel Marx ‡

Abstract
We study two fundamental problems related to finding
subgraphs: (1) given graphs G and H, Subgraph Test
asks if H is isomorphic to a subgraph of G, (2) given graphs
G, H, and an integer t, Packing asks if G contains t vertex-
disjoint subgraphs isomorphic to H. For every graph class
F , let F-Subgraph Test and F-Packing be the special
cases of the two problems where H is restricted to be in F .
Our goal is to study which classes F make the two problems
tractable in one of the following senses:

• (randomized) polynomial-time solvable,
• admits a polynomial (many-one) kernel (that is, has

a polynomial-time preprocessing procedure that cre-
ates an equivalent instance whose size is polynomially
bounded by the size of the solution), or

• admits a polynomial Turing kernel (that is, has an
adaptive polynomial-time procedure that reduces the
problem to a polynomial number of instances, each of
which has size bounded polynomially by the size of the
solution).

To obtain a more robust setting, we restrict our attention to
hereditary classes F .

It is known that if every component of every graph in
F has at most two vertices, then F-Packing is polynomial-
time solvable, and NP-hard otherwise. We identify a simple
combinatorial property (every component of every graph in
F either has bounded size or is a bipartite graph with one of
the sides having bounded size) such that if a hereditary class
F has this property, then F-Packing admits a polynomial
kernel, and has no polynomial (many-one) kernel otherwise,
unless the polynomial hierarchy collapses. Furthermore,
if F does not have this property, then F-Packing is
either WK[1]-hard, W[1]-hard, or Long Path-hard, giving
evidence that it does not admit polynomial Turing kernels
either.

For F-Subgraph Test, we show that if every graph
of a hereditary class F satisfies the property that it is
possible to delete a bounded number of vertices such that
every remaining component has size at most two, then F-
Subgraph Test is solvable in randomized polynomial time
and it is NP-hard otherwise. We introduce a combinatorial
property called (a, b, c, d)-splittability and show that if every
graph in a hereditary class F has this property, then F-
Subgraph Test admits a polynomial Turing kernel and it is
WK[1]-hard, W[1]-hard, or Long Path-hard otherwise. We

∗This work was partially supported by the European Research

Council through starting grant 306992 “Parameterized Approxi-
mation” and grant 280152 “PARAMTIGHT: Parameterized com-

plexity and the search for tight complexity results” and OTKA

grant NK105645.
†University of Bergen, Norway, bart.jansen@ii.uib.no
‡Institute for Computer Science and Control, Hungarian

Academy of Sciences (MTA SZTAKI), Budapest, Hungary,
dmarx@cs.bme.hu

do not give a complete characterization of the cases when F-
Subgraph Test admits polynomial many-one kernels, but
show examples that this question is much more fragile than
the characterization for Turing kernels.

1 Introduction

Many classical algorithmic problems on graphs can be
defined in terms of finding a subgraph that is iso-
morphic to a certain pattern graph. For example,
the polynomial-time solvable problem of finding perfect
matchings and the NP-hard Hamiltonian Cycle and
Clique problems arise this way. The goal of the paper
is to understand which pattern graphs make this prob-
lem easy with respect to polynomial-time solvability and
polynomial-time preprocessing.

Given graphs G and H, Subgraph Test asks if G
has a subgraph isomorphic to the pattern H. Observe
that, for every fixed pattern graph H, Subgraph Test
is polynomial-time solvable, as we can test each of the
|V (G)||V (H)| mappings from the vertices of H to the
vertices of G, resulting in a polynomial-time algorithm.
Therefore, studying the restrictions of Subgraph Test
to fixed H does not allow us to make a distinction be-
tween easy and hard patterns. We can get a more
useful framework if we restrict Subgraph Test to a
fixed class of patterns. For every graph class F , let
F-Subgraph Test be the special case of the problem
where H is restricted to be in F . For example, if F
is the set of all matchings (1-regular graphs), then F-
Subgraph Test is the polynomial-time solvable max-
imum matching problem; if F is the set of all cliques,
then F-Subgraph Test is the NP-hard Clique prob-
lem. Our goal is to understand which classes F make
F-Subgraph Test tractable.

We also investigate a well-studied and natural vari-
ant of finding subgraphs. Given graphs G and H, and
an integer t, Packing asks if G has t vertex-disjoint sub-
graphs isomorphic to H. Unlike for Subgraph Test,
now it makes sense to define the problem H-Packing
for a fixed graph H: for example, K2-Packing is the
polynomial-time solvable maximum matching problem
and K3-Packing is the NP-hard vertex-disjoint trian-
gle packing problem. We also define the more general
F-Packing problem, where H is restricted to be in F .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48295692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kernels and Turing kernels. Besides looking at
the polynomial-time solvability of these problems, we
also explore the possibility of efficient preprocessing al-
gorithms, as defined by the notion of polynomial kernel-
ization in parameterized complexity [19, 22, 42]. We can
naturally associate a parameter k to each instance mea-
suring the size of the solution we are looking for, that
is, we define the parameter k := |V (H)| for Subgraph
Test and k := t · |V (H)| for Packing. We say that a
problem with parameter k is fixed-parameter tractable
(FPT) if it is solvable in time f(k) ·nO(1) for some com-
putable function f . The fixed-parameter tractability of
various cases of Subgraph Test is a classical topic of
the parameterized complexity literature. It is known
that F-Subgraph Test is FPT if F is the set of paths
[2, 6, 37, 51] and, more generally, if F is a set of graphs
of bounded treewidth [2, 24]. The case where F is the
set of all bicliques (complete bipartite graphs), corre-
sponding to the Biclique problem, was a tantalizing
open problem for many years. In a recent breakthrough
result, Binkai Lin [41] proved that Biclique is W[1]-
hard.

In this paper, we study only a specific aspect of
fixed-parameter tractability. A polynomial (many-one)
kernelization is a polynomial-time algorithm that cre-
ates an equivalent instance whose size is polynomially
bounded by the parameter k. Intuitively, a kerneliza-
tion is a preprocessing algorithm that does not solve
the problem, but assuming that the parameter value
is “small” compared to the size of the input, creates a
compact equivalent instance by somehow getting rid of
irrelevant parts of the input. In the case of Subgraph
Test, we want to create an equivalent instance with size
bounded by |V (H)|O(1): if the pattern H is small com-
pared to G, we want to compress the instance to a “hard
core” that has size comparable to H. In recent years, the
existence of polynomial kernelization for various param-
eterized problems has become a thoroughly investigated
subject. In 2008, Bodlaender et al. [7] built on a the-
orem by Fortnow and Santhanam [25] to introduce the
lower bound technology of OR-compositions, which al-
lows us to show that certain parameterized problems do
not admit polynomial kernels, unless NP ⊆ coNP/poly
and the polynomial-time hierarchy collapses to the third
level [53]. In particular, they showed that Long Path
(given an undirected graph G and integer k, does G
contain a simple path of length k?) does not admit
a polynomial kernel under this complexity assumption.
This work has been followed by a flurry of results refin-
ing this technology [10, 16, 17, 20, 30] and using it to
prove negative results for concrete parameterized prob-
lems (e.g., [5, 8, 11, 14, 18, 23, 32, 34, 33, 38, 39], see
also the recent survey of Lokshtanov et al. [42]). We

continue this line of research by trying to characterize
which F-Subgraph Test and F-Packing problems
admit polynomial kernels.

A natural, but less understood variant of kerneliza-
tion is Turing kernelization. In a Turing kernelization,
instead of creating a single compact instance in polyno-
mial time, we want to solve the instance in polynomial
time having access to an oracle solving instances of size
kO(1) in constant time. This form of kernelization can be
also thought of as some kind of preprocessing: we want
to spend polynomial time to preprocess the instance in
such a way that the time-consuming part of the work
needs to be done on compact instances. While Turing
kernelization may seem much more powerful than many-
one kernels, there are only a handful of examples where
Turing kernelization is possible, but many-one kernel-
ization is not [3, 5, 31, 48, 49]. On the other hand,
the lower bound technology introduced by Fortnow and
Santhanam [25] and Bodlaender et al. [7] does not say
anything about the possibility of Turing kernels and
therefore we know very little about the limits of Turing
kernelization. In fact, even the basic question whether
Long Path admits a Turing kernel is open (cf. [31]).
Hermelin et al. [29] tried to deal with this situation by
developing a completeness theory based on certain fun-
damental satisfiability problems that can be shown to
be fixed-parameter tractable by simple branching argu-
ment, but for which the existence of polynomial (Tur-
ing) kernels is unlikely. They introduced the notion of
WK[1]-hardness, which can be interpreted as evidence
that the problem is unlikely to admit a polynomial Tur-
ing kernel.1 Unfortunately, Hermelin et al. [29] were
unable to prove any hardness result for Long Path; its
WK[1]-hardness remains an open question. In this pa-
per, we are working under the assumption that Long
Path admits no polynomial Turing kernel and interpret
the existence of a polynomial-parameter transformation
from Long Path to our problem as evidence for the
nonexistence of polynomial Turing kernels. Problems
for which such a transformation exists will be called
Long Path-hard.

Our results. In this paper, we restrict our study
of F-Packing and F-Subgraph Test to hereditary
classes F , that is, to classes that are closed under taking
induced subgraphs.

The polynomial-time solvability of H-Packing is
well understood: if every component of H has at most
two vertices, then it is a matching problem (hence
polynomial-time solvable) and Kirkpatrick and Hell [36]
proved that H-Packing is NP-hard for every other H.

1It is known [29, Lemma 2] that the existence of a
polynomial-size many-one kernel for a WK[1]-hard problem im-

plies NP ⊆ coNP/poly.

It follows that F-Packing is polynomial-time solvable
if every component of every graph in F has at most
two vertices, and is NP-hard otherwise. For every fixed
H, we can formulate H-Packing as a special case of
finding t disjoint sets of size |V (H)| each. Hence the
problem admits a polynomial kernel of size tO(|V (H)|)

using, for example, standard sunflower kernelization
arguments [16, Appendix A]. However, the exponent of
the bound on the kernel size depends on the size of H.
Therefore, it does not follow that F-Packing admits
a polynomial kernel for every fixed class F , as F may
contain arbitrarily large graphs.

Our first result characterizes those hereditary
classes F for which F-Packing admits a polynomial
kernel. Interestingly, it seems that Turing kernels are
not more powerful for this family of problems: we get
the same positive and negative cases with respect to
both notions. Let us call a connected bipartite graph
b-thin if the smaller partite class has size at most b. We
say that a graph H is a-small/b-thin if every compo-
nent of H either has at most a vertices, or is a b-thin
bipartite graph (we emphasize that it is possible that
H has components of both types). A graph class F is
small/thin if there are a, b ≥ 0 such that every graph in
F is a-small/b-thin.

Main Theorem A. Let F be a hereditary class of
graphs. If F is small/thin, then F-Packing admits
a polynomial (many-one) kernel. If F does not have
this property, then F-Packing admits no polynomial
kernel, unless NP ⊆ coNP/poly, and moreover it is also
WK[1]-hard, W[1]-hard, or Long Path-hard.

Theorem A gives a complete characterization of
the hereditary families for which F-Packing admits
a polynomial kernel. It is well known that many
problems related to packing small graphs/objects admit
polynomial kernels (most of the research is therefore
on understanding the exact degree of the polynomial
bound [1, 12, 16, 30, 46]), but we are not aware of
any previous result showing that thin bipartite graphs
have similar good properties. This revelation about thin
bipartite graphs highlights the importance of looking
for dichotomy theorems such as Theorem A: while
proving a complete characterization of the positive
and negative cases, we necessarily have to uncover all
the important algorithmic ideas relevant to the family
of problems we study. Indeed, our goal was not to
prove a result specific to the kernelization of thin
bipartite graphs, but it turned out that one cannot
avoid proving this result in a complete characterization.
The negative part of Theorem A shows that these two
algorithmic ingredients (handling small components and
thin bipartite graphs) cover all the relevant algorithmic

ideas and any hereditary class F that cannot be handled
by these ideas leads to a hard problem.

For F-Subgraph Test, we first prove a dichotomy
theorem characterizing the randomized polynomial-time
solvable and NP-hard cases. We say that F is matching-
splittable if there is a constant c such that every H ∈ F
has a set S of at most c vertices such that every
component of H − S has at most 2 vertices.

Main Theorem B. Let F be a hereditary class of
graphs. If F is matching-splittable, then F-Subgraph
Test can be solved in randomized polynomial time. If
F does not have this property, then F-Subgraph Test
is NP-hard.

The reason why randomization appears in Theo-
rem B is the following. Given graphs G and H ∈ F , first
we try every possible location where the set S ⊆ V (H)
can appear in V (G) in a solution; as |S| ≤ c, there are
|V (G)|c possibilities to try. Having fixed the location of
S, we need to locate every component of H−S. As each
such component is an edge or a single vertex, this looks
like a matching problem, but here we have an additional
restriction on how the endpoints of the edges should be
attached to S. We can encode these neighborhood con-
ditions using a bounded number of colors and get essen-
tially a colored matching problem, which can be solved
in randomized polynomial time using the algorithm of
Mulmuley, Vazirani, and Vazirani [47] for finding per-
fect matchings of exactly a certain weight. The negative
side of Theorem B can be obtained by observing (using
an application of Ramsey arguments) that if F is not
matching-splittable, then F contains all cliques, all bi-
cliques, all disjoint unions of triangles, or all disjoint
unions of length-two paths; in each case, the problem
is NP-hard. The authors are somewhat puzzled that
the clean characterization of Theorem B has apparently
not been observed so far in the literature: it is about
the classical question of polynomial-time solvability of
finding subgraphs and the proof uses techniques that
are decades old. We may attribute this to the fact that
while dichotomy theorems for fixed classes F of graphs
exist (e.g., [13, 15, 27, 28, 35, 40, 52]), perhaps it is not
yet widely realized that such results are possible and
aiming for them is a doable goal. We hope our paper
contributes to the more widespread recognition of the
feasibility of this line of research.

In Theorem A, we have observed that Turing kernels
are not more powerful than many-one kernels for F-
Packing. The situation is different for F-Subgraph
Test: there are classes F for which F-Subgraph
Test admits a polynomial Turing kernel, but has no
polynomial many-one kernel, unless NP ⊆ coNP/poly.
We characterize the classes F that admit polynomial

Turing kernels the following way. We say that a graph
H is (a, b, c, d)-splittable, if there is a set S of at most
c vertices such that every component of H − S either
has size at most a or is a b-thin bipartite graph with the
additional restriction that the closed neighborhoods of
all but d vertices are universal to S (see Section 2.1 for
details).

Main Theorem C. Let F be a hereditary class of
graphs. If there are a, b, c, d ≥ 0 such that every
H ∈ F is (a, b, c, d)-splittable, then F-Subgraph Test
admits a polynomial Turing kernel. If F does not have
this property, then F-Subgraph Test is WK[1]-hard,
W[1]-hard, or Long Path-hard.

In the algorithmic part of Theorem C, the first step
is to guess the location of the set S ⊆ V (H) in V (G),
giving |V (G)|c possibilities (this is the reason why in
general our Turing kernel is not a many-one kernel).
For each guess, locating the components of H − S in
G is similar to Theorem A, as we have to handle small
components and thin bipartite components, but here we
have the additional technicality that we have to ensure
that these components are attached to S in a certain
way.

For many-one kernels, we do not have a characteri-
zation similar to Theorem C. We present some concrete
positive and negative results showing that a complete
characterization of F-Subgraph Test with respect to
many-one kernels would be much more delicate than
Theorem C. The simple algorithmic idea used in The-
orem C, guessing the location of S, fails for many-one
kernels and it seems that we have to make extreme ef-
forts (whenever it is possible at all) to replace this step
with adhoc arguments.

Our techniques. The proofs of Theorems A–C
all follow the same pattern. First, we define a certain
graph-theoretic property and devise an algorithm for
the case when F has this property. As described above,
the algorithmic part of Theorem B is based on the
randomized matching algorithm of Mulmuley, Vazirani,
and Vazirani [47]. For Theorems A and C, the algorithm
is a marking procedure: for each component, we mark a
bounded number of vertices such that we can always find
a copy of this component using only these vertices even
if the other components already occupy an unknown but
small set of vertices. Therefore, if there is a solution,
then there is a solution using only this set of marked
vertices. The kernel is obtained by restricting the graph
to this set of vertices. For small components, we use
the Sunflower Lemma of Erdős and Rado [21] (similarly
as it is used in the kernelization of other packing
problems, cf. [16]). For thin bipartite graphs, the
marking procedure is a branching algorithm specifically

designed for this class of graphs. At some point in the
algorithm, we crucially use that the component is b-thin:
we find a biclique with b vertices on one side and many
vertices on the other side, and then we argue that the
component is a subgraph of this biclique.

For the hardness results of Theorems A–C, first we
prove that if F does not have the stated property, then
F contains every graph from one of the basic families
of hard graphs. These hard families include cliques,
bicliques, paths, odd cycles with a high-degree vertex,
and subdivided stars (see Section 3.2). To prove that a
hard family appears in F , we use Ramsey results (in-
cluding a recent path vs. induced path vs. biclique re-
sult of Atminas, Lozin, and Razgon [4]) and a graph-
theoretic analysis of what, for example, a large nonbi-
partite graph without large cliques and long induced
paths can look like. For each hard family, we then
claim a lower bound on the problem. Most of these
lower bounds take the form of a relatively standard
polynomial-parameter transformation from Set Cover
parameterized by the size of the universe; here the value
of our contribution is not in the details of the reduction,
but in realizing that these are the hard families of graphs
whose hardness exhaustively explain the hard cases of
the problem.

The basic technique to obtain negative evidence for
the existence of many-one kernels is the method of OR-
cross-composition [10], which refines the original OR-
composition framework [7]. The negative results that
we present for the existence of many-one kernels for F-
Subgraph Test use a specific form of this technique
that we name OR-cross-composition by reduction with
a canonical template. The idea is to start from an NP-
hard graph problem L for which a family of polynomial-
size canonical template graphs exists, such that for
every n, the instances of length n are induced subgraphs
of the n-th graph in this family. This allows length-
n inputs x1, . . . , xt to be merged into one through
their common canonical supergraph of size poly(n), as
opposed to the trivial t·n, which facilitates an OR-cross-
composition. Canonical template graphs were first used
for this purpose by Bodlaender et al. [9, Theorem 11].

2 Outline

In this section we present a more detailed overview
of the results of the paper. We also describe the
main technical parts of the proofs. The proofs of
Theorems A–C all follow the same pattern:

(1) We define the property separating the positive and
negative cases.

(2) We prove an algorithmic result for the positive
cases.

(3) We prove a purely combinatorial result stating that
if a class F does not satisfy the property, then F
is a superset of one of the classes appearing on a
short list of basic hard classes.

(4) We prove a hardness result for each basic hard class
on the list.

The structure of this section follows these steps: for
each step, we go through the relevant definitions and
state the results proved later in the paper.

2.1 Characterizing properties We say that a
graph is c-matching-splittable if there is a set S ⊆ V (H)
of at most c vertices such that every component of H−S
has at most two vertices. We say that a class F of graphs
is c-matching-splittable if every H ∈ F has this prop-
erty, and we say that F is matching-splittable if F is
c-matching-splittable for some c ≥ 0. In Theorem B,
this is the condition for randomized polynomial-time
solvability. Clearly, a matching is 0-matching-splittable
and a matching plus a universal vertex is 1-matching-
splittable. On the other hand, the class containing the
disjoint unions of arbitrarily many triangles is not c-
matching-splittable for any c ≥ 0, as S would need to
contain at least one vertex from each triangle.

In Theorem A, the condition that we need is that
every component is either small or a thin bipartite
graph. We say that a graph H is a-small/b-thin if every
component of H has at most a vertices or is a b-thin
bipartite graph (that is, a bipartite graph with one of
the partite classes having size at most b). Note that H
can have both types of components. For example, if H
is the disjoint union of an arbitrary number of triangles
and stars of arbitrary size, then it is 3-small/1-thin. We
say that class F is a-small/b-thin if every graph H ∈ F
has this property and say that F is small/thin if it is
a-small/b-thin for some a, b ≥ 0. The characterization
property that we need for Theorem C is a somewhat
technical generalization of being a-small/b-thin.

Definition 3. We say that a graph H is (a, b, c, d)-
splittable if it has a vertex set S ⊆ V (H) of size at
most c such that:

(1) each connected component of H−S on more than a
vertices is bipartite and has a partite class of size
at most b, and

(2) in each connected component C of H−S, the num-
ber of vertices whose closed neighborhood in G[C]
is not universal to NH(C) ∩ S is at most d.

We say that such a set S ⊆ V (H) realizes the (a, b, c, d)-
split of H. Family F is (a, b, c, d)-splittable if every
H ∈ F is a (a, b, c, d)-splittable. Family F is splittable
if there are constants a, b, c, d such that F is (a, b, c, d)-
splittable.

Observe that being a-small/b-thin is exactly the same
as being (a, b, 0, 0)-splittable and being c-matching-
splittable is exactly the same as being (2, 0, c, 2)-
splittable. We prefer to use the terms a-small/b-thin
and c-matching-splittable for these special cases, as they
are more descriptive.

Given an a-small/b-thin graph H, adding a set S
of c universal vertices results in an (a, b, c, 0)-splittable
graph H ′. If C is a component of H having at most
a vertices and we remove from H ′ any set of edges
between C and S, then the resulting graph is (a, b, c, a)-
splittable. The closed neighborhoods of the a vertices
in C may no longer be universal to NH(C)∩S after the
edge removals, which is compensated by the fourth entry
in the tuple. Let now C be a b-thin bipartite component
of H, let A be the smaller side and let B be the larger
side of C. Observe that Definition 3 not only requires
that all but d vertices of C are universal to NH(C)∩S,
but even the closed neighborhoods in G[C] have to
be universal. Therefore, removing even a single edge
between a vertex v of C and S can ruin the property, as
it “contaminates” all the neighbors of v. If we remove a
single edge between some x ∈ B and S, then the graph
is still (a, b, c, b + 1)-splittable: there are at most b + 1
vertices in C whose neighborhood is not universal to
S, namely x and some of the vertices of A. On the
other hand, if we remove a single edge between some
y ∈ A and S, then the graph may not be (a, b, c, d)-
splittable for arbitrary large d: if y has degree d, then y
and all its neighbors have the property that their closed
neighborhoods are not universal to S.

Note that the definition does not require that the
closed neighborhood of (all but d of) the vertices are
universal to S, it requires universality only to NH(C)∩
S. Suppose that H1 and H2 are two graphs with Si

realizing an (a, b, c, d)-split of Hi for i = 1, 2. The
disjoint union of H1 and H2 is (a, b, 2c, d)-splittable, as
realized by S1 ∪ S2: the vertices in a b-thin component
of H1 need to be universal only to (a certain part of)
S1, as C has no edge to S2.

3.1 Algorithms In the algorithmic part of Theo-
rem B, we need to solve Subgraph Test in the case
that H is c-matching-splittable for some set S of at
most c vertices. As described in the introduction, we
guess the location of S and then solve the resulting con-
strained matching problem. The main technical engine
in the algorithm is the classic algebraic matching algo-
rithm due to Mulmuley, Vazirani, and Vazirani [47]. It
can be used to obtain randomized algorithms for various
colored versions of matching (see, for example, [43, 44]).
We need the following variant.

Theorem 3.1. Given a multigraph G with a (not nec-

essary proper) coloring of the edges with a set C of
colors and function f : C → Z+, there is a random-
ized algorithm with false negatives that decides in time
(|V (G)|+ |E(G)|)O(|C|) if G has a matching containing
exactly f(i) edges of color i for every i ∈ C.

By a randomized algorithm with false negatives,
we mean an algorithm that is always correct on no-
instances, but which may incorrectly reject a yes-
instance with probability at most 1

2 . Equipped with
Theorem 3.1, we can prove the algorithmic part of
Theorem B.

Theorem 3.2. F-Subgraph Test is (randomized)
polynomial-time solvable if F is matching-splittable.

The polynomial kernel in the positive part of Theo-
rem A is obtained by a marking procedure that finds a
polynomially bounded subset of vertices in G that surely
contains a solution, if a solution exists at all. Let us first
explain briefly how the standard technique of sunflowers
can be used for this marking procedure if every compo-
nent of H has at most a vertices. We need the Sunflower
Lemma of Erdős and Rado [21]. A collection S of sets
is called a sunflower if the pairwise intersection S1 ∩ S2

is the same set C for any two distinct S1, S2 ∈ S. Then
this intersection C is the core of the sunflower; the sets
S \ C for S ∈ S are the petals of the sunflower.

Lemma 3.1. ([21], cf. [22, Lemma 9.7]) Let k and
m be nonnegative integers and let S be a system of sets
of size at most m over a universe U . If |S| ≥ m!(k−1)m,
then there is a sunflower in S with k petals. Further-
more, for every fixed m there is an algorithm that com-
putes such a sunflower in time polynomial in (k + |S|).

Let H, G, and t ≥ 1 form an instance of Packing;
the solution we are looking for has k := t · |V (H)|
vertices. Let C be a component of H having size at
most a. First, we enumerate every subset of |V (C)| ≤ a
vertices in G where C appears; the length of this list is
polynomial in the size of G if a is a fixed constant. We
would like to reduce the length of this list: we would like
to have a shorter list of candidate locations where C can
appear in a solution, such that the length of the list is
polynomially bounded in k. We argue the following way.
As long as the length of the list is at least a!(k+1)a, we
can find a sunflower with k+ 2 petals among the sets in
the list. We claim that we can choose any set S from
this sunflower and throw it out of the list. Suppose that
there is a solution where the component C is mapped
exactly to this set S ⊆ V (G). As the solution uses
only k vertices of G and the petals of the sunflower are
disjoint, there is another set S′ among the remaining
k + 1 sets of the sunflower whose petal is disjoint from

the solution. Therefore, we can modify the solution such
that C is mapped to S′ instead of S, which means that
the set S cannot be essential to the solution and can
be safely removed from the list of candidate locations
for C. Repeating this argument, we eventually get a
list of at most a!(k + 1)a candidate locations for each
component of H, thus we can reduce the problem to an
induced subgraph of G whose size, for a fixed constant
a, is polynomial in k.

If H has b-thin components, then the Sunflower
Lemma cannot be applied, as the size of such a com-
ponent can be arbitrarily large (and it is the size of the
component that appears in the exponent in the argu-
ment above). Therefore, we develop a marking proce-
dure specifically designed for thin bipartite graphs. As
an illustration, we present here the main idea on the
special case of packing thin bicliques, that is, on graphs
Kb,` for some fixed b ≥ 1. The crucial ingredient for the
kernel for biclique packing is the following lemma.

Lemma 3.2. For every fixed b there is a polynomial-
time algorithm that, given a graph G and integers ` > b
and k ≥ `+b, computes a set X of size O(k4b) such that
for every Z ⊆ V (G) of size at most k, if G−Z contains
a Kb,` subgraph, then G[X]−Z contains a Kb,` subgraph.

Before proving the lemma, we show how it leads
to a polynomial kernel for biclique packing. To reduce
the size of an instance that asks whether G contains t
disjoint Kb,` subgraphs for ` > b, we define k := t·(b+`)
and invoke the lemma to compute a set X of sizeO(k4b).
We then output G[X] as the kernelized instance. If G
contains a packing of t disjoint Kb,` subgraphs, then
while the packing contains a biclique C using a vertex
in V (G)\X, we let Z be the (t−1)(b+ `) other vertices
in the packing, apply the guarantee of the lemma to find
a biclique model C ′ in G[X] avoiding Z, and replace C
in the packing by C ′. Iterating the argument results in
a packing of bicliques in G[X], proving that the reduced
instance is equivalent to the original one.

To facilitate a recursive algorithm, we actually
prove a generalization of Lemma 3.2. To state the
generalization we need the following terminology. For
disjoint sets A′, B′ ⊆ V (G) and ` > b we say that a Kb,`

subgraph in G extends (A′, B′) if the side-b partite class
is a superset of A′ and the size-` partite class is a
superset of B′.

Lemma 3.3. For every fixed b there is a polynomial-
time algorithm that, given a graph G, integers ` > b
and k ≥ `+b, and disjoint sets A′, B′ ⊆ V (G) of size at
most b, computes a set X of size at most (3k2)2b−|A

′∪B′|

such that for every Z ⊆ V (G) of size at most k,
if G−Z contains a Kb,` subgraph that extends (A′, B′),
then G[X]− Z contains a Kb,` subgraph.

Proof. The main idea behind the algorithm is to make
progress in recursive calls by increasing the size of A′ ∪
B′, thereby restricting the type of bicliques that have to
be preserved in the set X. Throughout the proof we use
the fact that if Z ⊆ V (G) and there is a Kb,`-subgraph
in G−Z that extends (A′, B′), then Z ∩ (A′ ∪B′) = ∅,
the size-b partite class consists of common neighbors
of B′, while the size-` partite class consists of common
neighbors of A′. Let us point out that the lemma
requires that G[X]− Z contains an Kb,`-subgraph, but
it does not require it to extend (A′, B′).

Case 1. If |A′| = b, then we choose X as A′ ∪ B′

together with k + ` common neighbors of A′ (or less, if
there are fewer), for a total size of at most 2b+(k+`) ≤
3k. Let Z ⊆ V (G) have size at most k. If there is a
Kb,`-subgraph H in G−Z that extends (A′, B′), then all
vertices in the size-` partite class are common neighbors
of A′. If all vertices of H are contained in G[X], then
the biclique subgraph H also exists in G[X]−Z. If not,
then the set A′ had at least k + ` common neighbors
(otherwise they were all preserved in X). Since Z
contains at most k of them, any ` of the remaining
vertices in X combines with A′ to form a Kb,`-subgraph
in G[X]− Z.

Case 2.a. If |B′| = b, |A′| < b, and the set B′

has at least k+ ` common neighbors, then we choose X
containing k + ` of these common neighbors together
with B′ itself. For any Z ⊆ V (G) of size at most k,
if a biclique extending (A′, B′) exists in G − Z then Z
avoids at least ` common neighbors of B′ in X. Together
with B′, these form a Kb,` subgraph in G[X]−Z. Note
that this Kb,` does not extend (A′, B′), but this is not
required by the lemma.

Case 2.b. If |B′| = b, |A′| < b, and the set B′

has less than k + ` ≤ 2k common neighbors T :=⋂
v∈B′ NG(v), then a Kb,`-subgraph extending (A′, B′)

has its size-b side within T . For each a ∈ T \ (A′ ∪B′),
add a to A′ and recurse. Let X be the union of
the recursively computed sets. If there is a biclique
in G − Z extending (A′, B′), then there is an a ∈
T \ (A′ ∪ B′) such that it extends (A′ ∪ {a}, B′), and
the correctness guarantee for that recursive call yields a
biclique in G[X]−Z. The measure 2b− |A′ ∪B′| drops
in each recursive call and we recurse on at most 2k
instances, giving a bound of 2k · (3k2)2b−|A

′∪B′|−1 ≤
(3k2)2b−|A

′∪B′| on |X|.
Case 3. In the remaining cases we have |A′|, |B′| <

b. We greedily compute a maximal set of Kb,` subgraphs
that extend (A′, B′) and pairwise intersect only in A′ ∪
B′. Since b is constant, this can be done in polynomial
time by guessing all possible locations for the remaining
vertices in the size-b partite class and testing whether
the resulting vertices are adjacent to B′ and have

sufficient common neighbors to realize the other partite
class. Two things can happen.

Case 3.a. If we find k + 1 distinct Kb,` subgraphs
that pairwise intersect only in (A′, B′), then we out-
put X containing the union of these subgraphs, which
has size at most (k+1)(`+b) ≤ 2k2. If a Kb,`-subgraph
extending (A′, B′) exists in G − Z for some Z ⊆ V (G)
of size k, then Z intersects at most k of the extensions.
Hence one extension avoids Z and combines with A′, B′

to form a Kb,`-subgraph in G[X]− Z.
Case 3.b. If there are at most k of such extensions,

then let T contain the at most k(` + b) ≤ k2 vertices
in their union. By the maximality of the packing, any
extension of (A′, B′) uses a vertex in T \ (A′ ∪B′). For
each v ∈ T \ (A′ ∪B′), recurse twice: once for adding v
to A′ and once for adding v to B′. We let X be the
union of the recursively computed sets. If there is a
Kb,` subgraph in G − Z for some Z ⊆ V (G) of size at
most k, then it extends (A′∪{v}, B′) or (A′, B′∪{v}) for
some v ∈ T \ (A′ ∪ B′). The correctness guarantee for
that branch of the recursion guarantees the existence
of Kb,` in G[X] − Z. As the measure 2b − |A′ ∪ B′|
drops in each recursive call, while we branch in at
most 2|T | ≤ 2k(` + b) ≤ 2k2 directions, the size of X is
bounded by 2k2 · (3k2)2b−|A

′∪B′|−1 ≤ (3k2)2b−|A
′∪B′|.

The generalization from b-thin bicliques to gen-
eral b-thin bipartite graphs makes the scheme described
above much more technical. Let us point out that the
large side of a b-thin bipartite graph can be partitioned
into at most 2b classes according to its neighborhood
in the small side. Therefore, intuitively, a b-thin bipar-
tite graph can be seen as 2b different b-thin bicliques
joined together, which makes it plausible that such a
generalization exists.

Theorem 3.3. If F is a hereditary class of graphs that
is small/thin, then F-Packing admits a polynomial
many-one kernel.

For the algorithmic part of Theorem C, we have to
guess the location of the set S realizing the (a, b, c, d)-
split and then take into account the universality restric-
tions. This introduces another layer of technical difficul-
ties, but no new conceptual ideas are needed. Moreover,
because of this guessing step, the kernel is no longer
many-one, but it is a Turing kernel.

Theorem 3.4. If F is a hereditary class of graphs
that is splittable, then F-Subgraph Test admits a
polynomial Turing kernel.

3.2 Hard families We define several specific classes
of graphs and show hardness results for these classes.

Then we show that if a class does not have the property
of, say, being splittable, then it is a superset of at least
one hard class, hence hardness follows for every class
that does not have this property.

First, we define the following graphs (see Figure 1).

• Path(`) is the path of length `, which consists
of ` edges and ` + 1 vertices. It is sometimes
denoted P`+1 for brevity.

• Clique(n) is the clique on n vertices (while describ-
ing hard families, we use Clique(n) instead of the
more standard Kn for consistency of notation).
• Biclique(n) is the balanced biclique Kn,n on n + n

vertices.
• 2-broom(s, n) is obtained from a length-s path

by adding n pendant vertices to each of the two
endpoints of the path.

• OperaHouse(s, n) is obtained from a length-s path
by adding n vertices that are adjacent to both
endpoints of the path.

• Fountain(s, n) is obtained from a length-s cycle by
adding n pendant vertices to one vertex on the
cycle.

• LongFountain(s, t, n) is obtained from a length-s
cycle by adding a path of length t, identifying one
endpoint with a vertex on the cycle and adding n
pendant vertices to the other endpoint.

• SubDivStar(n) is obtained from a star with n leaves
by subdividing each edge once.

• SubDivTree(s, n) is obtained from a star with n
leaves by subdividing each edge s − 1 times and
attaching n pendant vertices to each leaf.

• DiamondFan(n) is obtained from n copies of K2,n

by taking one degree-n vertex from each copy and
identifying them into a single vertex.

We can define families of these graphs the obvious way:

FPath = {Path(i) | i ≥ 1}
FClique = {Clique(i) | i ≥ 1}
FBiclique = {Biclique(i) | i ≥ 1}
Fs

2-broom = {2-broom(s, i) | i ≥ 1}
Fs

Fountain = {Fountain(s, i) | i ≥ 1}
Fs,t

LongFountain = {LongFountain(s, t, i) | i ≥ 1}
Fs

OperaHouse = {OperaHouse(s, i) | i ≥ 1}
FSubDivStar = {SubDivStar(i) | i ≥ 1}
Fs

SubDivTree = {SubDivTree(s, i) | i ≥ 1}
FDiamondFan = {DiamondFan(i) | i ≥ 1}

To prove that a hard family is contained in every
class not satisfying a certain property, we use argu-
ments based on Ramsey theory. The following lemma
characterizes hereditary classes that are not matching-
splittable. We define n ·H to be the graph that contains

n disjoint copies of H. (Recall that P3 is the path on 3
vertices.)

Theorem 3.5. Let F be a hereditary graph family that
is not matching splittable. Then at least one of the
following holds:

(1) F is a superset of FClique.
(2) F is a superset of FBiclique.
(3) F contains n ·K3 for every n ≥ 1.
(4) F contains n · P3 for every n ≥ 1.

Observe that Theorem 3.5 is a tight characteriza-
tion of matching-splittable graphs: the converse state-
ment is also true, that is, if any of the four statements
is true for F , then it is not matching-splittable. Clearly,
large cliques and large bicliques are not c-matching-
splittable for constant c. Moreover, if every component
of a graph has three vertices (that is, it is either a K3

or P3), then at least one vertex has to be deleted from
each component to decrease the size of every component
to at most two vertices, hence F cannot be c-matching-
splittable for constant c in the last two cases either. The
following theorem characterizes the hereditary classes
that are not small/thin.

Theorem 3.6. Let F be a hereditary graph family that
is not small/thin. Then F is a superset of at least one
of the following families:

(1) FPath,
(2) FClique,
(3) FBiclique,
(4) Fs

Fountain for some odd integer s ≥ 3,
(5) Fs,t

LongFountain for some odd integer s ≥ 3 and integer
t ≥ 1,

(6) Fs
OperaHouse for some odd integer s ≥ 1,

(7) FSubDivStar, or
(8) Fs

2-broom for some odd integer s ≥ 1.

Again, the characterization is tight: we can observe
that if F is a superset of any of these families, then
there is no a, b ≥ 0 such that F is a-small/b-thin. Note
that we cannot leave out any of the eight items from
the list: the hereditary closure of, say, F5,2

LongFountain is
not the superset of any of the classes described in the
remaining seven items.

Finally, we characterize graphs that are not split-
table.

Theorem 3.7. Let F be a hereditary graph family that
is not splittable. Then at least one of the following holds:

(1) F is a superset of FPath,
(2) F is a superset of FClique,
(3) F is a superset of FBiclique,

n vertices

length s

length s

n
v
er

ti
ce

s n
v
ertices

n vertices

n vertices

n vertices

length s

len
g
th

t

length `

n vertices

len
g
th

s

n vertices

n vertices

Path(`) Biclique(n) 2-broom(s, n)Clique(n)

length s

n
v
ertices

OperaHouse(s, n)

Fountain(s, n) LongFountain(s, t, n) SubDivStar(n) SubDivTree(s, n) DiamondFan(n)

(` = 5) (n = 4) (n = 3) (s = 4, n = 5) (s = 5, n = 4)

(n = 4)(s = 3, n = 3)(n = 4)(s = 5, t = 3, n = 4)(s = 5, n = 4)

Figure 1: Basic families of graphs.

(4) F contains n · SubDivStar(n) for every n ≥ 1,
(5) there is an odd s ≥ 3 such that F contains n ·

Fountain(s, n) for every n ≥ 1,
(6) there is an odd s ≥ 1 such that F contains n ·

OperaHouse(s, n) for every n ≥ 1,
(7) there is an odd s ≥ 1 such that F contains n ·

2-broom(s, n) for every n ≥ 1,
(8) there is an odd s ≥ 3 and arbitrary t ≥ 1 such that
F contains n ·LongFountain(s, t, n) for every n ≥ 1,

(9) F is a superset of Fs
SubDivTree for some integer s ≥ 1,

or
(10) F is a superset of FDiamondFan.

We can again verify that the characterization is
tight. In particular, let us show that SubDivTree(s, n)
is not (a, b, c, d)-splittable if n > a + b + c + d. Suppose
that S realizes the (a, b, c, d)-split. As the graph is not b-
thin and has more than a vertices, we have that S is not
empty. By the pigeonhole principle, there is a vertex v
with degree n+1 that is not in S, and none of its degree-
1 neighbors are in S either. Then v is in a component
of size at least n + 1 > a that contains at least n > d
vertices that have no neighbors in S. Similarly, suppose
that S realizes an (a, b, c, d)-split of DiamondFan(n) for
n > a + b + c + d. Again, S is not empty. By the

pigeonhole principle, there is a degree-n vertex v that
is not in S and has no neighbor in S. The component
of this vertex has size more than a and the component
has more than d vertices (namely, every neighbor of v)
whose closed neighborhood is not universal to S.

3.3 Hardness proofs Let us review the concrete
hardness results that we prove, which, by the combi-
natorial characterizations in Theorems 3.5–3.7, prove
the negative parts of Theorems A–C. As mentioned
above, Kirkpatrick and Hell [36] fully characterized the
polynomial-time solvable cases of H-Packing.

Theorem 3.8. ([36]) H-Packing is polynomial-time
solvable if every connected component of H has at most
two vertices and NP-complete otherwise.

It follows from Theorem 3.8 that F-Subgraph
Test is NP-hard if F contains n ·K3 for every n ≥ 1 or
if F contains n ·P3 for every n ≥ 1, as then the problem
is more general than K3-Packing or P3-Packing,
respectively. Also, F-Subgraph Test is NP-hard if F
contains every clique [26, GT7] (it generalizes Clique)
or if F contains every biclique [26, GT24].

For kernelization lower bounds, observe first that
if F contains every clique, then F-Packing and F-

Subgraph Test are clearly W[1]-hard [19, Theorem
21.2.4] and therefore do not admit a (Turing) kernel of
any size, unless FPT = W[1] and the Exponential Time
Hypothesis fails [19, Chapter 29]. A recent result of
Lin [41] shows that if F contains every biclique, then
F-Packing and F-Subgraph Test are also W[1]-
hard. Since the parameterized Clique and Biclique
problems are NP-hard and OR-compositional [7], it fol-
lows from standard kernelization lower bound machin-
ery that if F-Packing or F-Subgraph Test has a
polynomial (many-one) kernel when F contains every
clique or biclique, then NP ⊆ coNP/poly. To complete
the proof of the negative parts of Theorems A and C, we
prove the following two sets of WK[1]-hardness results.

Theorem 3.9. The F-Packing problem is WK[1]-
hard under polynomial-parameter transformations if F
is a superset of any of the following families:

(1) FSubDivStar,
(2) Fs,t

LongFountain for some integer t ≥ 1 and some odd
integer s ≥ 3,

(3) Fs
2-broom for some odd integer s ≥ 1,

(4) Fs
Fountain for some odd integer s ≥ 3, or

(5) Fs
OperaHouse for some odd integer s ≥ 1.

Theorem 3.10. The F-Subgraph Test problem is
WK[1]-hard under polynomial-parameter transforma-
tions if F is a superset of any of the following families:

(1) FDiamondFan, or
(2) Fs

SubDivTree for some integer s.

All WK[1]-hardness proofs are by reduction from
Uniform Exact Set Cover (n), where the param-
eter equals the size of the universe on which the set
system is defined. The uniform variant, in which all
sets have the same size, is particularly useful for proving
these results. We prove the WK[1]-hardness of the prob-
lem by a two-stage transformation from Exact Set
Cover (n) [29], first introducing a small number of
new elements to ensure that solutions exist that con-
tain a prescribed number of sets, and then using this
knowledge to introduce another small number of ele-
ments that can be added to the sets to make the system
uniform.

3.4 Many-one kernels We do not have a complete
characterization of the existence of many-one kernels
for F-Subgraph Test. The authors believe that if
such a characterization is possible, then it has to be
significantly more delicate than the characterization of
Turing kernels in Theorem C and both the positive and

the negative parts should involve a larger number of
specific cases. We present two lower bounds and two
upper bounds to show the difficulties that arise (see also
Figure 2). The following two theorems give the lower
bounds.

Theorem 3.11. Let F be any hereditary graph family
containing all graphs of the form H ′+ ` ·K3, where ` ≥
1 and H ′ ∈ FSubDivStar. Then F-Subgraph Test
does not admit a polynomial many-one kernel unless
NP ⊆ coNP/poly.

Theorem 3.12. Let F be any hereditary graph family
containing all graphs of the form H ′ + H ′′ + ` · P3,
where ` ≥ 1 and H ′, H ′′ ∈ FSubDivStar. Then F-
Subgraph Test does not admit a polynomial many-
one kernel unless NP ⊆ coNP/poly.

Observe that the graph families described by these
theorems are (3, 0, 2, 2)-splittable: letting S contain
the (at most two) centers of the subdivided stars, the
connected components that remain after removing S
have at most three vertices. Every leg of a subdivided
star becomes a component of size two in which one of
the vertices is universal to S and the other is not; hence
the closed neighborhoods of the two vertices are not
universal to S. The F-Subgraph Test problem for
these families therefore has polynomial Turing kernels
by Theorem 3.4, highlighting the difference between
many-one and Turing kernelization for F-Subgraph
Test. The following two theorems give upper bounds.

Theorem 3.13. Let F be the hereditary closure of the
family containing all graphs of the form H ′ + ` · K3,
where ` ≥ 1 and H ′ ∈ F3

Fountain. Then F-Subgraph
Test admits a polynomial many-one kernel.

Theorem 3.14. Let F be the hereditary closure of the
family containing all graphs of the form H ′ + ` · P3,
where ` ≥ 1 and H ′ ∈ FSubDivStar. Then F-Subgraph
Test admits a polynomial many-one kernel.

Comparing Theorem 3.11 to Theorem 3.13, we find
that changing the type of the single large component
from a subdivided star to a fountain crosses the thresh-
old for the existence of a polynomial kernel, even though
both types of graphs can be reduced to constant-size
components by a single vertex deletion. Comparing
Theorem 3.12 to Theorem 3.14 we see that decreasing
the number of subdivided star components from two to
one makes a polynomial kernel possible. While the defi-
nition of splittable graph families that characterizes the
existence of polynomial Turing kernels for F-Subgraph
Test is robust under increases by constants, this is
clearly not the case for the many-one complexity of F-
Subgraph Test.

SubDivStar(n) n ·K3

2 · SubDivStar(n) n · P3

Fountain(3, n) n ·K3

SubDivStar(n) n · P3

(a) Theorem 3.11: lower bound

(b) Theorem 3.12: lower bound

(c) Theorem 3.13: polynomial kernel

(d) Theorem 3.14: polynomial kernel

Figure 2: Illustrating the classes of graphs in Theorems 3.11–3.14.

3.5 Motivation for hereditary classes In this pa-
per, we restricted our study to hereditary classes F .
There are a number of reasons motivating this deci-
sion. First, considering arbitrary classes F can make
it very hard to prove lower bounds by polynomial-time
reductions (even if the classes are decidable). For a
concrete example, pick F consisting of every clique of

size 22
2i

for i ≥ 1. Then F-Subgraph Test is un-
likely to be polynomial-time solvable, but this seems
difficult to prove with a polynomial-time reduction as
the smallest clique in F of size exceeding n may have
superpolynomial size. A difficulty of different sorts ap-
pears if F contains cliques such that the sizes of cliques
in F form a more dense set of integers than in the pre-
vious example, but deciding if the clique of a particular
size n is in F takes time exponential in n. These is-
sues may be considered artifacts of trying to prove hard-
ness by uniform polynomial-time reductions that work
for every input length n; potentially the issues can be
avoided by formulating the complexity framework in a
different way. However, there are even more substantial
difficulties that appear when the class F is not heredi-
tary. For example, let F be the set of all paths. Then
F-Subgraph Test is NP-hard and it does not admit
a polynomial kernel, unless NP ⊆ coNP/poly [7]. Con-
sider now the class F ′ containing, for every i ≥ 1, the
graph formed by a path of length i together with 2i

isolated vertices. The introduction of the isolated ver-
tices should not change the complexity of the problem,
but, surprisingly, it does. The problem of finding a path

of length k in an n-vertex graph can be solved in time
2O(k) · nO(1) [2, 50, 6]. Therefore, if H consists of a
path of length k and 2k isolated vertices, then these
algorithms give a polynomial-time algorithm for find-
ing H in a graph G: the running time 2O(k) · nO(1)

is polynomial in the size of H and G. Therefore, F ′-
Subgraph Test is polynomial-time solvable, but ap-
parently only because finding a path of length k is fixed-
parameter tractable and has 2O(k)nO(1) time algorithms
(note that the 2O(k log k)nO(1) time algorithm of Monien
[45] would not be sufficient for this argument). There-
fore, it seems that we need a very tight understanding of
the fixed-parameter tractability of F-Subgraph Test
to argue about its polynomial-time solvability. There
are examples in the literature where the polynomial-
time solvability of a problem was characterized for every
(not necessarily hereditary) class F [13, 15, 27, 28], but
in all these results, the characterization of polynomial-
time was possible only because it coincided with fixed-
parameter tractability. There is certainly no such coin-
cidence for F-Subgraph Test (for example, finding a
path of length k is NP-hard, but FPT) and moreover
the fixed-parameter tractability of F-Subgraph Test
is not well understood, as shown, for example, by the
Biclique problem.

All these problems disappear if we restrict F to
be hereditary (e.g., adding isolated vertices certainly
cannot make the problem easier and if F contains
arbitrary large cliques, then F contains every clique).
While this restricts the generality of our results to some

extent, we believe that avoiding the difficulties discussed
above more than compensates for this lack of generality.

Let us also comment on the fact that, while the
problems we study concern finding and packing (non-
induced) subgraphs, we characterize the difficulty of
such problems for each class F of pattern graphs that
is closed under induced subgraphs (i.e., for hereditary
classes). The discrepancy between induced and non-
induced here is entirely natural. Note that every class F
of pattern graphs that is closed under subgraphs, is
also closed under induced subgraphs, and is therefore
covered by our dichotomies. The fact that we can
also classify F that are merely closed under induced
subgraphs, rather than normal subgraphs, gives our
results extra strength.

We mention in passing the classical result of Lewis
and Yannakakis [40] on fully characterizing the com-
plexity of vertex-deletion problems defined by heredi-
tary properties; these results also rely crucially on the
assumption that the property is hereditary. Note that
our results on F-Subgraph Test are unrelated to the
results of Lewis and Yannakakis [40]: their problem is
related to finding induced subgraphs and the task is not
to find a specific induced subgraph, but to find a sub-
graph belonging to the class and having a specified size.

4 Conclusion

In this extended abstract we have presented our results
on F-Subgraph Test and F-Packing and motivated
them. Due to the great length of the proofs, they have
been deferred to the full version of the paper, which
is accessible on arXiv. We therefore invite interested
readers to access the proofs online.

References

[1] F. N. Abu-Khzam. An improved kernelization al-
gorithm for r-Set Packing. Inf. Process. Lett.,
110(16):621–624, 2010. doi:10.1016/j.ipl.2010.04.

020.
[2] N. Alon, R. Yuster, and U. Zwick. Color-coding. J.

ACM, 42(4):844–856, 1995.
[3] A. M. Ambalath, R. Balasundaram, C. R. H., V. Kop-

pula, N. Misra, G. Philip, and M. S. Ramanujan. On
the kernelization complexity of colorful motifs. In
Proc. 5th IPEC, pages 14–25, 2010. doi:10.1007/

978-3-642-17493-3_4.
[4] A. Atminas, V. V. Lozin, and I. Razgon. Lin-

ear time algorithm for computing a small biclique
in graphs without long induced paths. In Proc.
13th SWAT, pages 142–152, 2012. doi:10.1007/

978-3-642-31155-0_13.
[5] D. Binkele-Raible, H. Fernau, F. V. Fomin, D. Lok-

shtanov, S. Saurabh, and Y. Villanger. Kernel(s) for

problems with no kernel: On out-trees with many
leaves. ACM Trans. Algorithms, 8(4):38, 2012. doi:

10.1145/2344422.2344428.
[6] A. Björklund. Determinant sums for undirected hamil-

tonicity. SIAM J. Comput., 43(1):280–299, 2014. doi:
10.1137/110839229.

[7] H. L. Bodlaender, R. G. Downey, M. R. Fellows,
and D. Hermelin. On problems without polynomial
kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.
doi:10.1016/j.jcss.2009.04.001.

[8] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Pen-
ninkx, S. Saurabh, and D. M. Thilikos. (Meta) Ker-
nelization. In Proc. 50th FOCS, pages 629–638, 2009.
doi:10.1109/FOCS.2009.46.

[9] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch.
Kernel bounds for path and cycle problems. Theor.
Comput. Sci., 511:117–136, 2013. arXiv:1106.4141,
doi:10.1016/j.tcs.2012.09.006.

[10] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch.
Kernelization lower bounds by cross-composition.
SIAM J. Discrete Math., 28(1):277–305, 2014. arXiv:

1206.5941, doi:10.1137/120880240.
[11] H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel

bounds for disjoint cycles and disjoint paths. Theor.
Comput. Sci., 412(35):4570–4578, 2011. doi:10.1016/
j.tcs.2011.04.039.

[12] J. Chen, S. Lu, S.-H. Sze, and F. Zhang. Improved
algorithms for path, matching, and packing problems.
In Proc. 18th SODA, pages 298–307, 2007. URL:
http://doi.acm.org/10.1145/1283383.1283415.

[13] Y. Chen, M. Thurley, and M. Weyer. Understanding
the complexity of induced subgraph isomorphisms. In
Proc. 35th ICALP, pages 587–596, 2008. doi:10.

1007/978-3-540-70575-8_48.
[14] M. Cygan, S. Kratsch, M. Pilipczuk, M. Pilipczuk,

and M. Wahlström. Clique cover and graph sep-
aration: New incompressibility results. In Proc.
39th ICALP, pages 254–265, 2012. doi:10.1007/

978-3-642-31594-7_22.
[15] V. Dalmau and P. Jonsson. The complexity of counting

homomorphisms seen from the other side. Theor.
Comput. Sci., 329(1-3):315–323, 2004. doi:10.1016/

j.tcs.2004.08.008.
[16] H. Dell and D. Marx. Kernelization of packing prob-

lems. In Proc. 23rd SODA, pages 68–81, 2012.
[17] H. Dell and D. van Melkebeek. Satisfiability allows

no nontrivial sparsification unless the polynomial-time
hierarchy collapses. In Proc. 42nd STOC, pages 251–
260, 2010. doi:10.1145/1806689.1806725.

[18] M. Dom, D. Lokshtanov, and S. Saurabh. In-
compressibility through colors and IDs. In Proc.
36th ICALP, pages 378–389, 2009. doi:10.1007/

978-3-642-02927-1_32.
[19] R. G. Downey and M. R. Fellows. Fundamentals of

Parameterized Complexity. Texts in Computer Science.
Springer, 2013.

[20] A. Drucker. New limits to classical and quantum
instance compression. In Proc. 53rd FOCS, pages 609–

http://dx.doi.org/10.1016/j.ipl.2010.04.020
http://dx.doi.org/10.1016/j.ipl.2010.04.020
http://dx.doi.org/10.1007/978-3-642-17493-3_4
http://dx.doi.org/10.1007/978-3-642-17493-3_4
http://dx.doi.org/10.1007/978-3-642-31155-0_13
http://dx.doi.org/10.1007/978-3-642-31155-0_13
http://dx.doi.org/10.1145/2344422.2344428
http://dx.doi.org/10.1145/2344422.2344428
http://dx.doi.org/10.1137/110839229
http://dx.doi.org/10.1137/110839229
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1109/FOCS.2009.46
http://arxiv.org/abs/1106.4141
http://dx.doi.org/10.1016/j.tcs.2012.09.006
http://arxiv.org/abs/1206.5941
http://arxiv.org/abs/1206.5941
http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://doi.acm.org/10.1145/1283383.1283415
http://dx.doi.org/10.1007/978-3-540-70575-8_48
http://dx.doi.org/10.1007/978-3-540-70575-8_48
http://dx.doi.org/10.1007/978-3-642-31594-7_22
http://dx.doi.org/10.1007/978-3-642-31594-7_22
http://dx.doi.org/10.1016/j.tcs.2004.08.008
http://dx.doi.org/10.1016/j.tcs.2004.08.008
http://dx.doi.org/10.1145/1806689.1806725
http://dx.doi.org/10.1007/978-3-642-02927-1_32
http://dx.doi.org/10.1007/978-3-642-02927-1_32

618, 2012. doi:10.1109/FOCS.2012.71.
[21] P. Erdős and R. Rado. Intersection theorems for

systems of sets. J. London Math. Soc., 35:85–90, 1960.
[22] J. Flum and M. Grohe. Parameterized Complexity

Theory. Springer-Verlag New York, Inc., 2006.
[23] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh.

Planar F-Deletion: Approximation, kernelization and
optimal FPT algorithms. In Proc. 53rd FOCS, pages
470–479, 2012. doi:10.1109/FOCS.2012.62.

[24] F. V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh,
and B. V. R. Rao. Faster algorithms for finding and
counting subgraphs. J. Comput. Syst. Sci., 78(3):698–
706, 2012. doi:10.1016/j.jcss.2011.10.001.

[25] L. Fortnow and R. Santhanam. Infeasibility of instance
compression and succinct PCPs for NP. J. Comput.
Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.

2010.06.007.
[26] M. R. Garey and D. S. Johnson. Computers and

Intractability, A Guide to the Theory of NP-Complete-
ness. W.H. Freeman and Company, New York, 1979.

[27] M. Grohe. The complexity of homomorphism and
constraint satisfaction problems seen from the other
side. J. ACM, 54(1):1, 2007. doi:10.1145/1206035.

1206036.
[28] M. Grohe, T. Schwentick, and L. Segoufin. When is

the evaluation of conjunctive queries tractable? In
STOC ’01: Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 657–666,
New York, NY, USA, 2001. ACM Press. doi:http:

//doi.acm.org/10.1145/380752.380867.
[29] D. Hermelin, S. Kratsch, K. So ltys, M. Wahlström, and

X. Wu. A completeness theory for polynomial (Turing)
kernelization. In Proc. 8th IPEC, pages 202–215, 2013.
doi:10.1007/978-3-319-03898-8_18.

[30] D. Hermelin and X. Wu. Weak compositions and their
applications to polynomial lower bounds for kerneliza-
tion. In Proc. 23rd SODA, pages 104–113, 2012.

[31] B. M. P. Jansen. Turing kernelization for finding long
paths and cycles in restricted graph classes. In Proc.
22nd ESA, pages 579–591, 2014. arXiv:1402.4718.

[32] B. M. P. Jansen and H. L. Bodlaender. Vertex cover
kernelization revisited: Upper and lower bounds for a
refined parameter. In Proc. 28th STACS, pages 177–
188, 2011. doi:10.4230/LIPIcs.STACS.2011.177.

[33] B. M. P. Jansen and S. Kratsch. On polynomial
kernels for structural parameterizations of odd cycle
transversal. In Proc. 6th IPEC, pages 132–144, 2011.
doi:10.1007/978-3-642-28050-4_11.

[34] B. M. P. Jansen and S. Kratsch. Data reduction for
graph coloring problems. Inform. Comput., 231:70–88,
2013. arXiv:1104.4229, doi:10.1016/j.ic.2013.08.
005.

[35] S. Khot and V. Raman. Parameterized complexity of
finding subgraphs with hereditary properties. Theor.
Comput. Sci., 289(2):997–1008, 2002. doi:10.1016/

S0304-3975(01)00414-5.
[36] D. G. Kirkpatrick and P. Hell. On the completeness of

a generalized matching problem. In Proc. 10th STOC,

pages 240–245, 1978. doi:10.1145/800133.804353.
[37] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith.

Divide-and-color. In Proc. 32nd WG, pages 58–67,
2006. doi:10.1007/11917496_6.

[38] S. Kratsch. Co-nondeterminism in compositions: a
kernelization lower bound for a Ramsey-type problem.
In ACM Trans. Algorithms, 2013. To appear.

[39] S. Kratsch, M. Pilipczuk, A. Rai, and V. Ra-
man. Kernel lower bounds using co-nondeterminism:
Finding induced hereditary subgraphs. In Proc.
13th SWAT, pages 364–375, 2012. doi:10.1007/

978-3-642-31155-0_32.
[40] J. M. Lewis and M. Yannakakis. The node-deletion

problem for hereditary properties is NP-complete. J.
Comput. Syst. Sci., 20(2):219–230, 1980.

[41] B. Lin. The parameterized complexity of k-Biclique. In
Proc. 26th SODA, 2014. In press. arXiv:1406.3700.

[42] D. Lokshtanov, N. Misra, and S. Saurabh. Kerneliza-
tion - Preprocessing with a guarantee. In The Multi-
variate Algorithmic Revolution and Beyond, pages 129–
161, 2012. doi:10.1007/978-3-642-30891-8_10.

[43] D. Marx. List edge multicoloring in graphs with few
cycles. Inf. Process. Lett., 89(2):85–90, 2004. doi:

10.1016/j.ipl.2003.09.016.
[44] D. Marx and M. Pilipczuk. Everything you always

wanted to know about the parameterized complexity
of subgraph isomorphism (but were afraid to ask).
In Proc. 31st STACS, pages 542–553, 2014. doi:

10.4230/LIPIcs.STACS.2014.542.
[45] B. Monien. How to find long paths efficiently. Annals

of Discrete Mathematics, 25:239–254, 1985. doi:10.

1016/S0304-0208(08)73110-4.
[46] H. Moser. A problem kernelization for graph packing.

In Proc. 35th SOFSEM, pages 401–412, 2009. doi:

10.1007/978-3-540-95891-8_37.
[47] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani.

Matching is as easy as matrix inversion. Combinator-
ica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

[48] A. Schäfer, C. Komusiewicz, H. Moser, and R. Nie-
dermeier. Parameterized computational complex-
ity of finding small-diameter subgraphs. Op-
tim. Lett., 6(5):883–891, 2012. doi:10.1007/

s11590-011-0311-5.
[49] S. Thomassé, N. Trotignon, and K. Vuskovic. Pa-

rameterized algorithm for weighted independent set
problem in bull-free graphs. arXiv 1310.6205, 2013.
arXiv:1310.6205.

[50] R. Williams. Finding paths of length k in O∗(2k)
time. Inf. Process. Lett., 109(6):315–318, 2009. doi:

10.1016/j.ipl.2008.11.004.
[51] V. V. Williams and R. Williams. Finding, minimizing,

and counting weighted subgraphs. SIAM J. Comput.,
42(3):831–854, 2013. doi:10.1137/09076619X.

[52] M. Yannakakis. Node-deletion problems on bipartite
graphs. SIAM J. Comput., 10(2):310–327, 1981. doi:

10.1137/0210022.
[53] C.-K. Yap. Some consequences of non-uniform condi-

tions on uniform classes. Theor. Comput. Sci., 26:287–

http://dx.doi.org/10.1109/FOCS.2012.71
http://dx.doi.org/10.1109/FOCS.2012.62
http://dx.doi.org/10.1016/j.jcss.2011.10.001
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/http://doi.acm.org/10.1145/380752.380867
http://dx.doi.org/http://doi.acm.org/10.1145/380752.380867
http://dx.doi.org/10.1007/978-3-319-03898-8_18
http://arxiv.org/abs/1402.4718
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.177
http://dx.doi.org/10.1007/978-3-642-28050-4_11
http://arxiv.org/abs/1104.4229
http://dx.doi.org/10.1016/j.ic.2013.08.005
http://dx.doi.org/10.1016/j.ic.2013.08.005
http://dx.doi.org/10.1016/S0304-3975(01)00414-5
http://dx.doi.org/10.1016/S0304-3975(01)00414-5
http://dx.doi.org/10.1145/800133.804353
http://dx.doi.org/10.1007/11917496_6
http://dx.doi.org/10.1007/978-3-642-31155-0_32
http://dx.doi.org/10.1007/978-3-642-31155-0_32
http://arxiv.org/abs/1406.3700
http://dx.doi.org/10.1007/978-3-642-30891-8_10
http://dx.doi.org/10.1016/j.ipl.2003.09.016
http://dx.doi.org/10.1016/j.ipl.2003.09.016
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.542
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.542
http://dx.doi.org/10.1016/S0304-0208(08)73110-4
http://dx.doi.org/10.1016/S0304-0208(08)73110-4
http://dx.doi.org/10.1007/978-3-540-95891-8_37
http://dx.doi.org/10.1007/978-3-540-95891-8_37
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1007/s11590-011-0311-5
http://dx.doi.org/10.1007/s11590-011-0311-5
http://arxiv.org/abs/1310.6205
http://dx.doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1137/09076619X
http://dx.doi.org/10.1137/0210022
http://dx.doi.org/10.1137/0210022

300, 1983. doi:10.1016/0304-3975(83)90020-8.

http://dx.doi.org/10.1016/0304-3975(83)90020-8

	Introduction
	Outline
	Characterizing properties
	Algorithms
	Hard families
	Hardness proofs
	Many-one kernels
	Motivation for hereditary classes

	Conclusion

